1
|
Bharathi Rathinam R, Tripathi G, Das BK, Jain R, Acharya A. Comparative analysis of gut microbiome in Pangasionodon hypopthalmus and Labeo catla during health and disease. Int Microbiol 2024; 27:1557-1571. [PMID: 38483744 DOI: 10.1007/s10123-024-00494-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 10/05/2024]
Abstract
The present study was conducted to study the composition of gut microbiome in the advanced fingerling and fingerling stage of striped pangasius catfish and catla during healthy and diseased conditions. Healthy pangasius and catla fishes were obtained from commercial farms and injected with the LD50 dose of A. hydrophila. The intestinal samples from the control and injected group were collected and pooled for 16 s metagenomic analysis. Community analysis was performed by targeting the 16 s rRNA gene to explore and compare the gut microbiota composition of these fishes. The operational taxonomic units (OTUs) consisted of four major phyla: Bacteroidia, Proteobacteria, Firmicutes, and Actinobacteria. Alpha and beta diversity indices were carried out to understand the diversity of microbes within and between a sample. While comparing the advanced fingerling and fingerling stage gut microbiome of Pangasius catfish, the dominance of Proteobacteria was found in fingerlings, whereas Firmicutes and Bacteroides were found in advanced fingerlings. In catla, Proteobacteria and Bacteroides were predominant. Taxonomic abundance of the microbiota in control and diseased Pangasius and catla fishes at phylum, class, order, family, genus, and species levels were also depicted. The present study is the first of its kind, and it will help to identify the diversity of novel potential bacterial species involved in disease protection of fishes. It can lead to the development of sustainable prophylactic measures against (re-)emerging bacterial diseases in aquaculture.
Collapse
Affiliation(s)
| | | | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | - Arpit Acharya
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
2
|
Xie Q, Yao T, Sun X, Liu X, Wang X. Whole genome identification of olive flounder (Paralichthys olivaceus) cathepsin genes: Provides insights into its regulation on biotic and abiotic stresses response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106783. [PMID: 38064891 DOI: 10.1016/j.aquatox.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.
Collapse
Affiliation(s)
- Qingping Xie
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xuanyang Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Gonçalves G, Santos RA, Coutinho F, Pedrosa N, Curado M, Machado M, Costas B, Bonneville L, Serrano M, Carvalho AP, Díaz-Rosales P, Oliva-Teles A, Couto A, Serra CR. Oral vaccination of fish against vibriosis using spore-display technology. Front Immunol 2022; 13:1012301. [PMID: 36311700 PMCID: PMC9608137 DOI: 10.3389/fimmu.2022.1012301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/29/2022] [Indexed: 10/06/2024] Open
Abstract
Oral vaccines are highly demanded by the aquaculture sector, to allow mass delivery of antigens without using the expensive and labor-intensive injectable vaccines. These later require individual handling of fish, provoking stress-related mortalities. One possible strategy to create injection-free vaccine delivery vehicles is the use of bacterial spores, extremely resistant structures with wide biotechnological applications, including as probiotics, display systems, or adjuvants. Bacterial spores, in particular those of Bacillus subtilis, have been shown to behave as mucosal vaccine adjuvants in mice models. However, such technology has not been extensively explored against fish bacterial disease. In this study, we used a laboratory strain of B. subtilis, for which a variety of genetic manipulation tools are available, to display at its spores surface either a Vibrio antigenic protein, OmpK, or the green fluorescence protein, GFP. When previously vaccinated by immersion with the OmpK- carrying spores, zebrafish survival upon a bacterial challenge with V. anguillarum and V. parahaemolyticus, increased up to 50 - 90% depending on the pathogen targeted. Further, we were able to detect anti-GFP-antibodies in the serum of European seabass juveniles fed diets containing the GFP-carrying spores and anti-V. anguillarum antibodies in the serum of European seabass juveniles fed the OmpK-carrying spores containing diet. More important, seabass survival was increased from 60 to 86% when previously orally vaccinated with in-feed OmpK- carrying spores. Our results indicate that B. subtilis spores can effectively be used as antigen-carriers for oral vaccine delivery in fish.
Collapse
Affiliation(s)
- Gabriela Gonçalves
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Rafaela A. Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Filipe Coutinho
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Neide Pedrosa
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Maria Curado
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marina Machado
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lourenço Bonneville
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Oeiras, Portugal
| | - Mónica Serrano
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Oeiras, Portugal
| | - António Paulo Carvalho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA, INIA-CSIC), Madrid, Spain
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Ana Couto
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Cláudia R. Serra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| |
Collapse
|
4
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Protective cellular and humoral immune responses to Edwardsiella tarda in flounder (Paralichthys olivaceus) immunized by an inactivated vaccine. Mol Immunol 2022; 149:77-86. [DOI: 10.1016/j.molimm.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022]
|
5
|
Dietary supplementation with microalgae enhances the zebrafish growth performance by modulating immune status and gut microbiota. Appl Microbiol Biotechnol 2022; 106:773-788. [PMID: 34989826 DOI: 10.1007/s00253-021-11751-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Microalgae are known to be abundant in various habitats around the globe, and are rich in high value-added products such as fatty acids, polysaccharides, proteins, and pigments. Microalgae can be exploited as the basic and primitive food source of aquatic animals. We investigated the effects of dietary supplementation with Schizochytrium sp., Spirulina platensis, Chloroella sorokiniana, Chromochloris zofingiensis, and Dunaliella salina on the growth performance, immune status, and intestinal health of zebrafish (Danio rerio). The results showed that these five microalgae diets could improve the feed conversion rate (FCR), especially the D. salina (FCR = 1.02%) and Schizochytrium sp. (FCR = 1.20%) additive groups. Moreover, the microalgae diets decreased the gene expression level of the pro-inflammatory cytokines IL6, IL8, and IL1β at a normal physiological state of the intestine, especially the Schizochytrium sp., S. platensis, and D. salina dietary groups. The expression of neutrophil marker b7r was increased in the C. sorokiniana diet group; after, the zebrafish were challenged with Vibrio anguillarum, improving the ability to resist this disease. We also found that microalgae diets could regulate the gut microbiota of fish as well as increase the relative abundance of probiotics. To further explain, Cetobacterium was significantly enriched in the S. platensis additive group and Stenotrophomonas was higher in the Schizochytrium sp. additive group than in the other groups. Conversely, harmful bacteria Mycoplasma reduced in all tested microalgae diet groups. Our study indicated that these microalgae could serve as a food source supplement and benefit the health of fish. KEY POINTS: • Microalgae diets enhanced the growth performance of zebrafish. • Microalgae diets attenuated the intestinal inflammatory responses of zebrafish. • Microalgae diets modulated the gut microbiota composition to improve fish health.
Collapse
|
6
|
Yang Y, Zhu X, Zhang H, Chen Y, Song Y, Ai X. Dual RNA-Seq of Trunk Kidneys Extracted From Channel Catfish Infected With Yersinia ruckeri Reveals Novel Insights Into Host-Pathogen Interactions. Front Immunol 2021; 12:775708. [PMID: 34975864 PMCID: PMC8715527 DOI: 10.3389/fimmu.2021.775708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Host-pathogen intectarions are complex, involving large dynamic changes in gene expression through the process of infection. These interactions are essential for understanding anti-infective immunity as well as pathogenesis. In this study, the host-pathogen interaction was analyzed using a model of acute infection where channel catfish were infected with Yersinia ruckeri. The infected fish showed signs of body surface hyperemia as well as hyperemia and swelling in the trunk kidney. Double RNA sequencing was performed on trunk kidneys extracted from infected channel catfish and transcriptome data was compared with data from uninfected trunk kidneys. Results revealed that the host-pathogen interaction was dynamically regulated and that the host-pathogen transcriptome fluctuated during infection. More specifically, these data revealed that the expression levels of immune genes involved in Cytokine-cytokine receptor interactions, the NF-kappa B signaling pathway, the JAK-STAT signaling pathway, Toll-like receptor signaling and other immune-related pathways were significantly upregulated. Y. ruckeri mainly promote pathogenesis through the flagellum gene fliC in channel catfish. The weighted gene co-expression network analysis (WGCNA) R package was used to reveal that the infection of catfish is closely related to metabolic pathways. This study contributes to the understanding of the host-pathogen interaction between channel catfish and Y. ruckeri, more specifically how catfish respond to infection through a transcriptional perspective and how this infection leads to enteric red mouth disease (ERM) in these fish.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Haixin Zhang
- Fish Disease Laboratory, Jiangxi Fisheries Research Institute, Nanchang, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Song
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
7
|
Song L, Gao C, Xue T, Yang N, Fu Q, Zhu Q, Ge X, Li C. Characterization and expression analysis of mitochondrial localization molecule: NOD-like receptor X1 (Nlrx1) in mucosal tissues of turbot (Scophthalmus maximus) following bacterial challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103944. [PMID: 33248045 DOI: 10.1016/j.dci.2020.103944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The NOD-like receptor X1 (NLRX1) is a member of highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family (known as NLR), that localizes to the mitochondrial outer membrane and regulate the innate immunity by interacting with mitochondrial antiviral-signaling protein (MAVS). As one of cytoplasmic PRRs, NLRX1 plays key roles for pathogen recognition, autophagy and regulating of subsequent immune signaling pathways. In this study, we identified the nlrx1 in turbot as well as its expression profiles in mucosal surfaces following bacterial infection. In our results, the full-length nlrx1 transcript consists of an open reading frame (ORF) of 4,886 bp encoding the putative peptide of 966 amino acids. The phylogenetic analysis revealed the SmNlrx1 showed the closest relationship to Cynoglossus semilaevis. In addition, the Nlrx1 mRNA expression could be detected in all the examined tissues, with the most abundant expression level in head kidney, and the lowest expression level in liver. Moreover, Nlrx1 showed similar expression patterns following Vibrio anguillarum and Streptococcus iniae infection, that were both significantly up-regulated following challenge, especially post S. iniae challenge. Finally, fluorescence microscopy unveiled that the SmNlrx1 localized to mitochondria in HEK293T by N-terminal mitochondrial targeting sequence. Characterization of Nlrx1 might have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity and will probably contribute to the development of novel intervention strategies for farming turbot.
Collapse
Affiliation(s)
- Lin Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; School of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Cao M, Yan X, Su B, Yang N, Fu Q, Xue T, Song L, Li Q, Li C. Integrated Analysis of circRNA-miRNA-mRNA Regulatory Networks in the Intestine of Sebastes schlegelii Following Edwardsiella tarda Challenge. Front Immunol 2021; 11:618687. [PMID: 33552082 PMCID: PMC7857051 DOI: 10.3389/fimmu.2020.618687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Sebastes schlegelii, an important aquaculture species, has been widely cultured in East Asian countries. With the increase in the cultivation scale, various diseases have become major threats to the industry. Evidence has shown that non-coding RNAs (ncRNAs) have remarkable functions in the interactions between pathogens and their hosts. However, little is known about the mechanisms of circular RNAs (circRNAs) and coding RNAs in the process of preventing pathogen infection in the intestine in teleosts. In this study, we aimed to uncover the global landscape of mRNAs, circRNAs, and microRNAs (miRNAs) in response to Edwardsiella tarda infection at different time points (0, 2, 6, 12, and 24 h) and to construct regulatory networks for exploring the immune regulatory mechanism in the intestine of S. schlegelii. In total, 1,794 mRNAs, 87 circRNAs, and 79 miRNAs were differentially expressed. The differentially expressed RNAs were quantitatively validated using qRT-PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the differentially expressed mRNA genes and the target genes of ncRNAs were related to immune signaling pathways, such as the NF-κB signal pathway, pathogen recognition receptors related to signaling pathways (Toll-like receptors and Nod-like receptors), and the chemokine signaling pathway. Based on these differentially expressed genes, 624 circRNA-miRNA pairs and 2,694 miRNA-mRNA pairs were predicted using the miRanda software. Integrated analyses generated 25 circRNA-miRNA-mRNA interaction networks. In a novel_circ_0004195/novel-530/IκB interaction network, novel_530 was upregulated, while its two targets, novel_circ_0004195 and IκB, were downregulated after E. tarda infection. In addition, two circRNA-miRNA-mRNA networks related to apoptosis (novel_circ_0003210/novel_152/apoptosis-stimulating of p53 protein 1) and interleukin (novel_circ_0001907/novel_127/interleukin-1 receptor type 2) were also identified in our study. We thus speculated that the downstream NF-κB signaling pathway, p53 signaling pathway, and apoptosis pathway might play vital roles in the immune response in the intestine of S. schlegelii. This study revealed a landscape of RNAs in the intestine of S. schlegelii during E. tarda infection and provided clues for further study on the immune mechanisms and signaling networks based on the circRNA-miRNA-mRNA axis in S. schlegelii.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Efficacy of Whole Cell Inactivated Vibrio harveyi Vaccine against Vibriosis in a Marine Red Hybrid Tilapia ( Oreochromis niloticus × O. mossambicus) Model. Vaccines (Basel) 2020; 8:vaccines8040734. [PMID: 33291587 PMCID: PMC7761788 DOI: 10.3390/vaccines8040734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrio harveyi causes vibriosis in various commercial marine fish species. The infection leads to significant economic losses for aquaculture farms, and vaccination is an alternative approach for the prevention and control of fish diseases for aquaculture sustainability. This study describes the use of formalin-killed Vibrio harveyi (FKVh) strain Vh1 as a vaccine candidate to stimulate innate and adaptive immunities against vibriosis in a marine red hybrid tilapia model. Tilapia are fast growing; cheap; resistant to diseases; and tolerant to adverse environmental conditions of fresh water, brackish water, and marine water and because of these advantages, marine red hybrid tilapia is a suitable candidate as a model to study fish diseases and vaccinations against vibriosis. A total of 180 healthy red hybrid tilapias were gradually adapted to the marine environment before being divided into two groups, with 90 fish in each group and were kept in triplicate with 30 fish per tank. Group 1 was vaccinated intraperitoneally with 100 µL of FKVh on week 0, and a booster dose was similarly administered on week 2. Group 2 was similarly injected with PBS. Skin mucus, serum, and gut lavage were collected weekly for enzyme-linked immunosorbent assay (ELISA) and a lysozyme activity assay from a total of 30 fish of each group. On week 4, the remaining 60 fish of Groups 1 and 2 were challenged with 108 cfu/fish of live Vibrio harveyi. The clinical signs were monitored while the survival rate was recorded for 48 h post-challenge. Vaccination with FKVh resulted in a significantly (p < 0.05) higher rate of survival (87%) compared to the control (20%). The IgM antibody titer and lysozyme activities of Group 1 were significantly (p < 0.05) higher than the unvaccinated Groups 2 in most weeks throughout the experiment. Therefore, the intraperitoneal exposure of marine red hybrid tilapia to killed V. harveyi enhanced the resistance and antibody response of the fish against vibriosis.
Collapse
|
10
|
Abstract
Vibrio is a large and diverse genus of bacteria, of which most are nonpathogenic species found in the aquatic environment. However, a subset of the Vibrio genus includes several species that are highly pathogenic, either to humans or to aquatic animals. In recent years, Danio rerio, commonly known as the zebrafish, has emerged as a major animal model used for studying nearly every aspect of biology, including infectious diseases. Zebrafish are especially useful because the embryos are transparent, larvae are small and facilitate imaging studies, and numerous transgenic fish strains have been constructed. Zebrafish models for several pathogenic Vibrio species have been described, and indeed a fish model is highly relevant for the study of aquatic bacterial pathogens. Here, we summarize the zebrafish models that have been used to study pathogenic Vibrio species to date.
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dustin A Farr
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Madison G Walton
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
11
|
Tang Y, Xin G, Zhao LM, Huang LX, Qin YX, Su YQ, Zheng WQ, Wu B, Lin N, Yan QP. Novel insights into host-pathogen interactions of large yellow croakers ( Larimichthys crocea) and pathogenic bacterium Pseudomonas plecoglossicida using time-resolved dual RNA-seq of infected spleens. Zool Res 2020; 41:314-327. [PMID: 32242645 PMCID: PMC7231473 DOI: 10.24272/j.issn.2095-8137.2020.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-pathogen interactions are highly complex, involving large dynamic changes in gene expression during infection. These interactions are fundamental to understanding anti-infection immunity of hosts, as well as the pathogenesis of pathogens. For bacterial pathogens interacting with animal hosts, time-resolved dual RNA-seq of infected tissue is difficult to perform due to low pathogen load in infected tissue. In this study, an acute infection model of Larimichthys crocea infected by Pseudomonas plecoglossicida was established. The spleens of infected fish exhibited typical symptoms, with a maximum bacterial load at two days post-injection (dpi). Time-resolved dual RNA-seq of infected spleens was successfully applied to study host-pathogen interactions between L. crocea and P. plecoglossicida. The spleens of infected L. crocea were subjected to dual RNA-seq, and transcriptome data were compared with those of noninfected spleens or in vitro cultured bacteria. Results showed that pathogen-host interactions were highly dynamically regulated, with corresponding fluctuations in host and pathogen transcriptomes during infection. The expression levels of many immunogenes involved in cytokine-cytokine receptor, Toll-like receptor signaling, and other immune-related pathways were significantly up-regulated during the infection period. Furthermore, metabolic processes and the use of oxygen in L. crocea were strongly affected by P. plecoglossicida infection. The WGCNA results showed that the metabolic process was strongly related to the entire immune process. For P. plecoglossicida, the expression levels of motility-related genes and flagellum assembly-related genes were significantly up-regulated. The results of this study may help to elucidate the interactions between L. crocea and P. plecoglossicida.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Ge Xin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Li-Xing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Ying-Xue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Yong-Quan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Bin Wu
- Fujian Provincial Fishery Technical Extention Center, Fuzhou, Fujian 350003, China
| | - Nan Lin
- Fujian Provincial Fishery Technical Extention Center, Fuzhou, Fujian 350003, China
| | - Qing-Pi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China. E-mail:
| |
Collapse
|
12
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
13
|
Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front Immunol 2020; 11:567941. [PMID: 33123139 PMCID: PMC7566178 DOI: 10.3389/fimmu.2020.567941] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Collapse
Affiliation(s)
- Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Zebrafish as a Model for Fish Diseases in Aquaculture. Pathogens 2020; 9:pathogens9080609. [PMID: 32726918 PMCID: PMC7460226 DOI: 10.3390/pathogens9080609] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The use of zebrafish as a model for human conditions is widely recognized. Within the last couple of decades, the zebrafish has furthermore increasingly been utilized as a model for diseases in aquacultured fish species. The unique tools available in zebrafish present advantages compared to other animal models and unprecedented in vivo imaging and the use of transgenic zebrafish lines have contributed with novel knowledge to this field. In this review, investigations conducted in zebrafish on economically important diseases in aquacultured fish species are included. Studies are summarized on bacterial, viral and parasitic diseases and described in relation to prophylactic approaches, immunology and infection biology. Considerable attention has been assigned to innate and adaptive immunological responses. Finally, advantages and drawbacks of using the zebrafish as a model for aquacultured fish species are discussed.
Collapse
|
15
|
Li C, Ge X, Su B, Fu Q, Wang B, Liu X, Ren Y, Song L, Yang N. Characterization of class B scavenger receptor type 1 (SRB1) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 100:358-367. [PMID: 32169665 DOI: 10.1016/j.fsi.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Class B scavenger receptor type 1 (SRB1) serves as a high-density lipoprotein (HDL) receptor essential for HDL metabolism, and plays vital roles in innate immunity. In this study, the turbot (Scophthalmus maximus) SRB1 was cloned and characterized. The gene structure consists of a coding region of 1,527 bp nucleotides dividing into 13 exons and 12 introns. Such genome structure is highly conserved among teleost fishes. The deduced SRB1 encodes 508 amino acids that mainly has a CD36 transmembrane domain. Tissue distribution of SRB1 showed the lowest expression in liver, while the highest expression was found in intestine. Significantly down-regulation pattern of SmSRB1 expression in intestine was shared after infection with Vibrio anguillarum and Streptococcus iniae. Brach and site models in CODEML program showed that SmSRB1 underwent a conservative evolutionary and three potential positive selected sites 470K, 496E, and 501Y were detected, which requires further investigation and confirmation using base-editing technologies. Subcellular localization demonstrated that turbot SRB1 was distributed in the membrane and cytoplasm. rSmSRB1 showed binding ability in vitro to bacteria, LPS, PGN, LTA and virus. Protein-protein interaction network agrees the function of SRB1 as lipoprotein receptor. Our results indicated SmSRB1 might act as co-receptors to TLRs and NLRs to modulate the immune response to pathogens. Further studies should pay attention to evaluate the specific co-receptor for SRB1 in recognition of different pathogens and selective mechanisms involved.
Collapse
Affiliation(s)
- Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Xu H, Xing J, Tang X, Sheng X, Zhan W. The effects of CCL3, CCL4, CCL19 and CCL21 as molecular adjuvants on the immune response to VAA DNA vaccine in flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103492. [PMID: 31494219 DOI: 10.1016/j.dci.2019.103492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
The magnitude of the immune response induced by DNA vaccines depends on the amount and type of antigen-presenting cells attracted to the injection site. In our previous study, a DNA plasmid encoding the VAA gene of Vibrio anguillarum was constructed and shown to confer moderate protection against V. anguillarum challenge. To augment the protective efficacy of the VAA DNA vaccine and compare the adjuvant effects of CCL3, CCL4, CCL19 and CCL21, four bicistronic DNA plasmids containing the VAA gene of V. anguillarum together with the gene encoding the CCL3/CCL4/CCL19/CCL21 chemokines of flounder were successfully constructed and administered to fish, and the immune response of the animals and the enhancement of immunoprotection by the four chemokines were investigated. Vaccinated with pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA, flounder showed relative percent survivals of 62.16%, 83.78%, 78.38% and 72.97%, respectively, higher than the relative survival of flounder immunized with pVAA (40.54%). Compared with the pVAA group, the percentages of sIgM+, CD4-1+, and CD4-2+ lymphocytes and the levels of specific antibodies increased in pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA injection groups; CCL4 and CCL19 induced significantly higher levels of these parameters than CCL3 and CCL21 did. The amount of V. anguillarum in liver, spleen and kidney of pCCL3-VAA-, pCCL4-VAA-, pCCL19-VAA- and pCCL21-VAA-immunized flounder after V. anguillarum challenge was reduced compared to that in the pVAA group. Moreover, the co-expression of CCL3/CCL4/CCL19/CCL21 up-regulated immune-related gene expression associated with the local immune response. Our results indicate that CCL4 and CCL19 are promising adjuvants for use in VAA DNA vaccine against V. anguillarum.
Collapse
Affiliation(s)
- Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| |
Collapse
|
17
|
Chen J, Zhang L, Yang N, Cao M, Tian M, Fu Q, Su B, Li C. Characterization of the immune roles of cathepsin L in turbot (Scophthalmus maximus L.) mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 97:322-335. [PMID: 31805413 DOI: 10.1016/j.fsi.2019.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Cathepsin L (CTSL) is one of the crucial enzymes in cathepsin family, which has been widely known for its involvement in the innate immunity. However, it still remains poorly understood how CTSL modulates the immune system of teleosts. In this study, we captured three cathepsin L genes (SmCTSL, SmCTSL.1 and SmCTSL1) from turbot (Scophthalmus maximus). The coding sequences of SmCTSL, SmCTSL.1 and SmCTSL1 are 1,026 bp, 1,005 bp and 1,017 bp in length and encode 341, 334 and 338 amino acids, respectively. In details, transcripts of CTSL genes share same domains as other CTSL genes, one signal peptide, one propeptide and one papain family cysteine protease domain. Protein interaction network analysis indicated that turbot CTSL genes may play important roles in apoptotic signaling and involve in innate immune response. Evidence from subcellular localization demonstrated that the three Cathepsin L proteins were ubiquitous in nucleus and cytoplasm. The cathepsin L genes were widely expressed in all the tested tissues with the highest expression level of SmCTSL in spleen, and SmCTSL.1 and SmCTSL1 in intestine. Following Vibrio anguillarum, Edwardsiella tarda and Streptococcus iniae challenge, these cathepsin L genes were significantly regulated in mucosal tissues in all the challenges, especially significant down-regulation occurred rapidly in intestine in all the three challenges. In addition, the three cathepsin L genes showed strong binding ability to all the examined microbial ligands (LPS, PGN and LTA). Further studies should be used to analyze the specific function of these three cathepsin L genes. By then, we can use their function to maintain the integrity of the mucosal barrier, thereby promoting the disease resistance line and family selection in turbot.
Collapse
Affiliation(s)
- Jinghua Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
18
|
Tian M, Cao M, Zhang L, Fu Q, Yang N, Tan F, Song L, Su B, Li C. Characterization and initial functional analysis of cathepsin K in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 93:153-160. [PMID: 31319206 DOI: 10.1016/j.fsi.2019.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Cathepsins are the best-known group of proteases in lysosomes, playing a significant role in immune responses. Cathepsin K (CTSK) is abundantly and selectively expressed in osteoclasts, dendritic cells and monocyte-derived macrophages, where it is involved in ECM degradation and bone remodeling. A growing body of evidences have indicated the vital roles of cathepsin K in innate immune responses. Here, one CTSK gene was captured in turbot (SmCTSK) with a 993 bp open reading frame (ORF). The genomic structure analysis showed that SmCTSK had 7 exons similar to other vertebrate species. The syntenic analysis revealed that CTSK had the same neighboring genes across all the selected species, which suggested the synteny encompassing CTSK region was conserved during vertebrate evolution. Subsequently, SmCTSK was widely expressed in all the examined tissues, with the highest expression level in spleen and the lowest expression level in liver. In addition, SmCTSK was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum immersion challenge, but up-regulated in three tissues (gill, skin and intestine) following Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCTSK showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmCTSK played vital roles in fish innate immune responses against infection. However, the knowledge of SmCTSK is still limited in teleost species, further studies should be carried out to better characterize its comprehensive roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
19
|
Xu H, Xing J, Tang X, Sheng X, Zhan W. Generation and functional evaluation of a DNA vaccine co-expressing Vibrio anguillarum VAA protein and flounder interleukin-2. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1018-1027. [PMID: 31446082 DOI: 10.1016/j.fsi.2019.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 05/21/2023]
Abstract
In our previous study, a DNA plasmid encoding the VAA gene of Vibrio anguillarum was constructed and demonstrated to confer moderated protection against V. anguillarum challenge. Here, a bicistronic DNA vaccine (pVAA-IRES-IL2), co-expressing the VAA gene of V. anguillarum and Interleukin-2 (IL2) gene of flounder, was constructed to increase the protective efficacy of VAA DNA vaccine. The potential of pVAA-IRES-IL2 to express both VAA and IL2 in transfected HINAE cell lines was confirmed by immunofluorescence assay. Further, the variation of sIgM+, CD4-1+, CD4-2+ lymphocytes and production of VAA-specific antibodies in flounder, which was intramuscularly immunized with three DNA plasmids (pIRES, pVAA-IRES, pVAA-IRES-IL2), were investigated, respectively. The bacterial burden and relative percentage survival (RPS) of flounder exposed to V. anguillarum infection were both analyzed to evaluate the efficacy of bicistronic DNA plasmid. Our results revealed that the percentages of sIgM+, CD4-1+, CD4-2+ lymphocytes and antibodies specific to VAA were remarkably increased in pVAA-IRES or pVAA-IRES-IL2 immunized fish. Moreover, the co-expression of IL2 enhanced the immune response in response to VAA DNA vaccination, as shown by the higher percentages of sIgM+, CD4-1+, CD4-2+ lymphocytes and production of specific antibody. Importantly, the RPS in pVAA-IRES-IL2 and pVAA-IRES groups reached 64.1% and 51.3%, respectively, when compared with the 97.5% cumulative mortality in pIRES group. Furthermore, the number of V. anguillarum in liver, spleen and kidney of pVAA-IRES or pVAA-IRES-IL2 immunized flounder after V. anguillarum challenge was significantly reduced, as compared to that in pIRES group. These suggest that the bicistronic DNA vaccine can be an effective immunization strategy in inducing immune response against V. anguillarum infection and IL2 has the potential as the adjuvant for VAA DNA vaccine.
Collapse
Affiliation(s)
- Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| |
Collapse
|
20
|
Tang X, Gong J, Zeng C, Sheng X, Xing J, Zhan W. Dynamic distribution of formalin-inactivated Edwardsiella tarda in flounder (Paralichthys olivaceus) post intraperitoneal vaccination. FISH & SHELLFISH IMMUNOLOGY 2019; 89:393-402. [PMID: 30980915 DOI: 10.1016/j.fsi.2019.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
In order to investigate the dynamic distribution of antigen in different tissues post vaccination, an absolute real-time quantitative PCR was employed to detect the amount of antigen in flounder (Paralichthys olivaceus) post intraperitoneal (i.p.) injection with three concentrations (107, 108, 109 CFU ml-1) of formalin-inactivated Edwardsiella tarda bacterin. The results showed that the amount of uptaken antigen quickly increased and then decreased in different tissues. The peak occurred first in the spleen and head kidney at 6-9 h after injection, and in the liver and blood at 9-15 h, then in the gill, intestine and skin at 15-24 h, finally in the muscle at 24-36 h. The amount of antigen was highest in the spleen and head kidney, followed by the blood, liver and gill, and lowest in the intestine, skin and muscle. Among the three concentration groups, the amount of antigen increased with the increasing concentration of the vaccine in the blood, liver, gill, intestine, skin and muscle, except for the spleen and head kidney, in which more antigens were found in the 108 CFU ml-1 group than that in 109 CFU ml-1 group. Moreover, IIFA and western blotting was performed to examine the tissue distribution of antigen at 9 h after vaccination with 108 CFU ml-1 formalin-inactivated E. tarda. The bacteria were mainly observed in the spleen and head kidney, then the liver, gill and blood, and least in the intestine, skin and muscle, which was roughly in accordance with the results of absolute qPCR. Furthermore, the expressions of CD4-1, MHC IIα, CD8α and MHC Iα in different tissues were detected by RT-qPCR, and the expression levels of these genes were highest in the spleen and head kidney, then in the blood, gill, liver, and lowest in the intestine, skin and muscle. All these results provided useful information for dynamic transportation of antigen uptake post vaccination, and also deepened the understanding of immune response to the injection vaccination.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiaojiao Gong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Chuili Zeng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
21
|
Bao P, Sun X, Liu Q, Zhang Y, Liu X. Synergistic effect of a combined live Vibrio anguillarum and Edwardsiella piscicida vaccine in turbot. FISH & SHELLFISH IMMUNOLOGY 2019; 88:84-90. [PMID: 30763616 DOI: 10.1016/j.fsi.2019.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
In aquaculture, more than one pathogen usually be isolated from the sick fish, creating an urgent need for developing combined vaccines to control fish disease caused by multiple pathogens simultaneously. In our previous work, two live attenuated vaccines against Vibrio anguillarum and Edwardsiella piscicida were vaccinated in turbot, exhibiting an efficient protection. However, some immunological processes such as antigenic competition, antigenic cross-reaction and antigen induced suppression during combined vaccination are unknown. In this study, we evaluated the effectiveness of the combined live vaccines and explored the immunological processes after vaccination. We found that the combined two live attenuated vaccines for V. anguillarum and E. piscicida induced a stronger immune response without existing antigen competition. Instead, a synergistic effect was observed not only for triggering innate immune response but for stimulation of adaptive immunity. Our study suggested that the two combined live vaccines against V. anguillarum and E. piscicida could be used simultaneously in the future.
Collapse
Affiliation(s)
- Pengcheng Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Xiang Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
22
|
Wang Z, Lin L, Chen W, Zheng X, Zhang Y, Liu Q, Yang D. Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 87:565-572. [PMID: 30742890 DOI: 10.1016/j.fsi.2019.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Edwardsiella piscicida is a facultative intracellular pathogen that causes hemorrhagic septicemia and haemolytic ascites disease in aquaculture fish. During bacterial infection, macrophages and neutrophils are the first line of host innate immune system. However, the role of neutrophils in response to E. piscicida infection in vivo remains poorly understood. Here, through developing an immersion infection model in the 5 day-post fertilization (dpf) zebrafish larvae, we found that E. piscicida was mainly colonized in intestine, and resulted into significant pathological changes in paraffin sections. Moreover, a dynamic up-regulation of inflammatory cytokines (TNF-α, IL-1β, GCSFb, CXCL8 and MMP9) was detected in zebrafish larvae during E. piscicida infection. Furthermore, a significant recruitment of neutrophils was observed during the E. piscicida infection in Tg(mpx:eGFP) zebrafish larvae. Thus, we utilized the CRISPR/Cas9 system to generate the neutrophil-knockdown (gcsfr-/- crispants) larvae, and found a comparative higher mortality and bacterial colonization in gcsfr-/- crispants, which reveals the critical role of fish neutrophils in bacterial clearance. Taken together, our results developed an effective E. piscicida immersion challenge model in zebrafish larvae to clarify the dynamic of bacterial infection in vivo, which would provide a better understanding of the action about innate immune cells during infection.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyun Lin
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
23
|
Huang T, Li LP, Liu Y, Luo YJ, Wang R, Tang JY, Chen M. Spatiotemporal distribution of Streptococcus agalactiae attenuated vaccine strain YM001 in the intestinal tract of tilapia and its effect on mucosal associated immune cells. FISH & SHELLFISH IMMUNOLOGY 2019; 87:714-720. [PMID: 30738148 DOI: 10.1016/j.fsi.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, the tilapia was orally vaccinated by the attenuated Streptococcus agalactiae(S. agalactiae) strain YM001, and the distribution and the pathological effect of strain YM001 in different intestinal segments of tilapia were evaluated by real-time PCR(qPCR), immunohistochemistry(IHC) and histomorphology. The qPCR results showed that the number of bacteria was the highest in the intestinal tracts at 12 h post oral gavage in the YM001 group, then began to decrease sharply and eliminated at 7 d. And the number of bacteria was highest in the foregut, hindgut, and rectum at 12 h, 24 h, and 3 d, respectively. IHC indicated that bacteria mainly distributed in the margin epithelium and the goblet cells at 12 h - 24 h, and in the submucosa and muscle layer in the YM001 group in 3 d post gavage, then almost disappeared at 7 d. Histological examination of intestines post gavage displayed that an inflammation was observed at 7 d in the YM001 group and the intestinal structure was fully recovered at 15 d. and the intestinal structure was fully recovered at 15 d. Conclusion: The attenuated S. agalactiae vaccine strain YM001 could enter the intestinal tissue after oral gavage and had a strong spatial and temporal selectivity in the intestinal tract, which could cause obvious mucosal immune response and mild pathological reaction, but the pathological change could be gradually repaired with the extinction of bacteria in the body.
Collapse
Affiliation(s)
- Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Li-Ping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Yu Liu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Yong-Ju Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Jia-You Tang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China.
| |
Collapse
|
24
|
Xing J, Xu H, Tang X, Sheng X, Zhan W. A DNA Vaccine Encoding the VAA Gene of Vibrio anguillarum Induces a Protective Immune Response in Flounder. Front Immunol 2019; 10:499. [PMID: 30941134 PMCID: PMC6435001 DOI: 10.3389/fimmu.2019.00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/25/2019] [Indexed: 11/15/2022] Open
Abstract
Vibrio anguillarum is a pathogenic bacterium that infects flounder resulting in significant losses in the aquaculture industry. The VAA protein previously identified in flounder is associated with a role in immune protection within these fish. In the present study, a recombinant DNA plasmid encoding the VAA gene of V. anguillarum was constructed and its potential as a DNA vaccine, to prevent the infection of V. anguillarum in flounder fish, investigated. We verified the expression of the VAA protein both in vitro in cell lines and in vivo in flounder fish. The protective effects of pcDNA3.1-VAA (pVAA) were analyzed by determination of the percentage of sIgM+, CD4-1+, CD4-2+, CD8β+ lymphocytes, and the production of VAA-specific antibodies in flounder following their immunization with the DNA vaccine. Histopathological changes in immune related tissues, bacterial load, and relative percentage survival rates of flounder post-challenge with V. anguillarum, were all investigated to assess the efficacy of the pVAA DNA vaccine candidate. Fish intramuscularly immunized with pVAA showed a significant increase in CD4-1+, CD4-2+, and CD8β+ T lymphocytes at days 9, 11, and 14 post-vaccination, reaching peak T-cell levels at days 11 or 14 post-immunization. The percentage of sIgM+ lymphocytes reached peak levels at weeks 4–5 post-immunization. Specific anti-V. anguillarum or anti-rVAA antibodies were induced in inoculated fish at days 28–35 post-immunization. The liver of vaccinated flounder exhibited only slight histopathological changes compared with a significant pathology observed in control immunized fish. Additionally, a lower bacterial burden in the liver, spleen, and kidney were observed in pVAA protected fish in response to bacterial challenge, compared with pcDNA3.1 vector control injected fish. Moreover, the pVAA vaccine confers a relative percentage survival of 50.00% following V. anguillarum infection. In summary, this is the first study indicating an initial induction of the T lymphocyte response, followed by B lymphocyte induction of specific antibodies as a result of DNA immunization of flounder. This signifies the important potential of pVAA as a DNA vaccine candidate for the control of V. anguillarum infection.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Chen J, Zhang L, Yang N, Tian M, Fu Q, Tan F, Li C. Expression profiling and microbial ligand binding analysis of galectin-4 in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 84:673-679. [PMID: 30359748 DOI: 10.1016/j.fsi.2018.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Galectins are a family of galactoside-binding proteins with an affinity for β-galactosides, involved in mediating fundamental processes including development, inflammation, cell migration and apoptosis. Galectin-4 is a member of tendem-repeat galectins, plays vital roles in intestinal epithelial barrier. Here, one galectin-4 gene was captured in turbot (SmLgals4) contains a 1197 bp open reading frame (ORF). In comparison to other species, SmLgals4 showed the highest similarity and identity both to large yellow croaker. The genomic structure analysis showed that SmLgals4 had conserved exons in the CRD domains compared to other vertebrate species. The syntenic analysis revealed that galectin-4 had the same neighboring genes across all the selected species, which suggested the synteny encompassing galectin-4 region during vertebrate evolution. Subsequently, SmLgals4 was widely expressed in all the examined tissues, with the highest expression level in intestine and the lowest expression level in skin. In addition, SmLgals4 was significantly down-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmLgals4 showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmLgals4 plays vital roles in fish intestinal immune responses against infection, but the detailed roles of galectin-4 in teleost are still lacking, further studies are needed to be carried out to characterize whether galectin-4 plays similar roles in teleost intestinal immunity.
Collapse
Affiliation(s)
- Jinghua Chen
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
26
|
Tian M, Yang N, Zhang L, Fu Q, Tan F, Li C. Expression profiling and functional characterization of galectin-3 of turbot (Scophthalmus maximus L.) in host mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 84:333-340. [PMID: 30296481 DOI: 10.1016/j.fsi.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Galectins, a family of evolutionary conserved β-galactoside-binding proteins, have been characterized in a wide range of species. Galectin-3 is the only member in the chimera type, which is a monomeric lectin with one CRD domain. A growing body of evidence have indicated vital roles of galectin-3 in innate immune responses against infection. Here, one galectin-3 gene was captured in turbot (SmLgals3) with a 1203 bp open reading frame (ORF). In comparison to other species, SmLgals3 showed the highest similarity and identity to large yellow croaker and medaka, respectively. The genomic structure analysis showed that SmLgals3 had 5 exons similar to other vertebrate species. The syntenic analysis revealed that galectin-3 had the same neighboring genes across all the selected species, which suggested the synteny encompassing galectin-3 region during vertebrate evolution. Subsequently, SmLgals3 was widely expressed in all the examined tissues, with the highest expression level in brain and the lowest expression level in skin. In addition, SmLgals3 was significantly down-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmLgals3 showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmLgals3 played vital roles in fish innate immune responses against infection. However, the knowledge of SmLgals3 are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
27
|
Zhang C, Zhang J, Liu M, Huang M. Molecular cloning, expression and antibacterial activity of goose-type lysozyme gene in Microptenus salmoides. FISH & SHELLFISH IMMUNOLOGY 2018; 82:9-16. [PMID: 30075246 DOI: 10.1016/j.fsi.2018.07.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
It is well known that lysozymes are key proteins to teleosts in the innate immune system and possess high bactericidal properties. In the present study, a g-type lysozyme gene was cloned from Microptenus salmoides. The g-type sequence consisted of 582 bp, which translated into a 193 amino acid (AA) protein (GenBank accession no: MH087462). The predicted molecular weight and theoretical isoelectric point were 21.36 kDa and 6.91 respectively and no signal peptide was observed. The qRT-PCR analysis showed that the g-type lysozyme gene was differentially expressed in various tissues under normal conditions and the highest g-type lysozyme level was observed in liver, gill and spleen while there seemed to be low expression in the muscle, heart and head-kidney. The expression of g-type lysozyme was differentially upregulated in the spleen, gill and intestine after stimulation with heat stress and Aeromonas hydrophila (A. hydrophila). Under heat stress and A. hydrophila injection, the g-type lysozyme mRNA levels all in spleens, gill and intestine tissues increased significantly (P < 0.05), with the maximum levels attained at 12 h, 24 h (or 12 h) and 24 h. Thereafter, they all decreased significantly (P < 0.01) and the expression in gill returned to nearly the basal value within 72 h. Those results suggested that g-type lysozyme was involved in the immune response to heat stress and bacterial challenge. The cloning and expression analysis of the g-type lysozyme provide theoretical basis to further study the mechanism of anti-adverseness in Microptenus salmoides. The g-type lysozyme gene perhaps also played an important role in the immune responses against bacterial invasion.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China.
| | - Jiliang Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Min Liu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Maoxian Huang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
28
|
Fu Q, Yang N, Gao C, Tian M, Zhou S, Mu X, Sun F, Li C. Characterization, expression signatures and microbial binding analysis of cathepsin A in turbot, Scophthalmus maximus L.(SmCTSA). FISH & SHELLFISH IMMUNOLOGY 2018; 81:21-28. [PMID: 29981472 DOI: 10.1016/j.fsi.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Mucosal immune system is one of the most vital components in the innate immunity and constitutes the first line of host defense against bacterial infections, especially for the teleost, which live in the pathogen-rich aquatic environment. Cathepsins, a superfamily of hydrolytic enzymes produced and enclosed within lysosomes, play multiple roles at physiological and pathological states. In this regard, we sought here to identify Cathepsin A in turbot (SmCTSA), characterize its mucosal expression patterns following Vibrio anguillarum and Streptococcus iniae infections in mucosal tissues, and explore its binding ability with three microbial ligands for the first time. The SmCTSA was 2631 bp long containing a 1422 bp open reading frame (ORF) that encoded 473 amino acids. Phylogenetic analysis revealed that SmCTSA showed the closest relationship to half-smooth tongue sole (Cynoglossus semilaevis). In addition, SmCTSA was ubiquitously expressed in all examined healthy tissues, with high expression levels in head kidney (HK) and intestine, while the lowest expression level in blood. Moreover, SmCTSA was significantly differentially expressed at least two timepoints in each mucosal tissue, suggesting its potential important roles in innate immune responses of turbot. Finally, in vitro assays showed that recombinant SmCTSA bound Lipopolysaccharide (LPS) with high affinity, and lipoteichoic acid (LTA) and peptidoglycan (PGN) with relatively low affinity. This study provides valuable data for understanding the roles of ctsa in the host defense against bacterial infections.
Collapse
Affiliation(s)
- Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Fanyue Sun
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
29
|
Gao C, Su B, Zhang D, Yang N, Song L, Fu Q, Zhou S, Tan F, Li C. l-rhamnose-binding lectins (RBLs) in turbot (Scophthalmus maximus L.): Characterization and expression profiling in mucosal tissues. FISH & SHELLFISH IMMUNOLOGY 2018; 80:264-273. [PMID: 29886139 DOI: 10.1016/j.fsi.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Rhamnose-binding lectin (RBL) were mostly identified from egg cortex and ovary cells from vertebrates and invertebrates, with the specific binding activities to l-rhamnose or d-galactose. Previously, we found that a RBL gene was dramatically down-regulated (-11.90 fold at 1 h, -48.95 fold at 4 h, -905.94 fold at 12 h) in the intestine of turbot following Vibrio anguillarum challenge using RNA-seq expression analysis. In this regard, we sought here to identify RBLs in turbot, as well as the analysis of genomic structure, phylogenetic relationships, basal tissue distribution and the expression patterns following different bacteria challenge in mucosal tissues. In this study, two RBLs were captured in turbot with two conserved type 5 CRD5s, which were belong to type IIIc RBL. In phylogenetic tree analysis, turbot RBLs were clustered with tilapia, European sea bass and snakehead. In addition, in comparison of genomic architecture of turbot RBLs with the available published RBL genes revealed a high degree of conservation in the exon/intron organization among the teleost species. Moreover, both RBLs were significantly up-regulated in mucosal tissues following V. anguillarum and Streptococcus iniae challenge, indicated their critical roles in turbot mucosal immunity. Further studies are needed to expand functional characterization of detailed mechanisms of RBLs in fish innate immunity.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Dongdong Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
30
|
Cai X, Gao C, Su B, Tan F, Yang N, Wang G. Expression profiling and microbial ligand binding analysis of high-mobility group box-1 (HMGB1) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 78:100-108. [PMID: 29679761 DOI: 10.1016/j.fsi.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, was involved in nucleosome formation and transcriptional regulation, and could also act as an extracellular cytokine to trigger inflammation and immune responses. In this study, we identified a HMGB1 gene in turbot (Scophthalmus maximus L.). The full-length SaHMGB1 cDNA includes an open reading frame of 615 bp which encoded a 204 amino acid polypeptide with an estimated molecular mass of 23.19 kDa. SaHMGB1 was closely related to several fish HMGB1 and shared 74.4% overall identity with human. In addition, phylogenetic analyses revealed SaHMGB1 showed the closest relationship to Larimichthys crocea. Furthermore, QPCR analysis showed that SaHMGB1 was expressed in all examined tissues with abundant expression levels in brain, gill, intestine, and head kidney, and showed different expression patterns following different bacterial challenge. The significant quick regulation of SaHMGB1 in mucosal surfaces against infection suggest that HMGB1 might play critical roles in mucosal immunity against bacterial challenge. Finally, the in vitro binding assay showed that SaHMGB1 had strong binding ability to LPS, LTA, and PGN. Functional studies should further characterize HMGB1 function to understand the importance of the integrity of the mucosal barriers against infection, and to facilitate selection of the disease resistant family/strain in turbot.
Collapse
Affiliation(s)
- Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Guodong Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
31
|
Zeng C, Tang X, Du Y, Sheng X, Xing J, Zhan W. Dynamic distribution of formalin-inactivated Edwardsiella tarda in olive flounder (Paralichthys olivaceus) post intramuscular injection. Vet Immunol Immunopathol 2018; 199:53-60. [DOI: 10.1016/j.vetimm.2018.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/02/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
|
32
|
Liu X, Jiao C, Ma Y, Wang Q, Zhang Y. A live attenuated Vibrio anguillarum vaccine induces efficient immunoprotection in Tiger puffer (Takifugu rubripes). Vaccine 2018; 36:1460-1466. [DOI: 10.1016/j.vaccine.2018.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
|
33
|
Li C, Gao C, Fu Q, Su B, Chen J. Identification and expression analysis of fetuin B (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 68:386-394. [PMID: 28732765 DOI: 10.1016/j.fsi.2017.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
Fetuin B (FETUB), a recently described cysteine proteinase inhibitor, has numerous conserved N-glycosylation sites, species-specific O-glycosylation sites, and two cystatin (CY) domains. FETUB is likely to play regulatory roles in acute inflammation, female infertility, fish organogenesis and tumor suppression. In the present study, transcript of turbot FETUB gene was captured, its protein structure and expression patterns in different tissues with emphasis on mucosal barriers following different bacterial infection were characterized. Turbot FETUB gene showed the closest relationship with Takifugu rubripes in phylogenetic analysis. In addition, FETUB was ubiquitously expressed in all examined tissues with the highest expression level in skin. Finally, FETUB gene showed different expression patterns following both bacterial challenge. The rapidly and significantly differential expression patterns of FETUB in mucosal surfaces against bacterial infections might indicate its key roles to prevent pathogen attachment and entry in turbot mucosal immunity. Functional studies should be carried out to further characterize the FETUB and avail utilization of its function to increase the disease resistance of turbot in maintaining the integrity of the mucosal barriers against infections and to facilitate selection of the fine family/varieties of disease resistance in turbot.
Collapse
Affiliation(s)
- Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jinghua Chen
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
34
|
Hoare R, Ngo TPH, Bartie KL, Adams A. Efficacy of a polyvalent immersion vaccine against Flavobacterium psychrophilum and evaluation of immune response to vaccination in rainbow trout fry (Onchorynchus mykiss L.). Vet Res 2017; 48:43. [PMID: 28821298 PMCID: PMC5563058 DOI: 10.1186/s13567-017-0448-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/19/2017] [Indexed: 11/24/2022] Open
Abstract
Rainbow trout fry syndrome (RTFS) is a disease caused by the Gram-negative bacterium Flavobacterium psychrophilum, responsible for significant economic losses in salmonid aquaculture worldwide. The diversity of F. psychrophilum isolates and the inherent difficulties in vaccinating juvenile fish has hampered the development of a vaccine for RTFS. Disease episodes tend to occur between 10–14 °C with necrotic lesions often seen on the skin surrounding the dorsal fin and tail. At present no commercial vaccines are available for RTFS in the UK, leaving antibiotics as the only course of action to control disease outbreaks. The current work was performed as a pilot study to assess the efficacy of a polyvalent, whole cell vaccine containing formalin-inactivated F. psychrophilum, to induce protective immunity in rainbow trout fry. Duplicate groups of 30 trout (5 g) were immersed in 1 L of the vaccine for 30 s. Samples were taken 4 h, day 2 and 7 post-vaccination (pv) of skin mucus, tissues for histology and gene expression analysis; serum and histology samples were taken 6 weeks pv. A booster vaccination was given at 315 degree days (dd) also by immersion. Challenge was by immersion with a heterologous isolate of F. psychrophilum 630 dd post primary vaccination. The vaccine provided significant protection to the trout fry with a RPS of 84% (p < 0.0001). Detection of increased numbers of IgT positive cells in systemic organs, up-regulation of IgT expression in hind-gut and an increase in total IgT in serum was observed in vaccinated fish; however a functional role of IgT in the observed protection remains to be demonstrated.
Collapse
Affiliation(s)
- R Hoare
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | - T P H Ngo
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - K L Bartie
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - A Adams
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
35
|
Schmidt JG, Korbut R, Ohtani M, Jørgensen LVG. Zebrafish (Danio rerio) as a model to visualize infection dynamics of Vibrio anguillarum following intraperitoneal injection and bath exposure. FISH & SHELLFISH IMMUNOLOGY 2017; 67:692-697. [PMID: 28663130 DOI: 10.1016/j.fsi.2017.06.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Vaccine development is important for sustainable fish farming and novel vaccines need to be efficacy tested before release to the market. Challenge of fish with the pathogen towards which the vaccine has been produced can be conducted either by external exposure though bathing or cohabitation, or by bypassing the mucosa through injection. The latter approach is often preferred since it is easier to control than the former. However, injection is not a very natural route of infection, and the bypass of the mucosa may result in a different efficacy profile of experimental fish compared to farmed fish, for which the vaccines are targeted. The zebrafish is by now a well established practical vertebrate model species due in part to its size and ease of maintenance and genetic manipulation. Here we use zebrafish as a model to visualize and compare the development of infection of Vibrio anguillarum on and in the fish following injection or bathing. Injection of 103 bacteria per fish resulted in approximately 50% mortality by day 4 post-injection. Similar mortality levels were reached in the other group by bathing in 1.25 × 109 bacteria for 1 min. The spreading of bacteria was followed for the first 24 h after injection/bathing by immunohistochemistry and optical projection tomography. The tissues and organs where bacteria were detected differed significantly as a result of time as well as treatment. In the bath group, bacteria were initially found on external surfaces including gut. After 24 h V. anguillarum still persisted in gut but had now also spread to the blood. In the injection group bacteria were found in the blood throughout all sampling times, as well as in the hypodermis and body cavity at most sampling times.
Collapse
Affiliation(s)
- Jacob Günther Schmidt
- Laboratory of Aquatic Pathobiology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark; Section for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Maki Ohtani
- Veterinary Clinical Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark.
| |
Collapse
|
36
|
Gao C, Fu Q, Su B, Song H, Zhou S, Tan F, Li C. The involvement of cathepsin F gene (CTSF) in turbot (Scophthalmus maximus L.) mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2017; 66:270-279. [PMID: 28501446 DOI: 10.1016/j.fsi.2017.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Cathepsin F (CTSF) is a recently described papain-like cysteine protease and unique among cathepsins due to an elongated N-terminal pro-region, which contains a cystatin domain. CTSF likely plays a regulatory role in processing the invariant chain which is associated with the major histocompatibility complex (MHC) class II. In this regard, we identified the CTSF gene of turbot as well as its protein structure, phylogenetic relationships, and expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. We also determined the expression patterns of CTSF in mucosal tissues after vaccinated with the formalin-inactivated V. vulnificus whole-cell vaccine. Briefly, turbot CTSF gene showed the closest relationship with that of Paralichthys olivaceus in phylogenetic analysis. And CTSF was ubiquitously expressed in all tested tissues with the highest expression level in gill. In addition, CTSF gene showed different expression patterns following different bacterial challenge. The significant quick regulation of CTSF in mucosal surfaces against infection indicated its roles in mucosal immunity. Functional studies should further characterize avail utilization of CTSF function to increase the disease resistance of turbot in maintaining the integrity of the mucosal barriers against infection and to facilitate selection of the disease resistant family/strain in turbot.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
37
|
Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder ( Paralichthys olivaceus ). Vaccine 2017; 35:3196-3203. [DOI: 10.1016/j.vaccine.2017.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 11/20/2022]
|
38
|
Gao C, Cai X, Zhang Y, Su B, Song H, Wenqi W, Li C. Characterization and expression analysis of chitinase genes (CHIT1, CHIT2 and CHIT3) in turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 64:357-366. [PMID: 28286313 DOI: 10.1016/j.fsi.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Chitinases are hydrolytic enzymes which have been employed to breakdown chitin coats of pathogenic microorganisms, thereby weaken the defense system of several pathogens and insects. In this regard, we identified the chitinase genes of turbot and characterized their expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. In present study, transcripts of three chitinase genes (CHIT1, CHIT2 and CHIT3) were captured, as well as their protein structures and expression patterns following different bacterial infection were also characterized. The chitinases were widely expressed in all tested tissues with the highest expression levels of CHIT1 and CHIT2 in intestine, and CHIT3 in skin. Finally, these three genes showed different expression patterns following bacterial challenge. The significant quick induction of chitinases in mucosal surfaces against infection indicated their key roles to prevent pathogen attachment and entry in mucosal immunity. Functional studies should further characterize the chitinases and avail utilization of their function to increase the disease resistance in maintaining the integrity of the mucosal barriers against infection and facilitating the disease resistant family/strain selection in turbot.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Wang Wenqi
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
39
|
Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MÁ. Enhancing gilthead seabream immune status and protection against bacterial challenge by means of antigens derived from Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2017; 60:205-218. [PMID: 27890799 DOI: 10.1016/j.fsi.2016.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
In an attempt to control the proliferation of the pathogenic bacterium Vibrio parahaemolyticus in gilthead seabream (Sparus aurata), the immunostimulant effect of lysate and ToxA from this bacterium was evaluated. Fish were intraperitoneally injected twice (first injection, day 1 of the experiment; second injection, day 7) and sampled after one week (on days 8 and 15). Afterwards, all fish specimens were experimentally infected with V. parahaemolyticus and mortality was recovered for 1 week. Fish injected with lysate, ToxA and phosphate buffer saline (control) showed 100%, 50% and 0% survival, respectively, when challenged with the pathogen. Skin mucus immune parameters and immune-related gene expression in skin and spleen were also evaluated. The results showed that mucus immune parameters were enhanced in the lysate and ToxA groups compared with the values obtained for fish from the control group. Expression of IL-1β, TNF-α, C3 and IgM genes was significantly up-regulated in the lysate and ToxA groups, principally after infection with the bacterium. Interestingly, TLR5 gene expression increased in fish immunized with lysate. The most prominent histological characteristic in gut from infected fish was the presence of a great number of intraepithelial leucocytes as well as inflammation of the submucosa, while severe hydropic degeneration and hemosiderosis were detected in liver from infected fish. Injection of lysate or ToxA had a protective effect against the deleterious consequences of subsequent infection with V. parahaemolyticus in gut and liver. The findings underline the potential of lysate and ToxA as potent preventive antigens against this kind of vibriosis.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Crystal Guluarte
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico.
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain.
| |
Collapse
|
40
|
Du Y, Tang X, Sheng X, Xing J, Zhan W. The influence of concentration of inactivated Edwardsiella tarda bacterin and immersion time on antigen uptake and expression of immune-related genes in Japanese flounder (Paralichthys olivaceus). Microb Pathog 2016; 103:19-28. [PMID: 27993703 DOI: 10.1016/j.micpath.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
Our previous work has demonstrated that the immune response of Japanese flounder was associated with the concentration of formalin-inactivated Edwardsiella tarda and immersion time. In order to further investigate the influence of immersion vaccine dose and bath time on the antigen uptake, formalin-killed Edwardsiella tarda bacterin was prepared and adjusted to four concentrations (109, 108, 107, 106 cfu ml-1) for 30, 60 and 90 min immersion in Japanese flounder model, respectively. Absolute quantitative real-time PCR was employed to examine the bacterin uptake in gill, skin, spleen and kidney at 3 and 6 h post vaccination. The results showed that the antigen uptaken in gills and skin were significant higher than spleen and kidney, and the antigen amounts in gill and skin both declined from 3 to 6 h, whereas the antigen amounts in spleen and kidney gradually increased. Significant higher antigen amounts were detected in 109-30, 109-60, 108-60, 108-90 and 108-90 groups than other groups (P < 0.05), especially the 108-60min group displayed the highest antigen uptaken. Meanwhile, the expression profiles of antigen recognization and presentation genes (MHCⅡα, TcRα, CD4-1), immunoglobulins (IgM, IgT), inflammatory cytokines (IL-1β, IL-6), heat shock protein 70 (HSP70) and c-type lysozyme were analyzed using real-time PCR. On the whole, the transcription levels of the eight genes exhibited to be higher in 107-90, 108 and 109 cfu ml-1 groups than other groups (P < 0.05), especially the 108-60 group displayed the highest up-regulation. These results demonstrated that immersion with formalin-inactivated E. tarda, especially under 108-60 min condition could efficiently enhance the antigen uptake and the expression of immune-related genes, which provided evidences for an enhanced vaccination effects under an optimized combination of vaccine dose and immersion time.
Collapse
Affiliation(s)
- Yang Du
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, China.
| |
Collapse
|
41
|
Dong X, Fu Q, Liu S, Gao C, Su B, Tan F, Li C. The expression signatures of neuronal nitric oxide synthase (NOS1) in turbot (Scophthalmus maximus L.) mucosal surfaces against bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 59:406-413. [PMID: 27825948 DOI: 10.1016/j.fsi.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The mucosal surfaces constitute the first immune barrier of host defense and also serve as the dynamic interfaces that simultaneously mediate a diverse array of critical physiological processes. It has been long hypothesized that observed difference of disease resistance among different fish strains and species are strongly correlated to the activities of the immune actors in mucosal surfaces. Particularly, neuronal NOS (nNOS or NOS1) is a constitutively expressed gene that catalyzes the oxidation of l-arginine and water to nitric oxide (NO), which is known as a potent host defence effector in immune system with antimicrobial activity. Moreover, NOS1 was detected to be expressed in fish mucosal surfaces, but its activities in mucosal immune responses were always overlooked. In this regard, we identified the NOS1 of turbot and characterized its expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. The results showed that the NOS1 gene had a 4389 bp open reading frame (ORF) that encoded 1462 amino acids. Phylogenetic analysis showed the turbot NOS1 had the strongest relationship to Larimichthys crocea. And the syntenic analysis revealed the similar neighboring genes associated with turbot NOS1, compared with other teleost and mammals. In addition, NOS1 was widely expressed in all examined tissues with the highest expression level in brain, followed by intestine and gill. Finally, the NOS1 showed a general trend of up-regulation in mucosal tissues following both bacterial challenge, with the highest up-regulation in intestine. The significant quick induction of NOS1 in mucosal surfaces against infection indicated its key roles to prevent pathogen attachment and entry in mucosal immunity. More functional studies are needed to conduct in teleost to better understand the roles of NOS1 in maintaining the integrity of the mucosal barriers against infection.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Song Liu
- Functional Zone Coordinating Office of Huangdao District (West Coast New Area), Qingdao 266555, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
42
|
Caruffo M, Navarrete NC, Salgado OA, Faúndez NB, Gajardo MC, Feijóo CG, Reyes-Jara A, García K, Navarrete P. Protective Yeasts Control V. anguillarum Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish ( Danio rerio) Larvae. Front Cell Infect Microbiol 2016; 6:127. [PMID: 27790411 PMCID: PMC5063852 DOI: 10.3389/fcimb.2016.00127] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
We investigated mechanisms involved in the protection of zebrafish (Danio rerio) larvae by two probiotic candidate yeasts, Debaryomyces hansenii 97 (Dh97) and Yarrowia lypolitica 242 (Yl242), against a Vibrio anguillarum challenge. We determined the effect of different yeast concentrations (104-107 CFU/mL) to: (i) protect larvae from the challenge, (ii) reduce the in vivo pathogen concentration and (iii) modulate the innate immune response of the host. To evaluate the role of zebrafish microbiota in protection, the experiments were performed in conventionally raised and germ-free larvae. In vitro co-aggregation assays were performed to determine a direct yeast-pathogen interaction. Results showed that both yeasts significantly increased the survival rate of conventionally raised larvae challenged with V. anguillarum. The concentration of yeasts in larvae tended to increase with yeast inoculum, which was more pronounced for Dh97. Better protection was observed with Dh97 at a concentration of 106 CFU/mL compared to 104 CFU/mL. In germ-free conditions V. anguillarum reached higher concentrations in larvae and provoked significantly more mortality than in conventional conditions, revealing the protective role of the host microbiota. Interestingly, yeasts were equally (Dh97) or more effective (Yl242) in protecting germ-free than conventionally-raised larvae, showing that protection can be exerted only by yeasts and is not necessarily related to modulation of the host microbiota. Although none of the yeasts co-aggregated with V. anguillarum, they were able to reduce its proliferation in conventionally raised larvae, reduce initial pathogen concentration in germ-free larvae and prevent the upregulation of key components of the inflammatory/anti-inflammatory response (il1b, tnfa, c3, mpx, and il10, respectively). These results show that protection by yeasts of zebrafish larvae challenged with V. anguillarum relates to an in vivo anti-pathogen effect, the modulation of the innate immune system, and suggests that yeasts avoid the host-pathogen interaction through mechanisms independent of co-aggregation. This study shows, for the first time, the protective role of zebrafish microbiota against V. anguillarum infection, and reveals mechanisms involved in protection by two non-Saccharomyces yeasts against this pathogen.
Collapse
Affiliation(s)
- Mario Caruffo
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Natalie C. Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Oscar A. Salgado
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Nelly B. Faúndez
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Miguel C. Gajardo
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSantiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| |
Collapse
|
43
|
Gao Y, Tang X, Sheng X, Xing J, Zhan W. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment. FISH & SHELLFISH IMMUNOLOGY 2016; 55:274-280. [PMID: 27263114 DOI: 10.1016/j.fsi.2016.05.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P < 0.05), and the highest amount of antigen was detected in flounders immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P < 0.05) compared with the spleen, kidney and liver. Antigen uptake in the gill and skin both peaked at 30 min post immersion, which was significantly higher than the levels of uptake measured in the other tissues (P < 0.05), and then quickly declined. In contrast, antigen uptake in the spleen, kidney and liver gradually increased 3 h post immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P < 0.05). In the mucosal-associated tissues, the expression of MHC Iα and CD8α genes peaked at 24 hpi, while the expression of MHC IIα and CD4-1 genes showed up-regulation in the gill and skin and reached the peak in these tissues at 48 hpi. The expressions of the four genes were also up-regulated in spleen, kidney and liver, but reached peak expression in these tissues at 48-72 hpi. The results demonstrated that hyperosmotic immersion, notably 50‰ salinity significantly enhanced antigen uptake and the expression of selected genes associated with antigen presentation, providing evidence for an enhanced immune activation of the fish's immune response by the hyperosmotic immersion treatment prior to vaccination.
Collapse
Affiliation(s)
- Yingli Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, China.
| |
Collapse
|
44
|
Gao C, Fu Q, Zhou S, Song L, Ren Y, Dong X, Su B, Li C. The mucosal expression signatures of g-type lysozyme in turbot (Scophthalmus maximus) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 54:612-619. [PMID: 27189917 DOI: 10.1016/j.fsi.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
The mucosal surfaces constitute the first line of host defense against infection, and also serve as the dynamic interfaces that simultaneously mediate a diverse array of critical physiological processes, while in constantly contact with a wide range of pathogens. The lysozymes are considered as key components for innate immune response to pathogen infection with their strong antibacterial activities. But their activities in mucosal immune responses were always overlooked, especially for g-type lysozymes, whose expression patterns in mucosal tissues following bacterial challenge are still limited. Towards to this end, here, we characterized the g-type lysozymes, Lyg1 and Lyg2 in turbot, and determined their expression patterns in mucosal barriers following different bacterial infection. The phylogenetic analysis revealed the turbot g-type lysozyme genes showed the closest relationship to Cynoglossus semilaevis. The two lysozyme genes showed different expression patterns following challenge. Lyg2 was significantly up-regulated in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge, while Lyg1 showed a general trend of down-regulation. The significant mucosal expression signatures of g-type lysozyme genes indicated their key roles to prevent pathogen attachment and entry in the first line of host defense system. Further functional studies should be carried out to better characterize the availability of utilization of g-type lysozyme to increase the disease resistance in the mucosal surfaces and facilitate the disease resistant breeding selection.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
45
|
Guo C, Peng B, Song M, Wu CW, Yang MJ, Zhang JY, Li H. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2015; 47:664-673. [PMID: 26394266 DOI: 10.1016/j.fsi.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Control of bacterial infection resides in the core of human health and sustainable animal breeding. Vaccines as an economic and efficient immunoprophylaxis have been widely accepted, but mechanisms for vaccines do not fully understand. Information regarding to metabolome in response to vaccines is not available. Here we explore the metabolic features by using GC/MS based metabolic profile and trace metabolic mechanisms in zebrafish (Dario rerio) in response to live Edwardsiella tarda vaccine. Pathway enrichment analysis shows that live vaccine activates biosynthesis of unsaturated fatty acids and the TCA cycle and reduces aminoacyl-tRNA biosynthesis, suggesting a metabolic characteristic feature in response to the live vaccine. We further demonstrate that hydroxyl radical is limited during stimulation. Finally, we reveal oleate induces effective protection against E. tarda infection. These results have implications for immunity study that metabolic regulation contributes to immune protection. Our findings enable us to propose novel therapeutic strategies on metabolism against bacterial infections.
Collapse
Affiliation(s)
- Chang Guo
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Bo Peng
- Department of Biological Sciences, The University of Texas, El Paso, TX 79968, USA
| | - Ming Song
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Chang-wen Wu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Man-jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Jian-Ying Zhang
- Department of Biological Sciences, The University of Texas, El Paso, TX 79968, USA
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China.
| |
Collapse
|
46
|
Du Y, Tang X, Sheng X, Xing J, Zhan W. Immune response of flounder (Paralichthys olivaceus) was associated with the concentration of inactivated Edwardsiella tarda and immersion time. Vet Immunol Immunopathol 2015; 167:44-50. [DOI: 10.1016/j.vetimm.2015.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
|
47
|
Munang'andu HM, Mutoloki S, Evensen Ø. A Review of the Immunological Mechanisms Following Mucosal Vaccination of Finfish. Front Immunol 2015; 6:427. [PMID: 26379665 PMCID: PMC4547047 DOI: 10.3389/fimmu.2015.00427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mucosal organs are principle portals of entry for microbial invasion and as such developing protective vaccines against these pathogens can serve as a first line of defense against infections. In general, all mucosal organs in finfish are covered by a layer of mucus whose main function is not only to prevent pathogen attachment by being continuously secreted and sloughing-off but it serves as a vehicle for antimicrobial compounds, complement, and immunoglobulins that degrade, opsonize, and neutralize invading pathogens on mucosal surfaces. In addition, all mucosal organs in finfish possess antigen-presenting cells (APCs) that activate cells of the adaptive immune system to generate long-lasting protective immune responses. The functional activities of APCs are orchestrated by a vast array of proinflammatory cytokines and chemokines found in all mucosal organs. The adaptive immune system in mucosal organs is made of humoral immune responses that are able to neutralize invading pathogens as well as cellular-mediated immune responses whose kinetics are comparable to those induced by parenteral vaccines. In general, finfish mucosal immune system has the capacity to serve as the first-line defense mechanism against microbial invasion as well as being responsive to vaccination.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
48
|
Liu X, Wu H, Liu Q, Wang Q, Xiao J, Chang X, Zhang Y. Profiling immune response in zebrafish intestine, skin, spleen and kidney bath-vaccinated with a live attenuated Vibrio anguillarum vaccine. FISH & SHELLFISH IMMUNOLOGY 2015; 45:342-345. [PMID: 25956722 DOI: 10.1016/j.fsi.2015.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/22/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Chang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|