1
|
Hegde C, Shekhar R, Paul PM, Pathak C. A review on forensic analysis of bio fluids (blood, semen, vaginal fluid, menstrual blood, urine, saliva): Spectroscopic and non-spectroscopic technique. Forensic Sci Int 2024; 367:112343. [PMID: 39708707 DOI: 10.1016/j.forsciint.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
The accurate detection, identification, and analysis of biofluids at crime scenes play a critical role in forensic investigations. Various biofluids, such as blood, semen, vaginal fluid, menstrual blood, urine, and saliva, can be crucial evidence. In a murder case involving a knife attack, for instance, bloodstains from both the victim and perpetrator might be present. Sexual assault cases often involve the analysis of semen and vaginal secretions. Biofluid analysis employs a two-tiered approach: presumptive tests for initial identification and confirmatory tests for definitive analysis. This review article focuses on six key biofluids and their forensic significance. In this review, we comprehensively explore the relevant analytical techniques, including non-spectroscopic methods like immunoassays, spot tests, and cytokine profiling, alongside spectroscopic techniques such as Infrared (IR) spectroscopy, Mass Spectrometry (MS), and Raman Spectroscopy (RS).
Collapse
Affiliation(s)
- Chitrakara Hegde
- Department of Science, Alliance University, Bengaluru 562106, India.
| | - R Shekhar
- CoE Intel-High performance Computing, Alliance University, Bengaluru 562106, India
| | - P Mano Paul
- Department of Computer Science Engineering, Alliance University, Bengaluru 562106, India
| | - Chandni Pathak
- Department of Science, Alliance University, Bengaluru 562106, India
| |
Collapse
|
2
|
de Bruin DDSH, Haagmans MA, van der Gaag KJ, Hoogenboom J, Weiler NEC, Tesi N, Salazar A, Zhang Y, Holstege H, Reinders M, M'charek AA, Sijen T, Henneman P. Exploring nanopore direct sequencing performance of forensic STRs, SNPs, InDels, and DNA methylation markers in a single assay. Forensic Sci Int Genet 2024; 74:103154. [PMID: 39426120 DOI: 10.1016/j.fsigen.2024.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION The field of forensic DNA analysis has undergone rapid advancements in recent decades. The integration of massively parallel sequencing (MPS) has notably expanded the forensic toolkit, moving beyond identity matching to predicting phenotypic traits and biogeographical ancestry. This shift is of particular significance in cases where conventional DNA profiling fails to identify a single suspect. Supplementing forensic analyses with estimated biological age may be valuable but involves a complex and time-consuming DNA methylation analysis. This study explores and validates the performance of a comprehensive forensic third-generation sequencing assay utilizing Oxford Nanopore Technologies (ONT) in an adaptive and direct sequencing approach. We incorporated the most widely used forensic markers, i.e., STRs, SNPs, InDels, mitochondrial DNA (mtDNA), and two methylation-based clock classifiers, thereby combining forensic genetic and epigenetic analysis in one single workflow. METHODS AND RESULTS In our investigation, DNA from six anonymous individuals was sequenced using the ONT standard adaptive direct sequencing approach, reaching a mean percentage of on-target reads ranging from 6.6 % to 7.7 % per sample. ONT data was compared to standard MPS data and Illumina EPIC DNA methylation profiles. Basecalling employed recommended ONT software packages. TREAT was used for ONT-based analysis of autosomal and Y-chromosome STRs, achieving 90-92 % correct calls depending on allelic read depth thresholds. InDel analyses for two lower-quality samples proved challenging due to inadequate read depth, while the remaining four samples significantly contributed to the observed percentage markers (60.9 %) and correct calls (97.8 %). SNP analysis achieved a 98 % call rate, with only two mismatches and two missed alleles. ONT-generated DNA methylation data demonstrated Pearson's correlation coefficients with EPIC data ranging from 0.67 to 0.97 for Horvath's clock. Additional age-associated markers exhibited Pearson's correlation coefficients with chronological age between 0.14 (ELOVL2) and 0.96 (FHL2) at read depths of <30 and <20, respectively. Despite excluding mtDNA from our targeted sequencing approach, adaptive proof-reading fragments covered the complete mtDNA with an average read depth of 21-72, showing 100 % concordance with reference data. DISCUSSION Our exploratory study using ONT adaptive sequencing for conventional forensic and age associated DNA methylation markers showed high sequencing accuracy for a significant number of markers, showcasing ONT as a promising (epi)genetic forensic method. Future studies must address three critical aspects: determining clear quantity and quality measures and detection thresholds for accuracy, optimizing input DNA quantity for forensic casework expectations, and addressing ethical considerations associated with phenotype and ancestry analysis to prevent ethnic biases.
Collapse
Affiliation(s)
- Desiree D S H de Bruin
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin A Haagmans
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | - Jerry Hoogenboom
- Netherlands Forensic Institute, Biological Traces, Den Haag, The Netherlands.
| | - Natalie E C Weiler
- Netherlands Forensic Institute, Biological Traces, Den Haag, The Netherlands.
| | - Niccoló Tesi
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| | - Alex Salazar
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Yaran Zhang
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Henne Holstege
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| | - Marcel Reinders
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| | | | - Titia Sijen
- Netherlands Forensic Institute, Biological Traces, Den Haag, The Netherlands; University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands.
| | - Peter Henneman
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development research Institute, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Kim BM, Park SU, Lee HY. Comparative analysis of SNaPshot and massively parallel sequencing for body fluid-specific DNA methylation markers. Electrophoresis 2024; 45:1805-1819. [PMID: 39119735 DOI: 10.1002/elps.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The identification of tissue-specific differentially methylated regions has significantly contributed to the field of forensic genetics, particularly in body fluid identification crucial for linking evidence to crimes. Among the various approaches to analyzing DNA methylation, the SNaPshot assay has been popularly studied in numerous researches. However, there is a growing interest in exploring alternative methods such as the use of massively parallel sequencing (MPS), which can process a large number of samples simultaneously. This study compares SNaPshot and MPS multiplex assays using nine cytosine-phosphate-guanine markers for body fluid identification. As a result of analyzing 112 samples, including blood, saliva, vaginal fluid, menstrual blood, and semen, both methods demonstrated high sensitivity and specificity, indicating their reliability in forensic investigations. A total of 92.0% samples were correctly identified by both methods. Although both methods accurately identified all blood, saliva, and semen samples, some vaginal fluid samples showed unexpected methylation signals at nontarget loci in addition to the target loci. In the case of menstrual blood samples, due to their complexity, independent typing criteria were applied, and successful menstrual blood typing was possible, whereas a few samples showed profiles similar to vaginal fluid. The MPS method worked better in vaginal fluid samples, and the SNaPshot method performed better in menstrual blood samples. This study offers valuable insights into body fluid identification based on the characteristics of the SNaPshot and MPS methods, which may help in more efficient forensic applications.
Collapse
Affiliation(s)
- Bo Min Kim
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Un Park
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Kim BM, Park SU, Schmelzer L, Yang SB, Lee SD, Kim MY, Naue J, Lee HY. DNA methylation-based organ tissue identification: Marker identification, SNaPshot multiplex assay development, and interlaboratory comparison. Forensic Sci Int Genet 2024; 71:103052. [PMID: 38678764 DOI: 10.1016/j.fsigen.2024.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Identifying body fluids and organ tissues is highly significant as they can offer crucial evidence in criminal investigations and aid the court in making informed decisions, primarily through evaluating the biological source and possibly at the activity level up to death or fatal damage. In this study, organ tissue-specific CpG markers were identified from Illumina's methylation EPIC array data of nine organ tissues, including epidermis, dermis, heart, skeletal muscle, blood, kidney, brain, lung, and liver, from autopsies of 10 Koreans. Through the validation test using 43 samples, 18 hypomethylation markers, with two markers for each organ tissue type, were selected to construct a SNaPshot assay. Two multiplex assays involving forward and reverse SBE primers were designed to help investigators accurately determine the organ origin of the analyzed tissue samples through repeated analysis of the same PCR products for markers. The developed multiplex demonstrated high accuracy, achieving 100.0 % correct detection of the presence of nine organ tissue types in 88 samples from autopsies of 10 Asians. However, two lung samples showed additional positive indications of the presence of blood. An interlaboratory comparison using 80 autopsy samples (heart, skeletal muscle, blood, kidney cortex, kidney medulla, brain, lung, and liver) from 10 individuals in Germany revealed overall comparable results with correct detection of the presence of eight organ tissue types in 92.5 % samples (74 of 80 samples). In the case of six samples, it was impossible to determine the correct tissue successfully due to drop-outs of unmethylation signals at target tissue marker loci. One of these lung samples revealed only non-intended off-target signals for blood. The observed differences might be due to differences in sample collection during routine autopsy, technical differences due to the PCR cycler, and the threshold used for signal calling. Indicating the presence of additional tissue type and off-target unmethylation signals seems alleviated by applying more stringent hypomethylation thresholds. Therefore, the developed SNaPshot multiplex assays will be valuable for forensic investigators dealing with organ tissue identification, as well as for prosecutors and defense aiming to establish the circumstances that occurred at the crime scene.
Collapse
Affiliation(s)
- Bo Min Kim
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Un Park
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Laura Schmelzer
- Institute of Forensic Medicine, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Soo-Bin Yang
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Young Kim
- Laboratory of Forensic Medicine, Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jana Naue
- Institute of Forensic Medicine, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Xiao Y, Tan M, Song J, Huang Y, Lv M, Liao M, Yu Z, Gao Z, Qu S, Liang W. Developmental validation of an mRNA kit: A 5-dye multiplex assay designed for body-fluid identification. Forensic Sci Int Genet 2024; 71:103045. [PMID: 38615496 DOI: 10.1016/j.fsigen.2024.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Identifying the sources of biosamples found at crime scenes is crucial for forensic investigations. Among the markers used for body fluid identification (BFI), mRNA has emerged as a well-studied marker because of its high specificity and remarkable stability. Despite this potential, commercially available mRNA kits specifically designed for BFI are lacking. Therefore, we developed an mRNA kit that includes 21 specific mRNA markers of body fluids, along with three housekeeping genes for BFI, to identify four forensic-relevant fluids (blood, semen, saliva, and vaginal fluids). In this study, we tested 451 single-body-fluid samples, validated the universality of the mRNA kit, and obtained a gene expression profile. We performed the validation studies in triplicates and determined the sensitivity, specificity, stability, precision, and repeatability of the mRNA kit. The sensitivity of the kit was found to be 0.1 ng. Our validation process involved the examination of 59 RNA mixtures, 60 body fluids mixtures, and 20 casework samples, which further established the reliability of the kit. Furthermore, we constructed five classifiers that can handle single-body fluids and mixtures using this kit. The classifiers output possibility values and identify the specific body fluids of interest. Our results showed the reliability and suitability of the BFI kit, and the Random Forest classifier performed the best, with 94% precision. In conclusion, we developed an mRNA kit for BFI which can be a promising tool for forensic practice.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jinlong Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yihang Huang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zailiang Yu
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Zhixiao Gao
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
6
|
Ambroa-Conde A, Casares de Cal MA, Gómez-Tato A, Robinson O, Mosquera-Miguel A, de la Puente M, Ruiz-Ramírez J, Phillips C, Lareu MV, Freire-Aradas A. Inference of tobacco and alcohol consumption habits from DNA methylation analysis of blood. Forensic Sci Int Genet 2024; 70:103022. [PMID: 38309257 DOI: 10.1016/j.fsigen.2024.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
DNA methylation has become a biomarker of great interest in the forensic and clinical fields. In criminal investigations, the study of this epigenetic marker has allowed the development of DNA intelligence tools providing information that can be useful for investigators, such as age prediction. Following a similar trend, when the origin of a sample in a criminal scenario is unknown, the inference of an individual's lifestyle such as tobacco use and alcohol consumption could provide relevant information to help in the identification of DNA donors at the crime scene. At the same time, in the clinical domain, prediction of these trends of consumption could allow the identification of people at risk or better identification of the causes of different pathologies. In the present study, DNA methylation data from the UK AIRWAVE study was used to build two binomial logistic models for the inference of smoking and drinking status. A total of 348 individuals (116 non-smokers, 116 former smokers and 116 smokers) plus a total of 237 individuals (79 non-drinkers, 79 moderate drinkers and 79 drinkers) were used for development of tobacco and alcohol consumption prediction models, respectively. The tobacco prediction model was composed of two CpGs (cg05575921 in AHRR and cg01940273) and the alcohol prediction model three CpGs (cg06690548 in SLC7A11, cg0886875 and cg21294714 in MIR4435-2HG), providing correct classifications of 86.49% and 74.26%, respectively. Validation of the models was performed using leave-one-out cross-validation. Additionally, two independent testing sets were also assessed for tobacco and alcohol consumption. Considering that the consumption of these substances could underlie accelerated epigenetic ageing patterns, the effect of these lifestyles on the prediction of age was evaluated. To do that, a quantile regression model based on previous studies was generated, and the potential effect of tobacco and alcohol consumption with the epigenetic age was assessed. The Wilcoxon test was used to evaluate the residuals generated by the model and no significant differences were observed between the categories analyzed.
Collapse
Affiliation(s)
- A Ambroa-Conde
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M A Casares de Cal
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - A Gómez-Tato
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - O Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - A Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M de la Puente
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J Ruiz-Ramírez
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
8
|
Tang X, Wen D, Jin X, Wang C, Xu W, Qu W, Xu R, Jia H, Liu Y, Li X, Chen S, Fu X, Liang B, Li J, Liu Y, Zha L. A preliminary study on identification of the blood donor in a body fluid mixture using a novel compound genetic marker blood-specific methylation-microhaplotype. Forensic Sci Int Genet 2024; 70:103031. [PMID: 38493735 DOI: 10.1016/j.fsigen.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Blood-containing mixtures are frequently encountered at crime scenes involving violence and murder. However, the presence of blood, and the association of blood with a specific donor within these mixtures present significant challenges in forensic analysis. In light of these challenges, this study sought to address these issues by leveraging blood-specific methylation sites and closely linked microhaplotype sites, proposing a novel composite genetic marker known as "blood-specific methylation-microhaplotype". This marker was designed to the detection of blood and the determination of blood donor within blood-containing mixtures. According to the selection criteria mentioned in the Materials and Methods section, we selected 10 blood-specific methylation-microhaplotype loci for inclusion in this study. Among these loci, eight exhibited blood-specific hypomethylation, while the remaining two displayed blood-specific hypermethylation. Based on data obtained from 124 individual samples in our study, the combined discrimination power (CPD) of these 10 successfully sequenced loci was 0.999999298. The sample allele methylation rate (Ram) was obtained from massive parallel sequencing (MPS), which was defined as the proportion of methylated reads to the total clustered reads that were genotyped to a specific allele. To develop an allele type classification model capable of identifying the presence of blood and the blood donor, we used the Random Forest algorithm. This model was trained and evaluated using the Ram distribution of individual samples and the Ram distribution of simulated shared alleles. Subsequently, we applied the developed allele type classification model to predict alleles within actual mixtures, trying to exclude non-blood-specific alleles, ultimately allowing us to identify the presence of blood and the blood donor in the blood-containing mixtures. Our findings demonstrate that these blood-specific methylation-microhaplotype loci have the capability to not only detect the presence of blood but also accurately associate blood with the true donor in blood-containing mixtures with the mixing ratios of 1:29, 1:19, 1:9, 1:4, 1:2, 2:1, 7:1, 8:1, 31:1 and 36:1 (blood:non-blood) by DNA mixture interpretation methods. In addition, the presence of blood and the true blood donor could be identified in a mixture containing four body fluids (blood:vaginal fluid:semen:saliva = 1:1:1:1). It is important to note that while these loci exhibit great potential, the impact of allele dropouts and alleles misidentification must be considered when interpreting the results. This is a preliminary study utilising blood-specific methylation-microhaplotype as a complementary tool to other well-established genetic markers (STR, SNP, microhaplotype, etc.) for the analysis in blood-containing mixtures.
Collapse
Affiliation(s)
- Xuan Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Dan Wen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xin Jin
- Department of Public Security of Hainan Province, Haikou, Hainan Province, PR China
| | - Chudong Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Wei Xu
- Central Laboratory, Hunan Provincal People's Hospital (The First Affiliated Hospitak of Hunan Normal University), Changsha, Hunan Province 410000, PR China
| | - Weifeng Qu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Ruyi Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Hongtao Jia
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yi Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xue Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, PR China
| | - Siqi Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xiaoyi Fu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Bin Liang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Jienan Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Ying Liu
- Xiangya Stomatological Collage, Central South University, No72. Xiangya Road, Changsha, Hunan 410013, PR China.
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China; Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
9
|
Liu Z, Yang J, Wang N, Liu J, Geng J, Zhu J, Cong B, Sun H, Wu R. Integrative lncRNA, circRNA, and mRNA analysis reveals expression profiles of six forensic body fluids/tissue. Int J Legal Med 2024; 138:731-742. [PMID: 37994925 DOI: 10.1007/s00414-023-03131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
RNAs have attracted much attention in forensic body fluid/tissue identification (BFID) due to their tissue-specific expression characteristics. Among RNAs, long RNAs (e.g., mRNA) have a higher probability of containing more polymorphic sites that can be used to assign the specific donor of the body fluid/tissue. However, few studies have characterized their overall profiles in forensic science. In this study, we sequenced the transcriptomes of 30 samples from venous blood, menstrual blood, semen, saliva, vaginal secretion, and skin tissue, obtaining a comprehensive picture of mRNA, lncRNA, and circRNA profiles. A total of 90,305 mRNAs, 102,906 lncRNAs (including 19,549 novel lncRNAs), and 40,204 circRNAs were detected. RNA type distribution, length distribution, and expression distribution were presented according to their annotation and expression level, and many novel body fluid/tissue-specific RNA markers were identified. Furthermore, the cognate relations among the three RNAs were analyzed according to gene annotations. Finally, SNPs and InDels from RNA transcripts were genotyped, and 21,611 multi-SNP and 4,471 multi-InDel transcriptomic microhaplotypes (tMHs) were identified. These results provide a comprehensive understanding of transcriptome profiles, which could provide new avenues for tracing the origin of the body fluid/tissue and identifying an individual.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
11
|
Lee JE, Park SU, So MH, Lee HY. Age prediction using DNA methylation of Y-chromosomal CpGs in semen samples. Forensic Sci Int Genet 2024; 69:103007. [PMID: 38217952 DOI: 10.1016/j.fsigen.2024.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
In cases of sexual assault, the evidence often exists as a mixture of female and male body fluids, and in many cases, contains a higher proportion of female body fluids than males. In these cases, Y-STR, rather than autosomal STRs, can provide useful information. It becomes very difficult to identify the true suspect if there is no match among known suspects or if a match exists for two or more suspects, e.g. two suspects from the same paternal lineage. However, age prediction using the DNA methylation of Y-chromosomal CpGs can help narrow the search for unknown suspects and discriminate between older and younger suspects. Therefore, the DNA methylation profiles of semen samples from 56 healthy Korean males were generated using Illumina's Infinium MethylationEPIC BeadChip Array. Among the ten identified age-associated CpG markers located in the Y-chromosome, nine were used to construct age prediction models. The identified markers were further investigated in the MPS analysis of 147 semen samples, and the multiplex assay was validated with the reliability, reproducibility and sensitivity tests. Several age prediction models were constructed using the MPS data with the multiple linear regression, stepwise linear regression, ridge linear regression, lasso regression, elastic net linear regression and support vector machine analyses, and all showed MAEs of 5 to 7 years in the test set samples. Six single-source female samples were also subjected to MPS analysis but showed very low coverage that could not affect the analysis of the mixed samples. Therefore, the age prediction models of the present study are expected to provide useful investigative leads, especially in mixed male and female samples from sexual assault cases.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Sang Un Park
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
12
|
Rothe J, Becker JM, Charchinezhadamouei M, Mähr S, Lembeck F, Dannemann N, Nagy M. Expanding the scope of methylation-sensitive restriction enzyme (MSRE) PCR for forensic identification of body fluids through the novel use of methylation-dependent restriction enzymes (MDRE) and the combination of autosomal and Y-chromosomal markers. Int J Legal Med 2024; 138:375-393. [PMID: 37875742 PMCID: PMC10861701 DOI: 10.1007/s00414-023-03097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
Methylation-sensitive/-dependent restriction enzyme (MSRE/MDRE) PCR can be performed to detect hypomethylated or hypermethylated CpG sites. With the combined use of different tissue-specific CpG markers, MSRE/MDRE-PCR leads to tissue-specific methylation patterns (TSMPs), enabling the correlation of DNA samples to their source tissue. MSRE/MDRE assays can use the same platform as forensic STR typing and offer many advantages in the field of forensic body fluid detection. In the present study, we aimed to establish MSRE assays for the detection of blood, saliva, vaginal secretion, and semen, using markers from literature and from our own database search. We designed two different MSRE test-sets, which include two novel Y-chromosomal non-semen markers, and enable differentiation between female and male non-semen samples. Furthermore, we established an MSRE/MDRE semen approach, which includes only Y-chromosomal non-semen and semen markers. This Y-semen multiplex PCR utilizes the novel combination of the methylation-sensitive enzyme SmaI and the methylation-dependent enzyme GlaI, which enables more sensitive detection of male body fluids within male/female DNA mixtures. Our validation tests confirmed that MSRE/MDRE assays exhibit high sensitivity, similar to that of STR typing.
Collapse
Affiliation(s)
- Jessica Rothe
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jessica Maria Becker
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maral Charchinezhadamouei
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sophia Mähr
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felizitas Lembeck
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nora Dannemann
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marion Nagy
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
13
|
Liu Z, Liu J, Geng J, Wu E, Zhu J, Cong B, Wu R, Sun H. Metatranscriptomic characterization of six types of forensic samples and its potential application to body fluid/tissue identification: A pilot study. Forensic Sci Int Genet 2024; 68:102978. [PMID: 37995518 DOI: 10.1016/j.fsigen.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms are potential markers for identifying body fluids (venous and menstrual blood, semen, saliva, and vaginal secretion) and skin tissue in forensic genetics. Existing published studies have mainly focused on investigating microbial DNA by 16 S rRNA gene sequencing or metagenome shotgun sequencing. We rarely find microbial RNA level investigations on common forensic body fluid/tissue. Therefore, the use of metatranscriptomics to characterize common forensic body fluids/tissue has not been explored in detail, and the potential application of metatranscriptomics in forensic science remains unknown. Here, we performed 30 metatranscriptome analyses on six types of common forensic sample from healthy volunteers by massively parallel sequencing. After quality control and host RNA filtering, a total of 345,300 unigenes were assembled from clean reads. Four kingdoms, 137 phyla, 267 classes, 488 orders, 985 families, 2052 genera, and 4690 species were annotated across all samples. Alpha- and beta-diversity and differential analysis were also performed. As a result, the saliva and skin groups demonstrated high alpha diversity (Simpson index), while the venous blood group exhibited the lowest diversity despite a high Chao1 index. Specifically, we discussed potential microorganism contamination and the "core microbiome," which may be of special interest to forensic researchers. In addition, we implemented and evaluated artificial neural network (ANN), random forest (RF), and support vector machine (SVM) models for forensic body fluid/tissue identification (BFID) using genus- and species-level metatranscriptome profiles. The ANN and RF prediction models discriminated six forensic body fluids/tissue, demonstrating that the microbial RNA-based method could be applied to BFID. Unlike metagenomic research, metatranscriptomic analysis can provide information about active microbial communities; thus, it may have greater potential to become a powerful tool in forensic science for microbial-based individual identification. This study represents the first attempt to explore the application potential of metatranscriptome profiles in forensic science. Our findings help deepen our understanding of the microorganism community structure at the RNA level and are beneficial for other forensic applications of metatranscriptomics.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Enlin Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Konrad H, Jürgens L, Hartung B, Poetsch M. More than just blood, saliva, or sperm-setup of a workflow for body fluid identification by DNA methylation analysis. Int J Legal Med 2023; 137:1683-1692. [PMID: 37535091 PMCID: PMC10567870 DOI: 10.1007/s00414-023-03069-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
The determination of cellular origin of DNA is a useful method in forensic genetics and complements identification of the DNA donor by STR analysis, since it could provide helpful information for the reconstruction of crime scenes and verify or disprove the descriptions of involved people. There already exist several rapid/pre-tests for several secretions (blood, sperm secretion, saliva, and urine), RNA-based expression analyses (blood, menstrual blood, saliva, vaginal secretion, nasal secretion, and sperm secretion), or specific CpG methylation analyses (nasal blood, blood, saliva, vaginal secretion, nasal secretion, and sperm secretion) for determining the cell type.To identify and to discriminate seven different body fluids and mixtures thereof in a simple workflow from each other, assays based on specific methylation patterns at several CpGs combined with pre-/rapid tests were set up in this study. For each of the seven secretions listed above, we selected the CpG marker achieving the highest possible discrimination (out of 30 markers tested). Validation studies confirmed a definite identification for saliva, vaginal secretion, and semen secretion in 100% of samples as well as discrimination from all other secretions. Moreover, the unambiguously correctly determined proportion of nasal samples, blood and menstrual blood varied between 61% (nasal blood) and 85% (nasal secretion).In summary, our workflow proved to be an easy and useful tool in forensic analysis for the identification and discrimination of seven different body fluids often found at a crime scene.
Collapse
Affiliation(s)
- Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Leandra Jürgens
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Benno Hartung
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| |
Collapse
|
15
|
Yu D, Zhang J, Gao N, Huo Y, Li W, Wang T, Zhang X, Simayijiang H, Yan J. Rapid and visual detection of specific bacteria for saliva and vaginal fluid identification with the lateral flow dipstick strategy. Int J Legal Med 2023; 137:1853-1863. [PMID: 37358650 DOI: 10.1007/s00414-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Identification of body fluids is critical for crime scene reconstruction, and a source of investigation source of investigative leads. In recent years, microbial DNA analysis using sequencing and quantitative real-time polymerase chain reaction have been used to identify body fluids. However, these techniques are time-consuming, expensive, and require complex workflows. In this study, a new method for simultaneous detection of Streptococcus salivarius and Lactobacillus crispatus using polymerase chain reaction (PCR) in combination with a lateral flow dipstick (LFD) was developed to identify saliva and vaginal fluid in forensic samples. LFD results can be observed with the naked eye within 3 min with a sensitivity of 0.001 ng/µL DNA. The PCR-LFD assay was successfully used to detect S. salivarius and L. crispatus in saliva and vaginal fluid respectively, and showed negative results in blood, semen, nasal fluid, and skin. Moreover, saliva and vaginal fluid were detectable even at an extremely high mixing ratio of sample DNA (1:999). Saliva and vaginal fluid were identified in various mock forensic samples. These results indicate that saliva and vaginal fluid can be effectively detected by identifying S. salivarius and L. crispatus, respectively. Furthermore, we have shown that DNA samples used to identify saliva and vaginal fluid can also provide a complete short tandem repeat (STR) profile when used as source material for forensic STR profiling. In summary, our results suggest that PCR-LFD is a promising assay for rapid, simple, reliable, and efficient identification of body fluids.
Collapse
Affiliation(s)
- Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Wanting Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China.
| |
Collapse
|
16
|
Ding B, Zhang X, Wan Z, Tian F, Ling J, Tan J, Peng X. Characterization of Mitochondrial DNA Methylation of Alzheimer's Disease in Plasma Cell-Free DNA. Diagnostics (Basel) 2023; 13:2351. [PMID: 37510095 PMCID: PMC10378411 DOI: 10.3390/diagnostics13142351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Noninvasive diagnosis of Alzheimer's disease (AD) is important for patients. Significant differences in the methylation of mitochondrial DNA (mtDNA) were found in AD brain tissue. Cell-free DNA (cfDNA) is a noninvasive and economical diagnostic tool. We aimed to characterize mtDNA methylation alterations in the plasma cfDNA of 31 AD patients and 26 age- and sex-matched cognitively normal control subjects. We found that the mtDNA methylation patterns differed between AD patients and control subjects. The mtDNA was predominantly hypomethylated in the plasma cfDNA of AD patients. The hypomethylation sites or regions were mainly located in mt-rRNA, mt-tRNA, and D-Loop regions. The hypomethylation of the D-Loop region in plasma cfDNA of AD patients was consistent with that in previous studies. This study presents evidence that hypomethylation in the non-protein coding region of mtDNA may contribute to the pathogenesis of AD and potential application for the diagnosis of AD.
Collapse
Affiliation(s)
- Binrong Ding
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Feng Tian
- The 8 Ward, The Ninth Hospital of Changsha, Changsha 410000, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jieqiong Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| | - Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| |
Collapse
|
17
|
Wohlfahrt D, Tan-Torres AL, Green R, Brim K, Bradley N, Brand A, Abshier E, Nogales F, Babcock K, Brooks J, Seashols-Williams S, Singh B. A bacterial signature-based method for the identification of seven forensically relevant human body fluids. Forensic Sci Int Genet 2023; 65:102865. [PMID: 37004371 DOI: 10.1016/j.fsigen.2023.102865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Detection and identification of body fluids plays a crucial role in criminal investigation, as it provides information on the source of the DNA as well as corroborative evidence regarding the crime committed, scene, and/or association with persons of interest. Historically, forensic serological methods have been chemical, immunological, catalytic, spectroscopic, and/or microscopic in nature. However, most of these methods are presumptive, with few robust confirmatory exceptions. In recent years several new molecular methods (mRNA, miRNA, DNA methylation, etc.) have been proposed; although promising, these methods require high quality human DNA or RNA. Additional steps are required in RNA based methods. Additionally, RNA based methods cannot be used for old cases where only DNA extracts remain to sample from. In this study, a novel non-human DNA (microbiome) based method was developed for the identification of the majority of forensically relevant human biological samples. Eight hundred and twelve (n = 812) biological samples (semen, vaginal fluid, menstrual blood, saliva, feces, urine, and blood) were collected and preserved using methods commonly used in forensic laboratories for evidence collection. Variable region four (V4) of 16 S ribosomal DNA (16 S rDNA) was amplified using a dual-indexing strategy and then sequenced on the MiSeq FGx sequencing platform using the MiSeq Reagent Kit v2 (500 cycles) and following the manufacturer's protocol. Machine learning prediction models were used to assess the classification accuracy of the newly developed method. As there was no significant difference in bacterial communities between vaginal fluid, menstrual blood, and female urine, these were combined as female intimate samples. Except in urine, the bacterial structures associated with male and female body fluid samples were not significantly different from one another. The newly developed method accurately identified human body fluid samples with an overall accuracy of more than 88%. This newly developed bacterial signature-based method is fast (no additional steps are needed as the same DNA can be used for both body fluid identification and STR typing), efficient (consume less sample as a single test can identify all major body fluids), sensitive (needs only 5 pg of bacterial DNA), accurate, and can be easily added into a forensic high throughput sequencing (HTS) panel.
Collapse
|
18
|
Konrad H, Lawniczek J, Bajramjan C, Weber L, Bajanowski T, Poetsch M. Knife wound or nosebleed-where does the blood at the crime scene come from? Int J Legal Med 2023:10.1007/s00414-023-03012-2. [PMID: 37148347 PMCID: PMC10247842 DOI: 10.1007/s00414-023-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Secretion analysis is a useful tool in forensic genetics, since it establishes the (cellular) origin of the DNA prior in addition to the identification of the DNA donor. This information can be crucial for the construction of the crime sequence or verification of statements of people involved in the crime. For some secretions, rapid/pretests already exist (blood, semen, urine, and saliva) or can be determined via published methylation analyses or expression analyses (blood, saliva vaginal secretions, menstrual blood, and semen). To discriminate nasal secretion/blood from other secretions (like oral mucosa/saliva, blood, vaginal secretion, menstrual blood, and seminal fluid), assays based on specific methylation patterns at several CpGs were set up in this study. Out of an initial 54 different CpG markers tested, two markers showed a specific methylation value for nasal samples: N21 and N27 with a methylation mean value of 64.4% ± 17.6% and 33.2% ± 8.7%, respectively. Although identification or discrimination was not possible for all nasal samples (due to partial overlap in methylation values to other secretions), 63% and 26% of the nasal samples could be unambiguously identified and distinguished from the other secretions using the CpG marker N21 and N27, respectively. In combination with a blood pretest/rapid test, a third marker (N10) was able to detect nasal cells in 53% of samples. Moreover, the employment of this pretest increases the proportion of identifiable or discriminable nasal secretion samples using marker N27 to 68%. In summary, our CpG assays proved to be promising tools in forensic analysis for the detection of nasal cells in samples from a crime scene.
Collapse
Affiliation(s)
- Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Janina Lawniczek
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Christine Bajramjan
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Lisa Weber
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Thomas Bajanowski
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| |
Collapse
|
19
|
Vidaki A, Planterose Jiménez B, Poggiali B, Kalamara V, van der Gaag KJ, Maas SCE, Ghanbari M, Sijen T, Kayser M. Targeted DNA methylation analysis and prediction of smoking habits in blood based on massively parallel sequencing. Forensic Sci Int Genet 2023; 65:102878. [PMID: 37116245 DOI: 10.1016/j.fsigen.2023.102878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Tobacco smoking is a frequent habit sustained by > 1.3 billion people in 2020 and the leading preventable factor for health risk and premature mortality worldwide. In the forensic context, predicting smoking habits from biological samples may allow broadening DNA phenotyping. In this study, we aimed to implement previously published smoking habit classification models based on blood DNA methylation at 13 CpGs. First, we developed a matching lab tool based on bisulfite conversion and multiplex PCR followed by amplification-free library preparation and targeted paired-end massively parallel sequencing (MPS). Analysis of six technical duplicates revealed high reproducibility of methylation measurements (Pearson correlation of 0.983). Artificially methylated standards uncovered marker-specific amplification bias, which we corrected via bi-exponential models. We then applied our MPS tool to 232 blood samples from Europeans of a wide age range, of which 90 were current, 71 former and 71 never smokers. On average, we obtained 189,000 reads/sample and 15,000 reads/CpG, without marker drop-out. Methylation distributions per smoking category roughly corresponded to previous microarray analysis, showcasing large inter-individual variation but with technology-driven bias. Methylation at 11 out of 13 smoking-CpGs correlated with daily cigarettes in current smokers, while solely one was weakly correlated with time since cessation in former smokers. Interestingly, eight smoking-CpGs correlated with age, and one displayed weak but significant sex-associated methylation differences. Using bias-uncorrected MPS data, smoking habits were relatively accurately predicted using both two- (current/non-current) and three- (never/former/current) category model, but bias correction resulted in worse prediction performance for both models. Finally, to account for technology-driven variation, we built new, joint models with inter-technology corrections, which resulted in improved prediction results for both models, with or without PCR bias correction (e.g. MPS cross-validation F1-score > 0.8; 2-categories). Overall, our novel assay takes us one step closer towards the forensic application of viable smoking habit prediction from blood traces. However, future research is needed towards forensically validating the assay, especially in terms of sensitivity. We also need to further shed light on the employed biomarkers, particularly on the mechanistics, tissue specificity and putative confounders of smoking epigenetic signatures.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Brando Poggiali
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vivian Kalamara
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Silvana C E Maas
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Titia Sijen
- Division of Biological Traces, Netherlands Forensic Institute, The Hague, the Netherlands; Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Al-Hazani TMI, Al-Qahtani WS, Abboosh TS, Safhi FA, Alshaya DS, Jalal AS, Al-Shamrani SM, Al-Ghamdi NA, Alotaibi AM, Alotaibi MA, Alghamdi HS, Alafari HA, ALMatrafi TA, Alshehri E. Detecting STR profiles from degrading menstrual blood samples and their use as possible evidence in forensic investigations. Forensic Sci Int 2023; 343:111562. [PMID: 36657183 DOI: 10.1016/j.forsciint.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
This research explores DNA consistency and attempts to detect STR profiles from the degrading menstrual blood samples (MBS) as reliable forensic evidence. Peripheral (PBS) and MBS of 30 healthy fertile females were taken on the menstrual cycle's second day. They were obtained at different time periods (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, and 48 h) at 25 °C. DNA evaluation was fulfilled to analyze DNA profiles. A considerable elevation in the median concentrations of DNA between 0 and 14-h intervals were documented, whereas decreased extents were registered between 16 and 48 h. Moreover, complete STR profiles (24/24) for DNA were discovered in all the intervals (0, 2, and 48 h). Periods of 0-8 h demonstrated the maximum extents of DNA materials. Full STR were discovered in all the intervals (0, 2, and 48 h). Eventually, MBS can be utilized as forensic evidence.
Collapse
Affiliation(s)
- Tahani Mohamed Ibrahim Al-Hazani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box: 83, Al-Kharj 11940, Saudi Arabia.
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, P.O. Box 6830, Riyadh 11452, Saudi Arabia.
| | - Tahani Saeed Abboosh
- Ministry of Interior, Public Security, Forensic Evidence Laboratories, Criminal Examinations, Riyadh, Saudi Arabia.
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Dalal S Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Areej Saud Jalal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Salha M Al-Shamrani
- University of Jeddah, College of Science, Department of Biology, P.O. Box 13151, Jeddah 21493, Saudi Arabia.
| | | | | | | | - Hanan S Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Hayat Ali Alafari
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | | | - Eman Alshehri
- Department of Zoology, College of Science, King Saud University, Saudi Arabia.
| |
Collapse
|
21
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
A Comprehensive Characterization of Small RNA Profiles by Massively Parallel Sequencing in Six Forensic Body Fluids/Tissue. Genes (Basel) 2022; 13:genes13091530. [PMID: 36140698 PMCID: PMC9498867 DOI: 10.3390/genes13091530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Body fluids/tissue identification (BFID) is an essential procedure in forensic practice, and RNA profiling has become one of the most important methods. Small non-coding RNAs, being expressed in high copy numbers and resistant to degradation, have great potential in BFID but have not been comprehensively characterized in common forensic stains. In this study, the miRNA, piRNA, snoRNA, and snRNA were sequenced in 30 forensic relevant samples (menstrual blood, saliva, semen, skin, venous blood, and vaginal secretion) using the BGI platform. Based on small RNA profiles, relative specific markers (RSM) and absolute specific markers (ASM) were defined, which can be used to identify a specific body fluid/tissue out of two or six, respectively. A total of 5204 small RNAs were discovered including 1394 miRNAs (including 236 novel miRNA), 3157 piRNAs, 636 snoRNAs, and 17 snRNAs. RSMs for 15 pairwise body fluid/tissue groups were discovered by differential RNA analysis. In addition, 90 ASMs that were specifically expressed in a certain type of body fluid/tissue were screened, among them, snoRNAs were reported first in forensic genetics. In brief, our study deepened the understanding of small RNA profiles in forensic stains and offered potential BFID markers that can be applied in different forensic scenarios.
Collapse
|
23
|
Epigenetic Studies for Evaluation of NPS Toxicity: Focus on Synthetic Cannabinoids and Cathinones. Biomedicines 2022; 10:biomedicines10061398. [PMID: 35740419 PMCID: PMC9219842 DOI: 10.3390/biomedicines10061398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the recent decade, numerous new psychoactive substances (NPSs) have been added to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse (i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs is ongoing and necessary in order to provide an appropriate contribution to public health. In fact, multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature. Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles of these compounds, revealing that they can cause adverse effects involving various organ systems (i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks. In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring. Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental variables may impact NPS responses, epigenetics may aid in understanding the processes behind the harmful events induced by long-term NPS usage. Taken together, “pharmacoepigenomics” may provide a new field of combined study on genetic differences and epigenetic changes in drug reactions that might be predictive in forensic implications.
Collapse
|
24
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
25
|
Cheng Z, Ling J, Zhang W, Ding Y. Rapid detection of 17β-estradiol based on shaddock peel derived fluorescent aptasensor for forensic examination. Forensic Sci Int 2021; 331:111153. [PMID: 34952290 DOI: 10.1016/j.forsciint.2021.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 11/04/2022]
Abstract
17β-estradiol (E2) detection technique had been shown to a potent method for identification of female blood in forensic practice since it was abundant in the healthy female body. Herein, we developed a fluorescent aptasensor based on carbon quatum dots (CQDs) derived from shaddock peel green synthesis for rapid detection of E2 as a useful auxiliary tool of forensic examination. The CQDs conjugated to the aptamer achieved fluorometric detection of E2 in blood and the blood of healthy female from 12 to 60 years old could be sensitive detected with the limit of detection of 0.025 ng/ml, and the analytical process could be completed within 10 min. The aptasensor was also used to assay E2 in forensic samples including blood and blood stain. In all instances, the results were positive when mixed samples involving female sample. This fluorescent aptasensor was proved to be a green, rapid and sensitive detection method of E2, and it exhibited great potential in discrimination of female samples in forensic practice.
Collapse
Affiliation(s)
- Zijia Cheng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wenqi Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet 2021; 57:102656. [PMID: 34973557 DOI: 10.1016/j.fsigen.2021.102656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
DNA methylation has become one of the most useful biomarkers for age prediction and body fluid identification in the forensic field. Therefore, several assays have been developed to detect age-associated and body fluid-specific DNA methylation changes. Among the many methods developed, SNaPshot-based assays should be particularly useful in forensic laboratories, as they permit multiplex analysis and use the same capillary electrophoresis instrumentation as STR analysis. However, technical validation of any developed assays is crucial for their proper integration into routine forensic workflow. In the present collaborative exercise, two SNaPshot multiplex assays for age prediction and a SNaPshot multiplex for body fluid identification were tested in twelve laboratories. The experimental set-up of the exercise was designed to reflect the entire workflow of SNaPshot-based methylation analysis and involved four increasingly complex tasks designed to detect potential factors influencing methylation measurements. The results of body fluid identification from each laboratory provided sufficient information to determine appropriate age prediction methods in subsequent analysis. In age prediction, systematic measurement differences resulting from the type of genetic analyzer used were identified as the biggest cause of DNA methylation variation between laboratories. Also, the use of a buffer that ensures a high ratio of specific to non-specific primer binding resulted in changes in DNA methylation measurement, especially when using degenerate primers in the PCR reaction. In addition, high input volumes of bisulfite-converted DNA often caused PCR failure, presumably due to carry-over of PCR inhibitors from the bisulfite conversion reaction. The proficiency of the analysts and experimental conditions for efficient SNaPshot reactions were also important for consistent DNA methylation measurement. Several bisulfite conversion kits were used for this study, but differences resulting from the use of any specific kit were not clearly discerned. Even when different experimental settings were used in each laboratory, a positive outcome of the study was a mean absolute age prediction error amongst participant's data of only 2.7 years for semen, 5.0 years for blood and 3.8 years for saliva.
Collapse
|
27
|
Huang H, Liu X, Cheng J, Xu L, He X, Xiao C, Huang D, Yi S. A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids. J Forensic Sci 2021; 67:136-148. [PMID: 34431515 DOI: 10.1111/1556-4029.14872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
Identifying the source of body fluids found at a crime scene is an essential forensic step. Some methods based on DNA methylation played significant role in body fluids identification. Since DNA methylation is related to multiple factors, such as race, age, and diseases, it is necessary to know the methylation profile of a given population. In this study, we tested 19 body fluid-specific methylation markers in a Chinese Han population. A novel multiplex assay system based on the selected markers with smaller variation in methylation and stronger tissue-specific methylation were developed for the identification of body fluids. The multiplex assay were tested in 265 body fluid samples. A random forest model was established to predict the tissue source based on the methylation data of the 10 markers. The multiplex assay was evaluated by testing the sensitivity, the mixtures, and old samples. For the result, the novel multiplex assay based on 10 selected methylation markers presented good methylation profiles in all tested samples. The random forest model worked extremely well in predicting the source of body fluids, with an accuracy of 100% and 97.5% in training data and test data, respectively. The multiplex assay could accurately predict the tissue source from 0.5 ng genomic DNA, six-months-old samples and distinguish the minor component from a mixture of two components. Our results indicated that the methylation multiplex assay and the random forest model could provide a convenient tool for forensic practitioners in body fluid identification.
Collapse
Affiliation(s)
- Hongzhi Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan, Hubei, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juanbo Cheng
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linxia Xu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Epigenetic age prediction in semen - marker selection and model development. Aging (Albany NY) 2021; 13:19145-19164. [PMID: 34375949 PMCID: PMC8386575 DOI: 10.18632/aging.203399] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The discovery of differentially methylated sites (DMSs) that continuously change over an individual's lifetime has led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will require technological progress to allow sensitive, simultaneous analysis of a much larger number of age correlated DMSs from the compromised DNA typical of forensic semen stains.
Collapse
|
29
|
DNA methylation of decedent blood samples to estimate the chronological age of human remains. Int J Legal Med 2021; 135:2163-2173. [PMID: 34245337 DOI: 10.1007/s00414-021-02650-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/24/2021] [Indexed: 01/21/2023]
Abstract
Chronological age estimation may offer valuable investigative leads in human identification cases. Bisulfite pyrosequencing analysis of single CpG sites on five genes (KLF14, ELOVL2, C1orf132, TRIM59, and FHL2) was performed on 264 postmortem blood samples from individuals aged 3 months to 93 years. The goals were to develop age prediction models based on the correlation between the methylation profile and chronological age and to assess the accuracy of the prediction. Linear regression between methylation levels and age at each CpG site revealed that the five markers show a statistically significant correlation with age. The methylation data from a training set of 160 postmortem blood samples were used to develop an age prediction model with a correlation coefficient of 0.65, explaining 73.1% of age variation, with a mean absolute deviation from the chronological age of 7.60 years. The accuracy of the model was evaluated with a test set of 72 samples producing a mean absolute deviation of 7.42 years. The training and test sets were also categorized by specific age groups to assess accuracy and deviation from chronological age. The data for both sets revealed a lower prediction potential as an individual increases in age, particularly for the age categories above 50 years.
Collapse
|
30
|
Choung CM, Lee JW, Park JH, Kim CH, Park HC, Lim SK. A forensic case study for body fluid identification using DNA methylation analysis. Leg Med (Tokyo) 2021; 51:101872. [PMID: 33836410 DOI: 10.1016/j.legalmed.2021.101872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Recently, a method of identifying body fluids using DNA methylation has been developed (Frumkin et al., 2011). An existing multiplex assay using 9 CpG markers could differentiate 5 body fluids: semen, blood, saliva, menstrual blood, and vaginal fluid. To validate this technique, we evaluated the previously described body fluid identification method by means of single base extension (SBE). DNA methylation was applied to 22 samples in 18 forensic cases; seven of these were semen, three were blood, eight were saliva, three were vaginal fluid, and one was menstrual blood. Total of 18 samples were tested, the DNA methylation profiles were coincident from preliminary tests (acid phosphatase (AP), leucomalachite green (LMG, Sigma Aldrich, St Louis, MO, USA) and SALIgAE®) except one sample which displayed an all-negative result. After applying the DNA methylation method to forensic samples, we determined that it could be very useful for differentiating vaginal secretions from menstrual blood, for which there is no conventional preliminary testing method.
Collapse
Affiliation(s)
- Chong Min Choung
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju si., Gangwon-do 26460, Republic of Korea
| | - Jee Won Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju si., Gangwon-do 26460, Republic of Korea
| | - Ji Hye Park
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju si., Gangwon-do 26460, Republic of Korea
| | - Cho Hee Kim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju si., Gangwon-do 26460, Republic of Korea
| | - Hyun-Chul Park
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju si., Gangwon-do 26460, Republic of Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu Suwon-si, Gyeongi-do 16419, Republic of Korea.
| |
Collapse
|
31
|
Application of fragment analysis based on methylation status mobility difference to identify vaginal secretions. Sci Justice 2021; 61:384-390. [PMID: 34172127 DOI: 10.1016/j.scijus.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022]
Abstract
Identifying vaginal secretions attaching or adhering to a suspect's belongings would be beneficial for reconstructing the events that have taken place during a sexual assault. The present study describes a novel approach to identify vaginal secretions by fragment analysis using capillary electrophoresis, based on the mobility differences of PCR amplicons from bisulfite-treated DNA depending on methylation status. We targeted three genome regions including each of three vaginal secretion-specific methylated CpG sites reported previously: cg25416153, cg09765089, and cg14991487. In all three genome regions, the amplicon peaks for methylated genomic DNA (gDNA) sequences were only detected in vaginal samples, whereas samples of other body fluids (blood, saliva, semen, and deposit on skin surface) only showed amplicon peaks for unmethylated gDNA sequences. In vaginal secretions, the methylation ratio of each of the three targeted regions between samples was variable, while the ratios at the three regions in each sample were similar. Furthermore, commercial vaginal epithelial cells were completely methylated at the three regions. Therefore, vaginal secretion-specific methylation may derive from vaginal epithelial cells present in the sample. In forensic cases with a limited amount of DNA, the reproducibility of a detected peak using the present method is not high due to degradation of DNA by bisulfite treatment and subsequent stochastic PCR bias. However, it was possible to detect peaks from methylated DNA sequences by performing PCR and capillary electrophoresis in triplicate after bisulfite treatment, even when bisulfite treatment was performed using 0.5 ng of gDNA from vaginal secretions. In addition, the level of methylation at each targeted region was found to be stable in vaginal secretions stored for 1 year at room temperature. Therefore, we conclude that detection of the visual peak from vaginal secretion-specific methylated DNA sequence is useful to prove the presence of vaginal secretions. This approach has the potential to analyze multiple marker regions simultaneously, and may provide a new multiplex assay to identify various body fluids.
Collapse
|
32
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
33
|
Kader F, Ghai M, Zhou M. Ethnicity, age and disease-associated variation in body fluid-specific CpG sites in a diverse South African cohort. Forensic Sci Int 2020; 314:110372. [PMID: 32623090 DOI: 10.1016/j.forsciint.2020.110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Tissue-specific differential DNA methylation has been an attractive target for the development of markers for discrimination of body fluids found at crime scenes. Though mostly stable, DNA methylation patterns have been shown to vary between different ethnic groups, in different age groups as well as between healthy and diseased individuals. To the best of our knowledge, none of the markers for body fluid identification have been applied to different ethnic groups to ascertain if variability exists. In the present study, saliva and blood were collected to determine the effects of ethnicity (Blacks, Whites, Coloureds and Indians), age (20-30 years, 40-50years and above 60 years) and diabetes on methylation profiles of potential saliva- and blood-specific DMSs. Both DMSs were previously shown to exhibit hypermethylation in their target body fluids at single CpG sites, however in the present study, additional CpG sites flanking the reported sites were also screened. Bisulfite sequencing revealed that Coloureds showed highest methylation levels for both body fluids, and blacks displayed significant differences between other ethnic groups in the blood-specific CpG sites. A decline in methylation for both potential DMRs was observed with increasing age. Heavily methylated CpG sites in different ethnic groups and previously reported DMSs displayed hypomethylation with increasing age and disease status. Diabetic status did not show any significant difference in methylation when compared to healthy counterparts. Thus, the use of methylation markers for forensics needs thorough investigation of influence of external factors and ideally, several CpG sites should be co-analysed instead of a single DMS.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Marvellous Zhou
- South African Sugarcane Research Institute, Mount Edgecombe, Durban, South Africa; University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.
| |
Collapse
|
34
|
Multiplex DNA methylation profiling by ARMS-PCR for body fluid identification. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Kader F, Ghai M, Olaniran AO. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med 2019; 134:1-20. [PMID: 31713682 DOI: 10.1007/s00414-019-02181-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Body fluid identification in crime scene investigations aids in reconstruction of crime scenes. Several studies have identified and reported differentially methylated sites (DMSs) and regions (DMRs) which differ between forensically relevant tissues (tDMRs) and body fluids. Diverse factors affect methylation patterns such as the environment, diets, lifestyle, disease, ethnicity, genetic variation, amongst others. Thus, it is important to analyse the stability of markers employed for forensic identification. Furthermore, even though epigenetic modifications are described as stable and heritable, epigenetic inheritance of potential markers for body fluid identification needs to be assessed in the long term. Here, we discuss the current status of reported DNA methylation-based markers and their verification studies. Such thorough investigation is crucial to develop a stable panel of DNA methylation-based markers for accurate body fluid identification.
Collapse
Affiliation(s)
- Farzeen Kader
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| |
Collapse
|
36
|
Li L, Song F, Lang M, Hou J, Wang Z, Prinz M, Hou Y. Methylation-Based Age Prediction Using Pyrosequencing Platform from Seminal Stains in Han Chinese Males. J Forensic Sci 2019; 65:610-619. [PMID: 31498434 DOI: 10.1111/1556-4029.14186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023]
Abstract
Various methods have been performed to predict an unknown individual's age from biological traces in forensic investigations. A considerably accurate age prediction for the semen donor can help narrow down the search in a sexual assault case. The aim of this study was to develop an assay for age prediction from seminal stains in Han Chinese males. We built a sperm-specific linear regression model using bisulfite pyrosequencing. Validations were conducted with a Mean Absolute Deviation from the chronological age (MAD) of 4.219 years in liquid semen, 4.158 years in fresh seminal stains, 4.393 years in aged seminal stains, and 3.880 years in mixed stains, respectively. Furthermore, our strategy enables accurate age prediction using a forensic casework sample. The strategy indicated that we produced an accurate and reliable age prediction tool for the semen donors in Han Chinese males for forensic purposes.
Collapse
Affiliation(s)
- Luyao Li
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Lang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Hou
- Institute for Genomic Medicine, University of California, La Jolla, San Diego, CA, 92093
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mechthild Prinz
- Department of Sciences, John Jay College of Criminal Justice, New York, NY, 10019
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
37
|
Gauthier QT, Cho S, Carmel JH, McCord BR. Development of a body fluid identification multiplex via DNA methylation analysis. Electrophoresis 2019; 40:2565-2574. [DOI: 10.1002/elps.201900118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Quentin T. Gauthier
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Sohee Cho
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
- Institute of Forensic ScienceSeoul National University College of Medicine Seoul South Korea
| | - Justin H. Carmel
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Bruce R. McCord
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| |
Collapse
|
38
|
Sabeeha, Hasnain SE. Forensic Epigenetic Analysis: The Path Ahead. Med Princ Pract 2019; 28:301-308. [PMID: 30893697 DOI: 10.1159/000499496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Unlike DNA fingerprinting, which scores for differences in the genome that are phenotype neutral, epigenetic variations are gaining importance in forensic investigations. Methylation of DNA has a broad range of effects on the lifestyle, health status, and physical appearance of individuals. DNA methylation profiling of forensic samples is useful in determination of the cell or tissue type of the DNA source and also for estimation of age. The quality and quantity of the biosample available from the crime scene limits the possible number of DNA methylation tests and the selection of the technology that can be used. Several techniques have been used for DNA methylation analysis for epigenetic investigations of forensic biological samples. However, novel techniques are needed for multiplex analysis of epigenetic markers as the techniques that are currently available require a large amount of high-quality DNA and are also limited in their multiplexing capacities that are often insufficient to fully resolve a forensic query of interest.
Collapse
Affiliation(s)
- Sabeeha
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India, .,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard University, New Delhi, India, .,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India,
| |
Collapse
|
39
|
Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int J Legal Med 2019; 133:1321-1331. [PMID: 30810820 DOI: 10.1007/s00414-019-02027-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Messenger RNA (mRNA) markers have been extensively investigated for the identification of forensically relevant body fluids and tissues based on their expression profiles among cell types. As products of the backsplicing of pre-mRNAs, circular RNAs (circRNAs) share exonic sequences with their linear counterparts. The inclusion of circRNAs in mRNA profiling is shown to facilitate the detection of biomarkers in the identification of body fluids. In this study, we identified the expression of circRNAs of 14 out of 45 biomarkers from five body fluid types using outward-facing primer sets and revealed the ratio of circular to total transcripts of biomarkers by RNase R treatment. Furthermore, our results of qPCR analysis show that the inclusion of circRNAs in the detection of biomarkers, including HBA and ALAS2 for blood; MMP7 and MMP10 for menstrual blood; HTN3 for saliva; SPINK5, SERPINB3, ESR1, and CYP2B7P1 for vaginal secretions; TGM4, KLK3, and PRM2 for semen; and SLC22A6 and MIOX for urine, does not impair the specificity of these biomarkers. Additionally, a high copy number of targets from linear transcripts could be employed to increase the detection sensitivity of TGM4 and KLK3 with a low expression level of circRNAs in urine samples. Altogether, these results will help with the development of robust multiplex assays for body fluid identification.
Collapse
|
40
|
McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, Taglia F, Zapico SC, Mariot RF, Lee SB, Duncan G. Forensic DNA Analysis. Anal Chem 2019; 91:673-688. [PMID: 30485738 DOI: 10.1021/acs.analchem.8b05318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bruce R McCord
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Quentin Gauthier
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sohee Cho
- Department of Forensic Medicine , Seoul National University , Seoul , 08826 , South Korea
| | - Meghan N Roig
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Georgiana C Gibson-Daw
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Brian Young
- Niche Vision, Inc. , Akron , Ohio 44311 , United States
| | - Fabiana Taglia
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sara C Zapico
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Roberta Fogliatto Mariot
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Steven B Lee
- Forensic Science Program, Justice Studies Department , San Jose State University , San Jose , California 95192 , United States
| | - George Duncan
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
41
|
Abbas N, Lu X, Badshah MA, In JB, Heo WI, Park KY, Lee MK, Kim CH, Kang P, Chang WJ, Kim SM, Seo SJ. Development of a Protein Microarray Chip with Enhanced Fluorescence for Identification of Semen and Vaginal Fluid. SENSORS 2018; 18:s18113874. [PMID: 30423842 PMCID: PMC6263525 DOI: 10.3390/s18113874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023]
Abstract
The detection of body fluids has been used to identify a suspect and build a criminal case. As the amount of evidence collected at a crime site is limited, a multiplex identification system for body fluids using a small amount of sample is required. In this study, we proposed a multiplex detection platform using an Ag vertical nanorod metal enhanced fluorescence (MEF) substrate for semen and vaginal fluid (VF), which are important evidence in cases of sexual crime. The Ag nanorod MEF substrate with a length of 500 nm was fabricated by glancing angle deposition, and amino functionalization was conducted to improve binding ability. The effect of incubation time was analyzed, and an incubation time of 60 min was selected, at which the fluorescence signal was saturated. To assess the performance of the developed identification chip, the identification of semen and VF was carried out. The developed sensor could selectively identify semen and VF without any cross-reactivity. The limit of detection of the fabricated microarray chip was 10 times better than the commercially available rapid stain identification (RSID) Semen kit.
Collapse
Affiliation(s)
- Naseem Abbas
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Xun Lu
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Mohsin Ali Badshah
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Jung Bin In
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Won Il Heo
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Cho Hee Kim
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Korea.
| | - Pilwon Kang
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Korea.
| | - Woo-Jin Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N Cramer St, Milwaukee, WI 53211, USA.
| | - Seok-Min Kim
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| |
Collapse
|
42
|
Stewart V, Deacon P, Zahra N, Uchimoto ML, Farrugia KJ. The effect of mark enhancement techniques on the presumptive and confirmatory tests for blood. Sci Justice 2018; 58:386-396. [DOI: 10.1016/j.scijus.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/16/2018] [Accepted: 06/24/2018] [Indexed: 01/25/2023]
|
43
|
Kulstein G, Schacker U, Wiegand P. Old meets new: Comparative examination of conventional and innovative RNA-based methods for body fluid identification of laundered seminal fluid stains after modular extraction of DNA and RNA. Forensic Sci Int Genet 2018; 36:130-140. [DOI: 10.1016/j.fsigen.2018.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/05/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
|
44
|
Richards R, Patel J, Stevenson K, Harbison S. Evaluation of massively parallel sequencing for forensic DNA methylation profiling. Electrophoresis 2018; 39:2798-2805. [DOI: 10.1002/elps.201800086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Richards
- Forensic Science Programme, School of Chemical Sciences; University of Auckland; Auckland New Zealand
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - Jayshree Patel
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - Kate Stevenson
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - SallyAnn Harbison
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| |
Collapse
|
45
|
Marker evaluation for differentiation of blood and menstrual fluid by methylation-sensitive SNaPshot analysis. Int J Legal Med 2018; 132:387-395. [DOI: 10.1007/s00414-018-1770-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
|
46
|
Crime investigation through DNA methylation analysis: methods and applications in forensics. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-018-0042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
47
|
Abstract
Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
48
|
A review of bioinformatic methods for forensic DNA analyses. Forensic Sci Int Genet 2017; 33:117-128. [PMID: 29247928 DOI: 10.1016/j.fsigen.2017.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/30/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022]
Abstract
Short tandem repeats, single nucleotide polymorphisms, and whole mitochondrial analyses are three classes of markers which will play an important role in the future of forensic DNA typing. The arrival of massively parallel sequencing platforms in forensic science reveals new information such as insights into the complexity and variability of the markers that were previously unseen, along with amounts of data too immense for analyses by manual means. Along with the sequencing chemistries employed, bioinformatic methods are required to process and interpret this new and extensive data. As more is learnt about the use of these new technologies for forensic applications, development and standardization of efficient, favourable tools for each stage of data processing is being carried out, and faster, more accurate methods that improve on the original approaches have been developed. As forensic laboratories search for the optimal pipeline of tools, sequencer manufacturers have incorporated pipelines into sequencer software to make analyses convenient. This review explores the current state of bioinformatic methods and tools used for the analyses of forensic markers sequenced on the massively parallel sequencing (MPS) platforms currently most widely used.
Collapse
|
49
|
Kulstein G, Wiegand P. Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood- and saliva-stained pieces of cloths. Int J Legal Med 2017; 132:67-81. [DOI: 10.1007/s00414-017-1691-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/12/2017] [Indexed: 01/26/2023]
|
50
|
Holtkötter H, Beyer V, Schwender K, Glaub A, Johann KS, Schürenkamp M, Sibbing U, Banken S, Wiegand P, Pfeiffer H, Dennany L, Vennemann M, Vennemann M. Independent validation of body fluid-specific CpG markers and construction of a robust multiplex assay. Forensic Sci Int Genet 2017; 29:261-268. [DOI: 10.1016/j.fsigen.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022]
|