1
|
Purahong W, Ji L, Wu YT. Community Assembly Processes of Deadwood Mycobiome in a Tropical Forest Revealed by Long-Read Third-Generation Sequencing. MICROBIAL ECOLOGY 2024; 87:66. [PMID: 38700528 PMCID: PMC11068674 DOI: 10.1007/s00248-024-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
Despite the importance of wood-inhabiting fungi on nutrient cycling and ecosystem functions, their ecology, especially related to their community assembly, is still highly unexplored. In this study, we analyzed the wood-inhabiting fungal richness, community composition, and phylogenetics using PacBio sequencing. Opposite to what has been expected that deterministic processes especially environmental filtering through wood-physicochemical properties controls the community assembly of wood-inhabiting fungal communities, here we showed that both deterministic and stochastic processes can highly contribute to the community assembly processes of wood-inhabiting fungi in this tropical forest. We demonstrated that the dynamics of stochastic and deterministic processes varied with wood decomposition stages. The initial stage was mainly governed by a deterministic process (homogenous selection), whereas the early and later decomposition stages were governed by the stochastic processes (ecological drift). Deterministic processes were highly contributed by wood physicochemical properties (especially macronutrients and hemicellulose) rather than soil physicochemical factors. We elucidated that fine-scale fungal-fungal interactions, especially the network topology, modularity, and keystone taxa of wood-inhabiting fungal communities, strongly differed in an initial and decomposing deadwood. This current study contributes to a better understanding of the ecological processes of wood-inhabiting fungi in tropical regions where the knowledge of wood-inhabiting fungi is highly limited.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Li Ji
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
2
|
Xu F, Zhu L, Wang J, Xue Y, Liu K, Zhang F, Zhang T. Nonpoint Source Pollution (NPSP) Induces Structural and Functional Variation in the Fungal Community of Sediments in the Jialing River, China. MICROBIAL ECOLOGY 2023; 85:1308-1322. [PMID: 35419656 DOI: 10.1007/s00248-022-02009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/05/2022] [Indexed: 05/10/2023]
Abstract
Nonpoint source pollution (NPSP) from human production and life activities causes severe destruction in river basin environments. In this study, three types of sediment samples (A, NPSP tributary samples; B, non-NPSP mainstream samples; C, NPSP mainstream samples) were collected at the estuary of the NPSP tributaries of the Jialing River. High-throughput sequencing of the fungal-specific internal transcribed spacer (ITS) gene region was used to identify fungal taxa. The impact of NPSP on the aquatic environment of the Jialing River was revealed by analysing the community structure, community diversity, and functions of sediment fungi. The results showed that the dominant phylum of sediment fungi was Rozellomycota, followed by Ascomycota and Basidiomycota (relative abundance > 5%). NPSP caused a significant increase in the relative abundances of Exosporium, Phialosimplex, Candida, Inocybe, Tausonia, and Slooffia, and caused a significant decrease in the relative abundances of Cercospora, Cladosporium, Dokmaia, Setophaeosphaeria, Paraphoma, Neosetophoma, Periconia, Plectosphaerella, Claviceps, Botrytis, and Papiliotrema. These fungal communities therefore have a certain indicator role. In addition, NPSP caused significant changes in the physicochemical properties of Jialing River sediments, such as pH and available nitrogen (AN), which significantly increased the species richness of fungi and caused significant changes in the fungal community β-diversity (P < 0.05). pH, total phosphorus (TP), and AN were the main environmental factors affecting fungal communities in sediments of Jialing River. The functions of sediment fungi mainly involved three types of nutrient metabolism (symbiotrophic, pathotrophic, and saprotrophic) and 75 metabolic circulation pathways. NPSP significantly improved the pentose phosphate pathway, pentose phosphate pathway, and fatty acid beta-oxidation V metabolic circulation pathway functions (P < 0.05) and inhibited the chitin degradation to ethanol, super pathway of heme biosynthesis from glycine, and adenine and adenosine salvage III metabolic circulation pathway functions (P < 0.05). Hence, NPSP causes changes in the community structure and functions of sediment fungi in Jialing River and has adversely affected for the stability of the Jialing River Basin ecosystem.
Collapse
Affiliation(s)
- Fei Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Lanping Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Jiaying Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Yuqin Xue
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Kunhe Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Fubin Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China.
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
- College of Environment Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China.
| |
Collapse
|
3
|
Singavarapu B, Du J, Beugnon R, Cesarz S, Eisenhauer N, Xue K, Wang Y, Bruelheide H, Wubet T. Functional Potential of Soil Microbial Communities and Their Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiol Spectr 2023; 11:e0457822. [PMID: 36951585 PMCID: PMC10111882 DOI: 10.1128/spectrum.04578-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.
Collapse
Affiliation(s)
- Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
4
|
Zhao M, Wang M, Zhao Y, Hu N, Qin L, Ren Z, Wang G, Jiang M. Soil microbial abundance was more affected by soil depth than the altitude in peatlands. Front Microbiol 2022; 13:1068540. [PMID: 36439804 PMCID: PMC9681790 DOI: 10.3389/fmicb.2022.1068540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 09/11/2024] Open
Abstract
Soil microbial abundance is a key factor to predict soil organic carbon dynamics in peatlands. However, little is known about the effects of altitude and soil depth and their interaction on soil microbial abundance in peatlands. In this study, we measured the microbial abundance and soil physicochemical properties at different soil depths (0-30 cm) in peatlands along an altitudinal gradient (from 200 to 1,500 m) on Changbai Mountain, China. The effect of soil depth on soil microbial abundance was stronger than the altitude. The total microbial abundance and different microbial groups showed the same trend along the soil depth and altitudinal gradients, respectively. Microbial abundance in soil layer of 5-10 cm was the highest and then decreased with soil depth; microbial abundance at the altitude of 500-800 m was the highest. Abiotic and biotic factors together drove the change in microbial abundance. Physical variables (soil water content and pH) and microbial co-occurrence network had negative effects on microbial abundance, and nutrient variables (total nitrogen and total phosphorus) had positive effects on microbial abundance. Our results demonstrated that soil depth had more effects on peatland microbial abundance than altitude. Soil environmental change with peat depth may lead to the microorganisms receiving more disturbances in future climate change.
Collapse
Affiliation(s)
- Meiling Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Yantong Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nanlin Hu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Qin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Zhibin Ren
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Guodong Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Meyer UN, Tischer A, Freitag M, Klaus VH, Kleinebecker T, Oelmann Y, Kandeler E, Hölzel N, Hamer U. Enzyme kinetics inform about mechanistic changes in tea litter decomposition across gradients in land-use intensity in Central German grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155748. [PMID: 35526633 DOI: 10.1016/j.scitotenv.2022.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Grassland ecosystems provide important ecosystem services such as nutrient cycling and primary production that are affected by land-use intensity. To assess the effects of land-use intensity, operational and sensitive ecological indicators that integrate effects of grassland management on ecosystem processes such as organic matter turnover are needed. Here, we investigated the suitability of measuring the mass loss of standardized tea litter together with extracellular enzyme kinetics as a proxy of litter decomposition in the topsoil of grasslands along a well-defined land-use intensity gradient (fertilization, mowing, grazing) in Central Germany. Tea bags containing either green tea (high-quality litter) or rooibos tea (low-quality litter) were buried in 5 cm soil depth. Litter mass loss was measured after three (early-stage decomposition) and 12 months (mid-stage decomposition). Based on the fluorescence measurement of the reaction product 4-methylumbelliferone, Michaelis-Menten enzyme kinetics (Vmax: potential maximum rate of activity; Km: substrate affinity) of five hydrolases involved in the carbon (C)-, nitrogen (N)- and phosphorus (P)-cycle (β-glucosidase (BG), cellobiohydrolase (CBH), cellotriohydrolase (CTH), 1,4-β-N-acetylglucosaminidase (NAG), and phosphatase (PH)) were determined in tea litter bags and in the surrounding soil. The land-use intensity index (LUI), summarizing fertilization, mowing, grazing, and in particular the frequency of mowing were identified as important drivers of early-stage tea litter decomposition. Mid-stage decomposition was influenced by grazing intensity. The higher the potential activity of all measured C-, N- and P-targeting enzymes, the higher was the decomposition of both tea litters in the early-phase. During mid-stage decomposition, individual enzyme parameters (Vmax of CTH and PH, Km of CBH) became more important. The tea bag method proved to be a suitable indicator which allows an easy and cost-effective assessment of land-use intensity effects on decay processes in manged grasslands. In combination with enzyme kinetics it is an appealing approach to identify mechanisms driving litter break down.
Collapse
Affiliation(s)
- Ulf-Niklas Meyer
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany
| | - Alexander Tischer
- Department of Soil Science, Friedrich-Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Martin Freitag
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany
| | - Valentin H Klaus
- Insitute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Till Kleinebecker
- Institute for Landscape Ecology and Resource Management, Giessen University, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Yvonne Oelmann
- Geoecology, Department of Geosciences, University of Tübingen, Rümelinstr. 19-23, 72070 Tübingen, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil Wolff Str. 27, 70599 Stuttgart, Germany
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany
| | - Ute Hamer
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany.
| |
Collapse
|
6
|
Wahdan SFM, Hossen S, Tanunchai B, Sansupa C, Schädler M, Noll M, Dawoud TM, Wu YT, Buscot F, Purahong W. Life in the Wheat Litter: Effects of Future Climate on Microbiome and Function During the Early Phase of Decomposition. MICROBIAL ECOLOGY 2022; 84:90-105. [PMID: 34487212 PMCID: PMC9250916 DOI: 10.1007/s00248-021-01840-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Even though it is widely acknowledged that litter decomposition can be impacted by climate change, the functional roles of microbes involved in the decomposition and their answer to climate change are less understood. This study used a field experimental facility settled in Central Germany to analyze the effects of ambient vs. future climate that is expected in 50-80 years on mass loss and physicochemical parameters of wheat litter in agricultural cropland at the early phase of litter decomposition process. Additionally, the effects of climate change were assessed on microbial richness, community compositions, interactions, and their functions (production of extracellular enzymes), as well as litter physicochemical factors shaping their colonization. The initial physicochemical properties of wheat litter did not change between both climate conditions; however, future climate significantly accelerated litter mass loss as compared with ambient one. Using MiSeq Illumina sequencing, we found that future climate significantly increased fungal richness and altered fungal communities over time, while bacterial communities were more resistant in wheat residues. Changes on fungal richness and/or community composition corresponded to different physicochemical factors of litter under ambient (Ca2+, and pH) and future (C/N, N, P, K+, Ca2+, pH, and moisture) climate conditions. Moreover, highly correlative interactions between richness of bacteria and fungi were detected under future climate. Furthermore, the co-occurrence networks patterns among dominant microorganisms inhabiting wheat residues were strongly distinct between future and ambient climates. Activities of microbial β-glucosidase and N-acetylglucosaminidase in wheat litter were increased over time. Such increased enzymatic activities were coupled with a significant positive correlation between microbial (both bacteria and fungi) richness and community compositions with these two enzymatic activities only under future climate. Overall, we provide evidence that future climate significantly impacted the early phase of wheat litter decomposition through direct effects on fungal communities and through indirect effects on microbial interactions as well as corresponding enzyme production.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Shakhawat Hossen
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Institute of Ecology and Evolution, Friedrich-Schiller-Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Martin Schädler
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Matthias Noll
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Turki M. Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Neipu, Pingtung 91201 Taiwan
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
7
|
Transient Flooding and Soil Covering Interfere with Decomposition Dynamics of Populus euphratica Leaf Litter: Changes of Mass Loss and Stoichiometry of C, N, P, and K. FORESTS 2022. [DOI: 10.3390/f13030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Litter decomposition plays a critical role in carbon and nutrient cycling in terrestrial and aquatic ecosystems. However, the effects transient flooding and soil covering have on leaf litter decomposition remain unclear. The changes of litter mass loss and stoichiometric ratio of C:N (the ratio of carbon to nitrogen), C:K (the ratio of carbon to potassium), C:P (the ratio of carbon to phosphorus), N:P (the ratio of nitrogen to phosphorus), and N:K (the ratio of nitrogen to potassium) of fresh Populus euphratica (P. euphratica) leaves in surface, transient flooding, and soil covering treatments were studied using litterbags in a desert riparian forest in a field decomposition experiment for a period of 640 d. The results showed that there was a significant influence of disturbance type and incubation time on litter mass loss rate and stoichiometric ratios of C:N, C:K, C:P, N:P, and N:K of fresh P. euphratica leaves, but no significant influence of the interaction between disturbance type and incubation time on leaf litter mass loss. In three treatments, five sequential phases of leaf litter mass loss rate and different temporal change patterns of stoichiometric ratio were identified within 640 d. Transient flooding was shown to affect P. euphratica leaf litter mass loss phases compared to that in no-disturbance conditions, and especially promote leaf litter mass loss within 0–173 d of incubation time. It was also demonstrated that transient flooding and soil covering can influence leaf litter decomposition, which led to the leaf litter mass loss rate and the stoichiometric ratios of C:N, C:K, C:P, N:P, and N:K exhibiting varied patterns and phases in different treatments during decay.
Collapse
|
8
|
Above and below-ground involvement in cyclic energy transformation that helps in the establishment of rhizosphere microbial communities. Symbiosis 2021. [DOI: 10.1007/s13199-021-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Hervé V, Simon A, Randevoson F, Cailleau G, Rajoelison G, Razakamanarivo H, Bindschedler S, Verrecchia E, Junier P. Functional Diversity of the Litter-Associated Fungi from an Oxalate-Carbonate Pathway Ecosystem in Madagascar. Microorganisms 2021; 9:microorganisms9050985. [PMID: 34062900 PMCID: PMC8147286 DOI: 10.3390/microorganisms9050985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
The oxalate-carbonate pathway (OCP) is a biogeochemical process linking oxalate oxidation and carbonate precipitation. Currently, this pathway is described as a tripartite association involving oxalogenic plants, oxalogenic fungi, and oxalotrophic bacteria. While the OCP has recently received increasing interest given its potential for capturing carbon in soils, there are still many unknowns, especially regarding the taxonomic and functional diversity of the fungi involved in this pathway. To fill this gap, we described an active OCP site in Madagascar, under the influence of the oxalogenic tree Tamarindus indica, and isolated, identified, and characterized 50 fungal strains from the leaf litter. The fungal diversity encompassed three phyla, namely Mucoromycota, Ascomycota, and Basidiomycota, and 23 genera. Using various media, we further investigated their functional potential. Most of the fungal strains produced siderophores and presented proteolytic activities. The majority were also able to decompose cellulose and xylan, but only a few were able to solubilize inorganic phosphate. Regarding oxalate metabolism, several strains were able to produce calcium oxalate crystals while others decomposed calcium oxalate. These results challenge the current view of the OCP by indicating that fungi are both oxalate producers and degraders. Moreover, they strengthen the importance of the role of fungi in C, N, Ca, and Fe cycles.
Collapse
Affiliation(s)
- Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Correspondence: ; Tel.: +49-6421178122
| | - Anaële Simon
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
| | - Finaritra Randevoson
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
| | - Gabrielle Rajoelison
- Ecole Supérieure des Sciences Agronomiques, Université d’Antananarivo, Antananarivo 101, Madagascar;
| | | | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
| | - Eric Verrecchia
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
| |
Collapse
|
10
|
Wahdan SFM, Heintz-Buschart A, Sansupa C, Tanunchai B, Wu YT, Schädler M, Noll M, Purahong W, Buscot F. Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning Link. Front Microbiol 2021; 12:629169. [PMID: 33597941 PMCID: PMC7882529 DOI: 10.3389/fmicb.2021.629169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in soil and microbial ecology. To date, most belowground BEF studies focus on the diversity of microbes analyzed by barcoding on total DNA, which targets both active and inactive microbes. This approach creates a bias as it mixes the part of the microbiome currently steering processes that provide actual ecosystem functions with the part not directly involved. Using experimental extensive grasslands under current and future climate, we used the bromodeoxyuridine (BrdU) immunocapture technique combined with pair-end Illumina sequencing to characterize both total and active microbiomes (including both bacteria and fungi) in the rhizosphere of Trifolium pratense. Rhizosphere function was assessed by measuring the activity of three microbial extracellular enzymes (β-glucosidase, N-acetyl-glucosaminidase, and acid phosphatase), which play central roles in the C, N, and P acquisition. We showed that the richness of overall and specific functional groups of active microbes in rhizosphere soil significantly correlated with the measured enzyme activities, while total microbial richness did not. Active microbes of the rhizosphere represented 42.8 and 32.1% of the total bacterial and fungal taxa, respectively, and were taxonomically and functionally diverse. Nitrogen fixing bacteria were highly active in this system with 71% of the total operational taxonomic units (OTUs) assigned to this group detected as active. We found the total and active microbiomes to display different responses to variations in soil physicochemical factors in the grassland, but with some degree of resistance to a manipulation mimicking future climate. Our findings provide critical insights into the role of active microbes in defining soil ecosystem functions in a grassland ecosystem. We demonstrate that the relationship between biodiversity-ecosystem functioning in soil may be stronger than previously thought.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,Department of Biology, Leipzig University, Leipzig, Germany.,Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Anna Heintz-Buschart
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Matthias Noll
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Xie F, Zhang G, Zheng Q, Liu K, Yin X, Sun X, Saud S, Shi Z, Yuan R, Deng W, Zhang L, Cui G, Chen Y. Beneficial Effects of Mixing Kentucky Bluegrass With Red Fescue via Plant-Soil Interactions in Black Soil of Northeast China. Front Microbiol 2020; 11:556118. [PMID: 33193137 PMCID: PMC7656059 DOI: 10.3389/fmicb.2020.556118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Continuous monoculture of cool-season turfgrass causes soil degradation, and visual turf quality decline is a major concern in black soil regions of Northeast China. Turf mixtures can enhance turfgrass resistance to biotic and abiotic stresses and increase soil microbial diversity. Understanding mechanism by plant-soil interactions and changes of black soil microbial communities in turf mixture is beneficial to restoring the degradation of urbanized black soils and maintaining sustainable development of urban landscape ecology. In this study, based on the previous research of different sowing models, two schemes of turf monoculture and mixture were conducted in field plots during 2016-2018 in a black soil of Heilongjiang province of Northeast China. The mixture turf was established by mixing 50% Kentucky bluegrass "Midnight" (Poa pratensis L.) with 50% Red fescue "Frigg" (Festuca rubra L.); and the monoculture turf was established by sowing with pure Kentucky bluegrass. Turf performance, soil physiochemical properties, and microbial composition from rhizosphere were investigated. Soil microbial communities and abundance were analyzed by Illumina MiSeq sequencing and quantitative PCR methods. Results showed that turfgrass quality, turfgrass biomass, soil organic matter (SOM), urease, alkaline phosphatase, invertase, and catalase activities increased in PF mixture, but disease percentage and soil pH decreased. The microbial diversity was also significantly enhanced under turf mixture model. The microbial community compositions were significantly different between the two schemes. Turf mixtures obviously increased the abundances of Beauveria, Lysobacter, Chryseolinea, and Gemmatimonas spp., while remarkably reduced the abundances of Myrothecium and Epicoccum spp. Redundancy analysis showed that the compositions of bacteria and fungi were related to edaphic parameters, such as SOM, pH, and enzyme activities. Since the increasing of turf quality, biomass, and disease resistance were highly correlated with the changes of soil physiochemical parameters and microbial communities in turf mixture, which suggested that turf mixture with two species (i.e., Kentucky blue grass and Red fescue) changed soil microbial communities and enhanced visual turfgrass qualities through positive plant-soil interactions by soil biota.
Collapse
Affiliation(s)
- Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Gaoyun Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Qianjiao Zheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Kemeng Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.,Beijing Oriental Garden Environment Co., Ltd, Beijing, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaoyang Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shah Saud
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Zhenjie Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Runli Yuan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenjing Deng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Succession of Microbial Decomposers Is Determined by Litter Type, but Site Conditions Drive Decomposition Rates. Appl Environ Microbiol 2019; 85:AEM.01760-19. [PMID: 31604765 DOI: 10.1128/aem.01760-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Soil microorganisms are diverse, although they share functions during the decomposition of organic matter. Thus, preferences for soil conditions and litter quality were explored to understand their niche partitioning. A 1-year-long litterbag transplant experiment evaluated how soil physicochemical traits of contrasting sites combined with chemically distinct litters of sedge (S), milkvetch (M) from a grassland, and beech (B) from forest site decomposition. Litter was assessed by mass loss; C, N, and P contents; and low-molecular-weight compounds. Decomposition was described by the succession of fungi, Actinobacteria, Alphaproteobacteria, and Firmicutes; bacterial diversity; and extracellular enzyme activities. The M litter decomposed faster at the nutrient-poor forest site, where the extracellular enzymes were more active, but microbial decomposers were not more abundant. Actinobacteria abundance was affected by site, while Firmicutes and fungi by litter type and Alphaproteobacteria by both factors. Actinobacteria were characterized as late-stage substrate generalists, while fungi were recognized as substrate specialists and site generalists, particularly in the grassland. Overall, soil conditions determined the decomposition rates in the grassland and forest, but successional patterns of the main decomposers (fungi and Actinobacteria) were determined by litter type. These results suggest that shifts in vegetation mostly affect microbial decomposer community composition.IMPORTANCE Anthropogenic disturbance may cause shifts in vegetation and alter the litter input. We studied the decomposition of different litter types under soil conditions of a nutrient-rich grassland and nutrient-poor forest to identify factors responsible for changes in the community structure and succession of microbial decomposers. This will help to predict the consequences of induced changes on the abundance and activity of microbial decomposers and recognize if the decomposition process and resulting quality and quantity of soil organic matter will be affected at various sites.
Collapse
|
13
|
Purahong W, Pietsch KA, Bruelheide H, Wirth C, Buscot F, Wubet T. Potential links between wood-inhabiting and soil fungal communities: Evidence from high-throughput sequencing. Microbiologyopen 2019; 8:e00856. [PMID: 31134764 PMCID: PMC6741142 DOI: 10.1002/mbo3.856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
Wood‐inhabiting fungi (WIF) are pivotal to wood decomposition, which in turn strongly influences nutrient dynamics in forest soils. However, their dispersal mechanisms remain unclear. We hypothesized that the majority of WIF are soil‐borne. For this reason, the presented research aimed to quantify the contribution of soil as a source and medium for the dispersal of WIF to deadwood using high‐throughput sequencing. We tested effects of tree species (specifically Schima superba and Pinus massoniana) on the percentage of WIF shared between soil and deadwood in a Chinese subtropical forest ecosystem. We also assessed the taxonomic and ecological functional group affiliations of the fungal community shared between soil and deadwood. Our results indicate that soil is a major route for WIF colonization as 12%–15% (depending on the tree species) of soil fungi were simultaneously detected in deadwood. We also demonstrate that tree species (p < 0.01) significantly shapes the composition of the shared soil and deadwood fungal community. The pH of decomposing wood was shown to significantly correspond (p < 0.01) with the shared community of wood‐inhabiting (of both studied tree species) and soil fungi. Furthermore, our data suggest that a wide range of fungal taxonomic (Rozellida, Zygomycota, Ascomycota, and Basidiomycota) and ecological functional groups (saprotrophs, ectomycorrhizal, mycoparasites, and plant pathogens) may use soil as a source and medium for transport to deadwood in subtropical forest ecosystem. While 12%–62% of saprotrophic, ectomycorrhizal, and mycoparasitic WIF may utilize soil to colonize deadwood, only 5% of the detected plant pathogens were detected in both soil and deadwood, implying that these fungi use other dispersal routes. Animal endosymbionts and lichenized WIF were not detected in the soil samples. Future studies should consider assessing the relative contributions of other possible dispersal mechanisms (e.g. wind, water splash, water dispersal, animal dispersal, and mycelial network) in the colonization of deadwood by soil fungi.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| | - Katherina A Pietsch
- Department of Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Wirth
- Department of Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Wang Y, Ji H, Hu Y, Wang R, Rui J, Guo S. Different Selectivity in Fungal Communities Between Manure and Mineral Fertilizers: A Study in an Alkaline Soil After 30 Years Fertilization. Front Microbiol 2018; 9:2613. [PMID: 30429841 PMCID: PMC6220076 DOI: 10.3389/fmicb.2018.02613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/12/2018] [Indexed: 11/24/2022] Open
Abstract
Fertilizer application has contributed substantially to increasing crop yield. Despite the important role of soil fungi in agricultural production, we still have limited understanding of the complex responses of fungal taxonomic and functional groups to organic and mineral fertilization in long term. Here we report the responses of the fungal communities in an alkaline soil to 30-year application of mineral fertilizer (NP), organic manure (M) and combined fertilizer (NPM) by the Illumina HiSeq sequencing and quantitative real-time PCR to target fungal internal transcribed spacer (ITS) genes. The results show: (1) compared to the unfertilized soil, fertilizer application increased fungal diversity and ITS gene copy numbers, and shifted fungal community structure. Such changes were more pronounced in the M and NPM soils than in the NP soil (except for fungal diversity), which can be largely attributed to the manure induced greater increases in soil total organic C, total N and available P. (2) Compared to the unfertilized soil, the NP and NPM soils reduced the proportion of saprotrophs by 40%, the predominant taxa of which may potentially affect cellulose decomposition. (3) Indicator species analysis suggested that the indicator operational taxonomic units (OTUs) in the M soil occupied 25.6% of its total community, but that only accounted for 0.9% in the NP soil. Our findings suggest that fertilization-induced changes of total fungal community were more responsive to organic manure than mineral fertilizer. The reduced proportion of cellulose decomposition-related saprotrophs in mineral fertilizer treatments may potentially contribute to increasing their soil C stocks.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Hongfei Ji
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Yaxian Hu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Rui Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Junpeng Rui
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shengli Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Purahong W, Wubet T, Lentendu G, Hoppe B, Jariyavidyanont K, Arnstadt T, Baber K, Otto P, Kellner H, Hofrichter M, Bauhus J, Weisser WW, Krüger D, Schulze ED, Kahl T, Buscot F. Determinants of Deadwood-Inhabiting Fungal Communities in Temperate Forests: Molecular Evidence From a Large Scale Deadwood Decomposition Experiment. Front Microbiol 2018; 9:2120. [PMID: 30294306 PMCID: PMC6158579 DOI: 10.3389/fmicb.2018.02120] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022] Open
Abstract
Despite the important role of wood-inhabiting fungi (WIF) in deadwood decomposition, our knowledge of the factors shaping the dynamics of their species richness and community composition is scarce. This is due to limitations regarding the resolution of classical methods used for characterizing WIF communities and to a lack of well-replicated long-term experiments with sufficient numbers of tree species. Here, we used a large scale experiment with logs of 11 tree species at an early stage of decomposition, distributed across three regions of Germany, to identify the factors shaping WIF community composition and Operational Taxonomic Unit (OTU) richness using next generation sequencing. We found that tree species identity was the most significant factor, corresponding to (P < 0.001) and explaining 10% (representing 48% of the explainable variance) of the overall WIF community composition. The next important group of variables were wood-physicochemical properties, of which wood pH was the only factor that consistently corresponded to WIF community composition. For overall WIF richness patterns, we found that approximately 20% of the total variance was explained by wood N content, location, tree species identity and wood density. It is noteworthy that the importance of determinants of WIF community composition and richness appeared to depend greatly on tree species group (broadleaved vs. coniferous) and it differed between the fungal phyla Ascomycota and Basidiomycota.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Guillaume Lentendu
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- Department of Ecology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Björn Hoppe
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- Institute for National and International Plant Health, Julius Kühn-Institute, Braunschweig, Germany
| | - Katalee Jariyavidyanont
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| | - Tobias Arnstadt
- Department of Biology and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Zittau, Germany
| | - Kristin Baber
- Department of Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Peter Otto
- Department of Molecular Evolution and Plant Systematics, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Harald Kellner
- Department of Biology and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Zittau, Germany
| | - Martin Hofrichter
- Department of Biology and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Zittau, Germany
| | - Jürgen Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dirk Krüger
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| | | | - Tiemo Kahl
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
- Biosphere Reserve Vessertal-Thuringian Forest, Schmiedefeld am Rennsteig, Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|