1
|
Sarker DB, Xue Y, Mahmud F, Jocelyn JA, Sang QXA. Interconversion of Cancer Cells and Induced Pluripotent Stem Cells. Cells 2024; 13:125. [PMID: 38247819 PMCID: PMC10814385 DOI: 10.3390/cells13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer cells, especially cancer stem cells (CSCs), share many molecular features with induced pluripotent stem cells (iPSCs) that enable the derivation of induced pluripotent cancer cells by reprogramming malignant cells. Conversely, normal iPSCs can be converted into cancer stem-like cells with the help of tumor microenvironment components and genetic manipulation. These CSC models can be utilized in oncogenic initiation and progression studies, understanding drug resistance, and developing novel therapeutic strategies. This review summarizes the role of pluripotency factors in the stemness, tumorigenicity, and therapeutic resistance of cancer cells. Different methods to obtain iPSC-derived CSC models are described with an emphasis on exposure-based approaches. Culture in cancer cell-conditioned media or cocultures with cancer cells can convert normal iPSCs into cancer stem-like cells, aiding the examination of processes of oncogenesis. We further explored the potential of reprogramming cancer cells into cancer-iPSCs for mechanistic studies and cancer dependencies. The contributions of genetic, epigenetic, and tumor microenvironment factors can be evaluated using these models. Overall, integrating iPSC technology into cancer stem cell research holds significant promise for advancing our knowledge of cancer biology and accelerating the development of innovative and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Faiza Mahmud
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Jonathan A. Jocelyn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
2
|
Sirtuins and Hypoxia in EMT Control. Pharmaceuticals (Basel) 2022; 15:ph15060737. [PMID: 35745656 PMCID: PMC9228842 DOI: 10.3390/ph15060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.
Collapse
|
3
|
Mathematical Modeling of Tumor and Cancer Stem Cells Treated with CAR-T Therapy and Inhibition of TGF-$$\beta $$. Bull Math Biol 2022; 84:58. [DOI: 10.1007/s11538-022-01015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
|
4
|
Ghasemi K, Ghasemi K. A Brief look at antitumor effects of doxycycline in the treatment of colorectal cancer and combination therapies. Eur J Pharmacol 2022; 916:174593. [PMID: 34973952 DOI: 10.1016/j.ejphar.2021.174593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is considered the second most frequent cancer globally and one of the deadliest malignancies in humans. On the other hand, over time and facing the challenges of cancer treatment, several therapeutic approaches, including surgery, radiotherapy, chemotherapy, and immunotherapy, are being developed. Evidence showed that combination therapies had given relatively satisfactory clinical outcomes in inhibiting tumor progression and increasing patient survival compared with monotherapy. Among the available compounds and drugs used in chemotherapy, doxycycline, an antimicrobial drug, has been suitable for treating several malignancies such as CRC. It has been revealed that doxycycline has anti-tumor properties and can help control tumor growth in various mechanisms, such as inhibiting anti-apoptotic and angiogenic proteins. In addition, studies have shown that combination therapy with doxycycline and other anti-tumor drugs, such as doxorubicin, anti-angiogenic factors, and anti-check-point blockers, can inhibit tumor progression. Therefore, this review summarized the anti-tumor mechanisms of doxycycline in CRC treatment and related combination therapies.
Collapse
Affiliation(s)
- Kimia Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Fertility and Infertility Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kosar Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Tampakis A, Tampaki EC, Nonni A, Kontos M, Tsourouflis G, Posabella A, Fourie L, Bolli M, Kouraklis G, von Flüe M, Felekouras E, Nikiteas N. MAP17 Expression in Colorectal Cancer Is a Prognostic Factor for Disease Recurrence and Dismal Prognosis Already in Early Stage Disease. Oncology 2021; 99:471-482. [PMID: 33853080 DOI: 10.1159/000515596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Disease recurrence in colorectal cancer constitutes a major cause of significant cancer-associated morbidity and mortality. MAP17 is a small protein, and its overexpression in malignant tumors has been correlated with aggressive tumor phenotypes. The aim of the present study was to investigate the expression patterns of MAP17 in colorectal cancer specimens and to assess its clinical significance. PATIENTS AND METHODS Surgical specimens of 111 patients with primary resectable colorectal cancer constituted the study population. Expression of MAP17 was assessed by immunohistochemistry, and the results were correlated with clinical and survival data. RESULTS MAP17 was expressed in cancer cells and endothelial cells of tumor blood vessels. Expression of MAP17 more than 10% was correlated with advanced disease stage (p < 0.001), higher T classification (p = 0.007), the presence of lymph node metastasis (p < 0.001), vascular (p = 0.013) and perineural invasion (p = 0.012). Patients exhibiting MAP17 expression of more than 30% in cancer cells compared to those expressing MAP17 less than 10% demonstrated a significantly worse 3-year progression-free survival (35.2 vs. 91%, p < 0.001) and 5-year overall survival (40.8 vs. 91%, p < 0.001). Cox regression analysis confirmed MAP17 expression of more than 30% as a prognostic marker of progression free survival (HR 0.136, 95% CI = 0.056-0.329, p < 0.001) and overall survival (HR 0.144 [95% CI) = 0.049-0.419, p < 0.001) independent of other clinicopathological characteristics. Statistically significantly worse 3-year progression-free survival and 5-year overall survival was demonstrated in the subgroup analysis of patients with early stage cancer only and high expression of MAP17. CONCLUSIONS High MAP17 expression in patients with colorectal cancer is a significant risk factor for cancer-associated morbidity and mortality already in early stage disease.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland.,2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Afroditi Nonni
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Kontos
- 1st Department of Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Gerasimos Tsourouflis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Alberto Posabella
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Lana Fourie
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Martin Bolli
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Gregory Kouraklis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Markus von Flüe
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Evangelos Felekouras
- 1st Department of Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Nikiteas
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
6
|
Tampakis A, Tampaki EC, Nonni A, Kostakis ID, Posabella A, Kontzoglou K, von Flüe M, Felekouras E, Kouraklis G, Nikiteas N. High fascin-1 expression in colorectal cancer identifies patients at high risk for early disease recurrence and associated mortality. BMC Cancer 2021; 21:153. [PMID: 33579217 PMCID: PMC7881491 DOI: 10.1186/s12885-021-07842-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fascin is the main actin cross-linker protein that regulates adhesion dynamics and stabilizes cell protrusion, such as filopodia. In human cancer, fascin expression correlates with aggressive clinical features. This study aimed to determine the expression patterns of fascin-1 and assessed its prognostic significance in colorectal cancer. METHODS One hundred eleven specimens of patients with primary resectable colorectal cancer were examined via immunohistochemistry for the expression of fascin-1, and the results were correlated with clinicopathological characteristics and survival data. RESULTS Fascin-1 staining displayed strong intensity in the cytoplasm of the colorectal cancer cells and endothelial cells of tumor blood vessels. Moderate to high fascin-1 expression was associated with progressive anatomic disease extent (p < 0.001), higher T classification (p = 0.007), the presence of lymph node (p < 0.001) and distant metastasis (p = 0.002), high grade tumors (p = 0.002) and vascular invasion (p < 0.001). Patients displaying moderate and high fascin-1 expression demonstrated a significantly worse 5-year overall survival [HR; 3.906, (95%CI) = 1.250-12.195] and significantly worse 3-year progression-free survival [HR; 3.448, (95%CI) = 1.401-8.475] independent of other clinicopathological characteristics. Besides, high fascin-1 expression in early-stage cancer only was associated with a dismal prognosis. CONCLUSIONS High fascin-1 expression in colorectal cancer is an independent negative prognostic factor for survival, increasing the risk for disease recurrence or death almost by sevenfold. Fascin-1 expression could be potentially utilized to identify high-risk patients prone to metastasis already in early-stage disease.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland. .,Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Ekaterini-Christina Tampaki
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Afrodite Nonni
- First Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Ioannis D Kostakis
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Alberto Posabella
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Markus von Flüe
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland
| | - Evangelos Felekouras
- First Department of Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Gregory Kouraklis
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Nikolaos Nikiteas
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
7
|
Drug Delivery Systems of Natural Products in Oncology. Molecules 2020; 25:molecules25194560. [PMID: 33036240 PMCID: PMC7582809 DOI: 10.3390/molecules25194560] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, increasing interest in the use of natural products in anticancer therapy field has been observed, mainly due to unsolved drug-resistance problems. The antitumoral effect of natural compounds involving different signaling pathways and cellular mechanisms has been largely demonstrated in in vitro and in vivo studies. The encapsulation of natural products into different delivery systems may lead to a significant enhancement of their anticancer efficacy by increasing in vivo stability and bioavailability, reducing side adverse effects and improving target-specific activity. This review will focus on research studies related to nanostructured systems containing natural compounds for new drug delivery tools in anticancer therapies.
Collapse
|
8
|
Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP, Martínez-Costa ÓH, González-Páramos C, Ciordia S, Hardisson D, Aragón JJ, Fernández-Moreno MÁ, Martín-Pérez J. c-Src functionality controls self-renewal and glucose metabolism in MCF7 breast cancer stem cells. PLoS One 2020; 15:e0235850. [PMID: 32673341 PMCID: PMC7365443 DOI: 10.1371/journal.pone.0235850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023] Open
Abstract
Deregulation of Src kinases is associated with cancer. We previously showed that SrcDN conditional expression in MCF7 cells reduces tumorigenesis and causes tumor regression in mice. However, it remained unclear whether SrcDN affected breast cancer stem cell functionality or it reduced tumor mass. Here, we address this question by isolating an enriched population of Breast Cancer Stem Cells (BCSCs) from MCF7 cells with inducible expression of SrcDN. Induction of SrcDN inhibited self-renewal, and stem-cell marker expression (Nanog, Oct3-4, ALDH1, CD44). Quantitative proteomic analyses of mammospheres from MCF7-Tet-On-SrcDN cells (data are available via ProteomeXchange with identifier PXD017789, project DOI: 10.6019/PXD017789) and subsequent GSEA showed that SrcDN expression inhibited glycolysis. Indeed, induction of SrcDN inhibited expression and activity of hexokinase, pyruvate kinase and lactate dehydrogenase, resulting in diminished glucose consumption and lactate production, which restricted Warburg effect. Thus, c-Src functionality is important for breast cancer stem cell maintenance and renewal, and stem cell transcription factor expression, effects linked to glucose metabolism reduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Ciordia
- Servicio de Espectrometría de Masas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - David Hardisson
- Servicio de Anatomía Patológica, Hospital Universitario La Paz, Madrid
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de investigaciones sanitarias del hospital La Paz (IdiPAZ), Madrid, Spain
| | - Juan J. Aragón
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jorge Martín-Pérez
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
- Instituto de investigaciones sanitarias del hospital La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
9
|
Zhang C, Yang Z, Dong DL, Jang TS, Knowles JC, Kim HW, Jin GZ, Xuan Y. 3D culture technologies of cancer stem cells: promising ex vivo tumor models. J Tissue Eng 2020; 11:2041731420933407. [PMID: 32637062 PMCID: PMC7318804 DOI: 10.1177/2041731420933407] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an ex vivo microenvironment that cancer stem cells experience under in vivo conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell-matrix and cell-cell interactions, and drug resistance that reflect at least some of the tumor properties seen in vivo. Herein, we discussed the presently available Cancer stem cell three-dimensional culture models that use biomaterials and engineering tools and the biological implications of these models compared to the conventional ones.
Collapse
Affiliation(s)
- Chengye Zhang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Air Force Medical Center of the Chinese PLA, Beijing, China
| | - Zhaoting Yang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae-Su Jang
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Pathology, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
10
|
Tampaki EC, Tampakis A, Nonni A, von Flüe M, Patsouris E, Kontzoglou K, Kouraklis G. Combined Fascin-1 and MAP17 Expression in Breast Cancer Identifies Patients with High Risk for Disease Recurrence. Mol Diagn Ther 2020; 23:635-644. [PMID: 31273628 DOI: 10.1007/s40291-019-00411-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Breast cancer stem cells are considered to be a major cause of disease recurrence in breast cancer as they appear to be chemoresistant. Fascin-1 and MAP17 are stem cell markers whose excessive expression in tumors is associated with aggressive tumor phenotypes. The aim of the present study was to investigate the expression patterns of fascin-1 and MAP17 in breast cancer and to assess their clinical significance. METHODS Expression of fascin-1 and MAP17 was assessed via immunohistochemistry in surgical specimens of a cohort comprised of 127 patients with resectable breast cancer. Results were correlated with clinicopathological characteristics and survival data. Progression-free survival (PFS) was defined as the primary outcome of the present study. RESULTS Fascin-1 and MAP17 expression were strongly associated with the presence of triple-negative cancers (p < 0.0001). Tumors displaying high expression of fascin-1 presented correlations with high tumor grade (p = 0.002) and high expression of Ki-67 (p = 0.004). PFS of patients exhibiting high expression of fascin-1 and MAP17 in cancer cells in the first 5 years after surgery was significantly worse than in patients with low expression of the two markers (47.8%, 95% confidence interval [CI] 33-51 vs. 80.5%, 95% CI 47-56; p = 0.012) and independent of other clinicopathological characteristics (hazard ratio 0.171, 95% CI 0.034-0.869; p = 0.033). CONCLUSION Combined expression of fascin-1 and MAP17 in breast cancer cells is associated with a significantly worse 5-year PFS, therefore recognizing a group of patients with high risk for early disease recurrence.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Athanasios Tampakis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece.
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland.
| | - Afroditi Nonni
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Markus von Flüe
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland
| | - Efstratios Patsouris
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Gregory Kouraklis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
11
|
Li X, Sun B, Zhao X, An J, Zhang Y, Gu Q, Zhao N, Wang Y, Liu F. Function of BMP4 in the Formation of Vasculogenic Mimicry in Hepatocellular Carcinoma. J Cancer 2020; 11:2560-2571. [PMID: 32201526 PMCID: PMC7066000 DOI: 10.7150/jca.40558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 01/18/2023] Open
Abstract
Vasculogenic mimicry (VM) is linked to vascular invasion of human hepatocellular carcinoma (HCC). BMP4, one BMP family member, is upregulated in several cancers. The purpose of this report is to identify the function of BMP4 in the formation of VM in HCC and the mechanism underling this regulation. In our report, BMP4 up-regulation resulted in an increase in migration, invasion and channel-like structure formation as well as induced epithelial-mesenchymal transition (EMT) process and stem cell-associated proteins OCT4 and SOX2 expression in HCC cells. In addition, The VM-associated proteins, including EphA2, VE-cadherin and MMP2, also could be effectively enhanced by the overexpression of BMP4. Furthermore, according to the TCGA database, higher expression of BMP4 is seen in HCC in contrast to normal liver samples. Immunohistochemistry revealed that BMP4 was positively associated with VM formation, age, histological differentiation, HCC stage, and shorter survival duration. These data demonstrated that BMP4 could promote VM network formation in HCC through induction of stemness in EMT and modulating the EphA2/VE-cadherin/MMP2 signaling pathway.
Collapse
Affiliation(s)
- Xiao Li
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Baocun Sun
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Jindan An
- Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Qiang Gu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Yong Wang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Fang Liu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
12
|
Feng Z, Yu Q, Zhang T, Tie W, Li J, Zhou X. Updates on mechanistic insights and targeting of tumour metastasis. J Cell Mol Med 2020; 24:2076-2086. [PMID: 31957271 PMCID: PMC7011147 DOI: 10.1111/jcmm.14931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Malignant tumours are one of the major diseases that seriously endanger human health. The characteristics of their invasion and metastasis are one of the main causes of death in cancer patients, and these features cannot be separated from the participation of various molecules-related cells living in the tumour microenvironment and specific structures. Tumour invasion can approximately be divided into several specific steps according to the movement of tumour cells. In each step, there are different actions in the tumour microenvironment that mediate the interactions among substances. Researchers are attempting to clarify every mechanism of the tumour dissemination. However, there is still a long way to the final determination. Here, we review these interactions in tumour invasion and metastasis at the structural, molecular and cellular levels. We also discuss the ongoing studies and the promise of targeting metastasis in tumour therapy.
Collapse
Affiliation(s)
- Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Qiuxuan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Wanpeng Tie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Li H, Zhang W, Niu C, Lin C, Wu X, Jian Y, Li Y, Ye L, Dai Y, Ouyang Y, Chen J, Qiu J, Song L, Zhang Y. Nuclear orphan receptor NR2F6 confers cisplatin resistance in epithelial ovarian cancer cells by activating the Notch3 signaling pathway. Int J Cancer 2019; 145:1921-1934. [PMID: 30895619 PMCID: PMC6767785 DOI: 10.1002/ijc.32293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
The primary challenge facing treatment of epithelial ovarian cancer (EOC) is the high frequency of chemoresistance, which severely impairs the quality of life and survival of patients with EOC. Our study aims to investigate the mechanisms by which upregulation of NR2F6 induces chemoresistance in EOC. The biological roles of NR2F6 in EOC chemoresistance were explored in vitro by Sphere, MTT and AnnexinV/PI assay, and in vivo using an ovarian cancer orthotopic transplantation model. Bioinformatics analysis, luciferase assay, CHIP and IP assays were performed to identify the mechanisms by which NR2F6 promotes chemoresistance in EOC. The expression of NR2F6 was significantly upregulated in chemoresistant EOC tissue, and NR2F6 expression was correlated with poorer overall survival. Moreover, overexpression of NR2F6 promotes the EOC cancer stem cell phenotype; conversely, knockdown of NR2F6 represses the EOC cancer stem cell phenotype and sensitizes EOC to cisplatin in vitro and in vivo. Our results further demonstrate that NR2F6 sustains activated Notch3 signaling, resulting in chemoresistance in EOC cells. Notably, NR2F6 acts as an informative biomarker to identify the population of EOC patients who are likely to experience a favorable objective response to gamma‐secretase inhibitors (GSI), which inhibit Notch signaling. Therefore, concurrent inhibition of NR2F6 and treatment with GSI and cisplatin‐based chemotherapy may be a novel therapeutic approach for NR2F6‐overexpressing EOC. In summary, we have, for the first time, identified an important role for NR2F6 in EOC cisplatin resistance. Our study suggests that GSI may serve as a potential targeted treatment for patients with NR2F6‐overexpressing EOC. What's new? Chemoresistance is a major challenge in women afflicted with epithelial ovarian cancer (EOC), but molecular mechanisms of EOC chemoresistance remain unclear. Here the authors connect nuclear receptor subfamily 2 group F member 6 (NR2F6) with this process. They find NR2F6 upregulated in tissues from chemoresistant EOC patients. High NR2F6 expression promoted a cancer stem cell phenotype and suppressed cisplatin‐induced apoptosis by transcriptionally upregulating Notch3 signaling, thereby promoting EOC chemoresistance.
Collapse
Affiliation(s)
- Han Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weijing Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunhao Niu
- Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China
| | - Chuyong Lin
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianqiu Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunting Jian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liping Ye
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Ouyang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jueming Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiaqi Qiu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Libing Song
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanna Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
14
|
Tampakis A, Tampaki EC, Nonni A, Droeser R, Posabella A, Tsourouflis G, Kontzoglou K, Patsouris E, von Flüe M, Kouraklis G. Nectin-1 Expression in Colorectal Cancer: Is There a Group of Patients with High Risk for Early Disease Recurrence? Oncology 2019; 96:318-325. [PMID: 30917374 DOI: 10.1159/000499569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite improvements in therapy of colorectal cancer, some patients will present occurrence of recurrence either locally or distantly. Tumor metastasis constitutes the major cause of cancer-associated morbidity and mortality. Nectin-1 belongs to the family of immunoglobulin-like cell adhesion molecules that contribute to the formation of cell-cell adhesions and regulate a series of cellular activities including cell polarization, differentiation, movement, proliferation, and survival. Expression of Nectin-1 in malignant tumors has been associated with aggressive tumor phenotypes. OBJECTIVES The aim of the present study was to assess Nectin-1 expression patterns in colorectal cancer and to investigate its clinical significance. METHODS Nectin-1 expression was assessed via immunohistochemistry in surgical specimens of a cohort comprised of 111 patients with primary resectable colorectal cancer. Results were correlated with clinicopathological characteristics and survival data. Progression-free survival was defined as the primary outcome of the present study. RESULTS Nectin-1 was strongly expressed in the cytoplasm of colorectal cancer cells. High Nectin-1 expression was associated with advanced stage of disease (p = 0.012) and lymph node metastasis (p = 0.007). Progression-free survival of patients exhibiting high expression of Nectin-1 in the first 36 months after surgery was significantly worse compared to patients with low expression of Nectin-1 (55.7%, 95% CI = 47-70, vs. 82.1%, 95% CI = 69-93, p = 0.014) and independent of other clinicopathological characteristics (HR = 0.389, 95% CI = 0.156-0.972, p = 0.043). CONCLUSION Nectin-1 expression in colorectal cancer is associated with a significantly worse 3-year progression-free survival identifying therefore a group of patients with high risk for early disease recurrence.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland, .,2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece,
| | - Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Afroditi Nonni
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Raoul Droeser
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland
| | - Alberto Posabella
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland
| | - Gerasimos Tsourouflis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Konstantinos Kontzoglou
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Efstratios Patsouris
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Markus von Flüe
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland
| | - Gregory Kouraklis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
15
|
APELA Expression in Glioma, and Its Association with Patient Survival and Tumor Grade. Pharmaceuticals (Basel) 2019; 12:ph12010045. [PMID: 30917521 PMCID: PMC6469159 DOI: 10.3390/ph12010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most common and deadliest primary adult brain tumor. Invasion, resistance to therapy, and tumor recurrence in GBM can be attributed in part to brain tumor-initiating cells (BTICs). BTICs isolated from various patient-derived xenografts showed high expression of the poorly characterized Apelin early ligand A (APELA) gene. Although originally considered to be a non-coding gene, the APELA gene encodes a protein that binds to the Apelin receptor and promotes the growth of human embryonic stem cells and the formation of the embryonic vasculature. We found that both APELA mRNA and protein are expressed at high levels in a subset of brain tumor patients, and that APELA is also expressed in putative stem cell niche in GBM tumor tissue. Analysis of APELA and the Apelin receptor gene expression in brain tumor datasets showed that high APELA expression was associated with poor patient survival in both glioma and glioblastoma, and APELA expression correlated with glioma grade. In contrast, gene expression of the Apelin receptor or Apelin was not found to be associated with patient survival, or glioma grade. Consequently, APELA may play an important role in glioblastoma tumorigenesis and may be a future therapeutic target.
Collapse
|
16
|
Schwarzenbacher D, Klec C, Pasculli B, Cerk S, Rinner B, Karbiener M, Ivan C, Barbano R, Ling H, Wulf-Goldenberg A, Stanzer S, Rinnerthaler G, Stoeger H, Bauernhofer T, Haybaeck J, Hoefler G, Jahn SW, Parrella P, Calin GA, Pichler M. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res 2019; 21:20. [PMID: 30709367 PMCID: PMC6359814 DOI: 10.1186/s13058-019-1104-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis. METHODS In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis. Clinical samples of BC patients were used to evaluate the human relevance of the newly identified miRNA candidates. One promising candidate, miR-1287-5p, was further explored on its impact on several hallmarks of cancer. The molecular mode of action was characterized by whole transcriptome analysis, in silico prediction tools, miRNA-interaction assays, pheno-copy assays, and drug sensitivity assays. RESULTS Among several other microRNAs, miR-1287-5p was significantly downregulated in mammospheres and human BC tissue compared to normal breast tissue (p < 0.0001). Low expression levels were significantly associated with poor prognosis in BC patients. MiR-1287-5p significantly decreased cellular growth, cells in S phase of cell cycle, anchorage-independent growth, and tumor formation in vivo. In addition, we identified PIK3CB as a direct molecular interactor of miR-1287-5p and a novel prognostic factor in BC. Finally, PI3Kinase pathway chemical inhibitors combined with miR-1287-5p mimic increased the pharmacological growth inhibitory potential in triple negative BC cells. CONCLUSION Our data identified for the first time the involvement of miR-1287-5p in human BC and suggest a potential for therapeutic interventions in difficult to treat triple negative BC.
Collapse
Affiliation(s)
- Daniela Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Barbara Pasculli
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotundo, FG, Italy
| | - Stefanie Cerk
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Beate Rinner
- Biomedical Research, Medical University of Graz, Graz, Austria
| | - Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Cristina Ivan
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Raffaela Barbano
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotundo, FG, Italy
| | - Hui Ling
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Stefanie Stanzer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Stoeger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Paola Parrella
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotundo, FG, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria.
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria.
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Burbulis IE, Wierman MB, Wolpert M, Haakenson M, Lopes MB, Schiff D, Hicks J, Loe J, Ratan A, McConnell MJ. Improved molecular karyotyping in glioblastoma. Mutat Res 2018; 811:16-26. [PMID: 30055482 DOI: 10.1016/j.mrfmmm.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Uneven replication creates artifacts during whole genome amplification (WGA) that confound molecular karyotype assignment in single cells. Here, we present an improved WGA recipe that increased coverage and detection of copy number variants (CNVs) in single cells. We examined serial resections of glioblastoma (GBM) tumor from the same patient and found low-abundance clones containing CNVs in clinically relevant loci that were not observable using bulk DNA sequencing. We discovered extensive genomic variability in this class of tumor and provide a practical approach for investigating somatic mosaicism.
Collapse
Affiliation(s)
- Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Matt Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Mark Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - David Schiff
- Department of Neurology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - James Hicks
- Michelson Center, University of Southern California, Los Angeles, CA, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Justin Loe
- Full Genomes Corp, Inc., Rockville, MD, United States
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia, School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
18
|
Yilmazer A. Evaluation of cancer stemness in breast cancer and glioblastoma spheroids in vitro. 3 Biotech 2018; 8:390. [PMID: 30175027 DOI: 10.1007/s13205-018-1412-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/17/2018] [Indexed: 01/15/2023] Open
Abstract
In this study, the effect of spheroid formation, as a model of three-dimensional (3D) culture systems, on the cancer stemness of human breast cancer (MCF-7) and human glioma (U87-MG) cell lines was analyzed. We compared the expression of pluripotency genes, the presence of various cancer stem cell populations, migration and proliferation capacities of cells cultured as monolayers or spheroids. MCF-7 cells formed uniform spheroids in vitro, upregulated the expression of stem cell markers both at gene and protein levels and increased their migration capacities when cultured in 3D systems. When a CSC targeting metabolic drug, metformin was used, multiple drug resistance genes (ABC transporters) were downregulated and the anti-cancer activity of 5-fluorouracil was enhanced. In summary, this study proved that the use of 3D culture systems such as spheroids can be used in CSC-related research. Therefore, studies involving 3D culture systems will help scientists to discover new CSC markers, show more realistic drug responses, and better evaluate tumor proliferation and morphology changes.
Collapse
Affiliation(s)
- Açelya Yilmazer
- 1Biomedical Engineering Department, Engineering Faculty, Ankara University, Tandogan, Ankara, Turkey
- 2Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| |
Collapse
|
19
|
Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment. Oncotarget 2018; 8:40935-40945. [PMID: 28402962 PMCID: PMC5522215 DOI: 10.18632/oncotarget.16783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Abstract
Cervical reserve cells are epithelial progenitor cells that are pathologically evident as the origin of cervical cancer. Thus, investigating the characteristics of cervical reserve cells could yield insight into the features of cervical cancer stem cells (CSCs). In this study, we established a method for the regeneration of cervical reserve cell-like properties from human induced pluripotent stem cells (iPSCs) and named these cells induced reserve cell-like cells (iRCs). Approximately 70% of iRCs were positive for the reserve cell markers p63, CK5 and CK8. iRCs also expressed the SC junction markers CK7, AGR2, CD63, MMP7 and GDA. While iRCs expressed neither ERα nor ERβ, they expressed CA125. These data indicated that iRCs possessed characteristics of cervical epithelial progenitor cells. iRCs secreted higher levels of several inflammatory cytokines such as macrophage migration inhibitory factor (MIF), soluble intercellular adhesion molecule 1 (sICAM-1) and C-X-C motif ligand 10 (CXCL-10) compared with normal cervical epithelial cells. iRCs also expressed human leukocyte antigen-G (HLA-G), which is an important cell-surface antigen for immune tolerance and carcinogenesis. Together with the fact that cervical CSCs can originate from reserve cells, our data suggested that iRCs were potent immune modulators that might favor cervical cancer cell survival. In conclusion, by generating reserve cell-like properties from iPSCs, we provide a new approach that may yield new insight into cervical cancer stem cells and help find new oncogenic targets.
Collapse
|
20
|
Yang Z, Yao H, Fei F, Li Y, Qu J, Li C, Zhang S. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply. J Cancer Res Clin Oncol 2018; 144:617-627. [PMID: 29417259 DOI: 10.1007/s00432-018-2598-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. RESULTS In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. CONCLUSION An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.
Collapse
Affiliation(s)
- Zhigang Yang
- Departments of Pathology, Baodi Traditional Chinese Medicine Hospital, Baodi District, Tianjin, 300121, People's Republic of China
| | - Hong Yao
- Department of thoracic Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Fei Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jie Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Chunyuan Li
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
21
|
Du D, Katsuno Y, Meyer D, Budi EH, Chen SH, Koeppen H, Wang H, Akhurst RJ, Derynck R. Smad3-mediated recruitment of the methyltransferase SETDB1/ESET controls Snail1 expression and epithelial-mesenchymal transition. EMBO Rep 2017; 19:135-155. [PMID: 29233829 DOI: 10.15252/embr.201744250] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
During epithelial-mesenchymal transition (EMT), reprogramming of gene expression is accompanied by histone modifications. Whether EMT-promoting signaling directs functional changes in histone methylation has not been established. We show here that the histone lysine methyltransferase SETDB1 represses EMT and that, during TGF-β-induced EMT, cells attenuate SETDB1 expression to relieve this inhibition. SETDB1 also controls stem cell generation, cancer cell motility, invasion, metastatic dissemination, as well as sensitivity to certain cancer drugs. These functions may explain the correlation of breast cancer patient survival with SETDB1 expression. At the molecular level, TGF-β induces SETDB1 recruitment by Smad3, to repress Smad3/4-activated transcription of SNAI1, encoding the EMT "master" transcription factor SNAIL1. Suppression of SNAIL1-mediated gene reprogramming by SETDB1 occurs through H3K9 methylation at the SNAI1 gene that represses its H3K9 acetylation imposed by activated Smad3/4 complexes. SETDB1 therefore defines a TGF-β-regulated balance between histone methylation and acetylation that controls EMT.
Collapse
Affiliation(s)
- Dan Du
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Yoko Katsuno
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Dominique Meyer
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Erine H Budi
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, Biophysics Graduate Program University of California at San Francisco, San Francisco, CA, USA
| | - Hartmut Koeppen
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Hongjun Wang
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| | - Rosemary J Akhurst
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP, Martín-Pérez J. miR205 inhibits stem cell renewal in SUM159PT breast cancer cells. PLoS One 2017; 12:e0188637. [PMID: 29182685 PMCID: PMC5705145 DOI: 10.1371/journal.pone.0188637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/11/2017] [Indexed: 12/14/2022] Open
Abstract
miR205 has a dual activity, as tumor suppressor and as oncogene. Here we analyzed the impact of miR205 ectopic expression in the initial tumorigenic processes of SUM159PT, a triple negative breast cancer cell line with low endogenous levels of miR205. In SUM159PT, miR205 inhibited expression of its targets VEGFA, ErbB3, Zeb1, Fyn and Lyn A/B; it reduced cell proliferation, and Myc/cyclin D1 levels, while increased p27kip1 expression. miR205 abolished anchorage-independent growth, inhibited migration and invasion, Src-kinases/Stat3 axis activation, and levels of secreted MMP9. miR205 also reduced expression of CD44 and TAZ, E2A.E12, Twist, Snail1 and CK5, associated with epithelial-mesenchymal transition (EMT). Importantly, we show that miR205 inhibited SUM159PT cancer-stem cell renewal, expression in mammospheres of CD44 and ALDH1 stem-cell markers, TAZ, and E2A.E12. All these effects of miR205 were reverted by Anti-miR205 co-expression, demonstrating its specificity. Thus, all these results strongly suggest that ectopic expression of miR205 in SUM159PT affected several parameters associated with initial steps of tumorigenesis.
Collapse
Affiliation(s)
- Víctor Mayoral-Varo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
| | - Annarica Calcabrini
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
| | - María Pilar Sánchez-Bailón
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
| | - Jorge Martín-Pérez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), 4 Arturo Duperier, Madrid, Spain
- * E-mail:
| |
Collapse
|
23
|
Ng CF, Frieboes HB. Model of vascular desmoplastic multispecies tumor growth. J Theor Biol 2017; 430:245-282. [PMID: 28529153 PMCID: PMC5614902 DOI: 10.1016/j.jtbi.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
We present a three-dimensional nonlinear tumor growth model composed of heterogeneous cell types in a multicomponent-multispecies system, including viable, dead, healthy host, and extra-cellular matrix (ECM) tissue species. The model includes the capability for abnormal ECM dynamics noted in tumor development, as exemplified by pancreatic ductal adenocarcinoma, including dense desmoplasia typically characterized by a significant increase of interstitial connective tissue. An elastic energy is implemented to provide elasticity to the connective tissue. Cancer-associated fibroblasts (myofibroblasts) are modeled as key contributors to this ECM remodeling. The tumor growth is driven by growth factors released by these stromal cells as well as by oxygen and glucose provided by blood vasculature which along with lymphatics are stimulated to proliferate in and around the tumor based on pro-angiogenic factors released by hypoxic tissue regions. Cellular metabolic processes are simulated, including respiration and glycolysis with lactate fermentation. The bicarbonate buffering system is included for cellular pH regulation. This model system may be of use to simulate the complex interactions between tumor and stromal cells as well as the associated ECM and vascular remodeling that typically characterize malignant cancers notorious for poor therapeutic response.
Collapse
Affiliation(s)
- Chin F Ng
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
24
|
Du Z, Cai C, Sims M, Boop FA, Davidoff AM, Pfeffer LM. The effects of type I interferon on glioblastoma cancer stem cells. Biochem Biophys Res Commun 2017; 491:343-348. [PMID: 28728846 DOI: 10.1016/j.bbrc.2017.07.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 01/14/2023]
Abstract
Glioblastomas (GBMs) are highly invasive brain tumors that are extremely deadly. The highly aggressive nature of GBM as well as its heterogeneity at the molecular and cellular levels has been attributed to a rare subpopulation of GBM stem-like cells (GSCs). Interferons (IFNs) are a family of endogenous antiviral proteins that have anticancer activity in vitro, and have been used clinically to treat GBM. IFN inhibits the proliferation of various established GBM cell lines, but the effects of IFNs on GSCs remain relatively unknown. The present study explored the effects of IFN on the proliferation and the differentiation capacity of GSCs isolated from GBM patient-derived xenolines (PDXs) grown as xenografts in immunocompromised mice. We show that IFN inhibits the proliferation of GSCs, inhibits the sphere forming capacity of GSCs that is a hallmark of cancer stem cells, and inhibits the ability of GSCs to differentiate into astrocytic cells. In addition, we show that IFN induces transient STAT3 activation in GSCs, while induction of astrocytic differentiation in GSCs results in sustained STAT3 activation.
Collapse
Affiliation(s)
- Ziyun Du
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, Memphis, TN, USA
| | - Chun Cai
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, Memphis, TN, USA; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, Memphis, TN, USA
| | - Frederick A Boop
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, Memphis, TN, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, Memphis, TN, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Garcia-Mazas C, Csaba N, Garcia-Fuentes M. Biomaterials to suppress cancer stem cells and disrupt their tumoral niche. Int J Pharm 2016; 523:490-505. [PMID: 27940172 DOI: 10.1016/j.ijpharm.2016.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
Lack of improvement in the treatment options of several types of cancer can largely be attributed to the presence of a subpopulation of cancer cells with stem cell signatures and to the tumoral niche that supports and protects these cells. This review analyses the main strategies that specifically modulate or suppress cancer stem cells (CSCs) and the tumoral niche (TN), focusing on the role of biomaterials (i.e. implants, nanomedicines, etc.) in these therapies. In the case of CSCs, we discuss differentiation therapies and the disruption of critical cellular signaling networks. For the TN, we analyze diverse strategies to modulate tumor hypervascularization and hypoxia, tumor extracellular matrix, and the inflammatory and tumor immunosuppressive environment. Due to their capacity to control drug disposition and integrate diverse functionalities, biomaterial-based therapies can provide important benefits in these strategies. We illustrate this by providing case studies where biomaterial-based therapies either show CSC suppression and TN disruption or improved delivery of major modulators of these features. Finally, we discuss the future of these technologies in the framework of these emerging therapeutic concepts.
Collapse
Affiliation(s)
- Carla Garcia-Mazas
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Lee JY, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci 2016; 73:4643-4660. [PMID: 27460000 PMCID: PMC11108467 DOI: 10.1007/s00018-016-2313-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial developmental process by which epithelial cells undergo a mesenchymal phenotypic change. During EMT, epigenetic mechanisms including DNA methylation and histone modifications are involved in the regulation of EMT-related genes. The epigenetic gene silencing of the epithelial marker E-cadherin has been well characterized. In particular, three major transcriptional repressors of E-cadherin, Snail, ZEB, and Twist families, also known as EMT-inducing transcription factors (EMT-TFs), play a crucial role in this process by cooperating with multiple epigenetic modifiers. Furthermore, recent studies have identified the novel epigenetic modifiers that control the expression of EMT-TFs, and these modifiers have emerged as critical regulators of cancer development and as novel therapeutic targets for human cancer. In this review, the diverse functions of EMT-TFs in cancer progression, the cooperative mechanisms of EMT-TFs with epigenetic modifiers, and epigenetic regulatory roles for the expression of EMT-TFs will be discussed.
Collapse
Affiliation(s)
- Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
27
|
Tumor Budding, Micropapillary Pattern, and Polyploidy Giant Cancer Cells in Colorectal Cancer: Current Status and Future Prospects. Stem Cells Int 2016; 2016:4810734. [PMID: 27843459 PMCID: PMC5097820 DOI: 10.1155/2016/4810734] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
We previously reported that polyploid giant cancer cells (PGCGs) induced by CoCl2 could form through endoreduplication or cell fusion. A single PGCC formed tumors in immunodeficient mice. PGCCs are also the key contributors to the cellular atypia and associate with the malignant grade of tumors. PGCCs have the properties of cancer stem cells and produce daughter cells via asymmetric cell division. Compared with diploid cancer cells, these daughter cells express less epithelial markers and acquire mesenchymal phenotype with importance in cancer development and progression. Tumor budding is generally recognized to correlate with a high recurrence rate, lymph node metastasis, chemoresistance, and poor prognosis of colorectal cancers (CRCs) and is a good indicator to predict the metastasis and aggressiveness in CRCs. Micropapillary pattern is a special morphologic pattern and also associates with tumor metastasis and poor prognosis. There are similar morphologic features and molecular phenotypes among tumor budding, micropapillary carcinoma pattern, and PGCCs with their budding daughter cells and all of them show strong ability of tumor invasion and migration. In this review, we discuss the cancer stem cell properties of PGCCs, the molecular mechanisms of their regulation, and the relationships with tumor budding and micropapillary pattern in CRCs.
Collapse
|
28
|
Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev Camb Philos Soc 2016; 92:1505-1520. [DOI: 10.1111/brv.12293] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Zofia F. Bielecka
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
- Postgraduate School of Molecular Medicine; Medical University of Warsaw; Zwirki i Wigury 61 02-109 Warsaw Poland
| | - Kamila Maliszewska-Olejniczak
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
- Laboratory of DNA Sequencing and Oligonucleotides Synthesis, Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Pawinskiego 5a 02-106 Warsaw Poland
| | - Ilan J. Safir
- Department of Urology; Emory University School of Medicine; Atlanta GA 30322 U.S.A
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
| | - Anna M. Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology; Military Institute of Medicine; Szaserów 128 04-141 Warsaw Poland
| |
Collapse
|
29
|
Li C, Hong T, Nie Q. Quantifying the landscape and kinetic paths for epithelial-mesenchymal transition from a core circuit. Phys Chem Chem Phys 2016; 18:17949-56. [PMID: 27328302 DOI: 10.1039/c6cp03174a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial-mesenchymal transition (EMT), as a crucial process in embryonic development and cancer metastasis, has been investigated extensively. However, how to quantify the global stability and transition dynamics for EMT under fluctuations remains to be elucidated. Starting from a core EMT genetic circuit composed of three key proteins or microRNAs (microRNA-200, ZEB and SNAIL), we uncovered the potential landscape for the EMT process. Three attractors emerge from the landscape, which correspond to epithelial, mesenchymal and partial EMT states respectively. Based on the landscape, we analyzed two important quantities of the EMT system: the barrier heights between different basins of attraction that describe the degree of difficulty for EMT or backward transition, and the mean first passage time (MFPT) that characterizes the kinetic transition rate. These quantities can be harnessed as measurements for the stability of cell types and the degree of difficulty of transitions between different cell types. We also calculated the minimum action paths (MAPs) by path integral approaches. The MAP delineates the transition processes between different cell types quantitatively. We propose two different EMT processes: a direct EMT from E to P, and a step-wise EMT going through an intermediate state, depending on different extracellular environments. The landscape and kinetic paths we acquired offer a new physical and quantitative way for understanding the mechanisms of EMT processes, and indicate the possible roles for the intermediate states.
Collapse
Affiliation(s)
- Chunhe Li
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
| | | | | |
Collapse
|
30
|
DC120, a novel AKT inhibitor, preferentially suppresses nasopharyngeal carcinoma cancer stem-like cells by downregulating Sox2. Oncotarget 2016; 6:6944-58. [PMID: 25749514 PMCID: PMC4466661 DOI: 10.18632/oncotarget.3128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/09/2015] [Indexed: 01/11/2023] Open
Abstract
Side population (SP) contains cancer stem-like cells (CSLCs). In this study, we characterized SP cells from nasopharyngeal carcinoma (NPC) cell lines and found that SP cells had a higher self-renewal ability in vitro and greater tumorigenicity in vivo. The AKT pathway was activated in NPC SP cells. DC120, a 2-pyrimidyl-5-amidothiazole inhibitor of the ATP binding site of AKT, inhibited phosphorylation of FKHRL1 and GSK-3β. DC120 inhibited SP fraction, the sphere-forming ability in vitro and growth of primary xenografts as well as secondary xenografts’ tumor recurrence. This inhibition was accompanied by reduced expression of stem-related gene Sox2 due to induction of p27 and miR-30a. A combination of DC120 and CDDP more effectively inhibited NPC cells compared with monotherapy in vitro and in vivo. Clinical evaluation of DC120 is warranted.
Collapse
|
31
|
Endothelial Transdifferentiation of Tumor Cells Triggered by the Twist1-Jagged1-KLF4 Axis: Relationship between Cancer Stemness and Angiogenesis. Stem Cells Int 2015; 2016:6439864. [PMID: 26823670 PMCID: PMC4707371 DOI: 10.1155/2016/6439864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor hypoxia is associated with malignant biological phenotype including enhanced angiogenesis and metastasis. Hypoxia increases the expression of vascular endothelial cell growth factor (VEGF), which directly participates in angiogenesis by recruiting endothelial cells into hypoxic area and stimulating their proliferation, for increasing vascular density. Recent research in tumor biology has focused on the model in which tumor-derived endothelial cells arise from tumor stem-like cells, but the detailed mechanism is not clear. Twist1, an important regulator of epithelial-mesenchymal transition (EMT), has been shown to mediate tumor metastasis and induce tumor angiogenesis. Notch signaling has been demonstrated to be an important player in vascular development and tumor angiogenesis. KLF4 (Krüppel-like factor 4) is a factor commonly used for the generation of induced pluripotent stem (iPS) cells. KLF4 also plays an important role in the differentiation of endothelial cells. Although Twist1 is known as a master regulator of mesoderm development, it is unknown whether Twist1 could be involved in endothelial transdifferentiation of tumor-derived cells. This review focuses on the role of Twist1-Jagged1/Notch-KLF4 axis on tumor-derived endothelial transdifferentiation, tumorigenesis, metastasis, and cancer stemness.
Collapse
|
32
|
Wang H, Yang M, Lin L, Ren H, Lin C, Lin S, Shen G, Ji B, Meng C. HepG2 cells acquire stem cell-like characteristics after immune cell stimulation. Cell Oncol (Dordr) 2015; 39:35-45. [DOI: 10.1007/s13402-015-0249-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 01/06/2023] Open
|
33
|
Li C, Wang J. Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit. Cancer Res 2015; 75:2607-18. [PMID: 25972342 DOI: 10.1158/0008-5472.can-15-0079] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022]
Abstract
Cancer presents a serious threat to human health. The understanding of the cell fate determination during development and tumor-genesis remains challenging in current cancer biology. It was suggested that cancer stem cell (CSC) may arise from normal stem cells or be transformed from normal differentiated cells. This gives hints on the connection between cancer and development. However, the molecular mechanisms of these cell-type transitions and the CSC formation remain elusive. We quantified landscape, dominant paths, and switching rates between cell types from a core gene regulatory network for cancer and development. Stem cell, CSC, cancer, and normal cell types emerge as basins of attraction on associated landscape. The dominant paths quantify the transition processes among CSC, stem cell, normal cell, and cancer cell attractors. Transition actions of the dominant paths are shown to be closely related to switching rates between cell types, but not always to the barriers in between, because of the presence of the curl flux. During the process of P53 gene activation, landscape topography changes gradually from a CSC attractor to a normal cell attractor. This confirms the roles of P53 of preventing the formation of CSC through suppressing self-renewal and inducing differentiation. By global sensitivity analysis according to landscape topography and action, we identified key regulations determining cell-type switchings and suggested testable predictions. From landscape view, the emergence of the CSCs and the associated switching to other cell types are the results of underlying interactions among cancer and developmental marker genes. This indicates that the cancer and development are intimately connected. This landscape and flux theoretical framework provides a quantitative way to understand the underlying mechanisms of CSC formation and interplay between cancer and development.
Collapse
Affiliation(s)
- Chunhe Li
- Department of Chemistry, Physics and Cancer Center, State University of New York at Stony Brook, Stony Brook, New York
| | - Jin Wang
- Department of Chemistry, Physics and Cancer Center, State University of New York at Stony Brook, Stony Brook, New York. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.
| |
Collapse
|
34
|
Garner JM, Ellison DW, Finkelstein D, Ganguly D, Du Z, Sims M, Yang CH, Interiano RB, Davidoff AM, Pfeffer LM. Molecular heterogeneity in a patient-derived glioblastoma xenoline is regulated by different cancer stem cell populations. PLoS One 2015; 10:e0125838. [PMID: 25955030 PMCID: PMC4425556 DOI: 10.1371/journal.pone.0125838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Malignant glioblastoma (GBM) is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal), which may arise from different glioblastoma stem-like cell (GSC) populations. We previously showed that adherent cultures of GSCs grown on laminin-coated plates (Ad-GSCs) and spheroid cultures of GSCs (Sp-GSCs) had high expression of stem cell markers (CD133, Sox2 and Nestin), but low expression of differentiation markers (βIII-tubulin and glial fibrillary acid protein). In the present study, we characterized GBM tumors produced by subcutaneous and intracranial injection of Ad-GSCs and Sp-GSCs isolated from a patient-derived xenoline. Although they formed tumors with identical histological features, gene expression analysis revealed that xenografts of Sp-GSCs had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of Ad-GSCs expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression, and enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Therefore, Ad-GSCs and Sp-GSCs produced histologically identical tumors with different gene expression patterns, and a STAT3/ANGPTL4 pathway is identified in glioblastoma that may serve as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Jo Meagan Garner
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - David W. Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Debolina Ganguly
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Ziyun Du
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Rodrigo B. Interiano
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Andrew M. Davidoff
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
- * E-mail:
| |
Collapse
|
35
|
Chang YW, Su CM, Su YH, Ho YS, Lai HH, Chen HA, Kuo ML, Hung WC, Chen YW, Wu CH, Chen PS, Su JL. Novel peptides suppress VEGFR-3 activity and antagonize VEGFR-3-mediated oncogenic effects. Oncotarget 2015; 5:3823-35. [PMID: 25003617 PMCID: PMC4116523 DOI: 10.18632/oncotarget.1709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor receptor 3 (VEGFR-3) supports tumor lymphangiogenesis. It was originally identified as a lymphangiogenic factor expressed in lymphatic endothelial cells. VEGFR-3 was detected in advanced human malignancies and correlated with poor prognosis. Our previous studies show that activation of the VEGF-C/VEGFR-3 axis promotes cancer metastasis and is associated with clinical progression in patients with lung cancer, indicating that VEGFR-3 is a potential target for cancer therapy. In this study, we developed eight peptides targeting VEGFR-3. Two peptides strongly inhibited the kinase activity of VEGFR-3 and suppressed VEGF-C-mediated invasion of cancer cells. Moreover, these peptides abolished VEGF-C-induced drug resistance and tumor initiating cell formation. This study demonstrates the therapeutic potential of VEGFR-3-targeting peptides.
Collapse
Affiliation(s)
- Yi-Wen Chang
- Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | - Chih-Hsiung Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung 404, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 404, Taiwan
| |
Collapse
|
36
|
Kantara C, O’Connell M, Luthra G, Gajjar A, Sarkar S, Ullrich R, Singh P. Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. J Transl Med 2015; 95:100-12. [PMID: 25347154 PMCID: PMC4281282 DOI: 10.1038/labinvest.2014.133] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are believed to be resistant to currently available therapies and may be responsible for relapse of cancer in patients. Measuring circulating tumor cells (CTCs) in the blood of patients has emerged as a non-invasive diagnostic procedure for screening patients who may be at high risk for developing metastatic cancers or relapse of the cancer disease. However, accurate detection of CTCs has remained a problem, as epithelial-cell markers used to date are not always reliable for detecting CTCs, especially during epithelial-mesenchymal transition. As CSCs are required to initiate metastatic tumors, our goal was to optimize and standardize a method for identifying circulating CSCs (CCSCs) in patients, using established CSC markers. Here, we report for the first time the detection of CCSCs in the blood of athymic nude mice, bearing metastatic tumors, and in the blood of patients positive for colonic adenocarcinomas. Using a simple and non-expensive method, we isolated a relatively pure population of CSCs (CD45-/CK19+), free of red blood cells and largely free of contaminating CD45+ white blood cells. Enriched CCSCs from patients with colon adenocarcinomas had a malignant phenotype and co-expressed CSC markers (DCLK1/LGR5) with CD44/Annexin A2. CSCs were not found in the blood of non-cancer patients, free of colonic growths. Enriched CCSCs from colon cancer patients grew primary spheroids, suggesting the presence of tumor-initiating cells in the blood of these patients. In conclusion, we have developed a novel diagnostic assay for detecting CSCs in circulation, which may more accurately predict the risk of relapse or metastatic disease in patients. As CSCs can potentially initiate metastatic growths, patients positive for CCSCs can be treated with inhibitory agents that selectively target CSCs, besides conventional treatments, to reduce the risk of relapse/metastatic disease for improving clinical outcomes.
Collapse
Affiliation(s)
- Carla Kantara
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | - Malaney O’Connell
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | | | | | | | - Robert Ullrich
- Department of Radiation Oncology, utmbHealth, Galveston, TX
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| |
Collapse
|
37
|
Tavakol S. Acidic pH derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells. Med Hypotheses 2014; 83:668-72. [PMID: 25459130 DOI: 10.1016/j.mehy.2014.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Eelier studies demonstrated the up-regulation of some transcriptional factors such as Oct4, Nanog, Sox2 in undifferentiated cancer cells. These transcriptional regulators are up-regulated in pluripotent cells, as well and are responsible for cell reprogramming in normal cells. It might be said that normal cells adjacent tumor site are undergone of failed cell reprogramming. PRESENTATION OF THE HYPOTHESIS Extracellular pH of cancer cell is acidic and recent studies reveal the role of acidic environment in cell reprogramming of normal cells. This hypothesis deals with the potential role of acidic pH in malignant tumor development through normal cells adjacent cancer cells. It seems that cancer cells are more intelligent and acid release from these cells is not just a by-product but also and more important reason, is a tool to up-regulate cell reprogramming markers, induce epigenetic modification and tumor progress in normal cells adjacent cancer cells. If this is correct, then it could be expected that with alkaline targeting of tumor environment, failed cell reprogramming, aberrant epigenetic modification will decrease in normal cells adjacent cancer cells and afterward metastasis will decrease. TESTING THE HYPOTHESIS It is proposed to investigate altered genetic and epigenetic modification (DNA methylation, histone modification) in cancer, early cancer and cells in vicinity of cancer cells at different pH range of 5.8-7.8. This study is performed to determine whether acidic pH induces reprogramming, global hypomethylation and promoter hypermethylation in cancer cells and cells in vicinity of cancer cells at different pH values. IMPLICATIONS OF THE HYPOTHESIS This hypothesis deal with the ability of acidic pH to convert normal cells adjacent cancer cells to cancerous cells and its inductive potential on genetic and epigenetic modification of normal cells adjacent cancer cells and will further emphasize the important of extracellular acidic targeting in cancer therapy.
Collapse
Affiliation(s)
- Shima Tavakol
- Razi Drug Research Center (RDRC), Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Advanced Medical Sciences and Technologies Assosiation, Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Findlay VJ, Wang C, Nogueira LM, Hurst K, Quirk D, Ethier SP, Staveley O'Carroll KF, Watson DK, Camp ER. SNAI2 modulates colorectal cancer 5-fluorouracil sensitivity through miR145 repression. Mol Cancer Ther 2014; 13:2713-26. [PMID: 25249558 DOI: 10.1158/1535-7163.mct-14-0207] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) has been associated with poor treatment outcomes in various malignancies and is inversely associated with miRNA145 expression. Therefore, we hypothesized that SNAI2 (Slug) may mediate 5-fluorouracil (5FU) chemotherapy resistance through inhibition of miR145 in colorectal cancer and thus represents a novel therapeutic target to enhance current colorectal cancer treatment strategies. Compared with parental DLD1 colon cancer cells, 5FU-resistant (5FUr) DLD1 cells demonstrated features of EMT, including >2-fold enhanced invasion (P < 0.001) and migration, suppressed E-cadherin expression, and 2-fold increased SNAI2 expression. DLD1 and HCT116 cells with stable expression of SNAI2 (DLD1/SNAI2; HCT116/SNAI2) also demonstrated EMT features such as the decreased E-cadherin as well as significantly decreased miR145 expression, as compared with control empty vector cells. On the basis of an miR145 luciferase promoter assay, we demonstrated that SNAI2 repressed activity of the miR145 promoter in the DLD1 and HCT116 cells. In addition, the ectopic expressing SNAI2 cell lines demonstrated decreased 5FU sensitivity, and, conversely, miR145 replacement significantly enhanced 5FU sensitivity. In the parental SW620 colon cancer cell line with high SNAI2 and low miR145 levels, inhibition of SNAI2 directly with short hairpin sequence for SNAI2 and miR145 replacement therapy both decreased vimentin expression and increased in vitro 5FU sensitivity. In pretreatment rectal cancer patient biopsy samples, low miR145 expression levels correlated with poor response to neoadjuvant 5FU-based chemoradiation. These results suggested that the SNAI2:miR145 pathway may represent a novel clinical therapeutic target in colorectal cancer and may serve as a response predictor to chemoradiation therapy.
Collapse
Affiliation(s)
- Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina. Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
| | - Cindy Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Lourdes M Nogueira
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Katie Hurst
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel Quirk
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina. Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin F Staveley O'Carroll
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina. Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Dennis K Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina. Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina. Department of Biochemistry Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - E Ramsay Camp
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina. Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Ralph H. Johnson VA Medical Center, Charleston, South Carolina.
| |
Collapse
|
39
|
Dai X, Liu P, Lau AW, Liu Y, Inuzuka H. Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis. Cancer Med 2014; 3:1211-24. [PMID: 25116380 PMCID: PMC4302671 DOI: 10.1002/cam4.298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem (iPS) cells can be generated from somatic cells by coexpression of four transcription factors: Sox2, Oct4, Klf4, and c-Myc. However, the low efficiency in generating iPS cells and the tendency of tumorigenesis hinder the therapeutic applications for iPS cells in treatment of human diseases. To this end, it remains largely unknown how the iPS process is subjected to regulation by upstream signaling pathway(s). Here, we report that Akt regulates the iPS process by modulating posttranslational modifications of these iPS factors in both direct and indirect manners. Specifically, Akt directly phosphorylates Oct4 to modulate the Oct4/Sox2 heterodimer formation. Furthermore, Akt either facilitates the p300-mediated acetylation of Oct4, Sox2, and Klf4, or stabilizes Klf4 by inactivating GSK3, thus indirectly modulating stemness. As tumorigenesis shares possible common features and mechanisms with iPS, our study suggests that Akt inhibition might serve as a cancer therapeutic approach to target cancer stem cells.
Collapse
Affiliation(s)
- Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
40
|
Yalçintepe L, Altinel P, Albeniz I, Yilmaz A, Nurten R. Characterization of Lin−ALDHbright population using Ehrlich ascites tumor cells in mice. Tumour Biol 2014; 35:10363-73. [DOI: 10.1007/s13277-014-2352-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/13/2014] [Indexed: 12/16/2022] Open
|
41
|
Yang CH, Wang HL, Lin YS, Kumar KPS, Lin HC, Chang CJ, Lu CC, Huang TT, Martel J, Ojcius DM, Chang YS, Young JD, Lai HC. Identification of CD24 as a cancer stem cell marker in human nasopharyngeal carcinoma. PLoS One 2014; 9:e99412. [PMID: 24955581 PMCID: PMC4067285 DOI: 10.1371/journal.pone.0099412] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 05/14/2014] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a unique sub-population of tumor cells with the ability to initiate tumor growth and sustain self-renewal. Although CSC biomarkers have been described for various tumors, only a few markers have been identified for nasopharyngeal carcinoma (NPC). In this study, we show that CD24+ cells isolated from human NPC cell lines express stem cell genes (Sox2, Oct4, Nanog, Bmi-1, and Rex-1), and show activation of the Wnt/β-catenin signaling pathway. CD24+ cells possess typical CSC characteristics that include enhanced cell proliferation, increased colony and sphere formation, maintenance of cell differentiation potential in prolonged culture, and enhanced resistance to chemotherapeutic drugs. Notably, CD24+ cells produce tumors following inoculation of as few as 500 cells in immunodeficient NOD/SCID mice. CD24+ cells further show increased invasion ability in vitro, which correlates with enhanced expression of matrix metalloproteinase 2 and 9. In summary, our results suggest that CD24 represents a novel CSC biomarker in NPC.
Collapse
Affiliation(s)
- Chun-Hung Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Division of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan, Republic of China
| | - Hui-Ling Wang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Yi-Sheng Lin
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - K. P. Shravan Kumar
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Hung-Chi Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Division of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan, Republic of China
| | - Chih-Jung Chang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Jan Martel
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Molecular Cell Biology and Health Sciences Research Institute, University of California Merced, Merced, California, United States of America
| | - Yu-Sun Chang
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, United States of America
- Biochemical Engineering Research Center, Ming Chi University of Technology, Taipei, Taiwan, Republic of China
- * E-mail: (JDY); (HCL)
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- * E-mail: (JDY); (HCL)
| |
Collapse
|
42
|
Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:432652. [PMID: 25045675 PMCID: PMC4089188 DOI: 10.1155/2014/432652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/25/2022]
Abstract
Asymmetric cell division is critical for generating cell diversity in low eukaryotic organisms. We previously have reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride demonstrate the ability to use an evolutionarily conserved process for renewal and fast reproduction, which is normally confined to simpler organisms. The budding yeast, Saccharomyces cerevisiae, which reproduces by asymmetric cell division, has long been a model for asymmetric cell division studies. PGCCs produce daughter cells asymmetrically in a manner similar to yeast, in that both use budding for cell polarization and cytokinesis. Here, we review the results of recent studies and discuss the similarities in the budding process between yeast and PGCCs.
Collapse
|
43
|
Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Ther 2014; 21:181-7. [PMID: 24787239 PMCID: PMC4041800 DOI: 10.1038/cgt.2014.15] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
Abstract
Although mortality from colorectal cancer (CRC) is decreasing, colorectal cancer is still the second highest cause of cancer related deaths in America. Chemotherapy and radiation therapy now play central roles in our strategies to fight cancer, although we continue to lack novel strategies overcoming therapeutic resistance. Molecular mechanisms of therapeutic resistance in CRC continue to be under intense investigation. In this review, we highlight the recent evidence linking epithelial-to-mesenchymal transition (EMT) with aggressive tumor biology as well as with the cancer stem cells (CSC) across multiple organ systems including colon cancer. Furthermore, in the era of neo-adjuvant treatment, the clinical implications are concerning that our treatments may have the potential to induce more aggressive cancer cells through EMT, perhaps even generating CSCs more capable of metastasis and further resistant to treatment. This concern and potential reality highlights the critical need for further understanding the impact of clinical therapy on the pathobiology of cancer and further supports the need to therapeutically target the CSC. Besides serving as potential biomarkers for aggressive tumor biology and therapeutic resistance, EMT and CSC molecular pathways may highlight novel therapeutic targets as strategies for improving the response to conventional anti-neoplastic agents translating into improved oncologic outcomes.
Collapse
|
44
|
Side population cells as prototype of chemoresistant, tumor-initiating cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:517237. [PMID: 24294611 PMCID: PMC3834974 DOI: 10.1155/2013/517237] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/23/2013] [Indexed: 12/16/2022]
Abstract
Classically, isolation of CSCs from tumors exploits the detection of cell surface markers associated with normal stem cells. Invariable expression of these cell surface markers in almost all proliferating tumor cells that albeit impart specific functionality, the universality, and clinical credibility of CSC phenotype based on markers is still dubious. Side Population (SP) cells, as defined by Hoechst dye exclusion in flow cytometry, have been identified in many solid tumors and cell lines and the SP phenotype can be considered as an enriched source of stem cells as well as an alternative source for the isolation of cancer stem cells especially when molecular markers for stem cells are unknown. SP cells may be responsible for the maintenance and propagation of tumors and the proportion of SP cells may be a predictor of patient outcome. Several of these markers used in cell sorting have emerged as prognostic markers of disease progression though it is seen that the development of new CSC-targeted strategies is often hindered by poor understanding of their regulatory networks and functions. This review intends to appraise the experimental progress towards enhanced isolation and drug screening based on property of acquired chemoresistance of cancer stem cells.
Collapse
|
45
|
Zhu L, McManus MM, Hughes DPM. Understanding the Biology of Bone Sarcoma from Early Initiating Events through Late Events in Metastasis and Disease Progression. Front Oncol 2013; 3:230. [PMID: 24062983 PMCID: PMC3775316 DOI: 10.3389/fonc.2013.00230] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 12/27/2022] Open
Abstract
The two most common primary bone malignancies, osteosarcoma (OS), and Ewing sarcoma (ES), are both aggressive, highly metastatic cancers that most often strike teens, though both can be found in younger children and adults. Despite distinct origins and pathogenesis, both diseases share several mechanisms of progression and metastasis, including neovascularization, invasion, anoikis resistance, chemoresistance, and evasion of the immune response. Some of these processes are well-studies in more common carcinoma models, and the observation from adult diseases may be readily applied to pediatric bone sarcomas. Neovascularization, which includes angiogenesis and vasculogenesis, is a clear example of a process that is likely to be similar between carcinomas and sarcomas, since the responding cells are the same in each case. Chemoresistance mechanisms also may be similar between other cancers and the bone sarcomas. Since OS and ES are mesenchymal in origin, the process of epithelial-to-mesenchymal transition is largely absent in bone sarcomas, necessitating different approaches to study progression and metastasis in these diseases. One process that is less well-studied in bone sarcomas is dormancy, which allows micrometastatic disease to remain viable but not growing in distant sites – typically the lungs – for months or years before renewing growth to become overt metastatic disease. By understanding the basic biology of these processes, novel therapeutic strategies may be developed that could improve survival in children with OS or ES.
Collapse
Affiliation(s)
- Limin Zhu
- Department of Pediatrics - Research, UT MD Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|
46
|
Garner JM, Fan M, Yang CH, Du Z, Sims M, Davidoff AM, Pfeffer LM. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem 2013; 288:26167-26176. [PMID: 23902772 DOI: 10.1074/jbc.m113.477950] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.
Collapse
Affiliation(s)
- Jo Meagan Garner
- From the Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Meiyun Fan
- From the Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Chuan He Yang
- From the Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Ziyun Du
- From the Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Michelle Sims
- From the Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Andrew M Davidoff
- the Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Lawrence M Pfeffer
- From the Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and.
| |
Collapse
|
47
|
Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer Lett 2013; 340:113-23. [PMID: 23872274 DOI: 10.1016/j.canlet.2013.07.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is notorious for its difficult diagnosis at early stage and poor recurrence-free prognosis. This study aimed to investigate the possible involvement of Oct4 and Nanog in pancreatic cancer. The high expressions of Oct4 and Nanog in human pancreatic cancer tissues were found to indicate a worse prognostic value of patients. The pancreatic cancer stem cells (PCSCs) that isolated from PANC-1 cell line by flow cytometry exhibited high expressions of Oct4 and Nanog. To investigate whether Oct4 and Nanog play crucial role in maintaining the stemness of PCSCs, double knockdown of Oct4 and Nanog demonstrated that Oct4 and Nanog significantly reduced proliferation, migration, invasion, chemoresistance, and tumorigenesis of PCSCs in vitro and in vivo. The altered expression of the genes related to pancreatic carcinogenesis, metastasis, drug resistance and epithelial-mesenchymal transdifferentiation (EMT) might affect the biological characteristics of PCSCs. Our results suggest that Oct4 and Nanog may serve as a potential marker of prognosis and a novel target of therapy for pancreatic cancer.
Collapse
|
48
|
Richard V, Sebastian P, Nair MG, Nair SN, Malieckal TT, Santhosh Kumar TR, Pillai MR. Multiple drug resistant, tumorigenic stem-like cells in oral cancer. Cancer Lett 2013; 338:300-16. [PMID: 23791883 DOI: 10.1016/j.canlet.2013.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/19/2013] [Accepted: 06/01/2013] [Indexed: 12/20/2022]
Abstract
An in vitro cell line model was established to exemplify tumor stem cell concept in oral cancer. We were able to identify CD147 expressing fractions in SCC172 OSCC cell line with differing Hoechst dye efflux activity and DNA content. In vivo tumorigenic assay revealed three fractions enriched with stem-like cells capable of undergoing mesenchymal transition and a non-tumorigenic fraction. The regeneration potential and transition of one fraction to other imitated the phenotypic switch and functional disparities evidenced during oral tumor progression. Knowledge of these additional stem-like subsets will improve understanding of stem cell based oral epithelial tumor progression from normal to malignant lesions.
Collapse
Affiliation(s)
- Vinitha Richard
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | | | | | | | | | | | | |
Collapse
|
49
|
de la Mare JA, Sterrenberg JN, Sukhthankar MG, Chiwakata MT, Beukes DR, Blatch GL, Edkins AL. Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay. Cancer Cell Int 2013; 13:39. [PMID: 23631621 PMCID: PMC3663729 DOI: 10.1186/1475-2867-13-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/23/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents. METHODS In this study, the tumoursphere assay was validated in MCF-7 cells and used to screen novel marine algal compounds for potential anti-cancer stem cell (CSC) activity in vitro. RESULTS MCF-7 breast cancer cells were observed to generate tumourspheres or mammospheres after 3-5 days growth in anchorage-independent conditions and an apparent enrichment in potential CSCs was observed by an increase in the proportion of CD44high/CD24low marker-bearing cells and Oct4 expression compared to those in the bulk population grown in regular adherent conditions. Using this assay, a set of algal metabolites was screened for the ability to inhibit mammosphere development as a measure of potential anti-CSC activity. We report that the polyhalogenated monoterpene stereoisomers RU017 and RU018 isolated from the red alga Plocamium cornutum, both of which displayed no cytotoxicity against either adherent MCF-7 breast cancer or MCF-12A non-transformed breast epithelial cells, were able to prevent MCF-7 mammosphere formation in vitro. On the other hand, neither the brown algal carotenoid fucoxanthin nor the chemotherapeutic paclitaxel, both of which were toxic to adherent MCF-7 and MCF-12A cells, were able to inhibit mammosphere formation. In fact, pre-treatment with paclitaxel appeared to enhance mammosphere formation and development, a finding which is consistent with the reported resistance of CSCs to traditional chemotherapeutic agents. CONCLUSION Due to the proposed clinical significance of CSC in terms of tumour initiation and metastasis, the identification of agents able to inhibit this subpopulation has clinical significance.
Collapse
Affiliation(s)
- Jo-Anne de la Mare
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown, 6140, South Africa
| | - Jason N Sterrenberg
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown, 6140, South Africa
| | - Mugdha G Sukhthankar
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown, 6140, South Africa
| | - Maynard T Chiwakata
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Denzil R Beukes
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Gregory L Blatch
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown, 6140, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown, 6140, South Africa
| |
Collapse
|
50
|
Zhuang HW, Mo TT, Hou WJ, Xiong GX, Zhu XL, Fu QL, Wen WP. Biological characteristics of CD133(+) cells in nasopharyngeal carcinoma. Oncol Rep 2013; 30:57-63. [PMID: 23604326 PMCID: PMC3729244 DOI: 10.3892/or.2013.2408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/11/2013] [Indexed: 01/18/2023] Open
Abstract
Cancer stem cells are regarded as the cause of tumour formation and recurrence in nasopharyngeal carcinoma (NPC). However, ideal surface markers for stem cells in NPC remain unidentified. In the present study, we investigated the expression of CD133, Nanog and Sox2 in the nasopharyngeal carcinoma cell line CNE2 and primarily cultured NPC cells using immunofluorescence or flow cytometry. A cell population with a CD133+ phenotype was enriched using magnetic-activated cell sorting technology. We demonstrated that CD133+ cells exhibited a strong potential for self-renewal, proliferation and differentiation and a greater potential for in vivo tumour formation in nude mice compared to CD133− cells, although the percentage of CD133+ cells was small. However, the specific marker antigens Nanog and Sox2 were simultaneously expressed in normal cancer stem cells. Our results showed that CD133 can serve as a specific surface marker for nasopharyngeal cancer stem cells.
Collapse
Affiliation(s)
- Hui-Wen Zhuang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | | | | | |
Collapse
|