1
|
Phudinsai P, Wangkahart E. Effect of the MONTANIDE™ IMS 1312 adjuvant on the innate and adaptive immune responses of Nile tilapia (Oreochromis niloticus) against Streptococcusagalactiae through immersion vaccination. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110012. [PMID: 39510429 DOI: 10.1016/j.fsi.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Streptococcus agalactiae is a common pathogenic bacterium caused of streptococcosis, which has a negative impact on Nile tilapia aquaculture. Numerous vaccines have been developed recently to combat this disease, which are key components of global health efforts to prevent disease outbreaks. MONTANIDE™ IMS 1312 is a micro-emulsion recommended for immersion of fish. However, the data on the effectiveness of those immersion vaccines containing this aqueous adjuvant in fish are limited. The objective of this research was to explore the potential of MONTANIDE™ IMS 1312, an adjuvant for immersion vaccination, administered with an S. agalactiae inactivated whole-cell vaccine (SAIV) in Nile tilapia. Fish were separated into three groups: 1) fish were vaccinated by immersion vaccination with PBS (CTRL), 2) fish were vaccinated by immersion vaccination with SAIV vaccine alone (SAIV), and 3) fish were vaccinated by immersion vaccination with SAIV containing MONTANIDE™ IMS 1312. We found that the activity of several innate immunity parameters was increased significantly (P < 0.05) following the immunization. As expected, the levels of specific IgM antibody were significantly increased post-vaccination, and the highest IgM antibody levels were found in the fish vaccinated with SAIV containing MONTANIDE™ IMS 1312. Analysis of the transcriptional expression of major pro-inflammatory cytokines, as well as the presence of IgM+ B cells, revealed significant increases, suggesting that Nile tilapia were able to initiate cellular immune responses following vaccination. Taken together, our results indicate that using MONTANIDE™ IMS 1312 in combination with a SAIV can induce strong protection post S. agalactiae infection. Importantly, administration of an adjuvanted immersion vaccine is safe, no side effects were observed, and it does not negatively impact fish growth. In conclusion, MONTANIDE™ IMS 1312 has the potential to be used as adjuvants for immersion vaccines against streptococcosis in Nile tilapia.
Collapse
Affiliation(s)
- Piyachat Phudinsai
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
2
|
El-Houseiny W, Abdelaziz R, Mansour AT, Alqhtani HA, Bin-Jumah MN, Bayoumi Y, Arisha AH, Al-Sagheer AA, El-Murr AE. Effects of α-sitosterol on growth, hematobiochemical profiles, immune-antioxidant resilience, histopathological features and expression of immune apoptotic genes of Nile tilapia, Oreochromis niloticus, challenged with Candida albicans. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111035. [PMID: 39313020 DOI: 10.1016/j.cbpb.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
In this study, the effect of the Streptomyces misakiensis metabolite (α- sitosterol, 0, 20, 40, 60, and 80 mg/kg) dietary supplementation on growth performance, antioxidant-immune stability and Candida albicans resistance of Nile tilapia was evaluated. The results revealed that the incorporation of α-sitosterol at doses of 60 and 80 mg/kg into the diet significantly improved the growth rate of Nile tilapia. The fish receiving 80 mg/kg showed an increased level of high-density lipoprotein, total protein, globulin, and albumin, and significantly reduced levels of indicators of hepato-renal damage, glucose, triglycerides, low-density lipoprotein, and total cholesterol. Dietary α-sitosterol induced a considerable increase in hepatopancreas glutathione peroxidase, superoxide dismutase and catalase activities and a significant drop in malondialdehyde levels. Supplementing the diet with 80 mg/kg of α-sitosterol increased nitric oxide, complement-3, nitro blue tetrazolium levels, lysozyme, and phagocytic activities. In particular, supplementing with α-sitosterol at 60-80 mg/kg of diet significantly enhanced the expression of pro/anti-inflammatory markers (il1b, il10, tgfb, ifng, tnfa and il8) after the C. albicans challenge. Also, there was a decrease in cumulative mortality percent, pro-apoptotic markers (casp3, bax and hsp70) and an increase in anti-apoptotic indicators (bcl2). Interestingly, following the C. albicans challenge, fish that received 0 and 20 mg α-sitosterol/kg exhibited significant inflammation in the hepatopancreas, spleen, and intestine. On the other hand, inflammation could be alleviated by feeding 60-80 mg α-sitosterol/kg. Due to these findings, α-sitosterol could be an innovative option to enhance growth, general physiological status, immune service, and antifungal resistance of Nile tilapia against C. albicans.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and FoodSciences, King Faisal University, Al-Ahsa, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha, Alexandria University, Alexandria, Egypt.
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - May Nasser Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Yasmin Bayoumi
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University Zagazig, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Abd Elhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Nasr-Eldahan S, Attia Shreadah M, Maher AM, El-Sayed Ali T, Nabil-Adam A. New vaccination approach using formalin-killed Streptococcus pyogenes vaccine on the liver of Oreochromis niloticus fingerlings. Sci Rep 2024; 14:18341. [PMID: 39112606 PMCID: PMC11306627 DOI: 10.1038/s41598-024-67198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Newly synthesized vaccines prepared from formalin-killed bacteria Streptococcus pyogenes were investigated in the current study to evaluate the effectiveness of the newly synthesized vaccine as well as their safety by injected intraperitoneal. The study involved several steps 1st step is the preparation of the vaccine followed by the 2nd step: Evaluate the effectiveness and vaccine safety against pathogenic S. pyogenes through 4 different groups including control (Group I). Group II (Bacterial, infected group), Group III (Vaccine), and the Last group was the challenged group after the vaccination (Vacc + Bac). Different Immunological and biochemical parameters were measured in addition to hematological and histopathological examinations. For example, oxidative/antioxidants, inflammatory biomarkers, fragmentation and cell damage, and finally the histopathological study. The current study showed an increase in all oxidative, inflammatory, and cell damage (DNA fragmentation assays), additionally markedly elevation in histopathological cell damage in the infected group (Group II) compared with the control group. The vaccine and challenged after vaccination group (vaccine + Bacteria), showed great improvement in oxidative biomarkers (LPO) and an increase in antioxidants biomarkers (GSH, SOD, GST, DPPH, ABTS, GR and GPx), Also the inflammation and histopathological examination. The newly synthesized vaccine improved the resistance of Oreochromis niloticus and can be used as a preventive therapy agent for pathogenic bacteria S. pyogenes.
Collapse
Affiliation(s)
- Sameh Nasr-Eldahan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Attia Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Tamer El-Sayed Ali
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo, Egypt.
| |
Collapse
|
4
|
Elewasy OA, Elrafie AS, Rasheed NA, Adli SH, Younis EM, Abdelwarith AA, Davies SJ, Ibrahim RE. The alleviative effect of Bacillus subtilis-supplemented diet against Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). Vet Res Commun 2024; 48:2513-2525. [PMID: 38869748 DOI: 10.1007/s11259-024-10418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
Bacterial illness causes detrimental impacts on fish health and survival and finally economic losses for the aquaculture industry. Antibiotic medication causes microbial resistance, so alternative control strategies should be applied. In this work, we investigated the probiotic-medicated diet as an alternative control approach for antibiotics in treating Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). One hundred eighty fish (50 ± 2.5 g Mean ± SD) were allocated into six groups in glass aquariums (96 L) in triplicate for 10 days. Groups 1 (G1), G2, and G 3 were intraperitoneally (IP) injected with 0.5 mL sterilized tryptic soy broth and fed on a basal diet, basal diet contained B. subtilis (BS) (1 × 10 5 CFU/ kg-1 diet), and basal diet contained trimethoprim-sulfamethoxazole (TMP-SMX) (1.5 g/kg-1 diet), respectively. Additionally, G4, G5, and G6 were IP challenged with 0.5 mL of V. cholerae (1.5 × 107 CFU) and received the same feeding regime as G 1 to 3, respectively. The results exhibited that the V. cholera-infected fish exhibited skin hemorrhage, fin rot, and the lowest survival (63.33%). Additionally, lowered immune-antioxidant biomarkers (white blood cells count, serum bactericidal activity, phagocytic activity, phagocytic index, and lysozymes) with higher lipid peroxidation marker (malondialdehyde) were consequences of V. cholerae infection. Noteworthy, fish-fed therapeutic diets fortified with BS and TMP-SMX showed a substantial amelioration in the clinical signs and survival. The BS diet significantly improved (P < 0.05) the immune-antioxidant indices of the infected fish compared to the TMP-SMX diet. The current findings supported the use of a BS-enriched diet as an eco-friendly approach for the control of V. cholerae in O. niloticus.
Collapse
Affiliation(s)
- Omnia A Elewasy
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Amira S Elrafie
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Neveen A Rasheed
- Agriculture Research Center (ARC), Giza, Egypt
- Immunology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
| | - Sara H Adli
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| |
Collapse
|
5
|
Shaalan M, Elbealy MA, Darwish MIM, Younis EM, Abdelwarith AA, Abdelaty AI, Davies SJ, Ibrahim RE, Rahman ANA. Toxicological insight of metiram: immuno-oxidative, neuro-behavioral, and hemato-biochemical changes during acute exposure of Nile tilapia (Oreochromis niloticus). BMC Vet Res 2024; 20:303. [PMID: 38982442 PMCID: PMC11232312 DOI: 10.1186/s12917-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The inappropriate use of pesticides including fungicides creates severe biological hazards that can endanger fish health and impede sustainable aquaculture. OBJECTIVE This study investigated the negative impacts of metiram (MET), a fungicide on the health status of Nile tilapia (Oreochromis niloticus) for a 96-hour duration as an acute exposure in a static renewal system. METHODS Three hundred fish (average body weight: 37.50 ± 0.22 g) were assigned into six groups (50 fish/group) with five replicates (10 fish/replicate). Fish were exposed to various six concentrations (0, 1.5, 3, 4.5, 6, and 7.5 mg/L) of MET as a water exposure to for 96-hour without water exchange. The fish's behavior, clinical signs, and mortalities were documented every day of the exposure period. Additionally, MET's impact on blood profile, stress biomarkers, hepato-renal functions, immune-antioxidant status, and brain biomarker were closely monitored. RESULTS The lethal concentration (LC50) of MET estimated using Finney's probit technique was 3.77 mg/L. The fish's behavior was severely impacted by acute MET exposure, as clear by an increase in surfacing, loss of equilibrium, unusual swimming, laterality, abnormal movement, and a decline in aggressive behaviors. The survivability and hematological indices (white and red blood cell count, differential white blood cell count, hematocrit value, and hemoglobin) were significantly reduced in a concentration-dependent manner following MET exposure. Acute exposure to MET (1.5-7.5 mg/L) incrementally increased stress biomarkers (nor-epinephrine, cortisol, and glucose), lipid peroxides (malondialdehyde), and brain oxidative DNA damage biomarker (8-hydroxy-2-deoxyguanosine). A hepato-renal dysfunction by MET exposure (4.5-7.5 mg/L) was evidenced by the significant increase in the alanine and aspartate aminotransferases and creatinine values. Moreover, a substantial decline in the immune parameters (lysozyme, complement 3, serum bactericidal activity, and antiprotease activity) and antioxidant variables (total antioxidant capacity, superoxide dismutase, and glutathione peroxidase) resulted from acute MET exposure. CONCLUSION According to these findings, the 96-hour LC50 of MET in Nile tilapia was 3.77 mg/L. MET exposure triggered toxicity in Nile tilapia, as seen by alterations in fish neuro-behaviors, immune-antioxidant status, hepato-renal functioning, and signifying physiological disturbances. This study emphasizes the potential ecological dangers provoked by MET as an environmental contaminant to aquatic systems. However, the long-term MET exposure is still needed to be investigated.
Collapse
Affiliation(s)
- Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
- Polymer Institute, Slovak academy of sciences, Dúbravská cesta 9, Bratislava, 84541, Slovakia.
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Mahmoud I M Darwish
- Department of Biochemistry and Molecular Biology, Medicine Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Asmaa I Abdelaty
- Department of Behaviour and Management of Animal, Poultry and Aquatics, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
6
|
Valero Y, Souto S, Olveira JG, López-Vázquez C, Dopazo CP, Bandín I. Water-in-oil adjuvant challenges in fish vaccination: An experimental inactivated adjuvanted vaccine against betanodavirus infection in Senegalese sole. JOURNAL OF FISH DISEASES 2024; 47:e13945. [PMID: 38523313 DOI: 10.1111/jfd.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.
Collapse
Affiliation(s)
- Yulema Valero
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sandra Souto
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen López-Vázquez
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
de Queiróz GA, Silva TMFE, Leal CAG. Duration of Protection and Humoral Immune Response in Nile Tilapia ( Oreochromis niloticus L.) Vaccinated against Streptococcus agalactiae. Animals (Basel) 2024; 14:1744. [PMID: 38929363 PMCID: PMC11200441 DOI: 10.3390/ani14121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Streptococcosis caused by Streptococcus agalactiae (S. agalactiae) is a major bacterial disease affecting the production of Nile tilapia (Oreochromis niloticus L.), causing significant economic losses due to mortality in the growing phase. Vaccination is the most effective method for preventing streptococcosis on Nile tilapia farms. In Brazil, the major tilapia-producing regions have long production cycles (6-10 months) and harvest tilapias weighing over 900 g for fillet production. Thus, data on the duration of the humoral immune response and protection in farmed tilapia have not been reported or are poorly described. Furthermore, the efficiency of serological testing for the long-term monitoring of immune responses induced by vaccination against S. agalactiae has never been addressed. This study evaluated the duration of protection and humoral immune response induced in Nile tilapia vaccinated against S. agalactiae until 300 days post-vaccination (dpv). The immunization trial was composed of two groups: vaccinated (Vac), vaccinated intraperitoneally with a commercial vaccine, and unvaccinated (NonVac) group, injected fish with sterile saline solution. At 15, 30, 150, 180, 210, and 300 dpv, blood sampling was conducted to detect anti-S. agalactiae IgM antibodies using indirect Enzyme-Linked Immunosorbent Assay (ELISA), and the fish were challenged with pathogenic S. agalactiae to determine the duration of vaccine protection through relative percentage survival (RPS). Spearman's rank correlation was performed between the ELISA optical density (OD) of vaccinated tilapia and the duration of vaccine protection (RPS). The mean cumulative mortality in NonVac and Vac groups ranged from 65 to 90% and less than 35%, respectively. The average RPS was 71, 93, 94, 70, 86, and 67% at 15, 30, 150, 180, 210, and 300 dpv, respectively. RPS revealed that the vaccine provided protection from 15 to 300 dpv. The specific anti-S. agalactiae IgM antibody levels were significantly higher in the Vac group than that non-Vac group up to 180 dpv. The vaccinated fish exhibited significant protection for up to 10 months after vaccination. There was a positive correlation between the antibody response and RPS. This study revealed that a single dose of commercial vaccine administered to Nile tilapia can confer long-term protection against S. agalactiae and that indirect ELISA can monitor the duration of the humoral immune response for up to six months following vaccination. Finally, vaccine protection over six months can be associated with other components of the fish immune system beyond the humoral immune response by IgM antibodies.
Collapse
Affiliation(s)
| | | | - Carlos Augusto Gomes Leal
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.A.d.Q.); (T.M.F.e.S.)
| |
Collapse
|
8
|
Pholchamat S, Vialle R, Luang-In V, Phadee P, Wang B, Wang T, Secombes CJ, Wangkahart E. Evaluation of the efficacy of MONTANIDE™ GR01, a new adjuvant for feed-based vaccines, on the immune response and protection against Streptococcus agalactiae in oral vaccinated Nile tilapia (Oreochromis niloticus) under laboratory and on-farm conditions. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109567. [PMID: 38641215 DOI: 10.1016/j.fsi.2024.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.
Collapse
Affiliation(s)
- Sirinya Pholchamat
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Regis Vialle
- SEPPIC, Paris La Défense, 50 boulevard National, CS 90020, 92257, La Garenne Colombes, Cedex, France
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Panarat Phadee
- Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
9
|
Ji L, Chen C, Zhu J, Hong X, Liu X, Wei C, Zhu X, Li W. Integrated time-series biochemical, transcriptomic, and metabolomic analyses reveal key metabolites and signaling pathways in the liver of the Chinese soft-shelled turtle ( Pelodiscus sinensis) against Aeromonas hydrophila infection. Front Immunol 2024; 15:1376860. [PMID: 38799475 PMCID: PMC11116567 DOI: 10.3389/fimmu.2024.1376860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1β, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Abdelaziz R, Elsheshtawy HM, El-Houseiny W, Aloufi AS, Alwutayd KM, Mansour AT, Hadad G, Arisha AH, El-Murr AE, M Yassin A. A novel metabolite of Streptomyces coeruleorubidus exhibits antibacterial activity against Streptococcus agalactiae through modulation of physiological performance, inflammatory cytokines, apoptosis, and oxidative stress-correlated gene expressions in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109496. [PMID: 38461875 DOI: 10.1016/j.fsi.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Using the unique structures found in natural materials to produce new antibacterial drugs is crucial. Actinobacteria is well-known for its ability to produce naturally occurring chemicals with a variety of structural features that can be used as weapons against infectious bacteria. In the present study, the Streptomyces coeruleorubidus metabolites were characterized and their efficacy in suppressing Streptococcus agalactiae growth was carried out both in vitro and in vivo. The metabolites of S. coeruleorubidus were purified and identified as octasiloxane-hexadecamethyl (OHM). In vivo antibacterial activity of OHM revealed an inhibitory minimum concentration value of 0.5 μg/ml against S. agalactiae and induced ultrastructural cell changes revealed by scanning electron microscope. The safe concentration of OHM was determined as 0.8 mg/L for Nile tilapia. Four in vivo treatments were treated with 0 and 0.8 mg/L OHM and with or without challenge by S. agalactiae (1 × 107 CFU/mL) named control, OHM, S. agalactiae, and S. agalactiae + OHM groups. The OHM treatment improved the survival of Nile tilapia by 33.33% than S. agalactiae challenge group. Waterborne OHM treatment significantly mitigated the deleterious effects of S. agalactiae on hematological, hepato-renal functions, stress indicators, and antioxidant balance. OHM significantly alleviated nitric oxide levels, complement 3, IgM, and lysozyme activity, downregulation of liver antioxidant genes expression in S. agalactiae group. Furthermore, the addition of OHM to challenged fish with S. agalactiae-significantly reversed dramatic negative regulation of inflammatory, apoptosis, and immune related gene expression (caspase-3, bax, pcna, tnf-α, ifn-γ, il-8 il-1β, il-10, tgf-β, and bcl-2 in the Nile tilapia spleen. Additionally, the damaged hepatic and splenic structure induced by bacterial infection was restored with OHM treatment. Finally, S. coeruleorubidus metabolites (mainly OHM) revealed in vitro and in vivo antibacterial activity and showed alleviated effects on the physiological status of S. agalactiae infected tilapia.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ghada Hadad
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abd Elhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany M Yassin
- Laboratories Unit, Microbiology Department, Zagazig Univeristy Hospiltals, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Edrees A, Shaban NS, Hassan NEHY, Abdel-Daim ASA, Sobh MS, Ibrahim RE. Acrylamide exposure induces growth retardation, neurotoxicity, stress, and immune/antioxidant disruption in Nile tilapia (Oreochromis niloticus): The alleviative effects of Chlorella vulgaris diets. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109411. [PMID: 38301813 DOI: 10.1016/j.fsi.2024.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
This study looked at the toxic impacts of water-born acrylamide (ACR) on Nile tilapia (Oreochromis niloticus) in terms of behaviors, growth, immune/antioxidant parameters and their regulating genes, biochemical indices, tissue architecture, and resistance to Aeromonas hydrophila. As well as the probable ameliorative effect of Chlorella vulgaris (CV) microalgae as a feed additive against ACR exposure was studied. The 96-h lethal concentration 50 of ACR was investigated and found to be 34.67 mg/L for O. niloticus. For the chronic exposure study, a total of 180 healthy O. niloticus (24.33 ± 0.03 g) were allocated into four groups in tri-replicates (15 fish/replicate), C (control) and ACR groups were fed a basal diet and exposed to 0 and 1/10 of 96-h LC50 of ACR (3.46 mg/L), respectively. ACR+ CV5 and ACR+ CV10 groups were fed basal diets with 5 % and 10 % CV supplements, respectively and exposed to 1/10 of 96-h LC50 of ACR for 60 days. After the exposure trial (60 days) the experimental groups were challenged with A. hydrophila. The findings demonstrated that ACR exposure induced growth retardation (P˂0.01) (lower final body weight, body weight gain, specific growth rate, feed intake, protein efficiency ratio, final body length, and condition factor as well as higher feed conversion ratio). A substantial decrease in the immune/antioxidant parameters (P˂0.05) (lysozyme, serum bactericidal activity %, superoxide dismutase, and reduced glutathione) and neurotransmitter (acetylcholine esterase) (P˂0.01) was noticed with ACR exposure. A substantial increase (P˂0.01) in the serum levels of hepato-renal indicators, lipid peroxidation biomarker, and cortisol was noticed as a result of ACR exposure. ACR exposure resulted in up-regulation (P˂0.05) of the pro-inflammatory cytokines and down-regulation (P˂0.05) of the antioxidant-related gene expression. Furthermore, the hepatic, renal, brain, and splenic tissues were badly affected by ACR exposure. ACR-exposed fish were more sensitive to A. hydrophila infection and recorded the lowest survival rate (P˂0.01). Feeding the ACR-exposed fish with CV diets significantly improved the growth and immune/antioxidant status, as well as modulating the hepatorenal functions, stress, and neurotransmitter level compared to the exposed-non fed fish. In addition, modulation of the pro-inflammatory and antioxidant-related gene expression was noticed by CV supplementation. Dietary CV improved the tissue architecture and increased the resistance to A. hydrophila challenge in the ACR-exposed fish. Noteworthy, the inclusion of 10 % CV produced better results than 5 %. Overall, CV diets could be added as a feed supplement in the O. niloticus diet to boost the fish's health, productivity, and resistance to A. hydrophila challenge during ACR exposure.
Collapse
Affiliation(s)
- Asmaa Edrees
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-suef University, PO Box, 62511, Beni-Suef, Egypt
| | - Nema S Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-suef University, PO Box, 62511, Beni-Suef, Egypt
| | - Nour El-Houda Y Hassan
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, PO Box, 62511, Beni-Suef, Egypt
| | - Asmaa S A Abdel-Daim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, PO Box, 62511, Beni-Suef, Egypt
| | - Mohamed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, PO Box, 44511, Zagazig, Sharkia, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box, 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
12
|
Zheng Q, Liu Z, Sun C, Dong J, Zhang H, Ke X, Gao F, Lu M. Molecular characterization, expression and functional analysis of TAK1, TAB1 and TAB2 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109359. [PMID: 38184182 DOI: 10.1016/j.fsi.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
The MAPK pathway is the common intersection of signal transduction pathways such as inflammation, differentiation and proliferation and plays an important role in the process of antiviral immunity. Streptococcus agalactiae will have a great impact on tilapia aquaculture, so it is necessary to study the immune response mechanism of tilapia to S. agalactiae. In this study, we isolated the cDNA sequences of TAK1, TAB1 and TAB2 from Nile tilapia (Oreochromis niloticus). The TAK1 gene was 3492 bp in length, contained an open reading frame (ORF) of 1809 bp and encoded a polypeptide of 602 amino acids. The cDNA sequence of the TAB1 gene was 4001 bp, and its ORF was 1491 bp, which encoded 497 amino acids. The cDNA sequence of the TAB2 gene was 4792 bp, and its ORF was 2217 bp, encoding 738 amino acids. TAK1 has an S_TKc domain and a coiled coil structure; the TAB1 protein structure contains a PP2C_SIG domain and a conserved PYVDXA/TXF sequence model; and TAB2 contains a CUE domain, a coiled coil domain and a Znf_RBZ domain. Homology analysis showed that TAK1 and TAB1 had the highest homology with Neolamprologus brichardi, and TAB2 had the highest homology with Simochromis diagramma (98.28 %). In the phylogenetic tree, TAK1, TAB1 and TAB2 formed a large branch with other scleractinian fishes. The tissue expression analysis showed that the expression of TAK1, TAB1 and TAB2 was highest in the muscle. The expression of TAK1, TAB1 and TAB2 was significantly induced in most of the tested tissues after stimulation with LPS, Poly I:C and S. agalactiae. The subcellular localization results showed that TAK1 was located in the cytoplasm, and TAB1 and TAB2 had certain distributions in the cytoplasm and nucleus. Coimmunoprecipitation (Co-IP) results showed that TRAF6 did not interact with the TAK1 protein but interacted with TAB2, while TAB1 did not interact with P38γ but interacted with TAK1. There was also an interaction between TAK1 and TAB2.
Collapse
Affiliation(s)
- Qiuyue Zheng
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhigang Liu
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Chengfei Sun
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Hetong Zhang
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Fengying Gao
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| |
Collapse
|
13
|
Ibrahim RE, Rhouma NR, Elbealy MA, Abdelwarith AA, Younis EM, Khalil SS, Khamis T, Mansour AT, Davies SJ, El-Murr A, Abdel Rahman AN. Effect of dietary intervention with Capsicum annuum extract on growth performance, physiological status, innate immune response, and related gene expression in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110914. [PMID: 37939898 DOI: 10.1016/j.cbpb.2023.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1β, il-6, il-8, and il-10), transforming growth factor-β, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Nasreddin R Rhouma
- Biology Department, Faculty of Science, Misurata University, PO Box 2478, Misurata, Libya
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Samah S Khalil
- Department of Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
14
|
Zheng Q, Gao F, Liu Z, Sun C, Dong J, Zhang H, Ke X, Lu M. Nile tilapia TBK1 interacts with STING and TRAF3 and is involved in the IFN-β pathway in the immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109125. [PMID: 37805113 DOI: 10.1016/j.fsi.2023.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Nile tilapia (Oreochromis niloticus) occupies an important position in the culture of economic fish in China. However, the high mortality caused by streptococcal disease has had a significant impact on the tilapia farming industry. Therefore, it is necessary to clarify the immune mechanism of tilapia in response to Streptococcus agalactiae. As a hub in the natural immune signaling pathway, the junction molecule can help the organism defend against and clear pathogens and is crucial in the signaling pathway. In this study, the cDNA sequence of Nile tilapia TBK1 was cloned, and the expression profile was examined in normal fish and challenged fish. The cDNA sequence of the TBK1 gene was 3378 bp, and its open reading frame (ORF) was 2172 bp, encoding 723 amino acids. The deduced TBK1 protein contained an S_TKc domain, a coiled coil domain and a ubiquitin-like domain (ULD). TBK1 had the highest homology with zebra mbuna (Maylandia zebra) and Lake Malawi cichlid fish (Astatotilapia calliptera), both at 97.59%. In the phylogenetic tree, TBK1 forms a large branch with other scleractinian fish. TBK1 expression was highest in the brain and lowest in the liver. LPS, Poly I:C, and S. agalactiae challenge resulted in significant changes in TBK1 expression in the tissues examined. The subcellular localization showed that TBK1-GFP was distributed in the cytoplasm and could significantly increase IFN-β activation. Pull-down results showed that there was an interaction between TBK1 and TRAF3 and an interaction between STING protein and TBK1 protein. The above results provide a basis for further investigation into the mechanism of TBK1 involvement in the signaling pathway.
Collapse
Affiliation(s)
- Qiuyue Zheng
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Fengying Gao
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Zhigang Liu
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Chengfei Sun
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Hetong Zhang
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Maixin Lu
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| |
Collapse
|
15
|
Abdel Rahman AN, Amer SA, Behairy A, Younis EM, Abdelwarith AA, Osman A, Moustafa AA, Davies SJ, Ibrahim RE. Using Azadirachta indica protein hydrolysate as a plant protein in Nile tilapia (Oreochromis niloticus) diet: Effects on the growth, economic efficiency, antioxidant-immune response and resistance to Streptococcus agalactiae. J Anim Physiol Anim Nutr (Berl) 2023; 107:1502-1516. [PMID: 37431590 DOI: 10.1111/jpn.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Shimaa A Amer
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
| | - Amr A Moustafa
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| |
Collapse
|
16
|
Karirat T, Saengha W, Deeseenthum S, Ma NL, Sutthi N, Wangkahart E, Luang-In V. Data on exopolysaccharides produced by Bacillus spp. from cassava pulp with antioxidant and antimicrobial properties. Data Brief 2023; 50:109474. [PMID: 37600590 PMCID: PMC10432588 DOI: 10.1016/j.dib.2023.109474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
This data evaluated the capacity of Bacillus spp. isolated from Thai milk kefir to produce exopolysaccharide (EPS) on cassava pulp and tested its antioxidant and antibacterial properties. Thailand's starch industry generates million tons of cassava pulp, which is underutilized or bio-transformed into higher-value bioproducts. Antioxidant and antibacterial bacterial exopolysaccharides are beneficial in the food, feed, pharmaceutical, and cosmetic industries. Moisture, ash, fat, protein, fiber, starch, sugar, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) were analyzed from cassava pulp as an EPS substrate. After 3 days of bacterial fermentation, EPS generation, culture pH, reducing sugar amount, and bacterial count were recorded. Antioxidant activities and bioactive content including hydroxyl radical scavenging activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), total phenolic and flavonoid content (TPC and TFC), and antimicrobial activity against two Nile tilapia pathogens (Streptococcus agalactiae and Staphylococcus aureus) from different Bacillus species were evaluated. Proximate analysis, dinitrosalicylic acid assay, pH value record, bacterial count using spread plate method, antioxidant activity and bioactive content assays via spectrophotometry, and agar disk diffusion were the main approaches. This study used microbial cell factories to convert agro-biowaste, such as cassava pulp, into EPS bioproducts which accords with a bio-circular green economy model.
Collapse
Affiliation(s)
- Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Worachot Saengha
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Sirirat Deeseenthum
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nantaporn Sutthi
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| |
Collapse
|
17
|
Guo K, Sun Y, Tang X, Zhou X, Jiang M, Yang Q, Li Y, Wu Z. Pathogenicity and inactivated vaccine treatment of Aeromonas veronii JW-4 on crucian carp. Microb Pathog 2023; 183:106315. [PMID: 37611778 DOI: 10.1016/j.micpath.2023.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Aeromonas veronii is a common bacterium found in a variety of aquatic environments, capable of causing a diverse array of diseases in both aquatic animals and humans. Therefore, evaluating the pathogenicity of A. veronii and implementing measures to control its spread are essential. In this study, a strain JW-4, identified as A. veronii, was isolated from diseased Scaphesthes macrolepis, a grade Ⅱ protected animal in China. To investigate the pathogenicity of the strain, fish were fed with serial levels JW-4 supplemented diet or basal diet (control group 1, CG1) for 28 days (d). Results showed that JW-4 stimulated an immune response, evidenced by an increase in immune-related enzyme activities (GOT and GPT) of serum and liver and an upregulation of genes expression levels (TNF-α and IFN-γ) of liver and spleen, and these effects gradually decreased over time. Histopathological examination revealed that JW-4 could alter the tissue structure of immune organs, such as liver and kidney. These changes were accompanied by vacuolar degeneration, nuclear dissolution, and an increased lymphocyte count. To assess protective effects of a vaccine against this strain, fish were injected with an inactivated vaccine (immunization group, IG) or 0.85% sterile saline (control group 2, CG2) for 28-day observation period, then challenged with JW-4 on the 28th day. The inactivated vaccine enhanced total and specific IgM to A. veronii levels of the fish, resulting in a relative percentage survival of 75% in IG. These findings provide a foundation for identifying pathogenic bacteria and developing more effective prophylactic strategies in aquaculture.
Collapse
Affiliation(s)
- Kefan Guo
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yu Sun
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xicheng Zhou
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Mi Jiang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Padeniya U, Davis DA, Liles MR, LaFrentz SA, LaFrentz BR, Shoemaker CA, Beck BH, Wells DE, Bruce TJ. Probiotics enhance resistance to Streptococcus iniae in Nile tilapia (Oreochromis niloticus) reared in biofloc systems. JOURNAL OF FISH DISEASES 2023; 46:1137-1149. [PMID: 37422900 DOI: 10.1111/jfd.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
Biofloc technology is a rearing technique that maintains desired water quality by manipulating carbon and nitrogen and their inherent mixture of organic matter and microbes. Beneficial microorganisms in biofloc systems produce bioactive metabolites that may deter the growth of pathogenic microbes. As little is known about the interaction of biofloc systems and the addition of probiotics, this study focused on this integration to manipulate the microbial community and its interactions within biofloc systems. The present study evaluated two probiotics (B. velezensis AP193 and BiOWiSH FeedBuilder Syn 3) for use in Nile tilapia (Oreochromis niloticus) culture in a biofloc system. Nine independent 3785 L circular tanks were stocked with 120 juveniles (71.4 ± 4.4 g). Tilapia were fed for 16 weeks and randomly assigned three diets: a commercial control diet or a commercial diet top-coated with either AP193 or BiOWiSH FeedBuilder Syn3. At 14 weeks, the fish were challenged with a low dose of Streptococcus iniae (ARS-98-60, 7.2 × 107 CFU mL-1 , via intraperitoneal injection) in a common garden experimental design. At 16 weeks, the fish were challenged with a high dose of S. iniae (6.6 × 108 CFU mL-1 ) in the same manner. At the end of each challenge trial, cumulative per cent mortality, lysozyme activity and expression of 4 genes (il-1β, il6, il8 and tnfα) from the spleen were measured. In both challenges, the mortalities of the probiotic-fed groups were significantly lower (p < .05) than in the control diet. Although there were some strong trends, probiotic applications did not result in significant immune gene expression changes related to diet during the pre-trial period and following exposure to S. iniae. Nonetheless, overall il6 expression was lower in fish challenged with a high dose of ARS-98-60, while tnfα expression was lower in fish subjected to a lower pathogen dose. Study findings demonstrate the applicability of probiotics as a dietary supplement for tilapia reared in biofloc systems.
Collapse
Affiliation(s)
- Uthpala Padeniya
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Stacey A LaFrentz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | | | | | - Benjamin H Beck
- Aquatic Animal Health Research Unit, USDA-ARS, Auburn, Alabama, USA
| | - Daniel E Wells
- Department of Horticulture, Auburn University, Auburn, Alabama, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
19
|
Hussein MMA, Hassan WH, Yassen HA, Osman AMA. Vaccination with bacterial ghosts of Streptococcus iniae and Lactococcus garvieae originated from outbreak of marine fish streptococcosis, induce potential protection against the disease in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109008. [PMID: 37604267 DOI: 10.1016/j.fsi.2023.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Streptococcosis is an important bacterial disease affects fresh, brackish and marine fish. The disease caused annual severe economic losses in Egyptian Mari-culture. S. iniae and L. garvieae usually the main causative agents isolated. The presented study conducted to prepare bacterial ghost vaccine (BGV) candidates from isolated strains of marine streptococcosis outbreaks using NaOH chemical approach. Selected strains confirmed as pathogenic for Nile tilapia, therefore the fish selected as an experimental model. In such respect, the re-isolated S. iniae and L. garvieae were used for ghost preparations, BGVs evaluation and fish challenges. Apart of four, three fish groups namely, A, B, C designated for BGVs evaluations, while the fourth one (D) designated as control. Vaccination experiments performed via intra-peritoneal injection with 0.1 mL (1.5 × 108 CFU/mL/fish) of their corresponding BGVs twice with 2 weeks' interval; however, control fish received 0.1 mL of fish saline instead. Blood, serum, and tissue samples collected from all groups at 2 and 4 weeks post immunization (PI) for estimation of hematological, innate, and specific immune parameters. At the end, all remained fish challenged with appropriated pathogen (s) and the relative percentage of survival (RPS) calculated. Three BGVs generated namely, SiG, in addition to, novel contributions of LgG and SiLgG. Ghosts were corresponding to S. iniae, L. garvieae and their both ghost mixtures, respectively. Fish groups immunized with prepared BGVs revealed variable significant increases in PCV, GLB, PP, SOD, CAT, C5, IL-β1, LZM, specific antibody titers and CD4 expression 2 and 4 weeks PI. MDA decreased in all vaccinated groups that was significantly with group C. Expression of MHC-II showed elevations 2 weeks PI, however, it significantly decreased at 4 weeks. The RPS recorded 90, 88.89 and 95.46% in immunized groups A, B and C, respectively. At all levels tested, obtained results proposed SiG, LgG and SiLgG as innovative vaccine candidates, which can protect cultured fish from being attacked by S. iniae, and/or L. garvieae.
Collapse
Affiliation(s)
- Mortada M A Hussein
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62513, Egypt.
| | - Walid H Hassan
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62513, Egypt
| | - Hosam A Yassen
- Animal Health Research Institute (AHRI), Beni-Suef Branch, Agricultural Research Center (ARC), Beni-Suef, 62512, Egypt
| | - Ahmed M A Osman
- Animal Health Research Institute (AHRI), Port-Said Branch, Agricultural Research Center (ARC), Port-Said, 42615, Egypt
| |
Collapse
|
20
|
Thompson KD, Rodkhum C, Bunnoy A, Thangsunan P, Kitiyodom S, Sukkarun P, Yostawornkul J, Yata T, Pirarat N. Addressing Nanovaccine Strategies for Tilapia. Vaccines (Basel) 2023; 11:1356. [PMID: 37631924 PMCID: PMC10459980 DOI: 10.3390/vaccines11081356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023] Open
Abstract
Tilapia is the world's most extensively farmed species after carp. It is an attractive species for aquaculture as it grows quickly, reaching harvest size within six to seven months of production, and provides an important source of food and revenue for many low-income families, especially in low- to middle-income countries. The expansion of tilapia aquaculture has resulted in an intensification of farming systems, and this has been associated with increased disease outbreaks caused by various pathogens, mostly bacterial and viral agents. Vaccination is routinely used to control disease in higher-value finfish species, such as Atlantic salmon. At the same time, many tilapia farmers are often unwilling to vaccinate their fish by injection once the fish have been moved to their grow-out site. Alternative vaccination strategies are needed to help tilapia farmers accept and use vaccines. There is increasing interest in nanoparticle-based vaccines as alternative methods for delivering vaccines to fish, especially for oral and immersion administration. They can potentially improve vaccine efficacy through the controlled release of antigens, protecting antigens from premature proteolytic degradation in the gastric tract, and facilitating antigen uptake and processing by antigen-presenting cells. They can also allow targeted delivery of the vaccine at mucosal sites. This review provides a brief overview of the bacterial and viral diseases affecting tilapia aquaculture and vaccine strategies for farmed tilapia. It focuses on the use of nanovaccines to improve the acceptance and uptake of vaccines by tilapia farmers.
Collapse
Affiliation(s)
- Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Sirikorn Kitiyodom
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Pimwarang Sukkarun
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 90000, Thailand;
| | - Jakarwan Yostawornkul
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| |
Collapse
|
21
|
Liu W, Jiang P, Song T, Yang K, Yuan F, Gao T, Liu Z, Li C, Guo R, Xiao S, Tian Y, Zhou D. A Recombinant Chimera Vaccine Composed of LTB and Mycoplasma hyopneumoniae Antigens P97R1, mhp390 and P46 Elicits Cellular Immunologic Response in Mice. Vaccines (Basel) 2023; 11:1291. [PMID: 37631860 PMCID: PMC10457768 DOI: 10.3390/vaccines11081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), leading to a mild and chronic pneumonia in swine. Relative control has been attained through active vaccination programs, but porcine enzootic pneumonia remains a significant economic challenge in the swine industry. Cellular immunity plays a key role in the prevention and control of porcine enzootic pneumonia. Therefore, the development of a more efficient vaccine that confers a strong immunity against M. hyopneumoniae is necessary. In this study, a multi-antigen chimera (L9m6) was constructed by combining the heat-labile enterotoxin B subunit (LTB) with three antigens of M. hyopneumoniae (P97R1, mhp390, and P46), and its immunogenic and antigenic properties were assessed in a murine model. In addition, we compared the effect of individual administration and multiple-fusion of these antigens. The chimeric multi-fusion vaccine induced significant cellular immune responses and high production of IgG and IgM antibodies against M. hyopneumoniae. Collectively, our data suggested that rL9m6 chimera exhibits potential as a viable vaccine candidate for the prevention and control of porcine enzootic pneumonia.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Peizhao Jiang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Tao Song
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| |
Collapse
|
22
|
Khanzadeh M, Beikzadeh B, Hoseinifar SH. The Effects of Laurencia caspica Algae Extract on Hemato-Immunological Parameters, Antioxidant Defense, and Resistance against Streptococcus agalactiae in Nile tilapia ( Oreochromis niloticus). AQUACULTURE NUTRITION 2023; 2023:8882736. [PMID: 37441629 PMCID: PMC10335874 DOI: 10.1155/2023/8882736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Natural immune stimulants are among the most effective chemicals for boosting immunity and fish welfare. This study aims to investigate the effects of red macroalgae extract (Laurencia caspica) on hematological, immunological, antioxidant, biochemical, and disease resistance against S. agalactiae in Nile tilapia for 50 days. For this purpose, fishes were assigned to four dietary treatments group in which the base meal was supplemented with 0.5%, 1%, and 2% of L. caspica extract. On days 25 and 50 of the experiment, samples were taken to investigate the hematological, immunological, biochemical, and antioxidant parameters. The white blood cells (WBCs), hemoglobin, and neutrophils significantly increased after 50 days of feeding with the L. caspica extract, but until the 25th day, no significant difference was observed among the treatments except for hemoglobin. Immunological parameters (including Immunoglobulin M [IgM] and complement 3 [C3]) were significantly higher in treated groups compared to control both 25 days and 50 days posttreatment. However, on the 25th day, no significant difference was noticed between treatments and control in the case of lysozyme activity. Alkaline phosphatase (ALP) and alanine aminotransferase (ALT) considerably increased in comparison to the control group on the 50th day, but no significant difference was observed on the 25th day. In addition, feeding with L. caspica significantly increased the antioxidant enzyme activities on the 25th day (L. caspica 1% and 2% in peroxidase [POD] and superoxide dismutase [SOD] in all groups) and 50th day (catalase [CAT], SOD and L. caspica 1% and 2% in POD) in the spleen. The survival rate of fish challenged with Streptococcus agalactiae was considerably greater than the control group. Finally, it can be concluded that L. caspica extract is an immunological stimulant that induces fish resistance to S. agalactiae.
Collapse
Affiliation(s)
- Majid Khanzadeh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran, Tehran Organization, Iran
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Hossein Hoseinifar
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
23
|
Jiang B, Li Q, Zhang Z, Huang Y, Wu Y, Li X, Huang M, Huang Y, Jian J. Involvement of CD27 in innate and adaptive immunities of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108923. [PMID: 37394017 DOI: 10.1016/j.fsi.2023.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
CD27 is a member of the TNF-receptor superfamily and plays various roles in immunities. However, the detailed information and mechanism of CD27 in bony fish immunity remain unclear. Therefore, in this research, certain interesting roles of CD27 in Nile tilapia (On-CD27) were determined. On-CD27 was largely expressed in the immune organs, head kidney, and spleen, and was sharply induced during bacterial infection. The in vitro tests suggested On-CD27 was involved in regulating inflammatory responses, activating immune-related signal pathways, and inducing apoptosis and pyroptosis progress. The scRNA data and in vivo experiments indicated that On-CD27 is mainly expressed in CD4+ T cells and involved in both innate and adaptive immunities. The present data provide a theoretical principle for further research on the mechanisms of CD27 in the innate and adaptive immunities of fish.
Collapse
Affiliation(s)
- Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yiqin Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
24
|
Van Doan H, Wangkahart E, Thaimuangphol W, Panase P, Sutthi N. Effects of Bacillus spp. Mixture on Growth, Immune Responses, Expression of Immune-Related Genes, and Resistance of Nile Tilapia Against Streptococcus agalactiae Infection. Probiotics Antimicrob Proteins 2023; 15:363-378. [PMID: 34596882 DOI: 10.1007/s12602-021-09845-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to evaluate the effect of Bacillus spp. mixture (Bacillus subtilis TISTR001, Bacillus megaterium TISTR067, and Bacillus licheniformis DF001) (1 × 106 CFU/g) on growth, immune parameters, immune-related gene expression, and resistance of Nile tilapia against Streptococcus agalactiae AAHM04. Fish were fed different concentrations of Bacillus spp. 0 (control; T1), 1 (T2), 3 (T3), and 5 (T4) g/kg diets for 120 days. The results showed that weight gain, average daily gain, specific growth rate, feed conversion ratio in T3 diet were significantly higher than the control group and other tested diets (p < 0.05). Immune parameters, such as myeloperoxidase and lysozyme, were significantly higher in the T3 and T4 diets compared to the control group (p < 0.05). Similarly, IL-1β and TNF-α gene expressions in the spleen of fish fed T2, T3, and T4 diets were significantly higher than the control group (p < 0.05). However, no significant differences in survival rate, hematology, blood chemical indices, malondialdehyde (MDA) levels, body chemical composition, and organosomatic indices (p > 0.05) were noticed in all treatments. No significant differences in survival rate after the challenge test with S. agalactiae AAHM04 were found in fish fed Bacillus spp. mixture diets, except for the T3 diet. These results suggest that Bacillus spp. mixture diet at 3 g/kg diet (T3) could improve growth, immune response, and disease resistance of Nile tilapia.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
- Research Unit of Excellence for Tropical Fisheries and Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Wipavee Thaimuangphol
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
- Research Unit of Excellence for Tropical Fisheries and Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Paiboon Panase
- Fisheries Division, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence 2022 on Biodiversity and Natural Resources Management (FF65-UoE003), University of Phayao, Phayao, 56000, Thailand
| | - Nantaporn Sutthi
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
- Research Unit of Excellence for Tropical Fisheries and Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
25
|
Chen XJ, Huang MY, Wangkahart E, Cai J, Huang Y, Jian JC, Wang B. Immune response and protective efficacy of mannosylated polyethylenimine (PEI) as an antigen delivery vector, administered with a Streptococcus agalactiae DNA vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108684. [PMID: 36921882 DOI: 10.1016/j.fsi.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This study examined the effectiveness of a DNA vaccine for S. agalactiae that was delivered by mannose-based polyethyleneimine (Man-PEI). The results showed that Man-PEI/pcDNA-Sip stimulated a higher serum antibody titer compared to control or other vaccine groups (p < 0.05). Additionally, it induced higher expression of immune-related genes, and increased activities of superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Furthermore, the Man-PEI/pcDNA-Sip group showed an improved relative percent survival (RPS) of 85.71%. These results demonstrate the potential value of Man-PEI as a vaccine delivery vehicle, and suggest that it can be effective in boosting the immune protective rate induced by pcDNA-Sip vaccines.
Collapse
Affiliation(s)
- Xin-Jin Chen
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Man-Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Jia Cai
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Ji-Chang Jian
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China.
| |
Collapse
|
26
|
Wangkahart E, Thongsrisuk A, Vialle R, Pholchamat S, Sunthamala P, Phudkliang J, Srisapoome P, Wang T, Secombes CJ. Comparative study of the effects of Montanide™ ISA 763A VG and ISA 763B VG adjuvants on the immune response against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108563. [PMID: 36717067 DOI: 10.1016/j.fsi.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Streptococcus agalactiae is regarded as a major bacterial pathogen of farmed fish, with outbreaks in Nile tilapia causing significant losses. Vaccination is considered the most suitable method for disease control in aquaculture, with the potential to prevent such outbreaks if highly efficacious vaccines are available for use. Several vaccines have been produced to protect against S. agalactiae infection in tilapia, including inactivated vaccines, live attenuated vaccines, and subunit vaccines, with variable levels of protection seen. Two commercial adjuvants, Montanide™ ISA 763A VG and ISA 763B VG, have been developed recently and designed to improve the safety and efficacy of oil-based emulsions delivered by intraperitoneal injection. In particular, their mode of action may help identify and stimulate particular immunological pathways linked to the intended protective response, which is an important tool for future vaccine development. Therefore, this study aimed to characterize the potential of two adjuvanted-bacterial vaccines against S. agalactiae (SAIV) comparatively, to determine their usefulness for improving protection and to analyse the immune mechanisms involved. Nile tilapia were divided into four groups: 1) fish injected with PBS as a control, 2) fish injected with the SAIV alone, 3) fish injected with the SAIV + Montanide™ ISA 763A VG, and 4) fish injected with the SAIV + Montanide™ ISA 763B VG. Following immunization selected innate immune parameters were analysed, including serum lysozyme, myeloperoxidase, and bactericidal activity, with significantly increased levels seen after immunization. Cytokines associated with innate and adaptive immunity were also studied, with expression levels of several genes showing significant up-regulation, indicating good induction of cell-mediated immune responses. Additionally, the specific IgM antibody response against S. agalactiae was determined and found to be significantly induced post-vaccination, with higher levels seen in the presence of the adjuvants. In comparison to the protection seen with the unadjuvanted vaccine (61.29% RPS), both Montanide™ ISA 763A VG and Montanide™ ISA 763B VG improved the RPS, to 77.42% and 74.19% respectively. In conclusion, Montanide™ ISA 763A VG and Montanide™ ISA 763B VG have shown potential for use as adjuvants for fish vaccines against streptococcosis, as evidenced by the enhanced immunoprotection seen when given in combination with the SAIV vaccine employed in this study.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Areerat Thongsrisuk
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Regis Vialle
- SEPPIC, Paris La Défense, 50 Boulevard National, CS 90020, 92257, La Garenne Colombes Cedex, France
| | - Sirinya Pholchamat
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Phitcharat Sunthamala
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Janjira Phudkliang
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Jatujak, Bangkok, 10900, Thailand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
27
|
Hao J, Wang S, Yang J, Zhang Q, Wu Z, Zhang D, Li A. Attenuated Streptococcus agalactiae WC1535 ∆Sia perturbs the gut microbiota of Oreochromis niloticus, massively colonizes the intestine, and induces intestinal mucosal immunity after intraperitoneal inoculation. Front Microbiol 2022; 13:1036432. [DOI: 10.3389/fmicb.2022.1036432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/14/2022] [Indexed: 11/12/2022] Open
Abstract
We previously developed and assessed the effectiveness of the attenuated Streptococcus agalactiae (Group B Streptococcus, GBS) strain WC1535 ∆Sia (with neuA-D gene cluster deletion) vaccine in tilapia (Oreochromis niloticus). In this study, we characterized the bacterial communities of the tilapia intestines by 16S rRNA high-throughput sequencing and assessed the serum antibody response, expression of immune-related genes, and histological changes following formalin-killed GBS vaccine (FKV) and the live attenuated vaccine ∆Sia (LAV). Results showed that FKV and LAV induced robust systemic and intestinal mucosal immune responses in tilapia without causing obvious pathological changes in the hindgut, spleen, and head kidney but exerted different effects on intestinal bacterial communities. The richness or diversity of the intestinal bacterial community of FKV tilapia showed no significant changes compared with that of the control fish (p > 0.05) at either day 21 post-initial vaccination (21 dpiv) or day 35 (day 14 after the second immunization) (35 dpiv). The community composition of FKV tilapia and controls was significantly similar, although the relative abundance of some genera was significantly altered. Relative to control fish, the gut ecosystem of LAV tilapia was significantly disturbed with a substantial increase in community diversity at 21 dpiv (p < 0.05) and a significant decrease at 35 dpiv in fish with high serum antibody response (ΔSia35H) (p < 0.05). However, there was no significant difference between ΔSia35H and ΔSia35L (low serum antibody response) fish (p > 0.05). Moreover, the community composition of LAV tilapia at 21 dpiv or 35 dpiv was considerably different from that of the controls. Particularly, GBS ∆Sia was found to be abundant in the intestine at 21 and 35 dpiv. This result suggested that the parenteral administration of the LAV (∆Sia) may also have the effect of oral vaccination in addition to the immune effect of injection vaccination. In addition, a significant correlation was found between the expression of immune-related genes and certain bacterial species in the intestinal mucosal flora. Our findings will contribute to a better understanding of the effects of inactivated and attenuated vaccines on gut microbiota and their relationship with the immune response.
Collapse
|
28
|
Chen QY, Wu XM, Che YL, Chen RJ, Hou B, Wang CY, Wang LB, Zhou LJ. The Immune Efficacy of Inactivated Pseudorabies Vaccine Prepared from FJ-2012ΔgE/gI Strain. Microorganisms 2022; 10:1880. [PMID: 36296157 PMCID: PMC9612264 DOI: 10.3390/microorganisms10101880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 08/27/2023] Open
Abstract
An emerging pseudorabies virus (PRV) variant has been reported on Bartha-K61-vaccinated farms since 2011, causing great economic losses to China's swine-feeding industry. In this study, two vaccines, FJ-2012ΔgE/gI-GEL02 and FJ-2012ΔgE/gI-206VG, were administered to piglets for immune efficacy investigation. Humoral immunity response, clinical signs, survival rate, tissue viral load, and pathology were assessed in piglets. The results showed that both vaccines were effective against the PRV FJ-2012 challenge, the piglets all survived while developing a high level of gB-specific antibody and neutralizing antibody, the virus load in tissue was alleviated, and no clinical PR signs or pathological lesions were displayed. In the unimmunized challenged group, typical clinical signs of pseudorabies were observed, and the piglets all died at 7 days post-challenge. Compared with commercial vaccines, the Bartha-K61 vaccine group could not provide full protection, which might be due to a lower vaccine dose; the inactivated vaccine vPRV* group piglets survived, displaying mild clinical signs. The asterisk denotes inactivation. These results indicate that FJ-2012ΔgE/gI-GEL02 and FJ-2012ΔgE/gI-206VG were effective and could be promising vaccines to control or eradicate the new PRV epidemic in China.
Collapse
Affiliation(s)
- Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Xue-Min Wu
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Ru-Jing Chen
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Chen-Yan Wang
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Long-Bai Wang
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| |
Collapse
|
29
|
Linh NV, Dien LT, Sangpo P, Senapin S, Thapinta A, Panphut W, St-Hilaire S, Rodkhum C, Dong HT. Pre-treatment of Nile tilapia (Oreochromis niloticus) with ozone nanobubbles improve efficacy of heat-killed Streptococcus agalactiae immersion vaccine. FISH & SHELLFISH IMMUNOLOGY 2022; 123:229-237. [PMID: 35288305 DOI: 10.1016/j.fsi.2022.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Nanobubble technology has shown appealing technical benefits and potential applications in aquaculture. We recently found that treatment with ozone nanobubbles (NB-O3) activated expression of several immune-related genes leading to effective response to subsequent exposure to fish pathogens. In this study, we investigated whether pre-treatment of Nile tilapia (Oreochromis niloticus) with NB-O3 can enhance specific immune responses and improve efficacy of immersion vaccination against Streptococcus agalactiae. Spleen and head kidney of fish in the vaccinated groups showed a substantial upregulation in expression levels of pro-inflammatory cytokine genes (IL-1β, TNF-α, IL-6) and immunoglobulin classes (IgM, IgD, IgT) compared with the unvaccinated control groups. The mRNA transcript of pro-inflammatory cytokine genes was greatest (approx. 2.8-3.3 folds) on day 7 post-vaccination, whereas the relative expression of immunoglobulin genes was greatest (approx. 3.2-4.1 folds) on day 21 post-immunization. Both systemic and mucosal IgM antibodies were elicited in vaccinated groups. As the result, the cumulative survival rate of the vaccinated groups was found to be higher than that of the unvaccinated groups, with a relative percent survival (RPS) ranging from 52.9 to 70.5%. However, fish in the vaccinated groups that received pre-treatment with NB-O3, bacterial antigen uptakes, expression levels of IL-1β, TNF-α, IL-6,IgM, IgD, and IgT, as well as the specific-IgM antibody levels and percent survival, were all slightly or significantly higher than that of the vaccinated group without pre-treatment with NB-O3. Taken together, our findings suggest that utilizing pre-treatment with NB-O3 may improve the immune response and efficacy of immersion vaccination in Nile tilapia.
Collapse
Affiliation(s)
- Nguyen Vu Linh
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Le Thanh Dien
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, 71415, Viet Nam
| | - Pattiya Sangpo
- Fish Health Platform, Centex of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Centex of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anat Thapinta
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Wattana Panphut
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand; Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, 12120, Thailand.
| |
Collapse
|
30
|
Wangkahart E, Bruneel B, Chantiratikul A, de Jong M, Pakdeenarong N, Subramani PA. Optimum dietary sources and levels of selenium improve growth, antioxidant status, and disease resistance: re-evaluation in a farmed fish species, Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 121:172-182. [PMID: 34958921 DOI: 10.1016/j.fsi.2021.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The objective of this study was to investigate the effects of sources and levels of selenium (Se) on juvenile Nile tilapia (Oreochromis niloticus). A completely randomized design involving a 2 × 3 factorial arrangement of treatments was used in this study. Organic Se (L-selenomethionine; SeMet) and inorganic Se (sodium selenite; Na2SeO3) were each added to the basal diet at 1, 3 and 5 mg Se/kg. The basal diet, without Se supplementation, was used as a control. There was a total of 7 experimental diets, and each was fed in triplicate to groups of fish with an initial average body weight of 13.5 g for 8 weeks. The results showed that growth performance was significantly affected by dietary sources and levels of Se (P < 0.05). Fish fed diets supplemented with SeMet of 1.0 mg Se/kg resulted in higher growth performance compared to basal diet (P < 0.05), but Na2SeO3 supplementation did not affect growth. The feed conversion ratio was significantly decreased as dietary sources of SeMet (P < 0.05). Interestingly, fish fed diets supplemented with both forms of Se had lower cholesterol levels than those fed the basal diet (P < 0.05). Moreover, dietary sources and levels of Se significantly increased (P < 0.05) the antioxidant enzyme activities such as lysozyme, catalase, myeloperoxidase, superoxide dismutase and glutathione peroxidase. Dietary sources and levels of Se significantly could enhance the Nile tilapia resistance against Streptococcusagalactiae infection (P < 0.05). Overall, it can be concluded that the inclusion level of 1.0 mg Se/kg of organic Se in the diet is suggested to be the optimal level for the growth performance and immune response of Nile tilapia. Therefore, dietary supplementation with Se is useful for improving growth, antioxidant status, immune response, and disease resistance.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Brecht Bruneel
- Orffa Additives BV., Minervum 7032, 4817, ZL, Breda, the Netherlands
| | - Anut Chantiratikul
- Division of Animal Science, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Matthijs de Jong
- Orffa Additives BV., Minervum 7032, 4817, ZL, Breda, the Netherlands
| | - Noppakun Pakdeenarong
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | | |
Collapse
|
31
|
Thaimuangphol W, Sanoamuang L, Wangkahart E. The immune response of fairy shrimp Streptocephalus sirindhornae against bacterial black disease by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:108-115. [PMID: 34983002 DOI: 10.1016/j.fsi.2021.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
To enhance genomic resources and to understand the molecular immune mechanisms underlying the response of fairy shrimp (Streptocephalus sirindhornae) to pathogens, we first performed a comparative gene transcription analysis from Aeromonas hydrophila-immunized shrimp and from a control group through RNA sequencing. Meanwhile, the differentially expressed genes (DEGs) were investigated, and a total of 46,958,894 clean reads were obtained and then assembled into 73,297 unigenes with an average length of 993 bp and an N50 of 1,458 bp. Unigenes were annotated by comparison with the NR/NT/KO/SwissProt/PFAM/GO and KOG databases, and 28,198 unigenes (38.47%) were annotated in at least one database. After a bacterial challenge, 143 and 287 genes were identified as markedly up- or downregulated, respectively, and 345 were associated with 142 pathways, including the classic immune-related apoptosis, toll-like receptor and MAPK signaling pathways. Moreover, ten differently expressed immune-related genes were confirmed by using quantitative real-time PCR. This study characterized a gene expression pattern for normal and Aeromonas hydrophila-immunized S. sirindhornae for the first time and shed new light on its molecular mechanisms, thus enabling the future efforts of disease control programs for this valuable aquaculture species.
Collapse
Affiliation(s)
- Wipavee Thaimuangphol
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Laorsri Sanoamuang
- Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Laboratory of Biodiversity and Environmental Management, International College, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
32
|
Wangkahart E, Wachiraamonloed S, Lee PT, Subramani PA, Qi Z, Wang B. Impacts of Aegle marmelos fruit extract as a medicinal herb on growth performance, antioxidant and immune responses, digestive enzymes, and disease resistance against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 120:402-410. [PMID: 34843944 DOI: 10.1016/j.fsi.2021.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
An experiment was conducted to investigate the effects of Aegle marmelos fruit (AMF) extract on the growth performance, biochemical parameters, immune response, antioxidative capacity, and digestive enzyme activity of Nile tilapia (Oreochromis niloticus). Fish were fed a diet supplemented with AMF at concentrations of 0 (AMF0; control), 5 (AMF5), 10 (AMF10), 15 (AMF15), or 20 (AMF20) g/kg for 8 weeks. The results show that the final body weight, weight gain, specific growth rate, average daily gain, and feed conversion ratio were significantly higher in fish fed AMF15 and AMF20 compared to those fed the control diet (P < 0.05). Moreover, significant increases in antioxidant enzyme activities and non-specific immune responses were observed in groups fed AMF15 and AMF20. Interestingly, the level of cholesterol decreased with increasing AMF concentrations in the diet. As dietary AMF levels increased, digestive enzyme activities significantly improved. After the feeding trial, fish were injected intraperitoneally with Streptococcus agalactiae, and the 14-day cumulative mortality was calculated. A high survival rate after challenge with S. agalactiae was observed in all groups that received AMF-supplemented feed. Therefore, the present study suggests that supplementing the diet of Nile tilapia with AMF at a concentration of 20 g/kg could encourage their growth, improve their immunity and antioxidant status, and provide strong protection against S. agalactiae.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Suriyet Wachiraamonloed
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | | | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| |
Collapse
|
33
|
Soveral LDF, de Almeida PA, Kreutz Y, Ribeiro VA, Frandoloso R, Kreutz LC. Modulation of expression of proinflammatory genes and humoral immune response following immunization or infection with Aeromonas hydrophila in silver catfish (Rhamdia quelen). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100053. [DOI: 10.1016/j.fsirep.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022] Open
|