1
|
Zaineldin AI, Elsebaey E, Habotta OA, Abdo WS, Basuini MFE, Dawood MAO. Mitigating Aflatoxin B 1-Induced Growth Impairment and Hepatic Stress in Nile Tilapia (Oreochromis niloticus): Comparative Efficacy of Saccharomyces cerevisiae and Silicate-Based Detoxifiers. Probiotics Antimicrob Proteins 2025; 17:1418-1431. [PMID: 38175392 PMCID: PMC12055882 DOI: 10.1007/s12602-023-10210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The objective of this study was to detect the effects of acute aflatoxin B1 (AFB1) exposure in Nile tilapia (Oreochromis niloticus) and the effectiveness of Saccharomyces cerevisiae and silicate in reducing these effects. Two hundred and forty Nile tilapia fingerlings (16 ± 0.5 g) were randomly assigned to four experimental groups, each with 60 fish and three replicates. Control basal diet (Diet 1) and three test diets were formulated, where Diet 2 was supplemented with 200 ppb AFB1. Diets 3 and 4 were intoxicated with AFB1 (200 ppb) and supplemented with 0.5% S. cerevisiae or 0.5%, respectively. After 60 days, Diet 1 had considerably greater growth characteristics than the other groups (p < 0.05). Diet 2 revealed a reduced (p < 0.05) survival rate after 1 month of exposure. In addition, Diet 1 showed higher (p < 0.05) total protein and albumin levels than Diets 3 and 4. AFB1 residues were detected in the liver in fish-fed Diet 2, Diet 4, and Diet 3. Alanine aminotransferase, aspartate aminotransferase, creatinine, and urea levels increased (p < 0.05) in fish-fed Diet 2. The glutathione peroxidase, lysozyme, and catalase activity were decreased (p < 0.05) in the fish-fed Diet 2. The malondialdehyde level was significantly higher in fish given Diet 2 (p < 0.05) than in fish-fed Diets 3 and 4. Histopathological investigation of fish-fed Diet 2 revealed impaired liver and spleen; however, both treatments (Diets 3 and 4) successfully lowered inflammation and preserved liver and spleen integrities. In conclusion, AFB1 impaired growth performance and posed a severe health risk to Nile tilapia. Furthermore, S. cerevisiae alleviated the contamination of AFB1 effects more efficiently than silicate employed for toxin adsorption.
Collapse
Affiliation(s)
- Amr I Zaineldin
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt.
| | - Ehab Elsebaey
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walied S Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohammed F El Basuini
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
- King Salman International University, El Tor, South Sinai, Nuweiba, 46618, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- The Centre for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
2
|
Mei X, Huang S, Wang J, Bai L, Xu Y, Wei Y, He G, Lu A, Liang X, Bai Z, Xue M, Zhou J. Comprehensive integration strategy combining chemical modification and physical processing for the efficient formulation of cottonseed protein-derived fish feeds with superior animal husbandry potential. Int J Biol Macromol 2025; 315:144294. [PMID: 40409649 DOI: 10.1016/j.ijbiomac.2025.144294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/22/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Growing concerns over antibiotic resistance in animal production highlight bayberry tannin (BT), a bioactive polyphenol, as a promising alternative. Cottonseed protein concentrate (CPC), a premium plant-based protein with exceptional functional versatility, holds significant potential for animal feed applications. Herein, innovative C@B complexes, comprising CPC, BT, hydrogen peroxide, and ascorbic acid, were developed through a safe protein-polyphenol grafting modification technique, and followed by an efficient co-extrusion process. The C@B complexes maintained CPC's nutritional profile while forming a porous foam structure. At a 1.00 mg/mL concentration, C@B-100 demonstrated potent antioxidant activity, scavenging 97.14 % of ABTS and 83.59 % of DPPH radicals. In vitro and in vivo experiments revealed that C@B-100 effectively inhibited S. aureus and E. coli growth while exhibiting excellent biocompatibility. Notably, Feed S3 significantly enhanced largemouth bass feed intake, likely due to protein swelling enhancing odor and palatability. Besides, largemouth bass administered with Feed S3 demonstrated marked improvements in antioxidant responses, as evidenced by a significant reduction in reactive oxygen species levels in both plasma and liver, decreasing from 55.82 and 119.47 IU/mL to 46.12 and 77.73 IU/mL, respectively (P < 0.05), while total antioxidant capacity significantly increased from 0.29 and 0.16 U/mgprot to 0.40 and 0.24 U/mgprot, respectively (P < 0.05). Overall, this research underscores the prospects of combining chemical modification and physical processing for the high-value utilization of natural proteins.
Collapse
Affiliation(s)
- Xingyue Mei
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Shuang Huang
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Jing Wang
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Ling Bai
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yan Xu
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yanxia Wei
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Guiqiang He
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Aixia Lu
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Xiaofang Liang
- Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | - Zhongxue Bai
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China.
| | - Jian Zhou
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
3
|
Lu X, Ma H, Liu Y, Chen M, Dang J, Su X, Zhao Y, Wang K, Yang G, Zhang G, Li X, Gao A, Wang Y. Rhodotorula Yeast Culture Improved the Antioxidant Capacity, Lipid Metabolism, and Immunity of Sheep Livers. Vet Sci 2025; 12:314. [PMID: 40284815 PMCID: PMC12030957 DOI: 10.3390/vetsci12040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
There is currently no research on the application evaluation of R. mucilaginosa yeast culture (RYC) in animal production. Therefore, this study investigated the effects of RYC on the antioxidant capacity, lipid metabolism, and immunity of sheep livers. Twenty-four 3-month-old Duhan male sheep (36 ± 4 kg) were divided into four groups. The control group received a basal diet, the L group received a basal diet + 10 g/sheep/day RYC, the M group received a basal diet + 20 g/sheep/day RYC, and the H group received a basal diet + 40 g/sheep/day RYC. The trial lasted for 75 days. The results showed that the content of glutathione peroxidase in the livers of sheep in group M was significantly increased by 26.6%, and the content of malondialdehyde was significantly decreased by 38% (p < 0.05). Additionally, the serum levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol significantly decreased; the liver content of C16:0 decreased; and the levels of C18:2n6C and C20:1 increased (p < 0.05). Furthermore, the contents of cytokines TNF-α and IFN-γ in sheep livers from the M group were also significantly decreased by 20% and 24.8%, respectively (p < 0.05). These findings suggest that supplementation with 20 g/sheep/day RYC can enhance antioxidant capacity, improve lipid metabolism, and reduce inflammation in sheep livers, which is advantageous for farming healthy sheep.
Collapse
Affiliation(s)
- Xinyu Lu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiru Ma
- Hetao College, Bayannur 015000, China
| | - Yeqing Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Meiru Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianlong Dang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiangtan Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yahui Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ke Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guang Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gaowei Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaorui Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Aiqin Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
| |
Collapse
|
4
|
Sun J, Liang S, Gu X, Xu J, Wang X, Wang Z, Tao H, Wang J, Han B. Effects of Dietary Supplementation with Yeast Hydrolysate on Immune Function, Fecal Short Chain Fatty Acids, and Intestinal Health in Cats. Vet Sci 2025; 12:239. [PMID: 40266957 PMCID: PMC11946482 DOI: 10.3390/vetsci12030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 04/25/2025] Open
Abstract
Yeast hydrolysate (YH) is rich in amino acids and other nutrients, and as a nutritional supplement it has been widely used in daily nutritional supplements for livestock. However, the role of YH in domestic pets, especially cats, has not yet been determined. The objective of this research was to study the effects of different concentrations of YH on the healthy cats. All cats were randomly divided into four treatments: the control group (T0, n = 6, without YH), treatment 1 (T1, the low concentration group, 0.8% of YH, n = 6), treatment 2 (T2, the middle concentration group, 1.5% of YH, n = 6), and treatment 3 (T3, the high concentration group, 4% of YH, n = 6), and the blood biochemistry, immune indexes and odorous substances in the feces, and microbiome of cats were determined on day 28. Our results showed that YH could increase the immunoglobulin G (IgG) level in the serum (p < 0.01) and reduce 3-methylindole content in the feces (p < 0.01). The acetic acid in the feces of T2 treatment (1.5%YH) was apparently increased compared to the control treatment (p < 0.05). The blood biochemistry indexes were not affected by the YH. Compared to the control group, there was no significant difference in the abundance at the phylum level. On the genus level, the abundance of g_Ruminocococcaceae and g_Lachnospiraceae, the beneficial bacteria in the gut, were decreased in the treatment T3 compared to treatment T1 (p < 0.05), but there was no significance between T1 and T2, which suggested that a high concentration of YH may be negative for gut health. So, the research showed that 1.5% of YH could be the best concentration for the improvement of immunity and gut health for cats.
Collapse
Affiliation(s)
- Jintao Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Shukun Liang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinshu Gu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Jie Xu
- Angel Yeast Co., Ltd., 168 Chengdong Avenue, Yichang 443000, China;
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Hui Tao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Bing Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| |
Collapse
|
5
|
Amillano-Cisneros JM, Fuentes-Valencia MA, Leyva-Morales JB, Savín-Amador M, Márquez-Pacheco H, Bastidas-Bastidas PDJ, Leyva-Camacho L, De la Torre-Espinosa ZY, Badilla-Medina CN. Effects of Microorganisms in Fish Aquaculture from a Sustainable Approach: A Review. Microorganisms 2025; 13:485. [PMID: 40142378 PMCID: PMC11945242 DOI: 10.3390/microorganisms13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Aquaculture is the fastest-growing food production sector. However, it faces significant challenges, including demand from a growing global population, which is estimated to reach 10.4 billion by the year 2100, disease outbreaks, environmental impacts, and the overuse of antibiotics. To address these issues, sustainable alternatives such as the use of microorganisms (probiotics, bacteriophages, and genetically modified microorganisms) have gained attention. This review examines the effects of these microorganisms on fish aquaculture, focusing on their potential to improve growth, health, and disease resistance while reducing environmental impacts. Probiotics, particularly lactic acid bacteria and yeasts, have been shown to enhance immune responses, digestive enzyme activity, and nutrient absorption in fish. Bacteriophages offer a promising alternative to antibiotics for controlling bacterial pathogens, with studies demonstrating their efficacy in reducing mortality rates in infected fish. Additionally, genetically modified microorganisms (GMMs) have been explored for their ability to produce beneficial compounds, such as enzymes and antimicrobial peptides, which can improve fish health and reduce the need for chemical treatments. Despite their potential, challenges such as regulatory hurdles, public acceptance, and environmental risks must be addressed. This review highlights the importance of further research to optimize the use of microorganisms in aquaculture and underscores their role in promoting sustainable practices. By integrating these biological tools, the aquaculture industry can move towards a more sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Jesús Mateo Amillano-Cisneros
- Ingeniería en Agrobiotecnología, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Maestría en Biotecnología Agropecuaria, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Ingeniería en Producción Animal, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| | - María Anel Fuentes-Valencia
- Ingeniería en Agrobiotecnología, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Maestría en Biotecnología Agropecuaria, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
- Ingeniería en Producción Animal, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| | - José Belisario Leyva-Morales
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca 42184, Mexico
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago de Chile 8370993, Chile
| | - Macario Savín-Amador
- Coordinación de Ingenierías, Universidad Tecnológica de La Paz, La Paz 23088, Mexico
| | - Henri Márquez-Pacheco
- Ingeniería en Agrobiotecnología, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| | | | - Lucía Leyva-Camacho
- Departamento de Salud-Licenciatura en Ciencias Biomédicas, Universidad Autónoma de Occidente, Guasave 81044, Mexico
| | | | - César Noé Badilla-Medina
- Ingeniería en Producción Animal, Universidad Politécnica del Mar y la Sierra (UPMYS), La Cruz 82700, Mexico
| |
Collapse
|
6
|
Wu J, Hu Y, Zhao N, Yang W, Chen Z. The active roles of Rhodotorula mucilaginosa ZTHY2 in regulating antioxidant capacity and immune function of Leizhou black ducks. Front Vet Sci 2025; 12:1494892. [PMID: 39950088 PMCID: PMC11821949 DOI: 10.3389/fvets.2025.1494892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Previous studies in mice have demonstrated that Rhodotorula mucilaginosa ZTHY2 can promote animal growth, enhance antioxidant and immune functions, and regulate intestinal flora in our laboratory. This study focuses on the Leizhou black duck, a local breed in Zhanjiang, to evaluate the effects of Rhodotorula mucilaginosa ZTHY2 on its growth, antioxidant capacity, and immune function. A total of 150 1-day-old male Leizhou black ducks, of similar size and healthy, were selected for this study and randomly assigned to five treatment groups. Each group contained three replicates with ten birds each. The control group (Control) was given a standard basal diet, while the RM group received a diet supplemented with ZTHY2 at concentrations of 2 × 107 (RM1), 2 × 108(RM2), or 2 × 109(RM3) CFU/kg, respectively. The LA group was supplemented with 2 × 109 CFU/kg of Lactobacillus acidophilus in addition to the basal diet. The feeding trial lasted 42 days. The analysis revealed significant improvements in the average body weight for the RM2 and RM3 groups, which were significantly higher than that of the control group (p < 0.05 and p < 0.01). Treatment with ZTHY2 induced a dose-dependent elevation in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and SOD activities, and a reduction in malondialdehyde (MDA) content in the serum at 42 days. The serum levels of complement components C3 and C4, immunoglobulin IgG, and cytokines IFN-γ, IL-2, IL-4, IL-6, and TNF-α were significantly increased in Leizhou black ducks treated with ZTHY2 at 42-days post-treatment, with the therapeutic effect becoming more pronounced as the duration of the experiment prolonged. The greatest impact was observed at a dosage of 2 × 109 CFU/kg of ZTHY2. Moreover, ZTHY2 modulated the mRNA expression profiles of these cytokines in the thymus, spleen, and bursa, thereby sustaining the balance of immune dynamics. In summary, the supplementation of Rhodotorula mucilaginosa ZTHY2 at a dosage of 2 × 109 CFU/kg had been found to most effectively enhance the growth performance of Leizhou black ducks by optimizing their immune function and antioxidant capacity.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yingxin Hu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Namula Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wei Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhibao Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Zhanjiang, China
| |
Collapse
|
7
|
Hosseini SS, Sudaagar M, Zakariaee H, Paknejad H, Baruah K, Norouzitalab P. Evaluation of the synbiotic effects of Saccharomyces cerevisiae and mushroom extract on the growth performance, digestive enzyme activity, and immune status of zebrafish danio rerio. BMC Microbiol 2024; 24:331. [PMID: 39245724 PMCID: PMC11382455 DOI: 10.1186/s12866-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish (Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated. RESULTS In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05). CONCLUSION Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
- Department of Laboratory Sciences, Faculty of Para-medicine, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
| | - Mohammad Sudaagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Kartik Baruah
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| | - Parisa Norouzitalab
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| |
Collapse
|
8
|
Wang M, Xia D, Yu L, Hao Q, Xie M, Zhang Q, Zhao Y, Meng D, Yang Y, Ran C, Teame T, Zhang Z, Zhou Z. Effects of solid-state fermentation product of yeast supplementation on liver and intestinal health, and resistance of common carp ( Cyprinus carpio) against spring viraemia carp virus. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:408-418. [PMID: 39309973 PMCID: PMC11415639 DOI: 10.1016/j.aninu.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024]
Abstract
This study aimed to investigate the effects of solid-state fermentation products of yeast (SFPY) on liver and intestinal health and disease resistance of common carp (Cyprinus carpio). A total of 200 common carp with an initial average weight of 2.55 ± 0.004 g were divided into 5 groups (4 replications per group and 10 fish per replication), and were fed with one of five diets, including a control diet and 4 diets supplemented with 2‰ (Y2), 3‰ (Y3), 4‰ (Y4), or 5‰ (Y5) SFPY, respectively, for 8 weeks. Results indicated that, the addition of SFPY to the diet of common carp did not affect the growth performance or survival rate of fish (P = 0.253). Interestingly, with the addition of SFPY, the triacylglycerol (TAG) content of the liver presented a linear decreasing tendency (P = 0.004), with significantly decreased in Y4 and Y5 groups (P = 0.035) compared with control. Serum lipopolysaccharide (LPS) content and diamine oxidase (DAO) activity presented a negative linear relationship with the addition of SFPY (P = 0.015, P = 0.030), while serum lipopolysaccharide binding protein (LBP) content first decreased and then increased (P < 0.001). The total antioxidant capacity (T-AOC) in the intestine of fish increased continuously with increasing SFPY supplementation (P = 0.026), reaching the highest level in Y5 group. The villus height in all experimental groups were significantly higher than that in the control group (P < 0.001). Furthermore, compared to the control, adding 3‰ SFPY to the control diet of common carp significantly increased the relative abundance of Fusobacteria (P = 0.018) and decreased that of Proteobacteria (P = 0.039) at phylum level, and increased the relative abundance of Cetobacterium (P= 0.018) and decreased that of Shewanella (P = 0.013) at genus level. Compared with the control, the relative mRNA expression level of spring viraemia of carp virus N protein (SVCV -n) in the kidney was lower than that of the control group without significance and bottomed out in Y4 group (P = 0.138). In conclusion, dietary SFPY enhanced the SVCV resistance capacity of common carp by improving liver and intestinal health and modulating the gut microbiota. Thus, SFPY is a potential feed additive to be used in aquaculture to reduce the huge economic loss of common carp due to SVCV disease. Based on liver TAG content and intestinal villus height, the optimal addition level of SFPY was 3.02‰ and 2.72‰, respectively.
Collapse
Affiliation(s)
- Mengxin Wang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongmei Xia
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430000, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingxu Xie
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yajie Zhao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Delong Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Tigray 251, Ethiopia
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Machuca C, Angulo M, Monreal-Escalante E, Méndez-Martínez Y, Magallón-Servín P, Vázquez-Juárez R, Silva-Jara JM, Angulo C. Effect of diets containing probiotic yeast Cystobasidium benthicum and fruit Cyrtocarpa edulis on growth and immune parameters of Nile tilapia (Oreochromisniloticus). Microb Pathog 2024; 194:106817. [PMID: 39033935 DOI: 10.1016/j.micpath.2024.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
This study investigates Cystobasidium benthicum (Cb) probiotic yeast and Cyrtocarpa edulis (Ce) fruit dietary effects, single (0.5 %) or combined (Cb:Ce, 0.25:0.25 %), on growth performance, humoral immunity in serum and skin mucus, and intestinal morphology of Nile tilapia (Oreochromis niloticus) after 14 and 28 days. The Cb group presented the highest (P < 0.05) specific growth rate, weight gain, and absolute growth rate with respect to the control group. Immunological assays indicated that Cb, Ce and Cb:Ce groups increased serum nitric oxide concentration compared to the control group (P < 0.05). Cb and Cb:Ce groups showed the highest serum myeloperoxidase enzyme activity at day 14 and 28, respectively (P < 0.05); whereas, Cb:Ce group had the highest (P < 0.05) myeloperoxidase activity in skin mucus. The superoxide dismutase enzyme activity was unaffected. On day 28, Cb, Ce, and Cb:Ce groups showed higher and lower (P < 0.05) catalase enzyme activity in serum and skin mucus, respectively, compared with the control group. Only the Cb group had higher (P < 0.05) total protein concentration in serum (day 14) and skin mucus (day 14 and 28) with respect to the control group. The lysozyme activity in serum (day 28) and skin mucus (day 14) was higher (P < 0.05) in the Cb group compared to the control group. Only the skin mucus of Ce group showed bactericidal activity against Aeromonas dhakensis (P < 0.05). Histological studies indicated that Cb and Cb:Ce groups increased microvilli height, and Cb, Ce and Cb:Ce augmented goblet cell area at day 14 compared to the control group (P < 0.05). At day 28, microvilli height was higher in all groups and the number of intraepithelial leukocytes increased in Cb and Ce groups with respect to the control group (P < 0.05). The ex vivo assay revealed that A. dhakensis in leukocytes decreased cell viability similar to the control group (P < 0.05). A principal component analysis (PCA) confirmed the results. In conclusion, C. benthicum in the diet was the best supplement to improve the growth and immunity of Nile tilapia.
Collapse
Affiliation(s)
- Cristian Machuca
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico; CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Yuniel Méndez-Martínez
- Experimental Laboratory Aquaculture, Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo (UTEQ), Av. Quito Km. 11/2 vía Santo Domingo de los Tsáchilas, Quevedo, 120301, Ecuador
| | - Paola Magallón-Servín
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara, 44430, Jalisco, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico.
| |
Collapse
|
10
|
Serra V, Pastorelli G, Tedesco DEA, Turin L, Guerrini A. Alternative protein sources in aquafeed: Current scenario and future perspectives. Vet Anim Sci 2024; 25:100381. [PMID: 39280774 PMCID: PMC11399666 DOI: 10.1016/j.vas.2024.100381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Fish meal represents the main protein source for most commercially farmed aquatic species, as it is characterized by high nutritional value and lack of anti-nutritional factors. However, its availability and the market price have been recognized as serious problems at least for over a decade, making it necessary to search for non-conventional protein sources, as an alternative to fish meals. This review aims to comprehensively examine and critically revise the use of fish meal and all alternative protein sources explored to date on the health, welfare, and growth performance of the major aquatic species commercially interesting from a global scenario. The investigation revealed that the inclusion levels of the different protein sources, plant- and animal-derived, ranged from 10 to 80 % and from 2 to 100 % respectively, in partial or complete replacement of fish meal, and generated positive effects on health, welfare, growth performance, and fillet quality. However, the results showed that above a certain level of inclusion, each protein source can negatively affect fish growth performance, metabolic activities, and other biological parameters. Moreover, it is likely that by mixing different protein sources, the combination of each ingredient causes a synergistic effect on the nutritional properties. Therefore, the future of aquatic feed formulation is expected to be based on the blend of different protein sources. Overall, the analysis highlighted the need for additional research in the field of replacing fish meals with new protein sources, given that many knowledge gaps are still to be filled on aquatic species, which deserve to be investigated.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | | | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessandro Guerrini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milano, Italy
| |
Collapse
|
11
|
Agpoon IEP, Aya FA, Watanabe K, Bennett RM, Aki T, Dedeles GR. Pichia kudriavzevii as feed additive in Nile tilapia (Oreochromis niloticus) diet. Lett Appl Microbiol 2024; 77:ovae057. [PMID: 38906842 DOI: 10.1093/lambio/ovae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Yeasts are unicellular eukaryotic microorganisms extensively employed in various applications, notably as an alternative source of protein in feeds, owing to their nutritional benefits. Despite their potential, marine and mangrove yeast species used in the aquaculture industry have received little attention in the Philippines. Pichia kudriavzevii (A2B R1 ISO 3), sourced from bark samples, was selected and mass-produced due to its high protein content and amino acid profile. The dried biomass of P. kudriavzevii was incorporated into the diets of Nile tilapia (Oreochromis niloticus) juveniles at varying inclusion levels (0, 1, 2, and 4 g/kg diet) and its effect on their growth performance, body composition, and liver and intestinal morphology was assessed after 40 days of feeding. The groups that received P. kudriavzevii at a concentration of 2 g/kg diet exhibited higher final body weight, percent weight gain, and specific growth rate in comparison to the other treatment groups. Whole body proximate composition did not vary among the dietary groups. Intestinal and liver histopathology also indicated no abnormalities. These findings suggest the potential of ascomycetous P. kudriavzevii as a beneficial feed additive in Nile tilapia diets, warranting further investigation into its long-term effects and broader applications in fish culture.
Collapse
Affiliation(s)
- I E P Agpoon
- The Graduate School, University of Santo Tomas, Manila 1015, the Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, the Philippines
| | - F A Aya
- Aquaculture Department, Southeast Asian Fisheries Development Center, Binangonan Freshwater Station, Binangonan, Rizal 1940, the Philippines
| | - K Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - R M Bennett
- The Graduate School, University of Santo Tomas, Manila 1015, the Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, the Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila 1015, the Philippines
| | - T Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - G R Dedeles
- The Graduate School, University of Santo Tomas, Manila 1015, the Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, the Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila 1015, the Philippines
| |
Collapse
|
12
|
Díaz-Navarrete P, Sáez-Arteaga A, Marileo L, Alors D, Correa-Galeote D, Dantagnan P. Enhancing Selenium Accumulation in Rhodotorula mucilaginosa Strain 6S Using a Proteomic Approach for Aquafeed Development. Biomolecules 2024; 14:629. [PMID: 38927033 PMCID: PMC11201420 DOI: 10.3390/biom14060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Alberto Sáez-Arteaga
- Centro de Investigación Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco 4780000, Chile;
| | - David Alors
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18012 Granada, Spain;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
13
|
Kang K, Deng X, Xie W, Chen J, Lin H, Chen Z. Rhodotorula mucilaginosa ZTHY2 Attenuates Cyclophosphamide-Induced Immunosuppression in Mice. Animals (Basel) 2023; 13:3376. [PMID: 37958131 PMCID: PMC10648412 DOI: 10.3390/ani13213376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Rhodotorula mucilaginosa (R. mucilaginosa) can enhance the immune and antioxidant function of the body. However, whether R. mucilaginosa has an immunoregulatory effect on cyclophosphamide (CTX)-induced immunosuppressed animals remains to be clarified. In this study, the R. mucilaginosa ZTHY2 that we isolated from the coastal waters of the South China Sea previously was prepared in order to investigate its immunoprotective effect on CTX-induced immunosuppression in mice, and the effects were compared to those of Lactobacillus acidophilus (LA) (a well-known probiotic). Seventy-two male SPF mice were divided into six groups: The C group (control); IM group (immunosuppressive model group) (+CTX); Rl, Rm, and Rh groups (+CTX+low, medium, and high concentration of R. mucilaginosa, respectively); and PC (positive control) group (+CTX+LA). After a 28-day feeding trial, blood samples were taken for biochemical and serum immunological analysis, and the thymus and spleen were collected to analyze the organ index, lymphocyte proliferation and differentiation, and antioxidant capacity. The findings showed that R. mucilaginosa ZTHY2 improved the spleen and thymus indices, effectively attenuated immune organ atrophy caused by CTX, and enhanced the proliferation of T and B lymphocytes induced by ConA and LPS. R. mucilaginosa ZTHY2 promoted the secretion of cytokines and immunoglobulins and significantly increased the contents of IL-2, IL-4, IL-6, TNF-α, IFN-γ, IgA, IgG, IgM, CD4, CD8, CD19, and CD20 in serum. The proportion of CD4+, CD8+, CD19+, and CD20+ lymphocytes in spleen, thymus, and mesenteric lymph nodes were increased. In addition, R. mucilaginosa ZTHY2 reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increased glutathione (GSH), total superoxide dismutase (SOD), and catalase (CAT) levels. Our results indicated that R. mucilaginosa ZTHY2 can significantly enhance the immune function of immunosuppressed mice, and improving antioxidant capacity thus attenuates CTX-induced immunosuppression and immune organ atrophy.
Collapse
Affiliation(s)
- Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Xinyi Deng
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Weitian Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Jinjun Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Hongying Lin
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Zhibao Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Zhanjiang 524088, China
| |
Collapse
|
14
|
Sriphuttha C, Limkul S, Pongsetkul J, Phiwthong T, Massu A, Sumniangyen N, Boontawan P, Ketudat-Cairns M, Boontawan A, Boonchuen P. Effect of fed dietary yeast (Rhodotorula paludigena CM33) on shrimp growth, gene expression, intestinal microbial, disease resistance, and meat composition of Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104896. [PMID: 37473826 DOI: 10.1016/j.dci.2023.104896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Yeast is a health-promoting and bio-therapeutic probiotic that is commonly used in aquaculture. Rhodotorula paludigena CM33 can accumulate amounts of intracellular carotenoids and lipid, which are regarded as nutritionally beneficial compounds in various aspects. The aim of this study was to evaluate the impact of different levels of R. paludigena CM33 (RD) incorporated in a dietary composition at 0% (control), 1% (1% RD), 2% (2% RD), and 5% (5% RD) on the growth of shrimp (Litopenaeus vannamei), their immune-related gene expression, intestinal health, resistance to Vibrio parahaemolyticus (VPAHPND) infection, and meat composition. The results showed significant improvements in the specific growth rate, weight gain, and survival of shrimp fed with 1% RD, 2% RD, and 5% RD, which were higher than the control group after 4 weeks of administration. The administration of 5% RD group resulted in a decrease in cumulative mortality upon VPAHPND challenge when compared to the control group. Furthermore, the expression levels of immune-responsive genes, including proPO system (prophenoloxidase-2: PO2), antioxidant enzyme (superoxide dismutase: SOD, glutathione peroxidase: GPX, and catalase: CAT), JAK/STAT pathway (signal transducer and activator of transcription: STAT, gamma interferon inducible lysosomal thiol reductase: GILT), IMD pathway (inhibitor of nuclear factor kappa-B kinase subunit beta and epsilon: IKKb and IKKe), and Toll pathway (Lysozyme) genes, were up-regulated in the 5% RD group. In the context of microbiota, microbiome analysis revealed that the main phyla in shrimp intestines were Proteobacteria, Firmicutes, Bacteroidota, Campilobacterota, Actinobacteriota, and Verrucomicrobiota. At the genus level, Vibrio was found to be reduced in the 5% RD group, whereas the abundance of potentially beneficial bacteria Bifidobacterium was increased. The 5% RD group showed a significant increase in the levels of crude protein and crude lipid, both of which are essential nutritious components. Our results show the capability of R. paludigena CM33 as a probiotic supplement in shrimp feed in improving growth, antimicrobial responses against VPAHPND, and meat quality by increasing protein and lipid content in shrimp.
Collapse
Affiliation(s)
- Cheeranan Sriphuttha
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Naruemon Sumniangyen
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Pailin Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Apichat Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
15
|
Li P, Chen X, Hou D, Chen B, Peng K, Huang W, Cao J, Zhao H. Positive effects of dietary Clostridium butyricum supplementation on growth performance, antioxidant capacity, immunity and viability against hypoxic stress in largemouth bass. Front Immunol 2023; 14:1190592. [PMID: 37711631 PMCID: PMC10498469 DOI: 10.3389/fimmu.2023.1190592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The effects of dietary supplementation of Clostridium butyricum (CB) on growth performance, serum biochemistry, antioxidant activity, mRNA levels of immune-related genes and resistance to hypoxia stress were studied in largemouth bass. Feed with CB0 (control, 0 CFU/kg), CB1 (4.3×108 CFU/kg), CB2 (7.5×108 CFU/kg), CB3 (1.5×109 CFU/kg) and CB4 (3.2×109 CFU/kg) CB for 56 days, and then a 3 h hypoxic stress experiment was performed. The results showed that dietary CB significantly increased the WGR (weight gain rate), SGR (specific growth rate), PDR (protein deposition rate) and ISI (Intestosomatic index) of largemouth bass (P<0.05). Hepatic GH (growth hormone)/IGF-1 (insulin-like growth factor-1) gene expression was significantly upregulated in the CB3 and CB4 groups compared with the CB0 group (P<0.05), while the FC (feed conversion) was significantly decreased (P<0.05). Serum TP (total protein) and GLU (glucose) levels were significantly higher in the CB4 group than in the CB0 group (P<0.05), while the contents of serum AST (aspartate transaminase), ALT (alanine transaminase), AKP (alkline phosphatase) and UN (urea nitrogen) in CB4 were significantly lower than those in CB0 (P<0.05). T-AOC (total antioxidant capacity), SOD (superoxide dismutase), CAT (catalase), POD (peroxidase) and GSH-Px (glutathione peroxidase) activities were significantly higher in CB3 and CB4 groups than in CB0 group (P<0. 05). The liver MDA (malondialdehyde) content of CB1, CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expressions of IL-1β (interleukin 1β), TNF-α (tumor necrosis factor α) and TLR22 (toll-like receptor-22) genes in CB2, CB3 and CB4 groups were significantly lower than those in CB0 group (P<0.05). The relative expression of IL-8 (malondialdehyde) and MyD88 (Myeloid differentiation factor 88) genes in the CB4 group was significantly lower than that in the CB0 group (P<0.05). The liver LZM (lysozyme) content of CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expression of IL-10 (interleukin 10) and TGF-β (transforming growth factor β) genes in the CB4 group was significantly higher than that in the CB0 group (P<0.05). Under hypoxic stress for 3 h, the CMR of CB0 group was significantly higher than that of CB1, CB2, CB3 and CB4 groups (P<0.05). Dietary CB can improve the growth performance and resistance to hypoxic stress of largemouth bass by regulating the expression of GH/IGF-1 gene and inflammatory factors and inhibiting TLR22/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Peijia Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoying Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongqiang Hou
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Peng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junming Cao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
16
|
Hamidoghli A, Lee Y, Hwang S, Choi W, Choi YH, Bai SC. Evaluation of Yeast Hydrolysate in a Low-Fishmeal Diet for Whiteleg Shrimp ( Litopenaeus vannamei). Animals (Basel) 2023; 13:1877. [PMID: 37889802 PMCID: PMC10251987 DOI: 10.3390/ani13111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 10/29/2023] Open
Abstract
An eight-week feeding trial was performed to evaluate the effects of yeast hydrolysate (YH) supplementation in a low-fishmeal diet on the growth, immune responses, intestinal histology and disease resistance of whiteleg shrimp (Litopenaeus vannamei). Five experimental diets were produced by supplementing YH at 0 (CON), 0.5 (YH0.5), 1 (YH1), 2 (YH2) and 4 (YH4) % to a basal diet containing 10% fishmeal and compared with a positive control with 25% fishmeal (FM25). Shrimp with an initial average weight of 0.43 ± 0.005 g (mean ± SD) were stocked in 18 tanks and fed the experimental diets (38% protein and 8% lipid) four times a day. Results showed that shrimp fed the FM25 diet exhibited significantly higher final body weight, weight gain, specific growth rate and protein efficiency ratio than those fed CON, YH0.5, YH1 and YH2 diets (p < 0.05). However, there were no significant differences between shrimp fed the YH4 and FM25 diets (p > 0.05). In addition, there were no significant differences in whole-body proximate composition, hemolymph biochemical parameters and non-specific immune responses among treatments. Intestinal villi length and muscular layer thickness of shrimp fed the YH4 and FM25 diets were significantly higher than the other groups. At the end of the bacterial (Vibrio parahaemolyticus) challenge test, shrimp fed YH4 and FM25 diets showed a significantly higher survival rate than those of shrimp fed CON, YH0.5 and YH1 (p < 0.05). These results suggest that supplementing 4% YH in diet containing 10% fishmeal could beneficially influence growth, intestinal morphology and disease resistance of whiteleg shrimp.
Collapse
Affiliation(s)
- Ali Hamidoghli
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea
- Aquaculture Research Institute, University of Idaho, Hagerman, ID 83332, USA
| | - Yein Lee
- Department of Fisheries Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Soyeon Hwang
- Department of Fisheries Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Wonsuk Choi
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Sungchul C. Bai
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
17
|
Rahimnejad S, Leclercq E, Malinovskyi O, Pěnka T, Kolářová J, Policar T. Effects of yeast hydrolysate supplementation in low-fish meal diets for pikeperch. Animal 2023; 17:100870. [PMID: 37379608 DOI: 10.1016/j.animal.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Plant proteins have been increasingly used as sustainable substitutes for fish meal (FM) in aquafeeds; however, their high inclusion level compromises fish performance. The objective of this study was to examine whether yeast hydrolysate (YH) supplementation can improve the utilisation of high soybean meal (SM) diet and ameliorate its potential deteriorating impacts in pikeperch (Sander lucioperca). A basal diet was formulated using 44% FM, and four additional diets were produced by replacing 30 or 60% of FM with SM with or without the addition of 2% YH (FM, SM30, SM60, SM30 + YH, and SM60 + YH diets). Each diet was fed to three groups of fish (35.3 ± 0.10 g, 150 fish per group) to visual satiety four times daily for 70 days. Fish growth was not impacted by FM replacement level or YH application. However, SM60 group exhibited markedly higher feed conversion ratio and lower survival rate than those fed the FM- and YH-supplemented diets (P < 0.05). The highest and the lowest protein efficiency ratio values were obtained for the SM30 + YH and SM60 groups, respectively. Whole-body lipid content decreased in SM60 and SM60 + YH groups, and muscle lipid decreased in all the replacement groups. Serum triglyceride and glucose concentrations tended to decrease as FM replacement level increased. The highest alanine aminotransferase, aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities were detected in the SM60 group, and YH addition significantly decreased the AST and LDH activities. Serum lysozyme activity decreased in SM30, SM60 and SM60 + YH groups. Serum myeloperoxidase and antiprotease activities decreased in SM60 group, and YH supplementation improved their activities. No effects of diets were observed on serum antioxidant parameters such as catalase activity and malondialdehyde concentration, and gut morphological indices. Number of goblet cells in midgut decreased by increasing the SM inclusion level and a slight improvement was observed by YH application. These findings suggest that YH supplementation has the potential to support the replacement of up to 60% FM with defatted SM in pikeperch feed without deteriorating growth, feed utilisation, and survival rate. Further, YH incorporation mitigated the damaging impacts of high SM diet on liver function and non-specific immune response.
Collapse
Affiliation(s)
- S Rahimnejad
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic; Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - E Leclercq
- Lallemand SAS, 19 rue des Briquettiers, 31702 Blagnac Cedex, France
| | - O Malinovskyi
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - T Pěnka
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - J Kolářová
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - T Policar
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| |
Collapse
|
18
|
Li T, Yan X, Dong X, Pan S, Tan B, Zhang S, Suo X, Huang W, Zhou M, Yang Y. Effects of choline supplementation on growth performance, liver histology, nonspecific immunity and related genes expression of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed with high-lipid diets. FISH & SHELLFISH IMMUNOLOGY 2023:108815. [PMID: 37216997 DOI: 10.1016/j.fsi.2023.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
This study was conducted to evaluate the effect of dietary choline levels on growth performance, liver histology, nonspecific immunity and related gene expression of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) fed with high-lipid diets. The fish (initial body weight 6.86 ± 0.01 g) were fed diets containing different choline levels (0, 5, 10, 15, and 20 g/kg, named D1, D2, D3, D4, and D5, respectively) for 8 weeks. The results showed that:(1) dietary choline levels had no significant effect on final body weight (FBW), feed conversion rate (FCR), visceral somatic index(VSI) and condition factor (CF) compared with the control group (P > 0.05). However, the hepato somatic index (HSI) in the D2 group was significantly lower than that in the control group and the survival rate (SR) in the D5 group was significantly lower (P < 0.05). (2) with dietary choline level increasing, alkaline phosphatase (AKP) and superoxide dismutase (SOD) of serum showed a tendency to increase and then decrease, and the maximum values were obtained in the D3 group, but the contents of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) decreased significantly (P < 0.05). (3) Immunoglobulin M (IgM), lysozyme (LYZ), catalase (CAT), total antioxidative capacity (T-AOC), and SOD in the liver all showed a trend of first increase and then decrease with the dietary choline level increased, and all of them achieved the maximum value at D4 group (P < 0.05), while reactive oxygen species (ROS) and malondialdehyde (MDA) in the liver decreased significantly (P < 0.05). (4) results from liver sections suggest that appropriate levels of choline can improve cell structure, compared with the control group, the damaged histological morphology of the liver was relieved and even returned to normal in D3 group. (5) in the D3 group, choline significantly upregulated the expression of hepatic sod and cat mRNA, whereas the expression of cat in the D5 group was significantly lower than that in the control group (P < 0.05); And the supply of choline stimulated a significant down-regulation of interleukin 6 (il6), myeloid differentiation factor 8 (myd88), toll-like receptor 22 (tlr22) mRNA expression levels in liver, while the expression of cellular tumor antigen p53 (p53) and interleukin 10 (il10) showed an upward and then downward trend (P < 0.05). In general, choline can improve the immunity of hybrid grouper by regulating non-specific immune-related enzyme activity and gene expression and reducing oxidative stress induced by high-lipid diet.
Collapse
Affiliation(s)
- Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Menglong Zhou
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
19
|
Vasilaki A, Mente E, Fountoulaki E, Henry M, Nikoloudaki C, Berillis P, Kousoulaki K, Nengas I. Fishmeal, plant protein, and fish oil substitution with single-cell ingredients in organic feeds for European sea bass ( Dicentrarchus labrax). Front Physiol 2023; 14:1199497. [PMID: 37256067 PMCID: PMC10225740 DOI: 10.3389/fphys.2023.1199497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Single-cell ingredients (SCI) are considered promising nutrient sources which are produced using environmentally friendly biotechnological processes. The aim of the current study was to evaluate the replacement of fishmeal, plant protein sources, and fish oil with SCI in organic feeds for European sea bass (Dicentrarchus labrax). Bacterial protein, yeast protein, and microalgae were used to replace fishmeal trimmings, soya bean meal, and fish oil from trimmings. Triplicate groups (30 fish per replicate) of European sea bass (14.4 ± 2.4 g) were fed the experimental diets for 71 days. The results showed that the incorporation of SCI at all levels of inclusion significantly enhanced nutrient digestibility. Additionally, growth performance parameters were not affected by SCI inclusion, exhibiting similar or improved values. Moreover, a tendency for improved anterior and posterior gut structure was observed and a significant increase of lysozyme activity at the two highest inclusion levels of SCI was determined. Overall, the results showed that the inclusion of SCI at 15% (bacterial: yeast: algae-9.4: 4.7: 1) is possible without compromising any of the parameters evaluated. According to these findings, a higher substitution of fishmeal trimmings, plant protein sources, and fish oil from trimmings with SCI in organic diets for European sea bass (D. labrax) can be further evaluated in future studies.
Collapse
Affiliation(s)
- A. Vasilaki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Attica, Greece
| | - E. Mente
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E. Fountoulaki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Attica, Greece
| | - M. Henry
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Attica, Greece
| | - C. Nikoloudaki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Attica, Greece
| | - P. Berillis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - K. Kousoulaki
- Department of Nutrition and Feed Technology, Fyllingsdalen, Norway
| | - I. Nengas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Attica, Greece
| |
Collapse
|
20
|
da Silva VG, Favero LM, Mainardi RM, Ferrari NA, Chideroli RT, Di Santis GW, de Souza FP, da Costa AR, Gonçalves DD, Nuez-Ortin WG, Isern-Subich MM, de Oliveira-Junior AG, Lopera-Barrero NM, Pereira UDP. Effect of an organic acid blend in Nile tilapia growth performance, immunity, gut microbiota, and resistance to challenge against francisellosis. Res Vet Sci 2023; 159:214-224. [PMID: 37167686 DOI: 10.1016/j.rvsc.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Organic acids (OAs) are a class of feed additives that have prophylactic and inhibitory properties against pathogenic bacteria. In this study, we investigated growth performance, innate immune response, gut microbiota, and disease resistance against Francisella orientalis F1 in Nile tilapia (Oreochromis niloticus) fed different doses of Bacti-nil®Aqua, a blend of short- and medium-chain OAs. For 21 days, 680 juvenile tilapias were fed a control diet or diets supplemented with a 0.3% (D3) or 0.5% (D5) OA blend. The feed conversion rate of fish fed the 0.5% enriched diet was considerably lower (p < 0.05) than that of the fish fed the basal diet. Lysozyme and serum bactericidal activities were significantly elevated following OA administration. After infection, no differences in the diversity and composition of gut microbiota were observed between the groups. After the bacterial challenge, the mortality was significantly lower in group D5 (p < 0.01). The diet supplemented with Bacti-nil®Aqua (Adisseo) improved the immune response and resistance of tilapia juveniles against F. orientalis infection. Thus, this OA blend could serve as a feed additive with good activity against F. orientalis.
Collapse
Affiliation(s)
- Vanessa Gomes da Silva
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Leonardo Mantovani Favero
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Raffaella Menegheti Mainardi
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Natália Amoroso Ferrari
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Roberta Torres Chideroli
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Giovana Wingeter Di Santis
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | | | - Arthur Roberto da Costa
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Daniela Dib Gonçalves
- Department of Preventive Veterinary Medicine and Public Health, Paranaense University, Umuarama, PR, Brazil
| | | | | | | | | | - Ulisses de Pádua Pereira
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil.
| |
Collapse
|
21
|
Yang Y, Jin D, Long W, Lai X, Sun Y, Zhai F, Wang P, Zhou X, Hu Y, Xia L, Yi G. A new isolate of Streptomyces lateritius (Z1-26) with antibacterial activity against fish pathogens and immune enhancement effects on crucian carp (Carassius auratus). JOURNAL OF FISH DISEASES 2023; 46:99-112. [PMID: 36263741 DOI: 10.1111/jfd.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The Streptomyces lateritius Z1-26 was isolated from soil samples which showed broad-spectrum antibacterial activity against a broad range of fish pathogens. The In Vivo Imaging System (IVIS) monitored that strain Z1-26 could survive and colonize in the gills and abdomen of crucian carp. The effects of dietary supplementation with strain Z1-26 were evaluated with respect to the growth performance, antioxidant capacity, and immune response of crucian carp. The results showed that the Z1-26-fed fish had a significantly higher growth rate than the fish fed the control diet. The immune and antioxidant parameters revealed that the non-specific immune indicators (AKP, SOD, and LZM) of the serum, the expression of immune-related genes (IgM, C3, and LZM), and antioxidant-related genes (Nrf2 and Keap1) of the immune organs were significantly increased, whereas the expression of pro-inflammatory factors (IL-1β, IL-8, and TNF-α) of the immune organs was significantly down-regulated in crucian carp fed strain Z1-26 compared with fish fed a control diet. Moreover, fish fed with Z1-26 supplemented diets showed a significantly improved survival rate after Aeromonas hydrophila infection. In addition, the whole genome analysis showed that strain Z1-26 possesses 28 gene clusters, including 6 polyketide synthetase (PKS), 4 non-ribosomal peptide-synthetase (NRPS), 1 bacteriocin, and 1 lantipeptide. In summary, these results indicated that strain Z1-26 could improve the growth performance and disease resistance in crucian carp, and has the potential to be developed as a candidate probiotics for the control of bacterial diseases in aquaculture.
Collapse
Affiliation(s)
- Yahui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Duo Jin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Wensu Long
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Ximiao Lai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Feng Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| | - Xixun Zhou
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, China
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
| | - Ganfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life and Science, Hunan Normal University, Changsha, China
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| |
Collapse
|
22
|
Pereira AG, Fraga-Corral M, Garcia-Oliveira P, Otero P, Soria-Lopez A, Cassani L, Cao H, Xiao J, Prieto MA, Simal-Gandara J. Single-Cell Proteins Obtained by Circular Economy Intended as a Feed Ingredient in Aquaculture. Foods 2022; 11:2831. [PMID: 36140957 PMCID: PMC9497958 DOI: 10.3390/foods11182831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The constant increment in the world's population leads to a parallel increase in the demand for food. This situation gives place the need for urgent development of alternative and sustainable resources to satisfy this nutritional requirement. Human nutrition is currently based on fisheries, which accounts for 50% of the fish production for human consumption, but also on agriculture, livestock, and aquaculture. Among them, aquaculture has been pointed out as a promising source of animal protein that can provide the population with high-quality protein food. This productive model has also gained attention due to its fast development. However, several aquaculture species require considerable amounts of fish protein to reach optimal growth rates, which represents its main drawback. Aquaculture needs to become sustainable using renewable source of nutrients with high contents of proteins to ensure properly fed animals. To achieve this goal, different approaches have been considered. In this sense, single-cell protein (SCP) products are a promising solution to replace fish protein from fishmeal. SCP flours based on microbes or algae biomass can be sustainably obtained. These microorganisms can be cultured by using residues supplied by other industries such as agriculture, food, or urban areas. Hence, the application of SCP for developing innovative fish meal offers a double solution by reducing the management of residues and by providing a sustainable source of proteins to aquaculture. However, the use of SCP as aquaculture feed also has some limitations, such as problems of digestibility, presence of toxins, or difficulty to scale-up the production process. In this work, we review the potential sources of SCP, their respective production processes, and their implementation in circular economy strategies, through the revalorization and exploitation of different residues for aquaculture feeding purposes. The data analyzed show the positive effects of SCP inclusion in diets and point to SCP meals as a sustainable feed system. However, new processes need to be exploited to improve yield. In that direction, the circular economy is a potential alternative to produce SCP at any time of the year and from various cost-free substrates, almost without a negative impact.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CONICET), Colón 10850, Mar del Plata 7600, Argentina
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| |
Collapse
|
23
|
Zheng J, Zhang W, Dan Z, Zhuang Y, Liu Y, Mai K, Ai Q. Replacement of dietary fish meal with Clostridium autoethanogenum meal on growth performance, intestinal amino acids transporters, protein metabolism and hepatic lipid metabolism of juvenile turbot (Scophthalmus maximus L.). Front Physiol 2022; 13:981750. [PMID: 36091361 PMCID: PMC9451173 DOI: 10.3389/fphys.2022.981750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Clostridium autoethanogenum meal (CAM) is a novel single-cell protein, which is produced from bacteria using carbon monoxide (CO) as sole carbon source. To evaluate the efficiency of CAM as an alternative for dietary fish meal, a 56-days growth experiment was performed on juvenile turbot (Scophthalmus maximus L.) with initial average weight of 9.13 ± 0.02 g. Six iso-nitrogenous (crude protein, 51.0%) and iso-lipidic (crude lipid, 11.5%) diets were formulated with 0%, 15%, 30%, 45%, 60% and 80% dietary fish meal protein substituted by CAM protein, which were designated as CAM0 (the control group), CAM15, CAM30, CAM45, CAM60 and CAM80, respectively. Results showed that no significant differences were observed in survival rate (over 97.50%) among different dietary treatments (p > 0.05). The specific growth rate (SGR) was not significantly affected when replacement levels of dietary fish meal with CAM were less than 45% (p > 0.05). The feed intake (FI) was significantly linear reduced with increasing dietary CAM (p < 0.05), whereas no significant differences were observed in feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR) among different dietary treatments (p > 0.05). With increasing dietary CAM, lipid retention (LR) and carcass lipid tended to be increased in both significantly linear and quadratic patterns (p < 0.05). The apparent digestibility coefficient (ADC) of crude protein and some essential amino acids, including threonine, valine, lysine, histidine and arginine, showed significantly linear increase with increasing dietary CAM (p < 0.05). Furthermore, with the increase of dietary CAM, the gene expression of intestinal peptide and amino acids transporters was first up-regulated and then down-regulated with significantly quadratic pattern (p < 0.05), peaking in fish fed with diets CAM30 or CAM45, which was similar to the expression of genes related protein degradation in muscle. For genes related to protein metabolism in liver and muscle, the expression of mammalian target of rapamycin (mtor) was not significantly affected by dietary CAM, while the general control nonderepressible 2 (gcn2) tended to be first up-regulated and then down-regulated with significantly quadratic pattern (p < 0.05). Apart from that, the lipid metabolism of turbot was also affected by high dietary CAM, evidenced by increased expression of hepatic genes related to lipogenesis as well as reduced expression of genes related to lipid oxidation and lipid transport. In conclusion, CAM can replace up to 45% fish meal protein in diet for juvenile turbot without significantly adverse effects on growth performance. But excessive dietary CAM would result in significant growth reduction, and excessive lipid deposition may also occur in fish fed diets with high levels of CAM.
Collapse
Affiliation(s)
- Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wencong Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhijie Dan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanwen Zhuang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Qinghui Ai,
| |
Collapse
|
24
|
Jakovljević VD, Radojević ID, Grujić SM, Ostojić AM. Response of selected microbial strains and their consortia to the presence of automobile paints: Biofilm growth, matrix protein content and hydrolytic enzyme activity. Saudi J Biol Sci 2022; 29:103347. [PMID: 35800142 PMCID: PMC9253408 DOI: 10.1016/j.sjbs.2022.103347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
The goal of the current study was to examine the effects of pollutants (White color – CP; Metallic red color – FM; Thinner – CN; Thinner for rinsing paint – MF; Basic color (primer) – FH) originating from the automotive industry on the biofilm growth, matrix protein content, and activity of the hydrolytic enzymes of selected microbial strains in laboratory conditions that mimic the bioreactor conditions. The chosen microorganisms (bacteria, yeasts, and fungi) were isolated from automotive industry wastewater. Pure microbe cultures and their consortia were injected into AMB Media carriers and developed into biofilms. The use of AMB media carriers has been linked to an increase in the active surface area colonized by microorganisms. Afterwards, the carriers were transferred to Erlenmeyer flasks with nutrient media and pollutants at a concentration of 200 μL/mL. The current study found that, depending on the microbial strain, development phase, and chemical structure, the assessed pollutants had an inhibitory or stimulatory influence on the growth of single cultures and their consortia. Statistical analysis found positive correlations between the protein content in the matrix and the biofilm biomass of Rhodotorula mucilaginosa and consortia in CP and FH media, respectively. The proteolytic activity of Candida utilis was very pronounced in media with MF and CN. The best alkaline phosphatase activity (ALP) was achieved in the CN medium of R. mucilaginosa. Acid invertase activity was the highest in the FM and CP media of Escherichia coli and consortia, respectively, whereas the highest alkaline invertase activity was measured in the MF medium of E. coli. A positive correlation was confirmed between ALP and the biofilm biomass of R. mucilaginosa in CP and CN media, as well as between ALP and the biofilm biomass of Penicillium expansum in FM medium. The findings provide novel insights into the extracellular hydrolytic activity of the investigated microbial strains in the presence of auto paints, as well as a good platform for subsequent research into comprehensive biofilm profiling using modern methodologies.
Collapse
Affiliation(s)
- Violeta D. Jakovljević
- Department for Science and Mathematics, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
- Corresponding author at: Department of Science and Mathematics, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia.
| | - Ivana D. Radojević
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Sandra M. Grujić
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Aleksandar M. Ostojić
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
25
|
El-Bab AFF, Saghir SAM, El-Naser IAA, El-Kheir SMMA, Abdel-Kader MF, Alruhaimi RS, Alqhtani HA, Mahmoud AM, Naiel MAE, El-Raghi AA. The Effect of Dietary Saccharomyces cerevisiae on Growth Performance, Oxidative Status, and Immune Response of Sea Bream ( Sparus aurata). Life (Basel) 2022; 12:life12071013. [PMID: 35888101 PMCID: PMC9325271 DOI: 10.3390/life12071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the beneficial effect of Saccharomyces cerevisiae (SC) on growth, intestinal morphometric characteristics, blood indices, redox balance, expression of immune-related genes, and their involvement in disease resistance in sea bream (Sparus aurata). Three hundred healthy sea bream fingerlings were allocated into equal four groups (15 fish per hapa). The first group was served as a control and received a basal diet, while the other three groups were fed diets containing 1, 2, and 4 g/kg diet SC, respectively. At the end of week 16, the daily weight gain, specific growth rate, and feed utilization were significantly higher in the SC2 and SC4 groups than the control (p < 0.05). SC dose-dependently improved intestinal morphology, and the 4 g/kg diet significantly increased dry matter, crude fat, and crude protein percentage of body composition when compared with the control group. The 4 g/kg SC boosted innate immune response and phagocytic activity, and all SC-supplemented diets improved total protein, glucose, triglycerides, and urea concentrations, as well as intestinal digestive enzymatic activities. All estimated oxidative markers were significantly enhanced in the group that received 4 g/kg SC when compared with the control and other SC groups (p < 0.05). Feeding the fish a diet supplemented with 4 g/kg SC markedly regulated the expression of HSP70, IGF1, and IL-1β genes. In addition, the 4 g/kg SC-supplemented diet was the most effective in protecting the fish against Vibrio parahaemolyticus challenge. In conclusion, SC-enriched diet improved growth performance, intestinal morphology, redox homeostasis, and immune response of S. aurata with the 4 g/kg concentration as the most effective.
Collapse
Affiliation(s)
- Ahmed F. Fath El-Bab
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| | - Sultan A. M. Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan;
| | - Ibrahim Atta Abu El-Naser
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| | - Salwa M. M. Abo El-Kheir
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| | - Marwa F. Abdel-Kader
- Central Laboratory for Aquaculture Research, Sakha Aquaculture Research Unit, Department of Fish Diseases and Management, A.R.C., Giza 12411, Egypt;
| | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; or
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| | - Ali Ali El-Raghi
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| |
Collapse
|
26
|
Pan S, Yan X, Dong X, Li T, Suo X, Tan B, Zhang S, Li Z, Yang Y, Zhang H. The positive effects of dietary inositol on juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed high-lipid diets: Growthperformance, antioxidant capacity and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 126:84-95. [PMID: 35577318 DOI: 10.1016/j.fsi.2022.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The objective of the present research was to assess the influence of inositol supplementation on growth performance, histological morphology of liver, immunity and expression of immune-related genes in juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Hybrid grouper (initial weight 6.76 ± 0.34 g) were fed isonitrogenous and isolipidic diets (16%) with various inositol levels of 0.17 g/kg (J1, the control group), 0.62 g/kg (J2), 1.03 g/kg (J3), 1.78 g/kg (J4), 3.43 g/kg (J5), 6.59 g/kg (J6), respectively. The growth experiment lasted for 8 weeks. The results indicated that dietary inositol had a significant promoting effect on final mean body weight of the J5 and J6 groups and specific growth rate (SGR) of the J3, J4, J5 and J6 groups (P < 0.05). In the serum, superoxide dismutase (SOD) of the J4 group became significantly active compared with that of the control group (P < 0.05), while aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (AKP) activities in the inositol-treated groups showed distinctly decreased compared with those of the control group (P < 0.05). In the liver, dietary inositol could significantly increase the activities of SOD, catalase (CAT), lysozyme (LYZ) and the contents of total antioxidative capacity (T-AOC) and immunoglobulin M (IgM) (P < 0.05), and distinctly reduce the content of malondialdehyde (MDA) as well as reactive oxygen species (ROS) (P < 0.05). Compared with the control group, the damaged histological morphology of the liver was relieved and even returned to normal after an inositol increase (0.4-3.2 g/kg). In the liver, the remarkable up-regulation of SOD, CAT, glutathione peroxidase (GPX), heat shock protein70 (HSP70) and heat shock protein90 (HSP90) expression levels were stimulated by supply of inositol, while interleukin 6 (IL6), interleukin 8 (IL8) and transforming growth factor β (TGF-β) expression levels were down-regulated by supply of inositol. In head kidney, the mRNA of toll-like receptor 22 (TLR22), myeloid differentiation factor 88 (MyD88) and interleukin 1β (IL1β) expression levels were significantly down-regulated (P < 0.05), which could further lead to remarkable down-regulation of IL6 and tumor necrosis factor α (TNF-α) expression (P < 0.05). These results indicated that high-lipid diets with supply of inositol promoted growth, increased the antioxidant capacity, and suppressed the inflammation of the liver and head kidney by inhibiting the expression of pro-inflammation factors (IL6, IL8, TGF-β and TNF-α). In conclusion, these results indicated that dietary inositol promoted growth, improved antioxidant capacity and immunity of hybrid grouper fed high-lipid diets. Based on SGR, broken-line regression analysis showed that 1.66 g/kg inositol supply was recommended in high-lipid diets of juvenile grouper.
Collapse
Affiliation(s)
- Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Zhihao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
27
|
Chen H, Zhao Y, Chen K, Wei Y, Luo H, Li Y, Liu F, Zhu Z, Hu W, Luo D. Isolation, Identification, and Investigation of Pathogenic Bacteria From Common Carp (Cyprinus carpio) Naturally Infected With Plesiomonas shigelloides. Front Immunol 2022; 13:872896. [PMID: 35844551 PMCID: PMC9279890 DOI: 10.3389/fimmu.2022.872896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
Various bacterial diseases have caused great economic losses to the high-density and intensive aquaculture industry; however, the pathogenic mechanism underlying the large-scale challenged to caused by many bacteria remain unclear, making the prevention and treatment of these diseases difficult. In the present study, we isolated a bacterial strain from Cyprinus carpio having a typical bacterial disease and named it Cc2021. Through subsequent morphological observations, a regression challenge, biochemical identification, and 16S rRNA gene sequence analysis, we determined Cc2021 to be Plesiomonas shigelloides. Subsequently, we comprehensively investigated the pathogenicity of P. shigelloides in C. carpio through a regression challenge and assessed the underlying the pathogenic mechanism. Mortality results revealed that P. shigelloides is highly pathogenic and infects various tissues throughout the body, resulting in edema of the liver, spleen, and body and head kidneys. Histopathological analysis revealed obvious inflammation, bleeding, and necrosis in the intestine, spleen, and head kidney. The body’s immune tissues actively produce complement C3, superoxide dismutase, and lysozyme after a challenge to resist bacterial invasion. With regard to the underlying pathogenesis of P. shigelloides, comparative transcriptome analysis revealed 876 upregulated genes and 828 downregulated genes in the intestine of C. carpio after the challenge. Analysis of differentially expressed unigenes revealed the involvement of major immune pathways, particularly the TNF signaling pathway, interleukin (IL)-17 signaling pathway, and Toll-like receptor signaling pathway. The present study provides new valuable information on the immune system and defense mechanisms of P. shigelloides.
Collapse
Affiliation(s)
- Huijie Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Kuangxin Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulai Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daji Luo,
| |
Collapse
|
28
|
Hao Q, Xia R, Zhang Q, Xie Y, Ran C, Yang Y, Zhou W, Chu F, Zhang X, Wang Y, Zhang Z, Zhou Z. Partially replacing dietary fish meal by Saccharomyces cerevisiae culture improve growth performance, immunity, disease resistance, composition and function of intestinal microbiota in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2022; 125:220-229. [PMID: 35569779 DOI: 10.1016/j.fsi.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to investigate the partial replacement of fish meal by Saccharomyces cerevisiae culture on growth performance, immunity, composition and function of intestinal microbiota and disease resistance in channel catfish (Ictalurus punctatus). Two equal nitrogen and energy diets were prepared including a basal diet (containing 10% fish meal, Control) and an experimental diet (replacing 20% of the fish meal of the basal diet with yeast culture, RFM). Channel catfish were fed with the diets for 12 weeks. The results showed that weight gain and condition factor were significantly increased, and FCR was significantly decreased in RFM group (P < 0.05). The gene expression of intestinal HIF1α was significantly increased in RFM group (P < 0.05), while the expressions of NF-κB in the intestine and liver were significantly decreased (P < 0.05). The relative abundance of Firmicutes tended to increase, and the Turicibacter had an upward trend (0.05 < P < 0.2). In addition, the survival rate of channel catfish was significantly increased in RFM group after challenged with Aeromonas veronii Hm091 and Aeromonas hydrophila NJ-1 (P < 0.05). Compared with intestinal microbiota of channel catfish of control group, intestinal microbiota of channel catfish of RFM group significantly increased the expression of HIF1α, and decreased the expression of IL-1β and TNF-α (P < 0.05) in germ-free zebrafish. Intestinal microbiota induced by RFM diet also significantly increased disease resistance to Aeromonas veronii Hm091 and Aeromonas hydrophila NJ-1. In conclusion, replacement of fish meal by the yeast culture improved the growth, immunity and disease resistance of channel catfish, and intestinal microbiota of channel catfish induced by the yeast culture played a critical role in these effects.
Collapse
Affiliation(s)
- Qiang Hao
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Norway-Sino Joint Lab on Fish Gut Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Rui Xia
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingshuang Zhang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenhao Zhou
- Beijing Enhalor International Tech Co., Ltd., Beijing, 100081, China
| | - Fuwei Chu
- Shandong Dayang Agriculture and Animal Husbandry Science and Technology Development Co., Ltd., Shandong, 277319, China
| | - Xiaomei Zhang
- Shandong Dayang Agriculture and Animal Husbandry Science and Technology Development Co., Ltd., Shandong, 277319, China
| | - Yu Wang
- Shandong Dayang Agriculture and Animal Husbandry Science and Technology Development Co., Ltd., Shandong, 277319, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China.
| |
Collapse
|
29
|
Bavia L, Santiesteban-Lores LE, Carneiro MC, Prodocimo MM. Advances in the complement system of a teleost fish, Oreochromisniloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 123:61-74. [PMID: 35227880 DOI: 10.1016/j.fsi.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
As the earliest known vertebrate possessing a complete immune system, teleost fish played an important role in the evolution of this system. The complement system is an ancient defense mechanism present in invertebrates and vertebrates. In teleost fish the complement system is formed by more than 35 circulating proteins, or found at the cell surface. This system is activated by three pathways: alternative, classical and lectin, generating functions such as the opsonization, lysis and modulation of the innate and adaptive immune responses. The complement system is an important immunological indicator that can be used to study and monitor the effects of environmental, nutritional, and infectious processes. The Nile tilapia (Oreochromis niloticus) is a teleost fish of great economic interest due to its characteristics of easy cultivation, high growth rates, and tolerance to adverse environmental conditions. In addition, Nile tilapia is an excellent model for ecotoxicological studies, however, there are very few studies reporting the performance of the complement system in this species after exposure to environmental pollutants. The aim of this review is to gather recent studies with to address the molecular and functional characterizations of the complement system in Nile tilapia and provide new insights about this defense mechanism. Looking to the future, we believe that the complement system analysis in Tilapia can be used as a biomarker of water quality and the general health status of fish.
Collapse
Affiliation(s)
- Lorena Bavia
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Lazara Elena Santiesteban-Lores
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Milena Carvalho Carneiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
30
|
Salam MA, Rahman MA, Paul SI, Islam F, Barman AK, Rahman Z, Shaha DC, Rahman MM, Islam T. Dietary chitosan promotes the growth, biochemical composition, gut microbiota, hematological parameters and internal organ morphology of juvenile Barbonymus gonionotus. PLoS One 2021; 16:e0260192. [PMID: 34793569 PMCID: PMC8601453 DOI: 10.1371/journal.pone.0260192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, we determined the effects of dietary chitosan on the growth, biochemical composition, gut microbiota, and hematological and histological parameters of juvenile Barbonymus gonionotus. Three test diets containing three different concentrations (1, 2, and 3 g kg-1 feed) of dietary chitosan were formulated. A basal diet without dietary chitosan was considered a control, and the fish were reared for 60 days. Comparing the effects of the dietary chitosan-containing diets with those of the control diet, we found that dietary chitosan significantly improved the muscle growth, nutrient and mineral contents, hematological parameters, lactic acid bacterium abundance, and digestive enzyme activities of B. gonionotus. Moreover, dietary chitosan significantly inhibited the growth of pathogenic bacteria in fish. Interestingly, an increase in the dietary chitosan level significantly enhanced the protein contents of the muscles and inversely significantly decreased the lipid contents compared to those with the basal diet. Quantitative study revealed that dietary chitosan significantly enhanced the length of intestinal villi, and qualitative study showed that dietary chitosan considerably reduced the fat content in the liver and improved the morphology of the kidney compared to those with the basal diet. Taken together, our results suggest that the application of dietary chitosan at a dose of 1 g kg-1 feed produced the highest benefit to treated B. gonionotus, indicating its potential for safe use in aquaculture.
Collapse
Affiliation(s)
- Mohammad Abdus Salam
- Faculty of Fisheries, Department of Genetics & Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Ashikur Rahman
- Faculty of Fisheries, Department of Genetics & Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sulav Indra Paul
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Fatama Islam
- Faculty of Fisheries, Department of Genetics & Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Avishek Kanti Barman
- Faculty of Fisheries, Department of Genetics & Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Zinia Rahman
- Faculty of Fisheries, Department of Genetics & Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dinesh Chandra Shaha
- Faculty of Fisheries, Department of Fisheries Management, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Mahbubur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
31
|
Coutinho JOPA, Quintanilha MF, Campos MRA, Ferreira E, de Menezes GCA, Rosa LH, Rosa CA, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Tiago FCP, Martins FS. Antarctic Strain of Rhodotorula mucilaginosa UFMGCB 18,377 Attenuates Mucositis Induced by 5-Fluorouracil in Mice. Probiotics Antimicrob Proteins 2021; 14:486-500. [PMID: 34255281 DOI: 10.1007/s12602-021-09817-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Mucositis is one of the most strenuous side effects caused by chemotherapy drugs, such as 5-fluorouracil (5-FU), during the treatment of several types of cancers. The disease is so prevalent and aggressive that many patients cannot resist such symptoms. However, despite its frequency and clinical significance, there is no effective treatment to prevent or treat mucositis. Thus, the use of probiotics as an adjuvant for the treatment has gained prominence. In the present study, we evaluated the effectiveness of oral administration of the Antarctic strain of Rhodotorula mucilaginosa UFMGCB 18,377 as an alternative to minimize side effects of 5-FU-induced mucositis in mice. Body weight, food consumption, stool consistency, and presence of blood in the feces were assessed daily in mice orally treated or not with the yeast and submitted or not to experimental mucositis. Blood, bones, and intestinal tissues and fluid were used to determine intestinal permeability and immunological, microbiological, and histopathological parameters. Treatment with R. mucilaginosa UFMGCB 18,377 was able to decrease clinical signs of the disease, such as reduction of food intake and body weight loss, and also decreased the number of intestinal enterobacteria and intestinal length shortening. Additionally, treatment was able to decrease the levels of MPO and EPO activities and inflammatory infiltrates, as well as the histopathological lesions characteristic of mucositis in the jejunum and ileum. Results of the present study showed that the oral administration of R. mucilaginosa UFMGCB 18,377 protected mice against mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Joana O P A Coutinho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mônica F Quintanilha
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina R A Campos
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana C P Tiago
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 30270-901, Brazil.
| |
Collapse
|
32
|
Zhang L, Zhou P, Chen YC, Cao Q, Liu XF, Li D. The production of single cell protein from biogas slurry with high ammonia-nitrogen content by screened Nectaromyces rattus. Poult Sci 2021; 100:101334. [PMID: 34298382 PMCID: PMC8322469 DOI: 10.1016/j.psj.2021.101334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, a novel method was proposed to obtain single cell protein (SCP) in yeast by using biogas slurry as culture medium. The results show that Nectaromyces rattus was the most efficient at producing SCP among the 7 different yeasts studied. Acetic acid was a better pH regulator than hydrochloric acid. After culture with the initial NH4+-N concentration 2,000 mg/L, C/N ratio 6:1, the initial pH 5.50 and rotation speed of 200 rpm, a total cell dry weight of 12.58 g/L with 35.96% protein content was obtained. Nineteen amino acids accounted for 46.85% of cell dry weight, and proline content was as high as 12.0% of the cell dry weight. However, sulfur-containing amino acids, including methionine and cystine, were deficient. Further research should focus on the high cell density culture to increase SCP production.
Collapse
Affiliation(s)
- L Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - P Zhou
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Y C Chen
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Q Cao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - X F Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - D Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
33
|
Sagaram US, Gaikwad MS, Nandru R, Dasgupta S. Microalgae as feed ingredients: recent developments on their role in immunomodulation and gut microbiota of aquaculture species. FEMS Microbiol Lett 2021; 368:6296415. [PMID: 34113989 DOI: 10.1093/femsle/fnab071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are rapidly evolving alternative ingredients in food and feed. Desirable nutritional and functional qualities make them high potential sources of feed ingredients. Certain microalgae species are known to accumulate large amounts of protein, containing all essential amino acids while some species contain essential fatty acids and bioactive compounds hence offering several possible health benefits. However, successful inclusion of microalgae-based products in feed requires a clear understanding of physiological responses and microbiota of animals receiving microalgae diets. In this review, key microalgae-based feed ingredients and their effect on gut microbiome and immunomodulatory responses of microalgae fed animals, with a focus on aquatic species will be discussed.
Collapse
Affiliation(s)
- Uma Shankar Sagaram
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| | - Mahadev S Gaikwad
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| | - Rajesh Nandru
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| | - Santanu Dasgupta
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| |
Collapse
|
34
|
Production, Characterization and Immunomodulatory Activity of an Extracellular Polysaccharide from Rhodotorula mucilaginosa YL-1 Isolated from Sea Salt Field. Mar Drugs 2020; 18:md18120595. [PMID: 33256151 PMCID: PMC7760879 DOI: 10.3390/md18120595] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
A novel exopolysaccharide from marine-derived red yeast Rhodotorula mucilaginosa strain YL-1 was produced and characterized. The highest yield of polysaccharide reached 15.1 g/L after medium and culture parameter optimization. This exopolysaccharide, composed of four neural monosaccharides including glucose, mannose, galactose and fucose, had an average molecular weight of 1200 KDa. It had good immunomodulatory activity on RAW256.7 cell lines. ELISA (enzyme linked immunosorbent assay) and Q-PCR (quantitative real-time PCR) results showed that the cell was stimulated to express more IL-6, IL-18, IL-1β and TNFα cytokines than the control group. This is the first report of an exopolysaccharide with immunomodulatory activity from marine-derived Rhodotorula mucilaginosa.
Collapse
|
35
|
Li H, Ma Y, Liu Y, Wu M, Long J, Jing X, Zhou S, Yuan P, Jiang J. Integrated biomarker parameters response to the toxic effects of high stocking density, CuSO 4, and trichlorfon on fish and protective role mediated by Angelica sinensis extract. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1679-1698. [PMID: 32557080 DOI: 10.1007/s10695-020-00821-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The present study explored the protective role of dietary the extract of Angelica sinensis (EAs) on high density, CuSO4, or trichlorfon-treated Crucian carp (Carassius auratus auratus). Firstly, the study showed that the optimum density for growth and growth inhibition was 0.49 and 0.98 fish L-1 water, respectively. Dietary EAs relieved the high density-induced growth inhibition in Crucian carp. The appropriate concentration of EAs for recovery of growth was estimated to be 4.30 g kg-1 diet in high-density fish. Moreover, high density decreased both digestive and absorptive enzyme activities and increased lipid oxidation in digestive organs, suggesting the ability of high density to induce oxidative damage. However, dietary EAs inhibited the oxidative damage through elevating ROS scavenging ability and enzymatic antioxidant activity in digestive organs. Secondly, our data demonstrated that the appropriate concentration of CuSO4 to induce the decrease in feed intake (FI) was 0.8 mg Cu L-1 water. Dietary EAs returned to FI of Crucian carp treated with CuSO4. The appropriate concentration of EAs for recovery of FI was estimated to be 4.25 g kg-1 diet. Moreover, dietary EAs suppressed the CuSO4-induced decrease in digestion and absorption capacity and increase in protein metabolism in digestive organs of Crucian carp. Finally, the present results suggested that dietary EAs inhibited the trichlorfon-induced rollover (loss of equilibrium) in Crucian carp. The appropriate concentration of EAs for inhibition of rollover was estimated to be 4.18 g kg-1 diet. Moreover, trichlorfon stimulated not only the decrease in energy metabolism but also lipid and protein oxidation, suggesting that trichlorfon caused loss of function and oxidative damage in muscles of fish. However, dietary EAs improved muscular function and inhibited oxidative damage via quenching ROS and elevating non-enzymatic and enzymatic antioxidant activity in muscles of trichlorfon-induced fish. So, EAs could be used as an inhibitor of high density, CuSO4, and trichlorfon stress in fish.
Collapse
Affiliation(s)
- HuaTao Li
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China.
| | - YuTing Ma
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Ying Liu
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Min Wu
- Archives, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Jiao Long
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - XiaoQin Jing
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - SiShun Zhou
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Ping Yuan
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
36
|
Zhang X, Sun Z, Cai J, Wang J, Wang G, Zhu Z, Cao F. Effects of dietary fish meal replacement by fermented moringa (Moringa oleifera Lam.) leaves on growth performance, nonspecific immunity and disease resistance against Aeromonas hydrophila in juvenile gibel carp (Carassius auratus gibelio var. CAS III). FISH & SHELLFISH IMMUNOLOGY 2020; 102:430-439. [PMID: 32360279 DOI: 10.1016/j.fsi.2020.04.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study was aimed to evaluate the effects of partial replacement of fish meal by fermented moringa leaves (FMLs) on growth performance, serum biochemistry, antioxidant status, nonspecific immunity, and resistance against Aeromonas hydrophila in juvenile gibel carp (Carassius auratus gibelio var. CAS III). Four isonitrogenous and isoenergetic balanced diets, including three FML diets (substituting 20%, 40%, 60% of the fish meal in basal diet, F20, F40 and F60, respectively) and a basal diet (a diet containing 10% fish meal) were used. Each diet was randomly allocated to four fish groups (F20, F40, F60 and control) reared in a recirculating system. After 50 days of the feeding trial, fish were challenged by A. hydrophila. The result revealed that final mean body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), feed efficiency (FE) and survival rate (SR) were significantly increased (P < 0.05) in F20 and F40 groups compared with the control group. Decreased hepatosomatic index (HSI), body crude lipid, serum aspartate transaminase (AST) and serum alanine aminotransferase (ALT) activities, and increased serum alkaline phosphatase (AKP) and serum glutathione peroxidase (GPx) activities were observed in F40 and F60 groups compared with the control and F20 groups. All FMLs-supplemented groups increased (P < 0.05) serum superoxide dismutase (SOD), catalase (CAT) and lysozyme activities, complement component 3 (C3) and serum immunoglobulin M (IgM) concentration, or decreased serum malondialdehyde (MDA) and protein carbonyl (PCC) contents (P < 0.05). After the challenge test, the significant downregulation of toll-like receptors2 (TLR2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-8 mRNA transcription levels was observed in spleens of FMLs supplemented groups. Dietary F40 and F60 showed higher (P < 0.05) relative percent survival (RPS) (48.72% and 43.59%, respectively) against A. hydrophila infection than control. These results indicate that, as a dietary fish meal substitute, FMLs enhance the growth, and antioxidant and immune response, and regulate the expression of immune-related genes and increase disease resistance against A. hydrophila via TLR2 pathway in gibel carp, with greatest effects of 40% fish meal substitution.
Collapse
Affiliation(s)
- Xuhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, PR China
| | - Zhiyuan Sun
- Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, PR China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, PR China
| | - Jiahong Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, PR China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, PR China
| | - Zunling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, PR China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, PR China.
| |
Collapse
|
37
|
Chen X, Xie J, Liu Z, Yin P, Chen M, Liu Y, Tian L, Niu J. Modulation of growth performance, non-specific immunity, intestinal morphology, the response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella) by dietary supplementation of a multi-strain probiotic. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108724. [PMID: 32061958 DOI: 10.1016/j.cbpc.2020.108724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
The present study was conducted to evaluate a multi-strain probiotic (MP) on growth performance, immune and antioxidant function, response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella). Based on the viable cell counts of aerobic Bacillus spp., six experimental diets with MP supplemented at 0, 0.34, 1.68, 3.36, 6.72, 10.1 g kg-1 were formulated and 900 juveniles (7.30 ± 0.01 g) were equally distributed into 30 aquaria with respective diet for 60 days. Results showed that fish with 0.34-1.68 g kg-1 MP had better growth and feed utilization. Further, plasma total protein, albumin and high-density lipoprotein were remarkably increased with dietary MP at >1.68 g kg-1. Dietary MP supplementation at 6.72-10.1 g kg-1 strikingly elevated plasma myeloperoxidase activity and complement C3 content. For fish with MP at 1.68 and 6.72-10.1 g kg-1, their liver malondialdehyde and glutathione peroxidase were remarkably declined and promoted. After hypoxia stress, fish with 3.36-6.72 g kg-1 MP showed significantly higher respiratory burst activity. Challenge test by A. hydrophila confirmed the protection effects of MP through the decreased cumulative mortality rates. For intestinal histomorphology and enzymatic analyses, fish with 1.68 g kg-1 MP displayed significantly higher intestinal villi height, goblet cells and alkaline phosphatase activity. In conclusion, dietary MP supplementation at 1.68 g kg-1 could promote growth, intestinal morphology and antioxidant capacity, while enhancing host immunity requires higher dosages of MP. Broken-line analysis of weight gain revealed that 1.34 g kg-1 is the optimum dosage for the growth of grass carp.
Collapse
Affiliation(s)
- Xianquan Chen
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jiajun Xie
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhenlu Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Peng Yin
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ming Chen
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yongjian Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lixia Tian
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jin Niu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
38
|
Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr Opin Biotechnol 2020; 61:189-197. [PMID: 31991311 DOI: 10.1016/j.copbio.2019.12.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
Abstract
The global demand for high-quality, protein-rich foods will continue to increase as the global population grows, along with income levels. Aquaculture is poised to help fulfill some of this demand, and is thus the fastest growing animal protein industry. A key challenge for it, though, is sourcing a sustainable, renewable protein ingredient. Single cell protein (SCP) products, protein meals based on microbial or algal biomass, have the potential to fulfill this need. Here, we review potential sources of SCP strains and their respective production processes, highlight recent advances on identification of new SCP strains and feedstocks, and, finally, review new feeding trial data on important aquaculture species, specifically Atlantic salmon, rainbow trout, and whiteleg shrimp.
Collapse
Affiliation(s)
- Shawn W Jones
- White Dog Labs, Inc., 239 Lisa Dr., New Castle, DE 19720, USA
| | - Alon Karpol
- White Dog Labs, Israel Prof. A.D. Bergman St. 2b, Rehovot, 7670504, Israel
| | - Sivan Friedman
- White Dog Labs, Israel Prof. A.D. Bergman St. 2b, Rehovot, 7670504, Israel
| | - Biniam T Maru
- White Dog Labs, Inc., 239 Lisa Dr., New Castle, DE 19720, USA
| | - Bryan P Tracy
- White Dog Labs, Inc., 239 Lisa Dr., New Castle, DE 19720, USA.
| |
Collapse
|