1
|
Sun B, Hu M, Bock C, Shao Y, Chen H, Waiho K, Liu W, Khadka K, Xu C, Wang Y. Effects of perfluorooctanoic acid and nano titanium dioxide on the immune response and energy allocation in Mytilus coruscus. CHEMOSPHERE 2025; 370:143958. [PMID: 39701318 DOI: 10.1016/j.chemosphere.2024.143958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) functions as a surfactant, while nano-titanium dioxide (nano-TiO2) serves as an antibacterial agent. These substances are extensively utilized in industrial production and, upon release into aquatic environments, pose significant threats to the viability and development of marine organisms. However, research into the effects of PFOA and nano-TiO2 on the immune functions and cellular energy allocation (CEA) of bivalves remains limited. To investigate the impact of PFOA and nano-TiO2 on immunity and cellular energy, we exposed Mytilus coruscus individuals to different concentrations of PFOA (2 and 200 μg/L), either alone or in combination with nano-TiO2 (0.1 mg/L, particle size: 25 nm) for 14 days. We found that the co-exposure to PFOA and nano-TiO2 had significant interactive effects on multiple immune function parameters of mussels. PFOA and nano-TiO2 notably reduced the total hemocyte count (THC), esterase activity (EST), mitochondrial number (MN), lysosomal content (LYSO), and cell viability, while concurrently elevating hemocyte mortality (HM) and reactive oxygen species (ROS) levels. Some immune-related genes, such as Tumor Necrosis Factor-alpha (TNF-α) and Myeloid Differentiation Primary Response 88 (MyD88) were downregulated, while others such as Interleukin 17 (IL-17) and Transforming Growth Factor-beta (TGF-β) were upregulated after 14-day exposure to combined pollutant exposure. Furthermore, negative effects on CEA were observed under both individual and combined pollutant stress. Therefore, PFOA and nano-TiO2 regulate cellular and humoral immunity through the regulation of immune genes as mediators, while simultaneously disrupting cellular energy metabolism. The immunotoxicity of organic and particulate pollutants, and their mixtures, thus poses a significant risk to the immune defense capabilities of mussel populations in polluted coastal environments.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar & Marine Research, Bremerhaven, Germany
| | - Ying Shao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Haodong Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 20000, Malaysia
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Kiran Khadka
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Chaosong Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
2
|
Wang X, Zhu L, Du Z, Li H, Hou L, Li C, Jiang X, Zhang J, Pei C, Li L, Kong X. Host-derived Pediococcus acidilactici B49: A promising probiotic for immunomodulation and disease control in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110148. [PMID: 39848418 DOI: 10.1016/j.fsi.2025.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Finding effective alternatives to antibiotics is crucial for sustainable aquaculture. Host-derived probiotics have great potential as a promising alternative to antibiotics for immune regulation and disease control in fish farming. However, limited research exists regarding the application of native probiotics in largemouth bass (Micropterus salmoides). This study aims to evaluate the potential of the endogenous strain Pediococcus acidilactici B49 as a probiotic in modulating host immunity and disease control through in vitro and in vivo experiments. The results demonstrated that P. acidilactici B49 exhibited no hemolytic activity and displayed susceptibility to most tested antibiotics. It successfully survived and colonized in the intestinal tract of the largemouth bass. Furthermore, this strain showed remarkable antibacterial activity against common aquatic pathogens, including gram-positive and gram-negative bacteria, and also exhibited resistance against Aeromonas hydrophila on the head kidney leukocytes of largemouth bass in vitro. Following an 8-week feeding trial, P. acidilactici B49 improved host immunity by increasing intestinal lysozyme activity, enhancing IL-8 expression, reducing TGF-β expression, and enhancing IgM levels in both serum and intestinal mucus. It also potentiated the phagocytic activity of peripheral blood lymphocytes. In addition, the B49 feeding group showed a significant increase in intestinal villus height. The challenge test with A. hydrophila demonstrated that the administration of P. acidilactici B49 effectively maintained intestinal barrier integrity, reduced gut inflammation, decreased pathogen load in the spleen, and improved survival rates in largemouth bass. In conclusion, the host-derived strain P. acidilactici B49 exhibited broad-spectrum antibacterial ability, biosafety, and intestinal colonization in largemouth bass. It effectively improved immune function, intestinal health, and resistance against A. hydrophila in the host. Therefore, P. acidilactici B49 is a promising probiotic for immunomodulation and disease control in largemouth bass aquaculture.
Collapse
Affiliation(s)
- Xinru Wang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Lei Zhu
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Zhengyan Du
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Hao Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Libo Hou
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chen Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xinyu Jiang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Zhang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chao Pei
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Li Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
3
|
Wu XQ, Wan JW, Yang ZN, Liu HJ, Chang Y, Peng SB, Niu XT, Kong YD, Li M, Chen XM, Wang GQ. Protection of glutamine: The NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affects oxidative stress, inflammation and apoptosis in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110131. [PMID: 39826630 DOI: 10.1016/j.fsi.2025.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Lipopolysaccharide (LPS) destroys intestinal mechanical barrier and causes apoptosis by triggering oxidative stress and inflammatory responses. Glutamine (Gln) can maintain normal intestinal function under various stressed or pathological conditions. Thereby, this study aims to evaluate the protection of glutamine on intestinal health of snakehead (Channa argus), specifically regarding the NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affecting oxidative stress, inflammation and apoptosis. In this work, a model of intestinal tight junction injury in intestine of snakehead was constructed by injecting 4 mg/mL LPS into anus for 96 h. Before constructing the model, fish were treated with different levels of alanyl-glutamine (Ala-Gln) (0 %, 0.3 %, 0.6 %, 0.9 %, 1.2 % and 1.5 %) for 56 days. Microstructure and ultra microstructure showed that LPS-induced obvious intestinal damage and tight connection destruction, while Gln effectively alleviated these phenomena. In addition, results also showed that Gln can effectively inhibit LPS-induced damage to intestinal tight junction (zo-1, occludin, claudin5, claudin1, nf-κb p65, mlck and mlc2), alleviate oxidative stress (nrf2, sod, gsh, gpx and cat), ameliorate intestinal inflammation (tnf-α, il-1β, il-8, tlr5 and tlr2), thereby reduce apoptosis (p38mapk, caspase9, caspase8, caspase3 and bax). Crucially, the above results were related to NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction. In conclusion, Gln has a good protective effect on LPS-induced intestinal injury in northern snakehead, providing a new perspective for regulating fish intestinal health.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ji-Wu Wan
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Zhi-Nan Yang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Hong-Jian Liu
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Yue Chang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Si-Bo Peng
- Jilin Academy of Fishery Sciences, Changchun, 130033, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Wang K, Zhang L, Liang H, Ren M, Mi H, Huang D, Gu J. Effects of Dietary Ferroporphyrin Supplementation on Growth Performance, Antioxidant Capacity, Immune Response, and Oxygen-Carrying Capacity in Gibel Carp ( Carassius auratus gibelio). Animals (Basel) 2024; 14:3104. [PMID: 39518827 PMCID: PMC11544878 DOI: 10.3390/ani14213104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
An eight-week experiment was conducted to study the effects of dietary ferroporphyrin (FPR) supplementation on growth performance, antioxidant capacity, immune response, and oxygen-carrying capacity in gibel carp. The results demonstrated that the addition of FPR increased the moisture content of the whole fish body. Supplementation with 0.01% FPR significantly increased the plasma albumin (ALB), total protein (TP), and total cholesterol (TC) contents. The addition of 0.03% and 0.04% FPR significantly increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, respectively, while the glucose (GLU), TC, and total triglyceride (TG) levels showed opposite trends. In terms of antioxidant capacity, the 0.03% and 0.04% dietary FPR supplementation increased malondialdehyde (MDA) levels. The activity of glutathione peroxidase (GPx) exhibited an opposite trend to MDA levels. The supplementation of 0.03% of FPR resulted in a notable reduction in mRNA expression levels of nrf2, keap1, cat, and gpx. Regarding immunity, 0.01% FPR supplementation down-regulated the expression levels of il-1β mRNA, while 0.02% FPR down-regulated il-6 and nf-κb expression levels. Furthermore, 0.02% FPR supplementation significantly up-regulated the il-10 mRNA expression levels. In terms of oxygen-carrying capacity, high levels of FPR (0.03% and 0.04%) were found to influence the epo and vegf mRNA expression. In conclusion, the incorporation of dietary 0.01-0.02% FPR improved the immune system of gibel carp without affecting their antioxidant and oxygen-carrying capacity. However, supplementation with higher levels of FPR (0.03-0.04%) led to decreased antioxidant and oxygen-carrying capacity.
Collapse
Affiliation(s)
- Kai Wang
- College of Fisheries and Life of Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- College of Fisheries and Life of Science, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
5
|
Pérez-Jiménez GM, Alvarez-Villagomez CS, Martínez-Porchas M, Garibay-Valdez E, Sepúlveda-Quiroz CA, Méndez-Marín O, Martínez-García R, Jesús-Contreras R, Alvarez-González CA, De la Rosa-García SDC. The Indigenous Probiotic Lactococcus lactis PH3-05 Enhances the Growth, Digestive Physiology, and Gut Microbiota of the Tropical Gar ( Atractosteus tropicus) Larvae. Animals (Basel) 2024; 14:2663. [PMID: 39335253 PMCID: PMC11428600 DOI: 10.3390/ani14182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Probiotics in aquaculture hold promise for enhancing fish health and growth. Due to their increased specificity and affinity for their host, indigenous probiotics may offer isolated and potentially amplified benefits. This study investigated the effects of Lactococcus lactis PH3-05, previously isolated from adults of tropical gar (Atractosteus tropicus), on the growth, survival, digestive enzyme activity, intestinal morphology, expression of barrier and immune genes, and intestinal microbiota composition in the larvae of tropical gar. Larvae were fed with live L. lactis PH3-05 concentrations of 104, 106, and 108 CFU/g for 15 days alongside a control diet without probiotics. Higher concentrations of L. lactis PH3-05 (106 and 108 CFU/g) positively influenced larval growth, increasing hepatocyte area and enterocyte height. The 106 CFU/g dose significantly enhanced survival (46%) and digestive enzyme activity. Notably, the 108 CFU/g dose stimulated increased expression of muc-2 and il-10 genes, suggesting enhanced mucosal barrier function and anti-inflammatory response. Although L. lactis PH3-05 did not significantly change the diversity, structure, or Phylum level composition of intestinal microbiota, which was constituted by Proteobacteria, Bacteroidota, Chloroflexi, and Firmicutes, an increase in Lactobacillus abundance was observed in fish fed with 106 CFU/g, suggesting enhanced probiotic colonization. These results demonstrate that administering L. lactis PH3-05 at 106 CFU/g promotes growth, survival, and digestive health in A. tropicus larvae, establishing it as a promising indigenous probiotic candidate for aquaculture applications.
Collapse
Affiliation(s)
- Graciela María Pérez-Jiménez
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Carina Shianya Alvarez-Villagomez
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo 83304, Sonora, Mexico; (M.M.-P.); (E.G.-V.)
| | - Estefanía Garibay-Valdez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo 83304, Sonora, Mexico; (M.M.-P.); (E.G.-V.)
| | - César Antonio Sepúlveda-Quiroz
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
- Instituto Tecnológico de Villahermosa, Tecnológico Nacional de México, Carretera Villahermosa-Frontera, Km. 3.5, Ciudad Industrial, Villahermosa 86010, Tabasco, Mexico
| | - Otilio Méndez-Marín
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Rafael Martínez-García
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Ronald Jesús-Contreras
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Carlos Alfonso Alvarez-González
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Susana del Carmen De la Rosa-García
- Laboratorio de Microbiología Aplicada (LABMIA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico
| |
Collapse
|
6
|
Ci Y, Ku T, Su Y, He Z, Zhang Y, Ji J, Ning X, Yin S, Zhang K. Response signatures of intestinal microbiota and gene transcription of yellow catfish (Pelteobagrus fulvidraco) to Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109797. [PMID: 39084276 DOI: 10.1016/j.fsi.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Bacterial intestinal inflammation is a common disease of yellow catfish (Pelteobagrus fulvidraco) in high-density aquaculture. Understanding the interactions between host and intestinal bacteria is helpful to intestinal inflammatory disease control. Here, we constructed a model of intestinal inflammation after Aeromonas hydrophila infection in yellow catfish, and characterized variations in gene expression and microbiome in the gut through high-throughput sequencing. Furthermore, host gene-microbiome interactions were identified. Histology observation showed disordered distribution of columnar epithelial cells and decrease of goblet cells in intestine. A total of 4741 genes showed differentially expression, mostly in comparisons between 12 hpi group with each other groups respectively, including control, 24 hpi and 48 hpi groups. These genes were enriched in immune-related pathways including the IL-17 signaling pathway, triggering strong inflammatory response at the invading stage within 12 h. Subsequently, the host strengthened energy consumption by activating carbohydrate and lipid metabolism pathways to repair the intestinal mucosal immune defense line. In addition, fish with A. hydrophila infection show decreased richness of gut microbial, reduced relative abundance of probiotics including Akkermansia, and elevated pathogenic bacteria such as Plesimonas. An integrative analysis identified A. hydrophila-related genes, such as il22 and stat3, for which expression level is close associated with the shift of A. hydrophila-related bacteria relative abundance, such as Akkermansia and Cetobacterium. Aside from picturing the variations of intestine gene expression and mucosal microbiome of yellow catfish coping with A. hydrophila infection, our study probed the underlying host-microbe interactions in A. hydrophila infection induced intestinal inflammatory, providing new insights for disease control in aquaculture.
Collapse
Affiliation(s)
- Yuting Ci
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China
| | - Tinglan Ku
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China
| | - Yiting Su
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China
| | - Zhimin He
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China
| | - Yufei Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, 222005, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, 222005, China.
| |
Collapse
|
7
|
Mang Q, Gao J, Li Q, Sun Y, Xu G, Xu P. Integrative analysis of metagenome and metabolome provides new insights into intestinal health protection in Coilia nasus larvae via probiotic intervention. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101230. [PMID: 38643745 DOI: 10.1016/j.cbd.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
With the development of large-scale intensive feeding, growth performance and animal welfare have attracted more and more attention. Exogenous probiotics can promote the growth performance of fish through improving intestinal microbiota; however, it remains unclear whether intestinal microbiota influence physiological biomarkers. Therefore, we performed metagenomic and metabolomic analysis to investigate the effects of a 90-day Lactiplantibacillus plantarum supplementation to a basal diet (1.0 × 108 CFU/g) on the growth performance, intestinal microbiota and their metabolites, and physiological biomarkers in Coilia nasus larvae. The results showed that the probiotic supplementation could significantly increase weight and body length. Moreover, it could also enhance digestive enzymes and tight junctions, and inhibit oxidative stress and inflammation. The metagenomic analysis showed that L. plantarum supplementation could significantly decrease the relative abundance of Proteobacteria and increase the relative abundance of Firmicutes. Additionally, pathogenic bacteria (Aeromonadaceae, Aeromonas, and Enterobacterales) were inhibited and beneficial bacteria (Bacillales) were promoted. The metabolome analysis showed that acetic acid and propanoic acid were significantly elevated, and were associated with Kitasatospora, Seonamhaeicola, and Thauera. A correlation analysis demonstrated that the digestive enzymes, tight junction, oxidative stress, and inflammation effects were significantly associated with the increased acetic acid and propanoic acid levels. These results indicated that L. plantarum supplementation could improve intestinal microbial community structure and function, which could raise acetic acid and propanoic acid levels to protect intestinal health and improve growth performance in C. nasus larvae.
Collapse
Affiliation(s)
- Qi Mang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
8
|
Huo J, Li X, Hu X, Lv A. Multi-omics analysis of miRNA-mediated intestinal microflora changes in crucian carp Carassius auratus infected with Rahnella aquatilis. Front Immunol 2024; 15:1335602. [PMID: 38426108 PMCID: PMC10902443 DOI: 10.3389/fimmu.2024.1335602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Infection by an emerging bacterial pathogen Rahnella aquatilis caused enteritis and septicemia in fish. However, the molecular pathogenesis of enteritis induced by R. aquatilis infection and its interacting mechanism of the intestinal microflora associated with microRNA (miRNA) immune regulation in crucian carp Carassius auratus are still unclear. In this study, C. auratus intraperitoneally injected with R. aquatilis KCL-5 was used as an experimental animal model, and the intestinal pathological changes, microflora, and differentially expressed miRNAs (DEMs) were investigated by multi-omics analysis. The significant changes in histopathological features, apoptotic cells, and enzyme activities (e.g., lysozyme (LYS), alkaline phosphatase (AKP), alanine aminotransferase (ALT), aspartate transaminase (AST), and glutathione peroxidase (GSH-Px)) in the intestine were examined after infection. Diversity and composition analysis of the intestinal microflora clearly demonstrated four dominant bacteria: Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes. A total of 87 DEMs were significantly screened, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes were mainly involved in the regulation of lipid, glutathione, cytosine, and purine metabolism, which participated in the local immune response through the intestinal immune network for IgA production, lysosome, and Toll-like receptor (TLR) pathways. Moreover, the expression levels of 11 target genes (e.g., TLR3, MyD88, NF-κB, TGF-β, TNF-α, MHC II, IL-22, LysC, F2, F5, and C3) related to inflammation and immunity were verified by qRT-PCR detection. The correlation analysis indicated that the abundance of intestinal Firmicutes and Proteobacteria was significantly associated with the high local expression of miR-203/NF-κB, miR-129/TNF-α, and miR-205/TGF-β. These findings will help to elucidate the molecular regulation mechanism of the intestinal microflora, inflammation, and immune response-mediated miRNA-target gene axis in cyprinid fish.
Collapse
Affiliation(s)
- Jiaxin Huo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiaowei Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
9
|
Dallas JW, Kazarina A, Lee STM, Warne RW. Cross-species gut microbiota transplantation predictably affects host heat tolerance. J Exp Biol 2024; 227:jeb246735. [PMID: 38073469 PMCID: PMC10906491 DOI: 10.1242/jeb.246735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
The gut microbiome is known to influence and have regulatory effects in diverse physiological functions of host animals, but only recently has the relationship between host thermal biology and gut microbiota been explored. Here, we examined how early-life manipulations of the gut microbiota in larval amphibians influenced their critical thermal maximum (CTmax) at different acclimation temperatures. We stripped the resident microbiome from egg masses of wild-caught wood frogs (Lithobates sylvaticus) via an antibiotic wash, and then inoculated the eggs with pond water (control), no inoculation, or the intestinal microbiota of another species that has a wider thermal tolerance - green frogs (Lithobates clamitans). We predicted that this cross-species transplant would increase the CTmax of the recipient wood frog larvae relative to the other treatments. In line with this prediction, green frog microbiome-recipient larvae had the highest CTmax while those with no inoculum had the lowest CTmax. Both the microbiome treatment and acclimation temperature significantly influenced the larval gut microbiota communities and α-diversity indices. Green frog microbiome-inoculated larvae were enriched in Rikenellaceae relative to the other treatments, which produce short-chain fatty acids and could contribute to greater energy availability and enhanced heat tolerance. Larvae that received no inoculation had a higher relative abundance of potentially pathogenic Aeromonas spp., which negatively affects host health and performance. Our results are the first to show that cross-species gut microbiota transplants alter heat tolerance in a predictable manner. This finding has repercussions for the conservation of species that are threatened by climate change and demonstrates a need to further explore the mechanisms by which the gut microbiota modulate host thermal tolerance.
Collapse
Affiliation(s)
- Jason W. Dallas
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Anna Kazarina
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Sonny T. M. Lee
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Robin W. Warne
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| |
Collapse
|
10
|
Han Z, Ge L, Wen S, Sun J. Dysfunction of the intestinal physical barrier in the intestinal inflammation of tongue sole, Cynoglossus semilaevis, induced by Shewanella algae infection. FISH & SHELLFISH IMMUNOLOGY 2023:108900. [PMID: 37315911 DOI: 10.1016/j.fsi.2023.108900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Bacterial intestinal inflammation occurs frequently in cultured fish. However, research on the dysfunction of the intestinal physical barrier in fish intestinal inflammation is scarce. In this study, intestinal inflammation in tongue sole Cynoglossus semilaevis was induced by Shewanella algae and the intestinal permeability was investigated. Gene expression patterns in inflammatory factors, tight junction molecules, and keratins 8 and 18 in the intestines were further explored. Histological examinations of the middle intestines showed that S. algae induced pathological lesions of intestinal inflammation and significantly increased the total number of mucous cells (p < 0.01). Ultrastructural observation in the middle intestines showed that intercellular spaces between epithelial cells were significantly wider in infected fish compared with the control (p < 0.01). The positive result of fluorescence in situ hybridization confirmed the presence of S. algae in the intestine. Enhanced Evans blue exudation and increased levels of serum d-lactate and intestinal fatty acid binding protein were suggestive of increased intestinal barrier permeability. The mRNA levels of four pro-inflammatory cytokines, namely IL-6, IL-8, IL-β, and TNF-α, were significantly increased after S. algae infection at most tested time points (p < 0.01 or p < 0.05), while there was an alternating increasing and decreasing trend in the gene expression patterns of IL-10, TGF-β, TLR-2, AP-1, and CASP-1. The mRNA expression of tight junction molecules (claudin-1, claudin-2, ZO-1, JAM-A, and MarvelD3) and keratins 8 and 18 in the intestines was significantly decreased at 6, 12, 24, 48, or 72 h post infection (p < 0.01 or p < 0.05). In conclusion, S. algae infection induced intestinal inflammation accompanied by increased intestinal permeability in tongue sole, and tight junction molecules and keratins were probably associated with the pathological process.
Collapse
Affiliation(s)
- Zhuoran Han
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Lunhua Ge
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Siyi Wen
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
11
|
Wang C, Chen Q, Tang M, Wei T, Zou J. Effects of TLR2/4 signalling pathway in western mosquitofish (Gambusia affinis) after Edwardsiella tarda infection. JOURNAL OF FISH DISEASES 2023; 46:299-307. [PMID: 36811195 DOI: 10.1111/jfd.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Gambusia affinis is regarded as an important animal model. Edwardsiella tarda is one of the most serious pathogens affecting aquaculture. The study explores the effects of TLR2/4 partial signalling pathway in G. affinis of E. tarda infection. The study collected the brain, liver, and intestine after E. tarda LD50 and 0.85% NaCl solution challenge at different times (0 h, 3 h, 9 h, 18 h, 24 h, and 48 h). In these three tissues, the mRNA levels of PI3K, AKT3, IRAK4, TAK1, IKKβ, and IL-1β were substantially enhanced (p < .05) then returned to normal levels. Additionally, Rac1 and MyD88 in liver had different trend with other genes in brain and intestine, which displayed significantly indifference. The overexpression of IKKβ, and IL-1β indicated that E. tarda also caused immune reaction in intestine and liver, which would be consistent with delayed edwardsiellosis, which causes intestinal lesions and liver and kidney necrosis. Additionally, MyD88 plays a smaller role than IRAK4 and TAK1 in this signalling pathways. This study could enrich the understanding of the immune mechanism of the TLR2/4 signalling pathway in fish and might help to prescribe preventive measures against E. tarda to prevent infectious diseases in fish.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qingshi Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Manfei Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tianli Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Contente D, Díaz-Rosales P, Feito J, Díaz-Formoso L, Docando F, Simón R, Borrero J, Hernández PE, Poeta P, Muñoz-Atienza E, Cintas LM, Tafalla C. Immunomodulatory effects of bacteriocinogenic and non-bacteriocinogenic Lactococcus cremoris of aquatic origin on rainbow trout ( Oncorhynchus mykiss, Walbaum). Front Immunol 2023; 14:1178462. [PMID: 37153602 PMCID: PMC10159052 DOI: 10.3389/fimmu.2023.1178462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Lactic Acid Bacteria (LAB) are a group of bacteria frequently proposed as probiotics in aquaculture, as their administration has shown to confer positive effects on the growth, survival rate to pathogens and immunological status of the fish. In this respect, the production of antimicrobial peptides (referred to as bacteriocins) by LAB is a common trait thoroughly documented, being regarded as a key probiotic antimicrobial strategy. Although some studies have pointed to the direct immunomodulatory effects of these bacteriocins in mammals, this has been largely unexplored in fish. To this aim, in the current study, we have investigated the immunomodulatory effects of bacteriocins, by comparing the effects of a wild type nisin Z-expressing Lactococcus cremoris strain of aquatic origin to those exerted by a non-bacteriocinogenic isogenic mutant and a recombinant nisin Z, garvicin A and Q-producer multi-bacteriocinogenic strain. The transcriptional response elicited by the different strains in the rainbow trout intestinal epithelial cell line (RTgutGC) and in splenic leukocytes showed significant differences. Yet the adherence capacity to RTgutGC was similar for all strains. In splenocyte cultures, we also determined the effects of the different strains on the proliferation and survival of IgM+ B cells. Finally, while the different LAB elicited respiratory burst activity similarly, the bacteriocinogenic strains showed an increased ability to induce the production of nitric oxide (NO). The results obtained reveal a superior capacity of the bacteriocinogenic strains to modulate different immune functions, pointing to a direct immunomodulatory role of the bacteriocins, mainly nisin Z.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Félix Docando
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Rocío Simón
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Carolina Tafalla,
| |
Collapse
|
13
|
Comprehensive transcriptomics and proteomics analysis of Carassius auratus gills in response to Aeromonas hydrophila. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100077. [PMID: 36589261 PMCID: PMC9798182 DOI: 10.1016/j.fsirep.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
As one of the mucosal barriers, fish gills represent the first line of defense against pathogen infection. However, the exact mechanism of gill mucosal immune response to bacterial infection still needs further investigation in fish. Here, to investigate pathological changes and molecular mechanisms of the mucosal immune response in the gills of crucian carp (Carassius auratus) challenged by Aeromonas hydrophila, the transcriptomics and proteomics were performed by using multi-omics analyses of RNA-seq coupled with iTRAQ techniques. The results demonstrated gill immune response were mostly related to the activation of complement and coagulation cascades, antigen processing and presentation, phagosome, NOD-like receptor (NLR) and nuclear factor κB (NFκB) signaling pathway. Selected 21 immune-related DEGs (ie., Clam, nfyal, snrpf, acin1b, psme, sf3b5, rbm8a, rbm25, prpf18, g3bp2, snrpd3l, tecrem-2, cfl-A, C7, lysC, ddx5, hsp90, α-2M, C9, C3 and slc4a1a) were verified for their immune roles in the A. hydrophila infection via using qRT-PCR assay. Meanwhile, some complement (C3, C7, C9, CFD, DF and FH) and antigen presenting (HSP90, MHC Ⅱ, CALR, CANX and PSME) proteins were significantly participated in the process of defense against infections in gill tissues, and protein-protein interaction (PPI) network displayed the immune signaling pathways and interactions among these DEPs. The correlation analysis indicated that the iTRAQ and qRT-PCR results was significantly correlated (Pearson's correlation coefficient = 0.70, p < 0.01). To our knowledge, the transcriptomics and proteomics of gills firstly identified by multi-omics analyses contribute to understanding on the molecular mechanisms of local mucosal immunity in cyprinid species.
Collapse
|
14
|
Huang M, Wei X, Wu T, Li M, Zhou L, Chai L, Ruan C, Li H. Inhibition of TNBS-induced intestinal inflammation in crucian carp (Carassius carassius) by oral administration of bioactive Bioactive food derived peptides. FISH & SHELLFISH IMMUNOLOGY 2022; 131:999-1005. [PMID: 36195269 DOI: 10.1016/j.fsi.2022.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Intestinal enteritis is a main issue in crucian carp production which results in massive economic loss. Traditional antibiotics used for disease prevention of crucian carp (Carassius carassius) have been banned, thus an alternative approach needs to be identified. In this study, the bioactive peptide was evaluated as a diet supplement for preventing intestinal inflammation in crucian carp. Intestinal inflammation was induced by intrarectal administration of a 2,4,6-trinitrobenzene sulfonic acid (TNBS) solution. The fish samples were fed with different diets for 14 days. The disease activity index (DAI), which included, fish swimming, food intake, anal inflammation, body surface, and ascites was determined daily. Intestine segments were stained with haematoxylin and eosin (H.E.) for histopathological analysis. The expression of cytokines, including interleukin-1β (IL-1β), interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and myeloperoxidase (MPO) in crucian carp were determined. In TNBS-induced groups, the DAI scores were dramatically increased compared to the control group. The histopathological analysis showed that the damage of the fish intestine after the injection of TNBS. The relative expression levels of pro-inflammation cytokines (TNF-α, IL-1β, IL-8, MPO) were significantly increased compared to the control group on day 1. In the TNBS-induced group feed with a diet supplemented with bioactive peptide, the symptoms of intestinal inflammation were relieved on day 3 and the mRNA expression levels of pro-inflammation cytokines (TNF-α, IL-1β, IL-8, MPO) were reduced compared to day 1. On day 7, the fish samples enrofloxacin group and bioactive peptide group were recovered from TNBS-induced intestinal inflammation. This study showed that the fish diet supplemented with bioactive peptide could help to prevent and recover from intestinal inflammation. Thus, the bioactive peptide can be used as a replacement for antibiotics to prevent disease in aquaculture production.
Collapse
Affiliation(s)
- Meijuan Huang
- Institute of Hematology, Fijian Union Hospital, attached to Fujian Medical University, Fujian, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Tiecheng Wu
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Mengyan Li
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Lei Zhou
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Libing Chai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chengxu Ruan
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Hao Li
- College of Biological Science and Engineering, Fuzhou University, Fujian, China.
| |
Collapse
|
15
|
Response of Intestinal Microbiota to the Variation in Diets in Grass Carp (Ctenopharyngodon idella). Metabolites 2022; 12:metabo12111115. [PMID: 36422256 PMCID: PMC9698803 DOI: 10.3390/metabo12111115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The intestinal microbiota is important for the nutrient metabolism of fish and is significantly influenced by the host’s diet. The effect of ryegrass and commercial diets on the intestinal microbiota of grass carp was compared in this study. In comparison to ryegrass, artificial feed significantly reduced the microbial diversity in the intestine, which was measured by a decrease in the observed OTUs, ACE, Shannon, and the InvSimpson index. Although grass carp fed with ryegrass and artificial feed shared a dominant phyla Firmicutes and Proteobacteria, the microbial composition was clearly distinguishable between the two groups. In grass carp fed with ryegrass, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria predominated, whereas Bacilli was significantly higher in the artificial feed group due to an increase in Weissella and an unassigned Bacillales bacteria, as well as a significant increase in a potential pathogen: Aeromonas australiensis. Grass carp fed with ryegrass exhibited a more complex ecological network performed by the intestinal bacterial community, which was dominated by cooperative interactions; this was also observed in grass carp fed with artificial feed. Despite this, the increase in A. australiensis increased the competitive interaction within this ecological network, which contributed to the vulnerable perturbation of the intestinal microbiota. The alteration of the microbial composition through diet can further affect microbial function. The intestinal microbial function in grass carp fed with ryegrass was rich in amino acids and exhibited an increased energy metabolism in order to compensate for a low-nutrient diet intake, while the artificial feed elevated the microbial lipid metabolism through the promotion of its synthesis in the primary and secondary bile acids, together with a notable enhancement of fatty acid biosynthesis. These results indicated that diet can affect the homeostasis of the intestinal microbiota by altering the microbial composition and the interspecific interactions, whilst microbial function can respond to a variation in diet.
Collapse
|
16
|
Xin WG, Li XD, Lin YC, Jiang YH, Xu MY, Zhang QL, Wang F, Lin LB. Whole genome analysis of host-associated lactobacillus salivarius and the effects on hepatic antioxidant enzymes and gut microorganisms of Sinocyclocheilus grahami. Front Microbiol 2022; 13:1014970. [PMID: 36386721 PMCID: PMC9648147 DOI: 10.3389/fmicb.2022.1014970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
As a fish unique to Yunnan Province in China, Sinocyclocheilus grahami hosts abundant potential probiotic resources in its intestinal tract. However, the genomic characteristics of the probiotic potential bacteria in its intestine and their effects on S. grahami have not yet been established. In this study, we investigated the functional genomics and host response of a strain, Lactobacillus salivarius S01, isolated from the intestine of S. grahami (bred in captivity). The results revealed that the total length of the genome was 1,737,623 bp (GC content, 33.09%), comprised of 1895 genes, including 22 rRNA operons and 78 transfer RNA genes. Three clusters of antibacterial substances related genes were identified using antiSMASH and BAGEL4 database predictions. In addition, manual examination confirmed the presence of functional genes related to stress resistance, adhesion, immunity, and other genes responsible for probiotic potential in the genome of L. salivarius S01. Subsequently, the probiotic effect of L. salivarius S01 was investigated in vivo by feeding S. grahami a diet with bacterial supplementation. The results showed that potential probiotic supplementation increased the activity of antioxidant enzymes (SOD, CAT, and POD) in the hepar and reduced oxidative damage (MDA). Furthermore, the gut microbial community and diversity of S. grahami from different treatment groups were compared using high-throughput sequencing. The diversity index of the gut microbial community in the group supplemented with potential probiotics was higher than that in the control group, indicating that supplementation with potential probiotics increased gut microbial diversity. At the phylum level, the abundance of Proteobacteria decreased with potential probiotic supplementation, while the abundance of Firmicutes, Actinobacteriota, and Bacteroidota increased. At the genus level, there was a decrease in the abundance of the pathogenic bacterium Aeromonas and an increase in the abundance of the potential probiotic bacterium Bifidobacterium. The results of this study suggest that L. salivarius S01 is a promising potential probiotic candidate that provides multiple benefits for the microbiome of S. grahami.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Mei-Yu Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| |
Collapse
|
17
|
Lactococcus lactis' Effect on the Intestinal Microbiota of Streptococcus agalactiae-Infected Zebrafish (Danio rerio). Microbiol Spectr 2022; 10:e0112822. [PMID: 36214699 PMCID: PMC9604069 DOI: 10.1128/spectrum.01128-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus agalactiae is a common pathogen in aquaculture that disrupts the balance of the intestinal microbiota and threatens fish health, causing enormous losses to the aquaculture industry. In this study, we isolated and screened a Lactococcus lactis KUST48 (LLK48) strain with antibacterial effect against S. agalactiae in vitro and used it as a potential probiotic to explore its therapeutic effect on zebrafish (Danio rerio) infected with S. agalactiae. This study divided zebrafish into 3 groups: control group, injected with phosphate-buffered saline; infection group, injected with S. agalactiae; and treatment group, treated with LLK48 after S. agalactiae injection. Then, the 16S rRNA gene sequences of the intestinal microbiota of these 3 groups were sequenced using Illumina high-throughput sequencing technology. The results showed that the relative abundance of intestinal bacteria was significantly decreased in the infection group, and a high relative abundance of S. agalactiae was observed. The relative abundance of the intestinal microbiota was increased in the treatment group, with a decrease in the relative abundance of S. agalactiae compared to that in the control group. In the Cluster of Orthologous Groups of proteins function classification, the relative abundance of each biological function in the infection group was significantly lower than that of the control and treatment groups, showing that LLK48 has a positive therapeutic effect on zebrafish infected with S. agalactiae. This study provides a foundation for exploring the pathogenic mechanism of S. agalactiae on fish and their intestinal symbionts, and also presents a new approach for the treatment of S. agalactiae infections in fish aquaculture systems. IMPORTANCE L. lactis KUST48 (LLK48) with a bacteriostatic effect against S. agalactiae was isolated from tilapia intestinal tracts. S. agalactiae infection significantly reduced the relative abundance of intestinal bacteria and various physiological functions in zebrafish intestines. LLK48 demonstrated infection and subsequent therapeutic effects on the S. agalactiae infection in the zebrafish intestine. Therefore, the potential probiotic LLK48 can be considered as a therapeutic treatment for S. agalactiae infections in aquaculture, which can reduce the use of antibiotics and help maintain fish health.
Collapse
|
18
|
Feng C, Liu X, Hu N, Tang Y, Feng M, Zhou Z. Aeromonas hydrophila Ssp1: A secretory serine protease that disrupts tight junction integrity and is essential for host infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:530-541. [PMID: 35798244 DOI: 10.1016/j.fsi.2022.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a Gram-negative bacterial pathogen with a broad host range, including fish and humans. In this study, we examined the function of a secretory serine protease (named Ssp1) identified in pathogenic A. hydrophila CCL1. Ssp1 possesses a trypsin-like serine protease domain and contains two conserved PDZ domains. Recombinant Ssp1 protein (rSsp1) treatment increased intestinal permeability by downregulating and redistributing tight junction protein Occludin in intestinal Caco-2 cells in vitro. Western blot demonstrated that rSsp1 treatment in Caco-2 cells resulted in marked increases in the expressions of myosin light chain kinase (MLCK) and phosphorylated myosin light chain (p-MLC). For virulence analysis, an isogenic CCL1 mutant ΔSsp1 was created. ΔSsp1 bears an in-frame deletion of the Ssp1 gene. A live infection study in crucian carps showed that, compared to CCL1, ΔSsp1 infection exhibited increased Occludin expression, reduced intestinal permeability and tissue dissemination capacity, and attenuated overall virulence in vivo. However, ΔSsp1 showed no differences in the biofilm formation, swimming motility, and resistance to environmental stress. These lost virulence capacities of ΔSsp1 were restored by complementation with the Ssp1 gene. Global transcriptome analysis and quantitative real-time RT-PCR showed that compared to CCL1 infection, ΔSsp1 promoted the expressions of antimicrobial molecules (MUC2, LEAP-2, Hepcidin-1, and IL-22). Finally, CCL1 infection caused significant dysbiosis of the gut microbiota, including increased Vibrio and Deefgea compared to ΔSsp1 infected fish. Taken together, these results indicate that Ssp1 is essential for the virulence of A. hydrophila and is required for the perturbation of intestinal tight junction barrier.
Collapse
Affiliation(s)
- Chen Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Niewen Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mengzhe Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
19
|
Liu J, Wang B, Lai Q, Lu Y, Li L, Li Y, Liu S. Boosted growth performance, immunity, antioxidant capacity and disease resistance of crucian carp (Carassius auratus) by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109296. [PMID: 35189356 DOI: 10.1016/j.cbpc.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
In this study, a total of 420 healthy crucian carp (9.77 ± 0.04 g) were randomly divided into CK, B·S, XOS and B·S + XOS group, and cultured for 8 weeks. Results showed that the dietary Bacillus subtilis (B. subtilis) and xylo-oligosaccharides (XOS) can significantly increased the final weight, weight gain, specific growth rate, feed efficiency, protein efficiency and survival rate of crucian carp. Dietary B. subtilis and XOS can significantly increased the activities of catalase, glutathione, superoxide dismutase and total antioxidant capacity, significantly decreased the contents of malondialdehyde, and significantly increased the activities of alkaline phosphatase, acid phosphatase, lysozyme and the contents of complement component 3,4 and immunoglobulin M in crucian carp serum. In addition, compared with CK group, the expression levels of TGF-β and IL-10 in B·S, XOS and B·S + XOS group were significantly increased, and the expression levels of TNF-α, HSP90, IL-1β, TLR4 and MyD88 were significantly decreased. Supplementation of B. subtilis and XOS can also improve the intestinal tissue morphology of crucian carp. After injection of 1 × 107 CFU/mL Aeromonas hydrophila (A. hydrophila), compared with CK group, the survival rates of the B·S group, the XOS group and the B·S + XOS group were increased by 13.98%, 10.56% and 30.74%, respectively. These results show that dietary B. subtilis and XOS can significantly improve the growth performance, antioxidant capacity, immunity and resistance to A. hydrophila of crucian carp, and the combined effect is better than that of single addition.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Yuting Lu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
20
|
The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal Models: A Meta-Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study investigates the effect of probiotics supplementation on tight junction protein (TJP) expression in animal models by meta-analysis. We estimated the effect of probiotics administration in an animal inflammatory bowel disease model based on 47 collected articles from the databases, including Sciencedirect, Pubmed, Scopus, and Google Scholar. The effect size was analyzed with the standardized mean difference, and the heterogeneity of the effect sizes was assessed using Cochran’s Q test. To explain the heterogeneity, moderate analyses, such as meta-ANOVA and meta-regression, were performed using the mixed effects model. Finally, publication bias was assessed using Egger’s linear regression test. Among the evaluated items, zonula occluden (ZO)-1 showed the highest Q statistics value, and the effect sizes of all items were positive with high significance (p < 0.0001). The I2 value of all items reflected high heterogeneity (in excess of 80%). From the results of the meta-ANOVA, the factors of the heterogeneity found in the probiotics strains were investigated. Lactobacillus reuteri was identified as having the greatest effect on claudin and ZO-1 expression. The publication bias was detected by the Egger’s linear regression test, though it revealed that the occludin and ZO-1 had larger sample sizes than the claudin. In sum, this meta-analysis reveals that probiotics are effective at improving TJP expression in a gut environment of inflammatory bowel disease (IBD)-induced animal model. Our findings will interest IBD patients, as they suggest an area warranting future study.
Collapse
|
21
|
Zhang C, Yuan X, Xu R, Qi Q, Wang Y. The intestinal histopathology, innate immune response and antioxidant capacity of blunt snout bream (Megalobrama amblycephala) in response to Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 124:525-533. [PMID: 35489592 DOI: 10.1016/j.fsi.2022.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The present study was performed to determine the effects of Aeromonas hydrophila infection on intestinal -histopathology, innate immune response and changes in antioxidant capacity of blunt snout bream (Megalobrama amblycephala). A series of histopathological changes, innate immune enzyme activities, antioxidant enzyme activities, and the corresponding mRNA relative genes expressions in intestines were measured at 0, 1, 2, and 3 weeks post-treatment of Aeromonas hydrophila (1✕107 CFU mL-1) infection. The results showed that Aeromonas hydrophila induced changes in intestinal morphology, including the decreased muscularis thickness, the proliferated goblet cells, and the atrophied intestine villi height. Moreover, the innate immune enzymes activities in serum such as acid phosphatase, alkaline phosphatase, lysozyme activities and immunoglobulin M were significantly reduced after infection at 1week, 2week and 3week. The contents of complement 3 and complement 4 were significantly decreased after infection as well. In addition, the antioxidant enzymes activities, including superoxide dismutase, catalase and glutathione peroxidase in the experimental groups were significantly decreased compared with the control group, whereas the content of malondialdehyde was significantly increased after infection at 1week, 2week and 3week. Furthermore, the mRNA relative expressions of the inflammatory cytokines such as tumor necrosis factor-α, interleukins-1β, interferon-γ, and interleukins-6 were significantly increased after infection with Aeromonas hydrophila. The TJ-related gene expressions in the intestine of zonula occluden-1, occludin, occludin-1, occludin-2 were significantly reduced throughout the infection period. The mRNA relative expressions of signal transducers and activators of transcription 4 and janus kinase-3 in the intestine were significantly ascended compared with the non-infected group. Overall, the results elucidated that the intestine tissue injury and innate immune response reduction, as well as antioxidant capacity attenuation were occurred against Aeromonas hydrophila infection of the blunt snout bream.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Xiaoyu Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ruiyi Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
22
|
Effects of Dietary Enterococcus faecalis YFI-G720 on the Growth, Immunity, Serum Biochemical, Intestinal Morphology, Intestinal Microbiota, and Disease Resistance of Crucian Carp (Carassius auratus). FISHES 2022. [DOI: 10.3390/fishes7010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diseases of crucian carp (Carassius auratus) are closely related to intestinal parameters. Enterococcus faecalis has strong colonization ability in the intestinal tract, and produces natural antibiotics, bacteriocin, and other bacteriostatic substances, which can effectively inhibit some pathogenic bacteria and improve the intestinal microenvironment. This study aimed to assess the effects of E. faecalis YFI-G720 which was isolated from the intestinal of crucian carp on the growth, immunity, intestinal health, and disease resistance of crucian carp. Fish (48.16 ± 0.55 g) were fed four diets, commercial diet or diet containing E. faecalis at 105 CFU/g (EF1), 106 CFU/g (EF2), or 107 CFU/g (EF3) for 28 days. The results showed that supplementation of E. faecalis significantly improved the weight gain ratio (WGR) and the specific growth rate (SGR) compared with control group (p < 0.05). Intestinal mucosal epithelial cells in EF2 were intact and normal, but there was obvious vacuolation in CG. Compared with CG, serum C3 and IgM in EF2 were significantly increased at the end of the experiment (p < 0.05), and serum alkaline phosphatase was significantly higher in all experimental groups (p < 0.05). Among studied immune-related genes, expression was detected by qPCR, C3, IgM, and IL-1βwere upregulated in all experimental groups to varying degrees from 14 days, with highest expression in EF2 at 28 days. Intestinal microbiota structure analyzed through high-throughput sequencing, and the results showed that the relative abundance of Aeromonas and Acinetobacter decreased while Cetobacterium increased in all experimental groups, with the greatest changes in EF2. Challenge tests showed that fish fed E. faecalis were more resistant to Aeromonas veronii (p < 0.05). In conclusion, dietary E. faecalis YFI-G720 at 106 CFU/g can improve the health status, immune parameters, intestinal microbiota composition, and disease resistance of crucian carp.
Collapse
|
23
|
Sam-on MFS, Mustafa S, Yusof MT, Mohd Hashim A, Abbasiliasi S, Zulkifly S, Jahari MA, Roslan MAH. Evaluation of three Bacillus spp. isolated from the gut of giant freshwater prawn as potential probiotics against pathogens causing Vibriosis and Aeromonosis. Microb Pathog 2022; 164:105417. [DOI: 10.1016/j.micpath.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
|
24
|
Wang E, Chen X, Liu T, Wang K. Effect of dietary Ficus carica polysaccharides on the growth performance, innate immune response and survival of crucian carp against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:434-440. [PMID: 34922019 DOI: 10.1016/j.fsi.2021.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Ficus carica polysaccharides (FCPS), one of the most effective and important compo-nents in Ficus carica L., had been considered to be a beneficial immunostimulant and may be used in immunotherapy for animals and human. However, studies were little about the effect of FCPS used as immunomodulatory and the suitable dosage in fish. The present study investigated the effect of four different dietary levels of FCPS (0.1%, 0.2%, 0.4%, 0.8%) on the growth performance, innate immune responses and survival of crucian carp against Aeromonas hydrophila infection. The results showed that compared with control group, dietary FCPS had positive effects the growth performance (final weight, feed conversion ratio and survival rate) of crucian carp. FCPS induced significant higher (p < 0.05) leukocyte phagocytosis activity, serum bactericidal activity, lysozyme activity, com-plement C3, SOD activity and total protein level in the serum of crucian carp. Moreover, innate immune response of fish in FCPS groups increased first and then decreased with increasing dietary FCPS from 0.1% to 0.8%, and reached up to the peak in 0.4% dietary FCPS groups. Besides, the cumulative mortalities in FCPS groups were remarkably lower than that of control group when challenged with A. hydrophila, the relative percent survivals were 22.67%, 55.56%, 62.22% and 17.78% in 0.1% group, 0.2% group, 0.4% group and 0.8% group, respectively. These results suggested that dietary FCPS could improve the growth performance, innate immune response and disease resistance against A. hydrophila in fish, and the suitable dietary dose of FCPS was 0.4% in crucian carp.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xia Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Chengdu Academy of Agriculture and Forestry Science, Chengdu, 611130, Sichuan, China
| | - Tao Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
25
|
Zhou QL, Xia D, Pan L, Wang J, Chen Q, Ge X, Sun C, Miao L, Lin Y, Liu B. Molecular cloning and expression mechanism of Mnp65 in Megalobrama amblycephala response to Aeromonas hydrophilia challenge. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111046. [PMID: 34352395 DOI: 10.1016/j.cbpa.2021.111046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/11/2023]
Abstract
p65 is one of the important subunits of the inflammation-related transcription factor NF-κB. In the present study, we cloned and identified the p65 from Megalobrama amblycephala (Mnp65) by homologous cloning and RACE technique. The full-length Mnp65 cDNA consisted of 2331 bp, and included one open reading frame encoding a 604-amino acid putative protein. The protein sequence included a DNA binding motif, a well conserved N-terminal Rel-homology domain (RHD), and a C-terminal IG-like plexins transcription (IPT). Mnp65 was closely related with the other p65 proteins of Cypriniformes and clearly distinct from that of Perciformes and Salmoniformes in terms of sequence homology. Mnp65 homodimer may interact with IκBα in the IPT domain based on the predicted 3D structure of IκBα/Mnp65 complex. Mnp65 was ubiquitously expressed in M. amblycephala tissues, and the highest levels were detected in muscle and liver. Intragastric infection with Aeromonas hydrophila caused respiratory burst and cytokine storm from 8 h to 48 h, showing significantly higher level of respiratory burst activities and significantly high cytokines levels, such as TNF-α, IL-1β, IL-6, IL-8 etc., compared to 0 h. In addition, the bacterial challenge downregulated the IkBα, and upregulated Mnp65 and TNF-α in the liver. IkBα-Mnp65 was regulated by the negative feedback of cytokine storm, to increase IkBα and decrease Mnp65. Then cytokine storm was relieved at 96 h. Finally, severe intestinal inflammation was observed from 24 h to 48 h after infection, characterized by extensive villous necrosis, epithelial hyperplasia and lymphocyte infiltration, all of which were relieved at 96 h. Taken together, Mnp65 plays a crucial role in the physiological response of teleost fish to bacterial infection.
Collapse
Affiliation(s)
- Qun-Lan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Dong Xia
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Jingyuan Wang
- Nanjing Alpha Feed Biological Technology Co., Ltd., Binhuai Avenue No.9, Nanjing, Jiangsu 211200, PR China
| | - Qian Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Yan Lin
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China.
| |
Collapse
|
26
|
Chen Q, Zhang Z, Tang H, Zhou L, Ao S, Zhou Y, Zhu X, Gao X, Jiang Q, Tu C, Zhang X. Aeromonas hydrophila associated with red spot disease in Macrobrachium nipponense and host immune-related gene expression profiles. J Invertebr Pathol 2021; 182:107584. [PMID: 33811849 DOI: 10.1016/j.jip.2021.107584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
In September 2018, a serious disease causing high mortality with red spot syndrome occurred in a Macrobrachium nipponense aquaculture farm in Jintan County, Jiangsu Province, China. In this study, a pathogenic isolate 5-S3 was isolated from diseased M. nipponense and was identified as Aeromonas hydrophila by phenotypically and molecularly. The pathogenicity of the isolate 5-S3 to M. nipponense was determined by challenge experiments. Results of artificial challenge showed A. hydrophila was pathogenic to M. nipponense, the LD50 was 9.58 × 104 CFU/mL, and histopathological analysis revealed that the hepatopancreas of infected M. nipponense exhibited obvious inflammatory responses to A. hydrophila infection. The isolate showed significant phenotypical activities such as the lecithinase, esterase, caseinase and hemolysin which are indicative of their virulence potential. Besides, virulence genes such as aerA, act, fla, ahpβ, alt, lip, eprCAI, hlyA, acg and gcaT were detected in the isolate 5-S3. Subsequently, the immune-related genes expression in M. nipponense were evaluated by quantitative real-time PCR (qRT-PCR), and the results showed that the expression levels of dorsal, relish, crustin1, crustin2, anti-lipopolysaccharide factors 1 (ALF1), anti-lipopolysaccharide factors 2 (ALF2), hemocyanin, i-lysozyme and prophenoloxidase were significantly up-regulated in hepatopancreas of M. nipponense after A. hydrophila infection, the stat, p38, crustin3, anti-lipopolysaccharide factors 3 (ALF3) genes had no significant change during the infection. The present results reveal that A. hydrophila was an etiological agent causing red spot syndrome and mass mortality of M. nipponense and the influence of A. hydrophila infection on host immune genes.
Collapse
Affiliation(s)
- Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuandeng Tu
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, 5 Yangzhou 225127, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
27
|
Yang K, Qi X, He M, Song K, Luo F, Qu X, Wang G, Ling F. Dietary supplementation of salidroside increases immune response and disease resistance of crucian carp (Carassius auratus) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1-7. [PMID: 32731013 DOI: 10.1016/j.fsi.2020.07.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Some medicinal plants have been known as immunostimulants, and the medicinal plants extract has been used to control the outbreak of the disease in aquaculture for many years. In this study, a total of 270 crucian carp (30 ± 5 g) were randomly distributed in 9 aquaria (55 cm l × 40 cm w × 50 cm h) and divided into three feeding groups including 0 (Control), 50 mg kg-1 (Diet A) and 100 mg kg-1 (Diet B) of salidroside. The expression of immune-related genes (IL-1β, TNFα, MYD88, CXCL-8, TGF-β, and IL-11) in the kidney had a significant increase when the crucian carp fed with Diet B for 4 weeks (P < 0.05). Meanwhile, the expression of IL-1β, TNFα, and CXCL-8 in the spleen was significantly up-regulated when the fish fed with Diet B (P < 0.05). Higher serum alkaline phosphatase (AKP) activity, catalase (CAT) activity, superoxide dismutase (SOD) activity, and complement C3 content were found in the fish which fed with salidroside-supplemented diet. Our results also proved that fish fed with salidroside-supplemented diet for four weeks, especially at a concentration of 100 mg kg-1 diet, improved the protection of crucian carp against A. hydrophila. The amount of A. hydrophila in the kidney and spleen was significantly decreased in salidroside-supplemented diet groups (P < 0.05). In conclusion, the present results demonstrate that the addition of salidroside for four weeks can improve the immune response of crucian carp and increase the protection against the pathogen, especially at the concentration of 100 mg kg-1 diet. The protective effect of the salidroside to the crucian carp could be used as alternatives to antibiotics for controlling fish diseases in aquaculture.
Collapse
Affiliation(s)
- Kechen Yang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Xiaozhou Qi
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Maosheng He
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Kaige Song
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Fei Luo
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Xiangyu Qu
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gaoxue Wang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Fei Ling
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
28
|
Cao J, Feng C, Xie L, Li L, Chen J, Yun S, Guo W, Wang T, Wu Y, Meng R, Wang G, He X, Luo Y. Sesamin attenuates histological alterations, oxidative stress and expressions of immune-related genes in liver of zebrafish (Danio rerio) exposed to fluoride. FISH & SHELLFISH IMMUNOLOGY 2020; 106:715-723. [PMID: 32860904 DOI: 10.1016/j.fsi.2020.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Sesamin is the main lignan in sesame and is reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced damage in the liver of zebrafish have not been elucidated. Our previous studies found that fluoride exposure caused damage to the liver of zebrafish. In the study, the effects of sesamin on oxidative stress and immune damage in liver of zebrafish exposed to fluoride were measured. The results indicated that fluoride exposure damaged the microstructures of liver, increased significantly the oxidative stress, decreased remarkably the activities of ACP, AKP, and LZM, and affected obviously the expressions of immune-related genes. Treatment with sesamin remarkably attenuated fluoride-induced liver damage in a dose-dependent manner, indicated by the histopathological observation. Furthermore, sesamin treatment also significantly inhibited the production of ROS and oxidative stress, such as the decrease of lipid peroxidation level and the increase of CAT and SOD activities in liver. Sesamin treatment reversed the activities of immune-related enzymes and the expressions of immune-related genes in liver exposed to fluoride. These findings suggested that sesamin could protect the liver from fluoride-induced immune damage by oxidative stress downstream-mediated changes in reversing the activities of immune-related enzymes and the expressions of immune-related genes. Taken together, sesamin plays an important role in maintaining hepatic health and preventing liver from toxic damage caused by fluoride.
Collapse
Affiliation(s)
- Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Lijuan Li
- College of Information, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shaojun Yun
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenjing Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yijie Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rui Meng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Guodong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xinjing He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China.
| |
Collapse
|
29
|
Saucedo-Uriarte JA, Honorio-Javes CE, Vallenas-Sánchez YPA, Acuña-Leiva A. Bacteriófagos: aliados para combatir enfermedades bacterianas en acuicultura. Un primer punto de partida en la acuicultura ecológica. JOURNAL OF THE SELVA ANDINA ANIMAL SCIENCE 2020. [DOI: 10.36610/j.jsaas.2020.070200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Saucedo-Uriarte JA, Honorio-Javes CE, Vallenas-Sánchez YPA, Acuña-Leiva A. Bacteriophages: allies to combat bacterial diseases in aquaculture. A first starting point in organic aquaculture. JOURNAL OF THE SELVA ANDINA ANIMAL SCIENCE 2020. [DOI: 10.36610/j.jsaas.2020.070200107x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Liu S, Zhou A, Xie S, Sun D, Zhang Y, Sun Z, Chen Y, Zou J. Immune-related genes expression analysis of Western mosquitofish (Gambusia affinis) challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 102:92-100. [PMID: 32276038 DOI: 10.1016/j.fsi.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The great Gambusia affinis (G. affinis) is considered as an important animal model to study the endocrine disruption, ecological behavior, and environmental pollutant. The present study aims to build a new promising infection model with Aeromonas hydrophila (A. hydrophila) in aquaculture. The mRNA expression of Rac1, MyD88, IRAK4, TAK1, IKKβ, and IL-1β in G. affinis were significance higher (P < 0.05) in the liver of G. affinis than that of brain and intestine. And the PI3K mRNA expression level was significant lower (P < 0.05) in the intestine than that of brain and liver. The mRNA levels of AKT3 were significant higher (P < 0.05) in the brain than that of liver and intestine. And then the brain, liver, and intestine were collected at different time points (0 h, 3 h, 9 h, 18 h, 24 h, 48 h) after post injection of LD50 of A. hydrophila. The 0.85% NaCl was used as a negative control for the LD50 of A. hydrophila. The RT-PCR results showed that mRNA expressions of TLR2/4 pathway downstream genes MyD88, IRAK4, TAK1, Rac1, IKKβ, and IL-1β were firstly significantly up-regulated (P < 0.05) and were then backed to the 0 h group levels in three tissues. In contrast, mRNA expressions of TLR2/4 pathway downstream genes PI3K and AKT3 were firstly significantly decreased (P < 0.05) and were then increased to the 0 h group levels in brain and intestine. In summary, the results indicated that A. hydrophila could cause inflammatory reaction in intestinal and brain. In addition, the liver showed a provocative reaction when infected with A. hydrophila.
Collapse
Affiliation(s)
- Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuolin Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanfeng Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Ngamkala S, Satchasataporn K, Setthawongsin C, Raksajit W. Histopathological study and intestinal mucous cell responses against Aeromonas hydrophila in Nile tilapia administered with Lactobacillus rhamnosus GG. Vet World 2020; 13:967-974. [PMID: 32636595 PMCID: PMC7311884 DOI: 10.14202/vetworld.2020.967-974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aim This study aimed to examine the intestinal histopathological lesions and mucous cell responses in the entire intestines of Nile tilapia administered with Lactobacillus rhamnosus GG (LGG)-mixed feed, after Aeromonas hydrophila challenge. Materials and Methods Intestinal samples from fish fed with control normal diet or LGG-mixed feed (1010 colony-forming unit [CFU]/g feed) with or without A. hydrophila in phosphate-buffered saline challenge (7.46 × 108 CFU/mL/fish) were collected and processed for histopathological study. The mucous cell responses were evaluated using histochemistry, using Alcian blue (AB) at pH 2.5, AB at pH 1.0, and periodic acid-Schiff-AB at pH 2.5. The quantification of the intestinal mucous cell size and the staining character of each mucin type from the entire intestine were recorded and counted. Results Histopathological study showed remarkable lesions only in the proximal intestine in fish infected with A. hydrophila, while LGG-fed fish had less intestinal damage, perhaps resulting from heterophil infiltration. Furthermore, a significant (p<0.01) increase in mixed mucous cell numbers was observed mainly in the proximal intestine of all challenged fish, compared with normal diet-fed fish without challenge, and also in LGG-fed fish with A. hydrophila challenge compared with LGG-fed fish without challenge. Conclusion Dietary LGG-fed Nile tilapia showed improvements in host innate immunity. In addition, LGG was effective in decreasing intestinal lesions from A. hydrophila-induced intestinal damage. Moreover, increasing numbers of mixed mucous cells in the proximal intestine might be indicative of certain pathological conditions in Nile tilapia after A. hydrophila infection.
Collapse
Affiliation(s)
- Suchanit Ngamkala
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Khomson Satchasataporn
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chanokchon Setthawongsin
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Wuttinun Raksajit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
33
|
Kong Y, Li M, Tian J, Zhao L, Kang Y, Zhang L, Wang G, Shan X. Effects of recombinant Lactobacillus casei on growth performance, immune response and disease resistance in crucian carp, Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2020; 99:73-85. [PMID: 32032762 DOI: 10.1016/j.fsi.2020.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In the present study, we constructed two recombinant Lactobacillus casei (L. casei) Lc-pPG-1-AcrV (surface-displayed) and Lc-pPG-2-AcrV (secretory) constitutively expressing AcrV protein of Aeromonas veronii (A. veronii). Expression of recombinant AcrV protein was verified by western blot and immunofluorescence technique. Compared with PBS group, the final weight (FW), weight gain (WG) and specific growth rate (SGR) of fish fed Lc-pPG-1-AcrV, Lc-pPG-2-AcrV and Lc-pPG diets after 56 days observed significantly increase (p < 0.05), while the feed conversion ratio (FCR) showed a significantly decrease (p < 0.05). The recombinant L. casei strains were orally administrated to crucian carp, and significant increased (p < 0.05) the immunoglobulin M (IgM), elevated the acid phosphatase (ACP), alkaline phosphatase (AKP), lysozyme (LZM) and superoxide dismutase (SOD) activity in serum. Moreover, leukocytes phagocytosis percentage and index of the recombinant L. casei were both enhanced. The results demonstrated that the recombinant L. casei could elicit systemic immune responses and increase the serum immunological index. The Interleukin-10 (IL-10), Interleukin-1β (IL-1β), interferon-γ (IFN-γ) and Tumor Necrosis Factor-α (TNF-α) levels in liver, spleen, kidney and intestine have up regulated significantly in tissues (p < 0.05), suggesting that the recombinant L. casei has the ability to induce expression of cytokines and enhance the innate immune response. Higher survival rates were exhibited that crucian carp immunized with Lc-pPG-1-AcrV (67.5%) and Lc-pPG-2-AcrV (52.5%) after challenge with A. veronii. In conclusion, these two recombinant L. casei vaccine were effective in improving crucian carp growth, immunity response and disease resistance. The recombinant L. casei strains may be a promising candidate for the development of an oral vaccine against A. veronii.
Collapse
Affiliation(s)
- Yidi Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jiaxin Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Linhui Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
34
|
Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020; 8:microorganisms8010129. [PMID: 31963469 PMCID: PMC7022790 DOI: 10.3390/microorganisms8010129] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). Since aeromonads were first associated with human disease, gastroenteritis, bacteremia, and wound infections have dominated. The literature shows that the pathogenic potential of Aeromonas is considered multifactorial and the presence of several virulence factors allows these bacteria to adhere, invade, and destroy the host cells, overcoming the immune host response. Based on current information about the ecology, epidemiology, and pathogenicity of the genus Aeromonas, we should assume that the infections these bacteria produce will remain a great health problem in the future. The ubiquitous distribution of these bacteria and the increasing elderly population, to whom these bacteria are an opportunistic pathogen, will facilitate this problem. In addition, using data from outbreak studies, it has been recognized that in cases of diarrhea, the infective dose of Aeromonas is relatively low. These poorly known bacteria should therefore be considered similarly as enteropathogens like Salmonella and Campylobacter.
Collapse
|
35
|
Ling XD, Dong WT, Zhang Y, Qian X, Zhang WD, He WH, Zhao XX, Liu JX. Comparative transcriptomics and histopathological analysis of crucian carp infection by atypical Aeromonas salmonicida. FISH & SHELLFISH IMMUNOLOGY 2019; 94:294-307. [PMID: 31491530 DOI: 10.1016/j.fsi.2019.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Aeromonas salmonicida is a ubiquitous fish pathogen known to cause furunculosis. With the emergence of new subtypes and the expansion of the host range, it has threatened the health of a variety of marine and freshwater fish, particularly the non-salmonids, manifesting differently from the classical furunculosis. Although there have been reports of infection by atypical strains on the crucian carp, the pathogenesis and tissue pathology remain unclear. In this study, transcriptomics and histopathology were used to analyze the immune response and lesions of crucian carp infected with A. salmonicida. Comparative analysis showed 6579 differentially expressed genes (DEGs) (3428 down-regulated and 3151 up-regulated) were identified on day 5 post-infection (5 dpi). Further annotation and analysis revealed that the DEGs were enriched in enzyme regulator activity, response to oxidative stress, iron ion homeostasis and other functions, and mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), toll-like receptor (TLR), and nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) etc., and immune-related signaling pathways. Meanwhile, the four C-type lysozyme genes found in all DEGs were significantly up-regulated after infection. In addition, there was severe bleeding on the body of the infected fish. Also, the intestine, liver, spleen, and kidney showed varying degrees of inflammatory damage, especially the goblet cell hyperplasia of intestinal mucosa epithelium and degeneration and necrosis of renal tubular epithelium cells. Additionally, with the increase in pathogen concentration, the cumulative mortality increased, the severity of lesions in the hindgut and head-kidney tissues increased. The relative expression levels of four immune-related genes (TNF-α, IL-1β, IL-11, C-lysozyme) were also significantly upregulated, compared with the control (P < 0.05). In conclusion, this study provides a scientific basis for further study on the immune response, pathological diagnosis, and prevention of crucian carp infection caused by atypical A. salmonicida.
Collapse
Affiliation(s)
- Xiao-Dong Ling
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei-Tao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xu Qian
- Animal Husbandry and Fishery Technology Promotion Center of Yuzhong, Yuzhong, 730100, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wan-Hong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xing-Xu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ji-Xing Liu
- Product R & D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, 730030, China.
| |
Collapse
|
36
|
Yi CC, Liu CH, Chuang KP, Chang YT, Hu SY. A potential probiotic Chromobacterium aquaticum with bacteriocin-like activity enhances the expression of indicator genes associated with nutrient metabolism, growth performance and innate immunity against pathogen infections in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 93:124-134. [PMID: 31323329 DOI: 10.1016/j.fsi.2019.07.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The use of probiotics as alternatives to antibiotics for disease control is a relatively eco-friendly approach in aquaculture; hence, studies isolating and assessing the benefit of potential probiotics to fish farming are common. The zebrafish is an excellent model system for validating beneficial functions of potential probiotics before their practical application in aquaculture. Here, a potentially probiotic Chromobacterium aquaticum was isolated from lake water samples and characterized by biochemical analysis and 16S rDNA sequencing. The probiotic produced extracellular enzymes (protease and xylanase) and a bacteriocin-like substance, which exhibited tolerance to extreme pH and high-temperature conditions and broad-spectrum bactericidal activity against diverse pathogens, including aquatic, foodborne, clinical and plant pathogens. The effects of C. aquaticum on zebrafish nutrient metabolism, growth performance and innate immunity were evaluated by measuring the expression of indicator genes after C. aquaticum feeding for 8 weeks. Fish administered the probiotic exhibited significantly increased hepatic mRNA expression of carbohydrate metabolism-related genes, including glucokinase (GK), hexokinase (HK), glucose-6-phosphatase (G6Pase), and pyruvate kinase (PK-L), and growth-related genes, including the growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1). Innate immune-related genes (IL-1β, IL-6, TNF-α, IL-10, IL-21, NF-κb, lysozyme and complement C3b) were induced in fish with probiotic supplementation. Probiotic-treated fish exhibited a higher survival rate than control fish after challenge with Aeromonas hydrophila and Streptococcus iniae. Together, these data suggest that C. aquaticum, as a probiotic feed supplement, could enhance nutrient metabolism and growth performance and could modulate innate immunity against A. hydrophila and S. iniae in zebrafish.
Collapse
Affiliation(s)
- Che-Chun Yi
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Yi-Ting Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
37
|
Feng J, Chang X, Zhang Y, Yan X, Zhang J, Nie G. Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2019; 93:73-81. [PMID: 31302283 DOI: 10.1016/j.fsi.2019.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we reported 18 LAB strains isolated from the intestinal contents of Cyprinus carpio, and their probiotic properties both in vitro and in vivo. The results showed that 9 of them had higher in vitro immunomodulatory properties, effectively survived under acidic (pH 2.5) and bile salt (ranging from 0.1% to 0.5%) conditions, and inhibited the growth of 4 pathogens. Among them, Lactococcus lactis Q-8, Lactococcus lactis Q-9, and Lactococcus lactis Z-2 showed the strongest adhesion abilities and inhibition of pathogen adhesion to mucin. When the fish consumed diets containing these 3 strains (5 × 108 CFU/g) for 8 weeks, the weight gain (WG) and specific growth rate (SGR) had significantly (P < 0.05) increased, especially with L. lactis Q-8, which had a WG of 231.45%, and SGR of 2.22%. Survival rate in each LAB supplementation group was also significantly higher than that in control group during the feeding period (P < 0.05). For the cytokines expression levels in serum, different expression patterns were also observed. Before the infection with Aeromonas hydrophila, L. lactis supplementation significant up-regulated protein levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-12) compared with negative (CK1) group, while these cytokines were significantly lower than those in positive (CK2) group after infection. However, whether infected or not, the expression of anti-inflammatory cytokines (IL-10, TGF-β) were significantly increased in L. lactis Q-8, L. lactis Q-9, and L. lactis Z-2 treatment groups. In conclusion, these 3 L. lactis strains screened from common carp were effective in improving growth, innate immunity and disease resistance. Based on the physiological characteristics in our study, they might be used as potential probiotics in aquaculture.
Collapse
Affiliation(s)
- Junchang Feng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xulu Chang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Yuru Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xiao Yan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jianxin Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China.
| | - Guoxing Nie
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China.
| |
Collapse
|
38
|
Mirghaed AT, Yarahmadi P, Soltani M, Paknejad H, Hoseini SM. Dietary sodium butyrate (Butirex ® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 92:621-628. [PMID: 31260736 DOI: 10.1016/j.fsi.2019.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Intestine in fish is a complex multifunctional organ, not only plays roles in digestion and absorption of nutrient, but also has critical role in immunity. The present study evaluated the effects of different levels of dietary sodium butyrate [Butirex® C4 (Butirex)] on intestinal immune-,antioxidant-and tight junction-related gene expression injuvenile rainbow trout(Oncorhynchusmykiss). 240 healthy rainbow trout were dispensed in 12 fiberglass tanks appointed to four treatments [0 (control), 1.5 (B1.5), 2.5 (B2.5) and 5 (B5)g Butirex per kg diet]. After a 45-day feeding trial, the fish fed with the Butirex-supplemented diets showed higher intestinal lysozyme (LYZ), complement(ACH50) and bactericidal activities; the elevations in ACH50 and bactericidal activities depended on Butirex levels (P < 0.05). The Butirex-supplemented groups, particularly the B2.5 group, had significantly higher LYZ gene expression compared to the control group (P < 0.05). Butirex at 2.5 and 5 g/kg levels led to significantly higher IL-1β gene expression. B2.5 and B5 had significantly lower and higher TNF-α gene expression compared to the control group (P < 0.05). The B2.5 group had significantly higher TGF-B, and significantly lower IL-8 compared to the control group (P < 0.05). The B1.5 and B2.5 group had significantly higher IL-10 gene expression compared to the control group (P < 0.05). The B2.5 and B5 groups had significantly higher SOD gene expression compared to the other groups; the highest expression was related to the B2.5 group (P < 0.05). Dietary Butirex supplementation significantly up-regulated CAT and GPx genes expression compared to the control group; the highest expression as related to the B2.5 and B5 groups (P < 0.05). The B2.5 group had significantly lower CLD12 gene expression compared to the control group (P < 0.05). The B2.5 and B5 groups had significantly higher CLD3, OCLD and ZO-1 gene expression compared to the control. The highest CLD3, ZO-1 gene expressions was related to the B2.5, and B5 groups respectively (P < 0.05). After challenge with Streptococcus iniae, B2.5 and B5 had significantly higher survival compared to the control group (55.6 ± 7.70 and 68.9 ± 10.2 vs. 33.3 ± 6.67). In conclusion, Butirex is efficient immune stimulant and health booster in rainbow trout, which augments the fish resistance to disease. Modulation of immune components, cytokines, antioxidant system and intestinal integrity might involve in improving disease resistance in Butirex-treated fish. Although most of the examined genes were modulated by 2.5 g/kg Butirex under normal conditions, 5 g/kg level is recommended under pathogenic state to mitigate mortality.
Collapse
Affiliation(s)
- Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Peyman Yarahmadi
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| |
Collapse
|