1
|
Dhanasiri AKS, Li Y, Krogdahl Å, Forberg T, Kortner TM. Longitudinal study on the effects of a synbiotic supplement to Atlantic salmon diets on performance, gut microbiota and immune responses during antibiotic treatment and subsequent recovery. Anim Microbiome 2024; 6:71. [PMID: 39707555 DOI: 10.1186/s42523-024-00360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/24/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Antibiotic use has undesirable side-effects on the host, including perturbations of gut microbiota, immunity, and health. Mammalian studies have demonstrated that concomitant/post antibiotic use of pro-, pre-, and synbiotics could re-establish gut microbiota and prevent detrimental host effects. However, studies evaluating similar effects in fish are scanty. This study evaluated the effects of dietary supplementation with a synbiotic mixture on the post-smolt Atlantic salmon gut microbiota, growth performance, and health during antibiotic treatment and subsequent recovery. Fish in five tanks each were fed either a commercial control diet or a synbiotic diet containing Pediococcus acidilactici and fructo-oligosaccharides, for 6 weeks (S1). Then, fish in three tanks per treatment were fed with medicated diets, containing 3500 ppm florfenicol coated onto the control or synbiotic diets, for 2 weeks (S2) and refed with the respective nonmedicated diets for another 3 (S3) and 5 (S4) weeks of recovery period. The fish not subjected to medication were fed the control or synbiotic diets throughout the experimental period. Samples were collected at S1-S4 from both the nonmedicated and medicated fish. RESULTS Florfenicol decreased the feed intake in control group. It reduced the growth rate in both control and synbiotic groups with lesser reduction in synbiotic group. Florfenicol did not significantly affect observed taxa and Shannon indexes. Bacterial composition before and after medication clustered distinctly in control and clustered together in synbiotic groups. Lactobacillus dominated in control while Lactobacillus and Pediococcus dominated in synbiotic group during medication and recovery. Florfenicol did not significantly influence the immune or stress response marker gene expressions, though the expression patterns differed between diet groups. Florfenicol did not cause inflammation in the distal intestine or change hepatosomatic index. CONCLUSIONS This study highlighted the negative impact of a two-week florfenicol treatment on feed intake and growth performance in Atlantic salmon, with moderate effects on gut microbiota and gene expression. Concomitant use of a synbiotic diet helped to maintain the gut microbial composition and influenced the performance positively and immune gene expressions differently during medication. This study indicates the importance of nutritional interventions through synbiotic supplementation as a possible strategy for managing Atlantic salmon during antibiotic treatment.
Collapse
Affiliation(s)
- Anusha K S Dhanasiri
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Yanxian Li
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
2
|
Velásquez F, Frazao M, Diez A, Villegas F, Álvarez-Bidwell M, Rivas-Pardo JA, Vallejos-Vidal E, Reyes-López F, Toro-Ascuy D, Ahumada M, Reyes-Cerpa S. Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1658. [PMID: 39452994 PMCID: PMC11510216 DOI: 10.3390/nano14201658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, has been the most severe health concern for the Chilean salmon industry. The efforts to control P. salmonis infections have focused on using antibiotics and vaccines. However, infected salmonids exhibit limited responses to the treatments. Here, we developed a poly (D, L-lactide-glycolic acid) (PLGA)-nanosystem functionalized with Atlantic salmon IgM (PLGA-IgM) to specifically deliver florfenicol into infected cells. Polymeric nanoparticles (NPs) were prepared via the double emulsion solvent-evaporation method in the presence of florfenicol. Later, the PLGA-NPs were functionalized with Atlantic salmon IgM through carbodiimide chemistry. The nanosystem showed an average size of ~380-410 nm and a negative surface charge. Further, florfenicol encapsulation efficiency was close to 10%. We evaluated the internalization of the nanosystem and its impact on bacterial load in SHK-1 cells by using confocal microscopy and qPCR. The results suggest that stimulation with the nanosystem elicits a decrease in the bacterial load of P. salmonis when it infects Atlantic salmon macrophages. Overall, the IgM-functionalized PLGA-based nanosystem represents an alternative to the administration of antibiotics in salmon farming, complementing the delivery of antibiotics with the stimulation of the immune response of infected macrophages.
Collapse
Affiliation(s)
- Felipe Velásquez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Mateus Frazao
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Arturo Diez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Felipe Villegas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Marcelo Álvarez-Bidwell
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - J. Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9170002, Chile; (E.V.-V.); (F.R.-L.)
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago 9170002, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad De Las Américas, La Florida, Santiago 8250122, Chile
| | - Felipe Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9170002, Chile; (E.V.-V.); (F.R.-L.)
| | - Daniela Toro-Ascuy
- Laboratorio de Virología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 8380000, Chile;
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
3
|
Cervera L, Arizcun M, Mercado L, Chaves-Pozo E, Cuesta A. Synthetic antimicrobial Nkl and Dic peptides are immunomodulatory but only Dic peptide can be therapeutic against nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109772. [PMID: 39019125 DOI: 10.1016/j.fsi.2024.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Aquaculture is a prosperous economic sector threatened by viral infections. Among the viruses threatening fish culture, Betanodavirus (NNV) is extremely important in the Mediterranean Sea affecting to highly traded species as European sea bass. In this context, application of antimicrobial peptides (AMPs) has arisen as a potential biotechnological tool. The aim of this work was to evaluate the therapeutic application of two European sea bass-derived AMPs, NK-lysin (Nkl) and dicentracin (Dic), against NNV infections. Synthetic Dic peptide was able to significantly reduce NNV-induced mortalities while Nkl failed to do so. Although neither Dic nor Nkl peptides were able to alter the transcriptional levels of NNV and the number of infected cells, Nkl seemed to increase the viral load per cell. Interestingly, both Nkl and Dic peptides showed immunomodulatory roles. For instance, our data revealed an interplay among different AMPs, at both gene and protein levels. Otherwise, Nkl and Dic peptides provoked an anti-inflammatory balance upon NNV infection, as well as the recruitment of macrophages and B cells to the target site of the infection, the brain. In conclusion, Dic can be proposed as a therapeutic candidate to combat NNV.
Collapse
Affiliation(s)
- Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain.
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain.
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Aravena-Canales D, Valenzuela-Muñoz V, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic and Epigenomic Responses to Cortisol-Mediated Stress in Rainbow Trout ( Oncorhynchus mykiss) Skeletal Muscle. Int J Mol Sci 2024; 25:7586. [PMID: 39062828 PMCID: PMC11276852 DOI: 10.3390/ijms25147586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout.
Collapse
Affiliation(s)
- Daniela Aravena-Canales
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| | - Juan Antonio Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| |
Collapse
|
5
|
Pérez-Stuardo D, Frazão M, Ibaceta V, Brianson B, Sánchez E, Rivas-Pardo JA, Vallejos-Vidal E, Reyes-López FE, Toro-Ascuy D, Vidal EA, Reyes-Cerpa S. KLF17 is an important regulatory component of the transcriptomic response of Atlantic salmon macrophages to Piscirickettsia salmonis infection. Front Immunol 2023; 14:1264599. [PMID: 38162669 PMCID: PMC10755876 DOI: 10.3389/fimmu.2023.1264599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Piscirickettsia salmonis is the most important health problem facing Chilean Aquaculture. Previous reports suggest that P. salmonis can survive in salmonid macrophages by interfering with the host immune response. However, the relevant aspects of the molecular pathogenesis of P. salmonis have been poorly characterized. In this work, we evaluated the transcriptomic changes in macrophage-like cell line SHK-1 infected with P. salmonis at 24- and 48-hours post-infection (hpi) and generated network models of the macrophage response to the infection using co-expression analysis and regulatory transcription factor-target gene information. Transcriptomic analysis showed that 635 genes were differentially expressed after 24- and/or 48-hpi. The pattern of expression of these genes was analyzed by weighted co-expression network analysis (WGCNA), which classified genes into 4 modules of expression, comprising early responses to the bacterium. Induced genes included genes involved in metabolism and cell differentiation, intracellular transportation, and cytoskeleton reorganization, while repressed genes included genes involved in extracellular matrix organization and RNA metabolism. To understand how these expression changes are orchestrated and to pinpoint relevant transcription factors (TFs) controlling the response, we established a curated database of TF-target gene regulatory interactions in Salmo salar, SalSaDB. Using this resource, together with co-expression module data, we generated infection context-specific networks that were analyzed to determine highly connected TF nodes. We found that the most connected TF of the 24- and 48-hpi response networks is KLF17, an ortholog of the KLF4 TF involved in the polarization of macrophages to an M2-phenotype in mammals. Interestingly, while KLF17 is induced by P. salmonis infection, other TFs, such as NOTCH3 and NFATC1, whose orthologs in mammals are related to M1-like macrophages, are repressed. In sum, our results suggest the induction of early regulatory events associated with an M2-like phenotype of macrophages that drives effectors related to the lysosome, RNA metabolism, cytoskeleton organization, and extracellular matrix remodeling. Moreover, the M1-like response seems delayed in generating an effective response, suggesting a polarization towards M2-like macrophages that allows the survival of P. salmonis. This work also contributes to SalSaDB, a curated database of TF-target gene interactions that is freely available for the Atlantic salmon community.
Collapse
Affiliation(s)
- Diego Pérez-Stuardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
| | - Mateus Frazão
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Valentina Ibaceta
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Bernardo Brianson
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Evelyn Sánchez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - J. Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad De Las Américas, La Florida, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratorio de Virología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elena A. Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
6
|
Muñoz-Flores C, Roa FJ, Saavedra P, Fuentealba P, Starck MF, Ortega L, Montesino R, Valenzuela A, Astuya A, Parra N, González-Chavarría I, Sánchez O, Toledo JR, Acosta J. Immunomodulatory role of vasoactive intestinal peptide and ghrelin in Oncorhynchus mykiss. Heliyon 2023; 9:e23215. [PMID: 38149209 PMCID: PMC10750074 DOI: 10.1016/j.heliyon.2023.e23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Neuropeptides are a group of peptides derived from precursor proteins synthesized in neuronal and nonneuronal cells. The classical functions of neuropeptides have been extensively studied in mammals, including neuromodulation in the central nervous system, molecular signaling in the peripheral nervous system, and immunomodulation associated mainly with anti-inflammatory activity. In contrast, in teleosts, studies of the immunomodulatory function of these neuropeptides are limited. In Oncorhynchus mykiss, vasoactive intestinal peptide (VIP) mRNA sequences have not been cloned, and the role of VIP in modulating the immune system has not been studied. Furthermore, in relation to other neuropeptides with possible immunomodulatory function, such as ghrelin, there are also few studies. Therefore, in this work, we performed molecular cloning, identification, and phylogenetic analysis of three VIP precursor sequences (prepro-VIP1, VIP2 and VIP3) in rainbow trout. In addition, the immunomodulatory function of both neuropeptides was evaluated in an in vitro model using the VIP1 sequence identified in this work and a ghrelin sequence already studied in O. mykiss. The results suggest that the prepro-VIP2 sequence has the lowest percentage of identity with respect to the other homologous sequences and is more closely related to mammalian orthologous sequences. VIP1 induces significant expression of both pro-inflammatory (IFN-γ, IL-1β) and anti-inflammatory (IL-10 and TGF-β) cytokines, whereas ghrelin only induces significant expression of proinflammatory cytokines such as IL-6 and TNF-α.
Collapse
Affiliation(s)
- Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Francisco J. Roa
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Paulina Saavedra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Pablo Fuentealba
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - María F. Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y COPAS Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| |
Collapse
|
7
|
González-Chavarría I, Roa FJ, Sandoval F, Muñoz-Flores C, Kappes T, Acosta J, Bertinat R, Altamirano C, Valenzuela A, Sánchez O, Fernández K, Toledo JR. Chitosan Microparticles Enhance the Intestinal Release and Immune Response of an Immune Stimulant Peptide in Oncorhynchus mykiss. Int J Mol Sci 2023; 24:14685. [PMID: 37834146 PMCID: PMC10572396 DOI: 10.3390/ijms241914685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1β, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1β, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Francisco J. Roa
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Felipe Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Carolina Muñoz-Flores
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Tomas Kappes
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Romina Bertinat
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile;
| | - Ariel Valenzuela
- Laboratory of Fish Culture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Oliberto Sánchez
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Katherina Fernández
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jorge R. Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| |
Collapse
|
8
|
Ferreira IA, Peixoto D, Losada AP, Quiroga MI, do Vale A, Costas B. Early innate immune responses in European sea bass ( Dicentrarchus labrax L.) following Tenacibaculum maritimum infection. Front Immunol 2023; 14:1254677. [PMID: 37731496 PMCID: PMC10507263 DOI: 10.3389/fimmu.2023.1254677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction The marine aquaculture industry has been witnessing a worldwide emergence of tenacibaculosis, a poorly understood bacterial disease caused by Tenacibaculum maritimum that affects commercially important fish. So far, knowledge on the T. maritimum virulence mechanisms is scarce and the pathogen-host interaction operating in tenacibaculosis remain to be disclosed. This study aimed at contributing to a better understanding of this disease, by evaluating the early innate immune response triggered in European sea bass (Dicentrarchus labrax) by a bath-challenge with T. maritimum. Methods Groups of sea bass were bath-challenged with T. maritimum (challenged fish) or mock-challenged. Undisturbed fish were used as controls (time 0). Samples of blood, liver and mucosal organs (skin, gills and posterior-intestine) were collected at 0 h (control) and at 6, 24, 48 and 72 h post-challenge (n=12). Mucosal organs were used for analyzing the expression of immune-related genes by RT-qPCR, as well as blood samples for assessing haematological and innate humoral parameters and liver for oxidative stress assessment. Results An increased expression of il-1β, il8, mmp9 and hamp1 was detected in all mucosal organs of infected fish when compared with control and mock-challenged fish, suggesting a pro-inflammatory response against T. maritimum transversal to all organs. The faster induction of these pro-inflammatory genes was observed in the gills. Regarding the systemic response, challenged fish presented neutrophilia, monocytosis, signs of anemia, and a decrease of bactericidal and lysozyme activities in plasma. Almost no variations were observed regarding hepatic oxidative stress. Discussion/Conclusions The present study suggests that T. maritimum induces a local innate immune response upon bath infection not only in the skin of European sea bass, but also in the gills and posterior-intestine, likely triggered by the T. maritimum's capacity to adhere, colonize and damage these organs that can function as entry ways to bacteria, leading ultimately to the seen host's systemic response.
Collapse
Affiliation(s)
- Inês A. Ferreira
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diogo Peixoto
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Ana Paula Losada
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Benjamín Costas
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Liang H, Tran NT, Deng T, Li J, Lei Y, Bakky MAH, Zhang M, Li R, Chen W, Zhang Y, Chen X, Li S. Identification and Characterization of a Potential Probiotic, Clostridium butyricum G13, Isolated from the Intestine of the Mud Crab (Scylla paramamosain). Microbiol Spectr 2023; 11:e0131723. [PMID: 37522814 PMCID: PMC10434012 DOI: 10.1128/spectrum.01317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
The butyrate-producing bacterium Clostridium butyricum has been proven to be important in improving the growth and health benefits of aquatic animals. In this study, C. butyricum G13 was isolated for the first time from the gut of the mud crab (Scylla paramamosain). The results of this study showed that C. butyricum G13 could produce a high concentration of butyric acid and grow well in a wide range of pHs (4 to 9) and NaCl (1 to 2.5%) and bile salt (0.2 to 1.0%) concentrations. In vitro characterization revealed that C. butyricum G13 is a Gram-positive and gamma-hemolytic bacterium sensitive to most antibiotics and shows hydrophobicity and the capacity to degrade starch. In vitro fermentation using mud crab gut contents showed that C. butyricum G13 alone or in combination with galactooligosaccharides (GOS) and/or resistant starch (RS) significantly increased butyric acid production and beneficially affected the abundance and diversity of intestinal microbiota. In addition, C. butyricum G13 can improve the survival rate of mud crabs and effectively maintain the normal structure of gut morphology after infection with Vibrio parahaemolyticus. In conclusion, C. butyricum G13 can be considered a potential probiotic that improves the immune capacity and confers health benefits on mud crabs. IMPORTANCE With the development of society, more and more aquatic animals are demanded. Intensification in the aquaculture scale is facing problems, such as disease outbreaks, eutrophication of water bodies, and misuse of antibiotics. Among these challenges, disease outbreak is the most important factor directly affecting aquaculture production. It is crucial to explore new approaches effective for the prevention and control of diseases. Probiotics have been widely used in aquaculture and have shown beneficial effects on the host. In this study, the butyrate-producing bacterium Clostridium butyricum G13 was isolated for the first time from the intestine of the mud crab through in vitro fermentation. The bacterium has probiotic properties and changes the gut microbiota to be beneficial to hosts in vitro as well as protecting hosts from Vibrio parahaemolyticus infection in vivo. The outcomes of this study indicate that C. butyricum G13 can be used as a potential probiotic in mud crab aquaculture.
Collapse
Affiliation(s)
- Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yifan Lei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Mohammad Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wenxuan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
10
|
Liu Y, Feng M, Johansen A, Cheng D, Xue J, Feng Y, Fan S, Li Z. Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161785. [PMID: 36736399 DOI: 10.1016/j.scitotenv.2023.161785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW.
Collapse
Affiliation(s)
- Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Anders Johansen
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde 4000, Denmark
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Scion, Private Bag 29237, Christchurch 8440, New Zealand
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuanghu Fan
- College of Life Science, Langfang Normal University, Langfang 065000, China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Cabello FC, Millanao AR, Lozano-Muñoz I, Godfrey HP. Misunderstandings and misinterpretations: Antimicrobial use and resistance in salmon aquaculture. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 36934450 DOI: 10.1111/1758-2229.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The exponential growth of aquaculture over the past 30 years has been accompanied by a parallel increase in the use of antimicrobials. This widespread use has had negative effects on animal, human and environmental health and affected the biodiversity of the environments where aquaculture takes place. Results showing these harmful effects have been resisted and made light of by the aquaculture industry and their scientific supporters through introduction of misunderstandings and misinterpretations of concepts developed in the evolution, genetics, and molecular epidemiology of antimicrobial resistance. We focus on a few of the most obvious scientific shortcomings and biases of two recent attempts to minimise the negative impacts of excessive antimicrobial use in Chilean salmon aquaculture on human and piscine health and on the environment. Such open debate is critical to timely implementation of effective regulation of antimicrobial usage in salmon aquaculture in Chile, if the negative local and worldwide impacts of this usage are to be avoided.
Collapse
Affiliation(s)
- Felipe C Cabello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ana R Millanao
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ivonne Lozano-Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Henry P Godfrey
- Department of Pathology (retired), New York Medical College, Valhalla, New York, USA
| |
Collapse
|
12
|
Wong-Benito V, Barraza F, Trujillo-Imarai A, Ruiz-Higgs D, Montero R, Sandino AM, Wang T, Maisey K, Secombes CJ, Imarai M. Infectious pancreatic necrosis virus (IPNV) recombinant viral protein 1 (VP1) and VP2-Flagellin fusion protein elicit distinct expression profiles of cytokines involved in type 1, type 2, and regulatory T cell response in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:785-795. [PMID: 36323384 DOI: 10.1016/j.fsi.2022.10.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
In this study, we examined the cytokine immune response against two proteins of infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss), the virion-associated RNA polymerase VP1 and VP2-Flagellin (VP2-Flg) fusion protein. Since VP1 is not a structural protein, we hypothesize it can induce cellular immunity, an essential mechanism of the antiviral response. At the same time, the fusion construction VP2-Flg could be highly immunogenic due to the presence of the flagellin used as an adjuvant. Fish were immunized with the corresponding antigen in Montanide™, and the gene expression of a set of marker genes of Th1, Th2, and the immune regulatory response was quantified in the head kidney of immunized and control fish. Results indicate that VP1 induced upregulation of ifn-γ, il-12p40c, il-4/13a, il-4/13b2, il-10a, and tgf-β1 in immunized fish. Expression of il-2a did not change in treated fish at the times tested. The antigen-dependent response was analysed by in vitro restimulation of head kidney leukocytes. In this assay, the group of cytokines upregulated after VP1-restimulation was consistent with those upregulated in the head kidney in vivo. Interestingly, VP1 induced il-2a expression after in vitro restimulation. The analysis of sorted lymphocytes showed that the increase of cytokines occurred in CD4-1+ T cells suggesting that Th differentiation happens in response to VP1. This is also consistent with the expression of t-bet and gata3, the master regulators for Th1/Th2 differentiation in the kidneys of immunized animals. A different cytokine expression profile was found after VP2-Flg administration, i.e., upregulation occurs for ifn-γ, il-4/13a, il-10a, and tgf-β1, while down-regulation was observed in il-4/13b2 and il-2a. The cytokine response was due to flagellin; only the il-2a effect was dependent upon VP2 in the fusion protein. To the best of our knowledge this study reports for the first-time characteristics of the adaptive immune response induced in response to IPNV VP1 and the fusion protein VP2-Flg in fish. VP1 induces cytokines able to trigger the humoral and cell-mediated immune response in rainbow trout. The analysis of the fish response against VP2-Flg revealed the immunogenic properties of Aeromonas salmonicida flagellin, which can be further tested for adjuvanticity. The novel immunogenic effects of VP1 in rainbow trout open new opportunities for further IPNV vaccine development using this viral protein.
Collapse
Affiliation(s)
- Valentina Wong-Benito
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Felipe Barraza
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Agustín Trujillo-Imarai
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Daniela Ruiz-Higgs
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Ruth Montero
- Laboratorio de Inmunología Comparativa. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Ana María Sandino
- Laboratorio de Virología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Kevin Maisey
- Laboratorio de Inmunología Comparativa. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Mónica Imarai
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
13
|
Valenzuela-Aviles P, Torrealba D, Figueroa C, Mercado L, Dixon B, Conejeros P, Gallardo-Matus J. Why vaccines fail against Piscirickettsiosis in farmed salmon and trout and how to avoid it: A review. Front Immunol 2022; 13:1019404. [PMID: 36466828 PMCID: PMC9714679 DOI: 10.3389/fimmu.2022.1019404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/24/2022] [Indexed: 09/28/2023] Open
Abstract
Piscirickettsiosis is the most severe, persistent, and damaging disease that has affected the Chilean salmon industry since its origins in the 1980s. As a preventive strategy for this disease, different vaccines have been developed and used over the last 30 years. However, vaccinated salmon and trout frequently die in the sea cages and the use of antibiotics is still high demonstrating the low efficiency of the available vaccines. The reasons why the vaccines fail so often are still debated, but it could involve different extrinsic and intrinsic factors. Among the extrinsic factors, mainly associated with chronic stress, we can distinguish: 1) biotic including coinfection with sea lice, sealions attacks or harmful algal blooms; 2) abiotic including low oxygen or high temperature; and 3) farm-management factors including overcrowding or chemical delousing treatments. Among the intrinsic factors, we can distinguish: 1) fish-related factors including host's genetic variability (species, population and individual), sex or age; 2) pathogen-related factors including their variability and ability to evade host immune responses; and 3) vaccine-related factors including low immunogenicity and poor matches with the circulating pathogen strain. Based on the available evidence, in order to improve the development and the efficacy of vaccines against P. salmonis we recommend: a) Do not perform efficacy evaluations by intraperitoneal injection of pathogens because they generate an artificial protective immune response, instead cohabitation or immersion challenges must be used; b) Evaluate the diversity of pathogen strains in the field and ensure a good antigenic match with the vaccines; c) Investigate whether host genetic diversity could be improved, e.g. through selection, in favor of better and longer responses to vaccination; d) To reduce the stressful effects at the cage level, controlling the co-infection of pathogens and avoiding fish overcrowding. To date, we do not know the immunological mechanisms by which the vaccines against P. salmonis may or may not generate protection. More studies are required to identify what type of response, cellular or molecular, is required to develop effective vaccines.
Collapse
Affiliation(s)
- Paula Valenzuela-Aviles
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Débora Torrealba
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carolina Figueroa
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Instituto de Biología, Valparaíso, Chile
| | - Brian Dixon
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Canada
| | - Pablo Conejeros
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Facultad de Ciencias, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | - José Gallardo-Matus
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
14
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Splenic protection network revealed by transcriptome analysis in inactivated vaccine-immunized flounder ( Paralichthys olivaceus) against Edwardsiella tarda infection. Front Immunol 2022; 13:1058599. [PMID: 36439120 PMCID: PMC9681833 DOI: 10.3389/fimmu.2022.1058599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 07/01/2024] Open
Abstract
The protective immune response produced by fish after vaccination is crucial for vaccine effectiveness. Our previous studies have shown inactivated vaccine against Edwardsiella tarda can induce immune response in flounder (Paralichthys olivaceus). To elucidate the protective immune response at the genetic level, in this study, flounder was immunized with inactivated E. tarda for 5 weeks, and then they were challenged with E. tarda. The spleen was dissected at 7th day post immunization, 1st and 7th day post challenge, respectively. Transcriptome analysis showed that average of 46 million clean reads were obtained per library, while percentage of clean reads being mapped to reference genome was more than 89% in all cases, which suggested good quality of samples. As for differentially expressed genes (DEGs) identification in inactivated E. tarda groups, at 7th day post immunization, 1422 DEGs were identified and significantly enriched in innate immune-related pathways, such as Phagosome, Cell adhesion molecules and NF-kappa B signaling pathway; At 1st post challenge day, 1210 DEGs were identified and enriched to Antigen processing and presentation and Cell adhesion molecules, indicating that the pathogen was rapidly recognized and delivered; At 7th post challenge day, 1929 DEGs were identified, belonged to Toll-like receptor signaling pathway, Antigen processing and presentation, Th1 and Th2 cell differentiation and Th17 cell differentiation. Compared to 7th post immunization day, 73 immune-associated DEGs were identified at 1st post challenge day. Protein-protein interaction networks analysis revealed 11 hub genes (TLR7, TLR3, CXCR4, IFIH1, TLR8 etc), associated with recognition of pathogens and activation of innate immunity; while for 7th post challenge day, 141 immune-associated DEGs were identified. 30 hub genes (IL6, STAT1, HSP90A.1, TLR7, IL12β etc) were associated with stimulation of lymphocyte differentiation and activation of cellular immunity. Ten immune-related genes were randomly selected for RT-qPCR validation at each time point. In conclusion, data revealed protection of flounder against E. tarda infection by inactivated vaccine is mediated via immediate recognition of pathogen and subsequently activation of cellular immunity. Results give new aspect for vaccine protection cascades, is good references for vaccine evaluation.
Collapse
Affiliation(s)
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, MOE, Ocean University of China, Qingdao, China
| | | | | | | | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, MOE, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Ferri G, Lauteri C, Vergara A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics (Basel) 2022; 11:1574. [PMID: 36358229 PMCID: PMC9686606 DOI: 10.3390/antibiotics11111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/07/2023] Open
Abstract
Significant challenges to worldwide sustainable food production continue to arise from environmental change and consistent population growth. In order to meet increasing demand, fish production industries are encouraged to maintain high growth densities and to rely on antibiotic intervention throughout all stages of development. The inappropriate administering of antibiotics over time introduces selective pressure, allowing the survival of resistant bacterial strains through adaptive pathways involving transferable nucleotide sequences (i.e., plasmids). This is one of the essential mechanisms of antibiotic resistance development in food production systems. This review article focuses on the main international regulations and governing the administering of antibiotics in finfish husbandry and summarizes recent data regarding the distribution of bacterial resistance in the finfish aquaculture food production chain. The second part of this review examines promising alternative approaches to finfish production, sustainable farming techniques, and vaccination that circumvents excessive antibiotic use, including new animal welfare measures. Then, we reflect on recent adaptations to increasingly interdisciplinary perspectives in the field and their greater alignment with the One Health initiative.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| | | | | |
Collapse
|
16
|
Dual RNA-Seq Analysis Reveals Transcriptome Effects during the Salmon–Louse Interaction in Fish Immunized with Three Lice Vaccines. Vaccines (Basel) 2022; 10:vaccines10111875. [PMID: 36366383 PMCID: PMC9692469 DOI: 10.3390/vaccines10111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Due to the reduced efficacy of delousing drugs used for sea lice control in salmon aquaculture, fish vaccines have emerged as one of the most sustainable strategies in animal health. Herein, the availability of C. rogercresseyi and Salmo salar genomes increases the capability of identifying new candidate antigens for lice vaccines using RNA sequencing and computational tools. This study aimed to evaluate the effects of two recombinant antigens characterized as peritrophin and cathepsin proteins on the transcriptome profiling of Atlantic salmon during a sea lice infestation. Four experimental groups were used: Peritrophin, cathepsin, and peritrophin/cathepsin (P/C), and PBS as the control. C. rogercresseyi female, S. salar head kidney, and skin tissue samples were sampled at 25 days post-infestation (dpi) for Illumina sequencing and RNA-seq analysis. Differential gene expression, gene ontology, and chromosomal expression analyses were performed. Furthermore, the dual RNA-seq analysis approach was performed to simultaneously explore host and pathogen transcriptomes, identifying functional associations for vaccine design. The morphometry of female sea lice exposed to immunized fish was also evaluated. The RNA-Seq analysis exhibited prototype-dependent transcriptome modulation, showing a conspicuous competition for metal ions during the infestation. Moreover, Dual RNA-seq analysis revealed vaccine-dependent gene patterns in both the host and the pathogen. Notably, significant morphometric differences between lice collected from immunized and control fish were observed, where cathepsin and P/C showed 57% efficacy. This study showed the potential of two proteins as lice vaccines for the salmon industry, suggesting novel molecular mechanisms between host–parasite interactions.
Collapse
|
17
|
Shehata AM, Abdel-Moneim AME, Gewida AGA, Abd El-Hack ME, Alagawany M, Naiel MAE. Phytogenic Substances: A Promising Approach Towards Sustainable Aquaculture Industry. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:160-193. [DOI: 10.2174/9789815049015122010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The aquaculture industry has shown rapid growth over the last three
decades, especially with improving the farming systems. However, the rapid expansion
and intensification practices in the aquaculture sector have been marred by increased
stress levels and disease outbreaks, and subsequently, high fish mortality. Excessive
use of veterinary drugs and antibiotics in aquaculture poses a great threat to human and
aquatic animals' health, as well as to the biosystem. Furthermore, exposure to various
pollutants such as industrial effluents and agricultural pesticides may cause devastating
toxicological aspects of fish and adversely affect their health and growth. Besides, with
a growing world population, there is a growing interest in intensifying aquaculture
production to meet the global demand for nutritional security needs. Uncontrolled
intensification of aquaculture production makes aquatic animals both vulnerable to, and
potential sources of a wide range of hazards include pathogen transmission, disease
outbreak, immunosuppression, impaired growth performance, malnutrition, foodborne
illness, and high mortality. Plant-derived compounds are generally recognized as safe
for fish, humans, and the environment and possess great potential as functional
ingredients to be applied in aquaculture for several purposes. Phytogenic additives
comprise a wide variety of medicinal plants and their bioactive compounds with
multiple biological functions. The use of phytogenic compounds can open a promising
approach towards enhancing the health status of aquatic animals. However, further in-vivo trials are necessary under favorable conditions with controlled amounts of identified bioactive compounds along with toxicity testing for fish safety towards a realistic
evaluation of the tested substance efficacy.
Collapse
|
18
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Protective cellular and humoral immune responses to Edwardsiella tarda in flounder (Paralichthys olivaceus) immunized by an inactivated vaccine. Mol Immunol 2022; 149:77-86. [DOI: 10.1016/j.molimm.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022]
|
19
|
High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. BIOLOGY 2022; 11:biology11070990. [PMID: 36101373 PMCID: PMC9312335 DOI: 10.3390/biology11070990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
Simple Summary The red cusk-eel (Genypterus chilensis) is a native Chilean species important for aquaculture diversification in Chile. The effect of high-temperature stress on the liver, a key organ for fish metabolism, is unknown. In this study we determined for the first time the effects of high-temperature stress on the liver of red cusk-eel. The results showed that high-temperature stress increased hepatic enzyme activity in the plasma of stressed fish. Additionally, this stressor generated oxidative damage in liver, and generated a transcriptional response with 1239 down-regulated and 1339 up-regulated transcripts associated with several processes, including unfolded protein response, heat shock response and oxidative stress, among others. Together, these results indicate that high-temperature stress generates a relevant impact on liver, with should be considered for the aquaculture and fisheries industry of this species under a climate change scenario. Abstract Environmental stressors, such as temperature, are relevant factors that could generate a negative effect on several tissues in fish. A key fish species for Chilean aquaculture diversification is the red cusk-eel (Genypterus chilensis), a native fish for which knowledge on environmental stressors effects is limited. This study evaluated the effects of high-temperature stress on the liver of red cusk-eel in control (14 °C) and high-temperature (19 °C) groups using multiple approaches: determination of plasmatic hepatic enzymes (ALT, AST, and AP), oxidative damage evaluation (AP sites, lipid peroxidation, and carbonylated proteins), and RNA-seq analysis. High-temperature stress generated a significant increase in hepatic enzyme activity in plasma. In the liver, a transcriptional regulation was observed, with 1239 down-regulated and 1339 up-regulated transcripts. Additionally, high-temperature stress generated oxidative stress in the liver, with oxidative damage and transcriptional modulation of the antioxidant response. Furthermore, an unfolded protein response was observed, with several pathways enriched, as well as a heat shock response, with several heat shock proteins up regulated, suggesting candidate biomarkers (i.e., serpinh1) for thermal stress evaluation in this species. The present study shows that high-temperature stress generated a major effect on the liver of red cusk-eel, knowledge to consider for the aquaculture and fisheries of this species.
Collapse
|
20
|
Bell JL, Mandel R, Brainard AS, Altschuld J, Wenning RJ. Environmental monitoring tools and strategies in salmon net-pen aquaculture. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:950-963. [PMID: 35438842 DOI: 10.1002/ieam.4622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
As global salmon production accelerates in response to higher consumer demand for seafood, so does the need for sophisticated monitoring strategies to enable and maintain ethically sound, productive, and environmentally friendly production of fish. Innovative technologies are needed to ensure proper water quality, react to unfavorable hydrodynamic conditions, monitor for changes in fish health, and minimize ecological interactions with indigenous aquatic life, including fish escapes. Automated sensors connected wirelessly to data stations, visualization aids, and acoustic and physical tagging technologies are emerging tools capable of detecting environmental stress and its associated behavioral changes in farmed fish. Computer modeling of the monitoring data collected from a single salmon farm or collection of farms sharing a data network can be used to spot environmental trends vital for anticipating some of the consequences of climate change. Environmental regulations governing salmon farming in coastal areas are becoming more stringent in response to public pressures to protect coastal and ocean resources and to provide for multipurpose use of marine resources. As net-pen salmon aquaculture expands globally, new technologies will be essential to collect and interpret the anticipated larger volumes of data needed to meet these stringent regulatory requirements and to safeguard the high investment costs inherent in salmon farming. Integr Environ Assess Manag 2022;18:950-963. © SETAC.
Collapse
Affiliation(s)
| | | | | | - Jon Altschuld
- Chinook Landscape Architecture, LLC, Centennial, Colorado, USA
| | | |
Collapse
|
21
|
Qualitative Risk Assessment for Antimicrobial Resistance among Humans from Salmon Fillet Consumption Due to the High Use of Antibiotics against Bacterial Infections in Farmed Salmon. Antibiotics (Basel) 2022; 11:antibiotics11050662. [PMID: 35625306 PMCID: PMC9137906 DOI: 10.3390/antibiotics11050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Worldwide, aquaculture is considered as a hotspot environment for antimicrobial resistance (AMR) due to the intense use of antibiotics in its productive systems. Chile is the second largest producer of farmed salmon worldwide, and tons of antibiotics are used to control bacterial diseases, such as Salmon Rickettsial Syndrome (SRS) and Bacterial Kidney Disease (BKD). However, studies determining the risk of consuming salmon fillets that have been treated with antibiotics during the salmon production are limited. Consulting leading experts in the field could provide a knowledge base to identify and address this question and research gaps. Methods: Multisectoral risk perception of AMR through salmon fillet consumption was evaluated by eliciting expert data obtained through discussions during a workshop and from questionnaires given to experts from academia (n = 15, 63%), the public sector (n = 5, 21%), and the salmon industry (n = 4, 17%). Results: The qualitative risk analysis suggested an overall ‘low’ probability of AMR acquisition by consumption of salmon fillet that had been treated during the production cycle. The risk perception varied slightly between production stages in freshwater and seawater. In consensus with all sectors, this overall ‘low’, but existing, risk was probably associated with bacterial infections and the use of antibiotics. Conclusions: As it is essential to reduce the use of antibiotics in the Chilean salmon industry, this intersectoral approach and consensual results could favor effective implementation of targeted initiatives for the control and prevention of major bacterial diseases.
Collapse
|
22
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
23
|
The Early Immune Response of Lymphoid and Myeloid Head-Kidney Cells of Rainbow Trout (Oncorhynchus mykiss) Stimulated with Aeromonas salmonicida. FISHES 2022. [DOI: 10.3390/fishes7010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The teleost head kidney is a highly relevant immune organ, and myeloid cells play a major role in this organ’s innate and adaptive immune responses. Because of their complexity, the early phases of the innate immune reaction of fish against bacteria are still poorly understood. In this study, naïve rainbow trout were stimulated with inactivated A. salmonicida and sampled at 12 h, 24 h and 7 d poststimulation. Cells from the head kidney were magnetically sorted with a monoclonal antibody mAB21 to obtain one (MAb21-positive) fraction enriched with myeloid cells and one (MAb21-negative) fraction enriched with lymphocytes and thrombocytes. The gene expression pattern of the resulting cell subpopulations was analysed using a panel of 43 immune-related genes. The results show an overall downregulation of the complement pathway and cytokine production at the considered time points. Some of the selected genes may be considered as parameters for diagnosing bacterial furunculosis of rainbow trout.
Collapse
|
24
|
Muñoz C, González-Lorca J, Parra M, Soto S, Valdes N, Sandino AM, Vargas R, González A, Tello M. Lactococcus lactis Expressing Type I Interferon From Atlantic Salmon Enhances the Innate Antiviral Immune Response In Vivo and In Vitro. Front Immunol 2021; 12:696781. [PMID: 34475871 PMCID: PMC8406758 DOI: 10.3389/fimmu.2021.696781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
In salmon farming, viruses are responsible for outbreaks that produce significant economic losses for which there is a lack of control tools other than vaccines. Type I interferon has been successfully used for treating some chronic viral infections in humans. However, its application in salmonids depends on the proper design of a vehicle that allows its massive administration, ideally orally. In mammals, administration of recombinant probiotics capable of expressing cytokines has shown local and systemic therapeutic effects. In this work, we evaluate the use of Lactococcus lactis as a type I Interferon expression system in Atlantic salmon, and we analyze its ability to stimulate the antiviral immune response against IPNV, in vivo and in vitro. The interferon expressed in L. lactis, even though it was located mainly in the bacterial cytoplasm, was functional, stimulating Mx and PKR expression in CHSE-214 cells, and reducing the IPNV viral load in SHK-1 cells. In vivo, the oral administration of this L. lactis producer of Interferon I increases Mx and PKR expression, mainly in the spleen, and to a lesser extent, in the head kidney. The oral administration of this strain also reduces the IPNV viral load in Atlantic salmon specimens challenged with this pathogen. Our results show that oral administration of L. lactis producing Interferon I induces systemic effects in Atlantic salmon, allowing to stimulate the antiviral immune response. This probiotic could have effects against a wide variety of viruses that infect Atlantic salmon and also be effective in other salmonids due to the high identity among their type I interferons.
Collapse
Affiliation(s)
- Carlos Muñoz
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Josue González-Lorca
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mick Parra
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sarita Soto
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Natalia Valdes
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,ActivaQ S.A., Santiago, Chile
| | - Rodrigo Vargas
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alex González
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Osorno, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,IctioBiotic SpA, Santiago, Chile
| |
Collapse
|
25
|
Abdel-Warith AWA, Younis EM, Al-Asgah NA, Gewaily MS, El-Tonoby SM, Dawood MAO. Role of Fucoidan on the Growth Behavior and Blood Metabolites and Toxic Effects of Atrazine in Nile Tilapia Oreochromis niloticus (Linnaeus, 1758). Animals (Basel) 2021; 11:ani11051448. [PMID: 34069982 PMCID: PMC8157872 DOI: 10.3390/ani11051448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Toxic derivatives reach the ponds and cages where fish are grown, and the continuous exposure to these contaminants proved to impair the healthy status of several finfish species. In some countries famous for cultivating rice and corn, atrazine (ATZ) is massively applied to protect plants from invaders. Many functional additives are permitted for application in the aquaculture sector as natural alternatives for chemotherapies. In this study, the toxicity impacts of ATZ and the protective role of fucoidan were investigated on the health performance of Nile tilapia. Long-term exposure to ATZ resulted in low growth rate, impaired hepato-renal function, intestinal inflammation, and oxidative stress in Nile tilapia. However, the obtained results soundly support fucoidan’s potential role to cope with the impacts of ATZ on Nile tilapia. Abstract Waterborne herbicides are stressful agents that threaten the productivity and safety of finfish species. In this study, the toxicity impacts of atrazine (ATZ) and the protective role of fucoidan were investigated on the health performance of Nile tilapia. For 40 days, the total number of 180 Nile tilapia was assigned in four groups (triplicates, 15 fish/replicate), where the first (control) and third groups were offered the control diet, while the second and fourth groups were offered a fucoidan (FCN). Further, in the third and fourth groups, the water was mixed with atrazine (ATZ) at 1.39 mg/L daily. The growth rate, FCR, and survival rate were markedly enhanced by fucoidan but severely declined by ATZ exposure (p < 0.05). The morphological structure of the intestine in the control fish revealed normal structure, while fucoidan-treated groups showed eminent enhancement and branching of the intestinal villi. The intestine of ATZ-treated fish revealed deterioration and the intestinal mucosa, inflammatory cell infiltration, and separation of lining epithelium. The highest Hb, PCV, RBCs, WBCs, total protein, and albumin were observed in Nile tilapia fed fucoidan, but the worst values were seen in ATZ-intoxicated fish (p < 0.05). The liver-related enzymes (ALT and AST) and kidney function (urea and creatinine) showed impaired values by ATZ toxicity and were regulated by dietary fucoidan. Meanwhile, fish fed fucoidan and exposed to ATZ had lower total cholesterol and triglyceride values than fish exposed to ATZ without fucoidan feeding (p < 0.05). The SOD, CAT, GPx, cortisol, and glucose levels were increased in ATZ-exposed fish and reduced by fucoidan (p < 0.05). However, the level of malondialdehyde (MDA) was reduced in fucoidan-fed fish and increased in ATZ-exposed fish (p < 0.05). Altogether, dietary fucoidan is required in fish diets to alleviate the impacts of ATZ-induced toxicity.
Collapse
Affiliation(s)
- Abdel-Wahab A. Abdel-Warith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
| | - Nasser A. Al-Asgah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Shaimaa M. El-Tonoby
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Correspondence:
| |
Collapse
|
26
|
Vargas D, Vallejos-Vidal E, Reyes-Cerpa S, Oyarzún-Arrau A, Acuña-Castillo C, Imarai M, Reyes-López FE, Sandino AM. The Analysis of Live-Attenuated Piscirickettsia salmonis Vaccine Reveals the Short-Term Upregulation of Innate and Adaptive Immune Genes in Atlantic Salmon ( Salmo salar): An In Situ Open-Sea Cages Study. Microorganisms 2021; 9:microorganisms9040703. [PMID: 33805284 PMCID: PMC8066903 DOI: 10.3390/microorganisms9040703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Piscirickettsia salmonis, the etiological agent of the Salmon Rickettsial Septicemia (SRS), is one the most serious health problems for the Chilean salmon industry. Typical antimicrobial strategies used against P. salmonis include antibiotics and vaccines, but these applications have largely failed. A few years ago, the first attenuated-live vaccine against SRS (ALPHA JECT LiVac® SRS vaccine) was released to the market. However, there is no data about the agents involved in the activation of the immune response induced under field conditions. Therefore, in this study we evaluated the expression profile of a set of gene markers related to innate and adaptive immunity in the context of a cellular response in Atlantic salmon (Salmo salar) reared under productive farm conditions and immunized with a live-attenuated vaccine against P. salmonis. We analyzed the expression at zero, 5-, 15- and 45-days post-vaccination (dpv). Our results reveal that the administration of the attenuated live SRS LiVac vaccine induces a short-term upregulation of the cellular-mediated immune response at 5 dpv modulated by the upregulation of ifnα, ifnγ, and the cd4 and cd8α T cell surface markers. In addition, we also registered the upregulation of il-10 and tgfβ. Altogether, the results suggest that a balanced activation of the immune response took place only at early times post-vaccination (5 dpv). The scope of this short-term upregulation of the cellular-mediated immune response against a natural outbreak in fish subjected to productive farm conditions deserves further research.
Collapse
Affiliation(s)
- Deborah Vargas
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, 8580745 Santiago, Chile;
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, 8580745 Santiago, Chile
| | - Aarón Oyarzún-Arrau
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Mónica Imarai
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Felipe E. Reyes-López
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, 7500975 Providencia, Chile
- Correspondence: (F.E.R.-L.); (A.M.S.)
| | - Ana María Sandino
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Correspondence: (F.E.R.-L.); (A.M.S.)
| |
Collapse
|
27
|
Irgang R, Avendaño-Herrera R. Experimental tenacibaculosis infection in adult conger eel (Genypterus chilensis, Guichenot 1948) by immersion challenge with Tenacibaculum dicentrarchi. JOURNAL OF FISH DISEASES 2021; 44:211-216. [PMID: 33064874 DOI: 10.1111/jfd.13282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Valparaíso, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Valparaíso, Chile
| |
Collapse
|
28
|
Van Doan H, Hoseinifar SH, Hung TQ, Lumsangkul C, Jaturasitha S, Paolucci M. Dietary inclusion of chestnut (Castanea sativa) polyphenols to Nile tilapia reared in biofloc technology: Impacts on growth, immunity, and disease resistance against Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 105:319-326. [PMID: 32702475 DOI: 10.1016/j.fsi.2020.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
A feeding trial was carried out to examine the effects of adding chestnut (Castanea sativa) polyphenols (CSP) on the growth, skin mucus and serum immune parameters of Nile tilapia (Oreochromis niloticus). Five experimental diets with inclusion levels of 0, 1, 2, 4, and 8 g kg-1 of CSP were fed to Nile tilapia fingerlings (12.77 ± 0.17 g fish-1) during an eight-week trial. Fish were analyzed on the fourth and eighth week to determine the influences of CSP on growth, skin mucus, and serum immune parameters. Challenging test versus Streptococcus agalactiae was evaluated at the end of the trial. Fish fed with CSP enriched diets displayed a significant increase (P ≤ 0.05) in growth and a decline in feed conversion ratio (P ≤ 0.05). Similarly, skin mucus and serum immune parameters were significantly increased (P ≤ 0.05) in fish fed CSP with respect to the control. The effects were already evident four weeks after the CSP administration. The disease protection test displayed that the fish's survival rate was significantly higher (P < 0.05) in CSP diets over the control. The relative percentage of survival (RSP) was 62.5, 75.0, 58.3, and 37.5 in fish fed diets contained 1, 2, 4, and 8 g kg-1 CSP, respectively. The best effect on growth, immune response, and disease resistance were shown in Nile tilapia fed with a diet supplementation of 2 g kg-1 CSP.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Tran Quang Hung
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sanchai Jaturasitha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, 82100, Italy
| |
Collapse
|
29
|
Saucedo-Uriarte JA, Honorio-Javes CE, Vallenas-Sánchez YPA, Acuña-Leiva A. Bacteriófagos: aliados para combatir enfermedades bacterianas en acuicultura. Un primer punto de partida en la acuicultura ecológica. JOURNAL OF THE SELVA ANDINA ANIMAL SCIENCE 2020. [DOI: 10.36610/j.jsaas.2020.070200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Saucedo-Uriarte JA, Honorio-Javes CE, Vallenas-Sánchez YPA, Acuña-Leiva A. Bacteriophages: allies to combat bacterial diseases in aquaculture. A first starting point in organic aquaculture. JOURNAL OF THE SELVA ANDINA ANIMAL SCIENCE 2020. [DOI: 10.36610/j.jsaas.2020.070200107x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|