1
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Cui H, Yang H, Qi X, Zhao Y, Huang T, Miao L. Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives. Vet Sci 2024; 11:545. [PMID: 39591319 PMCID: PMC11599047 DOI: 10.3390/vetsci11110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Bovine lactoferrin is a natural iron-binding glycoprotein known for its antimicrobial, antiviral, antitumor, anti-inflammatory, and immunomodulatory properties. In this study, we artificially recombined a fragment of bovine lactoferrin with immunomodulatory and antimicrobial properties to create a novel peptide named LF-MQL. The primary objective was to investigate the effects of LF-MQL on the intestinal tract and immune cells in animals. First, we assessed the in vitro activation effects of LF-MQL on mouse peritoneal macrophages. The results indicated that LF-MQL enhanced the macrophage phagocytic activity and increased IL-1β mRNA expression without significantly affecting IL-6 mRNA levels. Next, we examined the effects of LF-MQL on mucosal immunity by administering LF-MQL orally at doses of 300 mg/kg, 30 mg/kg, and 3 mg/kg to mice. The results demonstrated that different doses of LF-MQL modulated IL-6 and IL-10 mRNA levels in the small intestine. Low doses enhanced the intestinal immune response, while higher doses reduced the inflammatory response. In conclusion, LF-MQL exerts immunomodulatory effects rather than simply boosting immune activity in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Liguang Miao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.C.)
| |
Collapse
|
3
|
Shetty VV, Shetty SS. Exploring the gut microbiome and head and neck cancer interplay. Pathol Res Pract 2024; 263:155603. [PMID: 39368364 DOI: 10.1016/j.prp.2024.155603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome, a complex community of microorganisms residing in the gastrointestinal tract, plays a crucial role in maintaining human health and influencing disease outcomes. Recent advancements in sequencing technologies have revealed the intricate relationship between gut microbiota and various health conditions. This review explores the impact of gut microbiome dysbiosis on immune function, chronic inflammation, and cancer progression. Dysbiosis, characterized by an imbalance in microbial populations, can lead to immune dysfunction, creating a pro-inflammatory environment conducive to tumorigenesis. Gut microbiome metabolites, such as short-chain fatty acids and bile acids, also play a significant role in modulating these processes. The interplay between these factors contributes to the development and progression of HNC. Furthermore, this review highlights the potential of therapeutic interventions targeting the gut microbiome, including probiotics, prebiotics, and dietary modifications, to restore microbial balance and mitigate cancer risk. Understanding the mechanisms by which the gut microbiome influences HNC can provide valuable insights into novel preventive and therapeutic strategies. Future research should focus on elucidating the specific microbial taxa and metabolites involved in HNC, as well as the impact of lifestyle factors such as diet, alcohol consumption, and oral hygiene on the gut microbiome. By leveraging the growing knowledge of the gut microbiome, it may be possible to develop personalized approaches to cancer prevention and treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Veeksha V Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India
| | - Shilpa S Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India.
| |
Collapse
|
4
|
García Menéndez G, Sichel L, López MDC, Hernández Y, Arteaga E, Rodríguez M, Fleites V, Fernández LT, Cano RDJ. From colon wall to tumor niche: Unraveling the microbiome's role in colorectal cancer progression. PLoS One 2024; 19:e0311233. [PMID: 39436937 PMCID: PMC11495602 DOI: 10.1371/journal.pone.0311233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Colorectal cancer (CRC) is influenced by perturbations in the colonic microbiota, characterized by an imbalance favoring pathogenic bacteria over beneficial ones. This dysbiosis contributes to CRC initiation and progression through mechanisms such as carcinogenic metabolite production, inflammation induction, DNA damage, and oncogenic signaling activation. Understanding the role of external factors in shaping the colonic microbiota is crucial for mitigating CRC progression. This study aims to elucidate the gut microbiome's role in CRC progression by analyzing paired tumor and mucosal tissue samples obtained from the colon walls of 17 patients. Through sequencing of the V3-V4 region of the 16S rRNA gene, we characterized the tumor microbiome and assessed its association with clinical variables. Our findings revealed a significant reduction in alpha diversity within tumor samples compared to paired colon biopsy samples, indicating a less diverse microbial environment within the tumor microenvironment. While both tissues exhibited dominance of similar bacterial phyla, their relative abundances varied, suggesting potential colon-specific effects. Fusobacteriota enrichment, notably in the right colon, may be linked to MLH1 deficiency. Taxonomy analysis identified diverse bacterial genera, with some primarily associated with the colon wall and others unique to this region. Conversely, several genera were exclusively expressed in tumor tissue. Functional biomarker analysis identified three key genes with differential abundance between tumor microenvironment and colon tissue, indicating distinct metabolic activities. Functional biomarker analysis revealed three key genes with differential abundance: K11076 (putrescine transport system) and K10535 (nitrification) were enriched in the tumor microenvironment, while K11329 (SasA-RpaAB circadian timing mediator) dominated colon tissue. Metabolic pathway analysis linked seven metabolic pathways to the microbiome. Collectively, these findings highlight significant gut microbiome alterations in CRC and strongly suggest that long-term dysbiosis profoundly impacts CRC progression.
Collapse
Affiliation(s)
- Gissel García Menéndez
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Liubov Sichel
- Stellar Biotics, LLC, Rockleigh, New Jersey, United States of America
| | | | - Yasel Hernández
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Ernesto Arteaga
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Marisol Rodríguez
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Vilma Fleites
- Oncology Department Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Lipsy Teresa Fernández
- Surgery Department Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Raúl De Jesus Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States of America
| |
Collapse
|
5
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Onyeaghala GC, Sharma S, Oyenuga M, Staley CM, Milne GL, Demmer RT, Shaukat A, Thyagarajan B, Straka RJ, Church TR, Prizment AE. The Effects of Aspirin Intervention on Inflammation-Associated Lingual Bacteria: A Pilot Study from a Randomized Clinical Trial. Microorganisms 2024; 12:1609. [PMID: 39203451 PMCID: PMC11357305 DOI: 10.3390/microorganisms12081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Several bacterial taxa enriched in inflammatory bowel diseases and colorectal cancer (CRC) are found in the oral cavity. We conducted a pilot study nested within a six-week aspirin intervention in a randomized placebo-controlled trial to test their response to aspirin intervention. Fifty healthy subjects, 50-75 years old, were randomized to receive 325 mg aspirin (n = 30) or placebo (n = 20) orally once daily for six weeks. Oral tongue swabs were collected at baseline and week six. We estimated the association between aspirin use and the temporal changes in the relative abundance of pre-specified genus level taxa from pre- to post-treatment. The temporal change in relative abundance differed for eight genus level taxa between the aspirin and placebo groups. In the aspirin group, there were significant increases in the relative abundances of Neisseria, Streptococcus, Actinomyces, and Rothia and significant decreases in Prevotella, Veillonella, Fusobacterium, and Porphyromonas relative to placebo. The log ratio of Neisseria to Fusobacterium declined more in the aspirin group than placebo, signaling a potential marker associated with aspirin intervention. These preliminary findings should be validated using metagenomic sequencing and may guide future studies on the role of aspirin on taxa in various oral ecological niches.
Collapse
Affiliation(s)
- Guillaume C. Onyeaghala
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, MN 55415, USA;
| | - Shweta Sharma
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
| | - Mosunmoluwa Oyenuga
- Department of Internal Medicine, SSM Health St. Mary’s Hospital—St. Louis, St. Louis, MO 63117, USA;
| | - Christopher M. Staley
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ginger L. Milne
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37232, USA;
| | - Ryan T. Demmer
- Mayo Clinic College of Medicine & Sciences, Rochester, MN 55905, USA;
| | - Aasma Shaukat
- Department of Population Health, New York University Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Bharat Thyagarajan
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Timothy R. Church
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anna E. Prizment
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Jayakrishnan TT, Sangwan N, Barot SV, Farha N, Mariam A, Xiang S, Aucejo F, Conces M, Nair KG, Krishnamurthi SS, Schmit SL, Liska D, Rotroff DM, Khorana AA, Kamath SD. Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer. NPJ Precis Oncol 2024; 8:146. [PMID: 39020083 PMCID: PMC11255257 DOI: 10.1038/s41698-024-00647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Thejus T Jayakrishnan
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Naseer Sangwan
- Microbial Sequencing & Analytics Resource (MSAAR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shimoli V Barot
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Farha
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - Shao Xiang
- Department of Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Madison Conces
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Hematology-Oncology, University Hospital Seidman Cancer Center, Cleveland, OH, USA
| | - Kanika G Nair
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Smitha S Krishnamurthi
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie L Schmit
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - David Liska
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
- Department of Colorectal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - Alok A Khorana
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Suneel D Kamath
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
8
|
Jiang Y, Huang Y, Hu Y, Yang Y, You F, Hu Q, Li X, Zhao Z. Banxia Xiexin Decoction delays colitis-to-cancer transition by inhibiting E-cadherin/β-catenin pathway via Fusobacterium nucleatum FadA. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117932. [PMID: 38382652 DOI: 10.1016/j.jep.2024.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colitis is an important risk factor for the occurrence of colorectal cancer (CRC), and the colonization of Fusobacterium nucleatum (Fn) in the intestines accelerates this transformation process. Banxia Xiexin Decoction (BXD), originating from Shanghanlun, is a classic prescription for treating gastrointestinal diseases. Current researches indicate that BXD can effectively delay the colitis-to-cancer transition, but it is still unclear whether it can inhibit Fn colonization to achieve this delaying effect. AIM OF STUDY This study explored the effect and mechanism of BXD in inhibiting Fn intestinal colonization to delay colitis-to-cancer transition. MATERIALS AND METHODS We constructed a mouse model of colitis-to-cancer transition by regularly gavaging Fn combined with azoxymethane (AOM)/dextran sodium sulfate (DSS), and administered BXD by gavage. We monitored the body weight of mice, measured the length and weight of their colons, and calculated the disease activity index (DAI) score. The growth status of colon tumors was observed by hematoxylin and eosin (H&E) staining, and the changes in gut microbiota in each group of mice were detected by 16S rDNA analysis. Immunohistochemistry was used to detect the expression of E-cadherin and β-catenin in colon tissues, and immunofluorescence was used to observe the infiltration of M2 macrophages in colon tissues. In cell experiments, we established a co-culture model of Fn and colon cancer cells and intervened with BXD-containing serum. Malignant behaviors such as cell proliferation, invasion, and migration were detected, as well as changes in their cell cycle. We examined the protein levels of E-cadherin, β-catenin, Axin2, and Cyclin D1 in each group were detected by Western blot. We used US1 strain (fadA-) as a control and observed the effects of BXD-containing serum on Fn attachment and invasion of colon cancer cells through attachment and invasion experiments. RESULTS BXD can inhibit the colitis-to-cancer transition in mice infected with Fn, reduce crypt structure damage, improve gut microbiota dysbiosis, upregulate E-cadherin and decrease β-catenin expression, and reduce infiltration of M2 macrophages, thus inhibiting the process of colitis-to-cancer transition. Cell experiments revealed that BXD-containing serum can inhibit the proliferation, migration, and invasion of colon cancer cells infected with Fn and regulate their cell cycle. More importantly, we found that BXD-containing serum can inhibit the binding of Fn's FadA adhesin to E-cadherin, reduce Fn's attachment and invasion of colon cancer cells, thereby downregulating the E-cadherin/β-catenin signaling pathway. CONCLUSIONS These findings show that BXD can inhibit Fn colonization by interfering with the binding of FadA to E-cadherin, reducing the activation of the E-cadherin/β-catenin signaling pathway, and ultimately delaying colitis-to-cancer transition.
Collapse
Affiliation(s)
- Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yuqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yane Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yi Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China; Cancer Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, PR China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China, Chengdu, 610072, Sichuan Province, PR China.
| | - Xueke Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
9
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
10
|
Nouri R, Hasani A, Shirazi KM, Sefiadn FY, Mazraeh FN, Sattarpour S, Rezaee MA. Colonization of the gut mucosa of colorectal cancer patients by pathogenic mucosa-associated Escherichia coli strains. Diagn Microbiol Infect Dis 2024; 109:116229. [PMID: 38507962 DOI: 10.1016/j.diagmicrobio.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Some strains of Escherichia coli are known to be involved in the pathogenesis of colorectal cancer (CRC). The aim of current study was to compare the general characteristics of the E. coli from CRC patients and healthy participants. A total of 96 biopsy samples from 48 CRC patients and 48 healthy participants, were studied. The clonality of the E. coli isolates was analyzed by Enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR) method. The strains were tested by PCR to determine the prevalence of different virulence factors. According to the results of ERIC-PCR analysis, (from the 860 E. coli isolates) 60 strains from CRC patients and 41 strains from healthy controls were identified. Interestingly, the majority of the strains of both groups were in the same cluster. Enteropathogenic E. coli (EPEC) was detected significantly more often in CRC patients (21.6 %) than in healthy participants (2.4 %) (p < 0.05). The Enteroaggregative E. coli (EAEC) was found in 18.33 % of the strains of CRC patients. However, other pathotypes were not found in the E. coli strains of both groups. Furthermore, all the studied genes encoding for virulence factors seemed to be more prevalent in the strains belonging to CRC patients. Among the virulence genes, the statistical difference regarding the frequency of fuyA, chuA, vat, papC, hlyA and cnf1 genes was found significant (p < 0.05). In conclusion, E. coli strains that carry extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) multiple virulence factors colonize the gut mucosa of CRC patients.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefiadn
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Naeimi Mazraeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sattarpour
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Deng Y, Hou X, Wang H, Du H, Liu Y. Influence of Gut Microbiota-Mediated Immune Regulation on Response to Chemotherapy. Pharmaceuticals (Basel) 2024; 17:604. [PMID: 38794174 PMCID: PMC11123941 DOI: 10.3390/ph17050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic agents through interactions with the immune system. This review aims to summarize the current knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut microbiota regulates host immune response, and how interactions between the gut microbiota and host immune response influence the efficacy of chemotherapy. Recent advances in strategies for increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering the complex homeostasis maintained by the gut microbiota and host immunity provides a solid scientific basis for bacterial intervention in chemotherapy.
Collapse
Affiliation(s)
- Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Hongzhi Du
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| |
Collapse
|
13
|
Ravella S. Association between oral nutrition and inflammation after intestinal transplantation. Hum Immunol 2024; 85:110809. [PMID: 38724327 DOI: 10.1016/j.humimm.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Intestinal transplantation (Itx) can be a life-saving treatment for certain patient populations, including those patients with intestinal failure (IF) who develop life-threatening complications due to the use of parenteral nutrition (PN). Most patients who have undergone Itx are eventually able to tolerate a full oral diet. However, little guidance or consensus exists regarding optimizing the specific components of an oral diet for Itx patients, including macronutrients, micronutrients and dietary patterns. While oral dietary prescriptions have moved to the forefront of primary and preventive care, this movement has yet to occur across the field of organ transplantation. Evidence to date points to the role of systemic chronic inflammation (SCI) in a wide variety of chronic diseases as well as post-transplant graft dysfunction. This review will discuss current trends in oral nutrition for Itx patients and also offer novel insights into nutritional management techniques that may help to decrease SCI and chronic disease risk as well as optimize graft function.
Collapse
|
14
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
15
|
Li Y, Ma B, Wang Z, Chen Y, Dong Y. The Effect Mechanism of N6-adenosine Methylation (m6A) in Melatonin Regulated LPS-induced Colon Inflammation. Int J Biol Sci 2024; 20:2491-2506. [PMID: 38725850 PMCID: PMC11077364 DOI: 10.7150/ijbs.95316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.
Collapse
Affiliation(s)
- Yuanyuan Li
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Baochen Ma
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, People's Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Song X, Lao J, Wang L, Liu S. Research advances on short-chain fatty acids in gastrointestinal acute graft- versus-host disease. Ther Adv Hematol 2024; 15:20406207241237602. [PMID: 38558826 PMCID: PMC10979536 DOI: 10.1177/20406207241237602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal acute graft-versus-host disease (GI-aGVHD) is a severe early complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has been shown that the intestinal microbiota plays a critical role in this process. As metabolites of the intestinal microbiota, short-chain fatty acids (SCFAs) are vital for maintaining the host-microbiota symbiotic equilibrium. This article provides an overview of the protective effect of SCFAs in the gastrointestinal tract, emphasizes their association with GI-aGVHD, and explores relevant research progress in prevention and treatment research.
Collapse
Affiliation(s)
- Xinping Song
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong 518026, China
| | - Jing Lao
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong 518026, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong 518026, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong 518026, China
| |
Collapse
|
17
|
Giri S, Takada A, Paudel D, Uehara O, Kurashige Y, Kuramitsu Y, Furukawa M, Matsushita K, Arakawa T, Nagasawa T, Abiko Y, Furuichi Y. Oral infection with Porphyromonas gingivalis augmented gingival epithelial barrier molecules alteration with aging. J Oral Biosci 2024; 66:126-133. [PMID: 38336260 DOI: 10.1016/j.job.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Disruption of the gingival epithelial barrier is often mediated by aging or the pathogen Porphyromonas gingivalis. This study examined the combined effects of aging and P. gingivalis exposure on gingival epithelial barrier molecules. METHODS In vitro experiments involved treating young- and senescence-induced primary human gingival epithelial progenitor cells (HGEPp) with P. gingivalis lipopolysaccharide (LPS). Transepithelial electrical resistance (TER) and paracellular permeability were measured. In vivo, male C57BL/6J mice aged 10 (young) and 80 (old) weeks were divided into four groups: young, old, young with P. gingivalis (Pg-Young) inoculation, and old with P. gingivalis (Pg-Old) inoculation. P. gingivalis was inoculated orally thrice a week for 5 weeks. The mice were sacrificed 30 days after the last inoculation, and samples were collected for further procedures. The junctional molecules (Claudin-1, Claudin-2, E-cadherin, and Connexin) were analyzed for mRNA expression using qRT-PCR and protein production using western blotting and immunohistochemistry. The alveolar bone loss and inflammatory cytokine levels in gingival tissues were also assessed. RESULTS LPS-treated senescent cells exhibited a pronounced reduction in TER, increased permeability to albumin protein, significant upregulation of Claudin-1 and Claudin-2, and significant downregulation of E-cadherin and Connexin. Furthermore, the Pg-Old group showed identical results with aging in addition to an increase in alveolar bone loss, significantly higher than that in the other groups. CONCLUSION In conclusion, the host susceptibility to periodontal pathogens increases with age through changes in the gingival epithelial barrier molecules.
Collapse
Affiliation(s)
- Sarita Giri
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihito Kurashige
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Toshiya Arakawa
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Toshiyuki Nagasawa
- Division of Advanced Clinical Education, Department of Integrated Dental Education, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Japan
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
18
|
Jahani-Sherafat S, Azimirad M, Raeisi H, Azizmohammad Looha M, Tavakkoli S, Ahmadi Amoli H, Moghim S, Rostami-Nejad M, Yadegar A, Zali MR. Alterations in the gut microbiota and their metabolites in human intestinal epithelial cells of patients with colorectal cancer. Mol Biol Rep 2024; 51:265. [PMID: 38302841 DOI: 10.1007/s11033-024-09273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The gut microbiota has become one of the main risk factors for the formation and development of colorectal cancer (CRC). CRC intensification may be due to the microbial pathogens' colonization and their released metabolites. Here, we analyzed Bacteroidetes and Clostridia bacteria in CRC patients and studied bacterial metabolome in cancerous tissues compared to their adjacent normal tissues. METHODS AND RESULTS The population of selected bacteria in biopsy specimens of 30 patients with CRC was studied by RT-qPCR. The mutagenicity and cytotoxicity effects of microbiota metabolites were evaluated by Ames test and MTT Assay, respectively. Moreover, gene expression in carcinogenic pathways was studied by RT-qPCR, and genes with different expressions in tumor and non-tumor tissues were diagnosed. Based on microbiota analysis, the relative abundance of Clostridia and C. difficile was significantly higher in CRC tissue, whereas C. perfringens showed higher relative abundance in normal tissue. AIMES test confirmed the proliferation and mutagenicity effects of the bacterial metabolites in CRC patients. Significant upregulation of C-Myc, GRB2, IL-8, EGFR, PI3K, and AKT and downregulation of ATM were observed in CRC samples compared to the control. CONCLUSIONS The influence of bacterial metabolites on inflammation and altered expression of genes in the cell signaling pathways was observed. The findings confirm the role gut microbiota composition and bacterial metabolites as key players in CRC onset and development.
Collapse
Affiliation(s)
- Somayeh Jahani-Sherafat
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Tavakkoli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sharareh Moghim
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rostami-Nejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Celiac Disease and Gluten Related Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran.
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Liu Y, Zhang J, Chen H, Zhang W, Ainiwaer A, Mao S, Yao X, Xu T, Yan Y. Urinary microbiota signatures associated with different types of urinary diversion: a comparative study. Front Cell Infect Microbiol 2024; 13:1302870. [PMID: 38235491 PMCID: PMC10791864 DOI: 10.3389/fcimb.2023.1302870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Background Radical cystectomy and urinary diversion (UD) are gold standards for non-metastatic muscle-invasive bladder cancer. Orthotopic neobladder (or Studer), ileal conduit (or Bricker) and cutaneous ureterostomy (CU) are mainstream UD types. Little is known about urinary microbiological changes after UD. Methods In this study, urine samples were collected from healthy volunteers and patients with bladder cancer who had received aforementioned UD procedures. Microbiomes of samples were analyzed using 16S ribosomal RNA gene sequencing, and microbial diversities, distributions and functions were investigated and compared across groups. Results Highest urine microbial richness and diversity were observed in healthy controls, followed by Studer patients, especially those without hydronephrosis or residual urine, α-diversity indices of whom were remarkably higher than those of Bricker and CU groups. Studer UD type was the only independent factor favoring urine microbial diversity. The urine microflora structure of the Studer group was most similar to that of the healthy individuals while that of the CU group was least similar. Studer patients and healthy volunteers shared many similar urine microbial functions, while Bricker and CU groups exhibited opposite characteristics. Conclusion Our study first presented urinary microbial landscapes of UD patients and demonstrated the microbiological advantage of orthotopic neobladder. Microbiota might be a potential tool for optimization of UD management.
Collapse
Affiliation(s)
- Yuchao Liu
- Department of Urology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Jingcheng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Urology, Kashgar Prefecture Second People Hospital, Kashgar, Xinjiang Uygur Autonomous Region, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Chorawala MR, Postwala H, Prajapati BG, Shah Y, Shah A, Pandya A, Kothari N. Impact of the microbiome on colorectal cancer development. COLORECTAL CANCER 2024:29-72. [DOI: 10.1016/b978-0-443-13870-6.00021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Lu Y, Cui A, Zhang X. Commensal microbiota-derived metabolite agmatine triggers inflammation to promote colorectal tumorigenesis. Gut Microbes 2024; 16:2348441. [PMID: 38706224 PMCID: PMC11086030 DOI: 10.1080/19490976.2024.2348441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Colorectal cancer (CRC), a malignant tumor worldwide, is associated with gut microbiota. The influence of gut microbe-derived metabolites on CRC has attracted a lot of attention. However, the role of immunity mediated by commensal microbiota-derived metabolites in tumorigenesis of CRC is not intensively explored. Here we monitored the gut microbial dysbiosis in CRC mouse model (ApcMin/+ model) without dietary and pharmacological intervention, followed by characterized of metabolites enriched in CRC model mice. Profound changes of gut microbiome (bacteriome) were observed during intestinal disorders. Metabolomic profiling indicated that agmatine, derived from the gut bacteria i.e. Blautia, Odoribacter, Alistipes and Paraprevotella, could interact with Rnf128 to suppress the Rnf128-mediated ubiquitination of β-catenin to further upregulate the downstream targets of β-catenin including Cyclin D1, Lgr5, CD44 and C-myc, thus activating Wnt signaling. The activated Wnt signaling pathway promoted dysplasia of intestinal cells and inflammatory infiltration of lymphocytes via inducing the upregulation of pro-inflammatory cytokines (IL-6 and TNF-α) and downregulation of anti-inflammatory cytokine (IL-10), thereby contributing to colorectal carcinogenesis. Therefore, our study presented novel insights into the roles and mechanisms of gut microbiota in pathogenesis of CRC.
Collapse
Affiliation(s)
- Yu Lu
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, People’s Republic of China
| | - Aoxi Cui
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
22
|
Zhao C, Li H, Gao C, Tian H, Guo Y, Liu G, Li Y, Liu D, Sun B. Moringa oleifera leaf polysaccharide regulates fecal microbiota and colonic transcriptome in calves. Int J Biol Macromol 2023; 253:127108. [PMID: 37776927 DOI: 10.1016/j.ijbiomac.2023.127108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharide on growth performance indicators, serum biochemical indicators, immune organ indicators, colonic morphology, colonic microbiomics and colonic transcriptomics in newborn calves. 21 newborn calves were randomly divided into three groups of 7 calves per treatment group: control group (no Moringa oleifera polysaccharide addition); low-dose group (Moringa oleifera polysaccharide 0.5 g/kg); and high-dose group (Moringa oleifera polysaccharide 1 g/kg). This trial used gavage to feed MOP to calves. The test lasted 8 weeks. Calves were humanely electroshocked on the last day of the trial and slaughtered afterwards. Thymus, spleen, blood and colonic contents were collected for further testing. The results of this trial showed that MOP significantly increased the body weight of newborn calves and reduced the rate of calf diarrhea, thus promoting calf growth. Fecal scores showed a linear decrease with the addition of MOP. In terms of serum biochemistry, feeding MOP significantly increased serum ALB levels in a linear fashion. In terms of serum antioxidants, feeding MOP linearly increased CAT and T-AOC levels and decreased MDA concentrations, and in terms of serum immunity, feeding MOP linearly increased IgA, IgG, and IgM levels. At the same time, MOP regulated the abundance of Firmicutes and Bacteroidetes in the intestinal tract of calves, which reduced the occurrence of diarrhea. In addition, moringa polysaccharide could regulate genes related to inflammatory signaling pathways such as MAPK signaling pathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway in calves' intestine to reduce the occurrence of intestinal inflammation. In conclusion, MOP can be used as a novel ruminant additive for the prevention of enteritis in calves.
Collapse
Affiliation(s)
- Chao Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangfan Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chongya Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanchen Tian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Cao Y, Shang F, Jin M, Deng S, Gu J, Mao F, Qin L, Wang J, Xue Y, Jiang Z, Cheng D, Liu L, Nie X, Liu T, Liu H, Cai K. Changes in Bacteroides and the microbiota in patients with obstructed colorectal cancer: retrospective cohort study. BJS Open 2023; 7:zrad105. [PMID: 38006331 PMCID: PMC10675991 DOI: 10.1093/bjsopen/zrad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The relationship between intestinal obstruction due to colorectal cancer (CRC) and the gut microbiota remains largely unknown. The aim of this study was to investigate the potential association between alterations in gut microbiota and CRC in the presence of intestinal obstruction. METHODS Patients with CRC with or without obstruction were recruited and compared using 1:1 propensity score matching (PSM). Total DNA from tumours and adjacent normal tissues of 84 patients and 36 frozen tumour tissues was extracted and amplified. 16S RNA sequencing was used to uncover differences in microbiota composition between the two groups. RESULTS A total of 313 patients with CRC were recruited. Survival analysis demonstrated that patients in the obstruction group had shorter overall survival time and disease-free survival (DFS) time than those in the non-obstruction group. Microbial richness and diversity in tumour tissues of patients with obstruction were significantly higher than those of patients with no obstruction. The alpha diversity indices and beta diversity exhibited were different between the two groups (P < 0.05). At the phylum and genus levels, Bacteroidetes were significantly enriched in the tumour tissues of patients with obstruction. Alpha diversity in tumour tissues was closely related to specific microbiota. These findings were replicated in the 16S rRNA analyses from frozen samples. There were more Bacteroidetes in CRC patients with obstruction. CONCLUSIONS Patients with obstructed CRC have worse prognosis and have differences in their microbiota. Higher levels of Bacteroides were observed in patients with obstructed CRC.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fumei Shang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ju Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Yuk JS, Yang SW, Yoon SH, Kim MH, Seo YS, Lee Y, Kim J, Yang K, Gwak G, Cho H. The increased risk of colorectal cancer in the women who underwent hysterectomy from the South Korean National Health Insurance Database. BMC Womens Health 2023; 23:519. [PMID: 37775754 PMCID: PMC10542264 DOI: 10.1186/s12905-023-02642-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Several population-based studies and observational studies have shown that oophorectomy is associated with an increased risk of colorectal cancer (CRC), and hormone replacement therapy has been associated with a reduction in the risk of colorectal cancer. This study was carried out to investigate whether hysterectomy, which may affect the levels of female hormones, is associated with a risk of cancer of the specific gastrointestinal tract. METHODS This population-based retrospective cohort study was conducted using insurance data provided by the Health Insurance Review and Assessment Service (HIRA) from January 1, 2007, to December 31, 2020. The hysterectomy group included 40- to 59-year-old women who underwent hysterectomy with uterine leiomyoma or uterine endometriosis from January 1, 2011, to December 31, 2014. The control group included women aged 40 to 59 years who visited medical institutions for medical examination from January 1, 2011 to December 31, 2014. RESULTS The hysterectomy and non-hysterectomhy groups comprised 66,204 and 89,768 subjects, respectively. The median ages in the non-hysterectomy group and hysterectomy group were 48 (range: 43-53) and 46 (range: 44-49) years, respectively. In the unadjusted results of the analysis, all colorectal cancer (CRC) increased in the hysterectomy alone group (HR 1.222, 95% confidence interval (CI) 1.016-1.47, p = 0.033), sigmoid colon cancer increased in the hysterectomy alone group (HR 1.71, 95% CI 1.073-2.724, p = 0.024), and rectal cancer increased in the hysterectomy with adnexal surgery group (HR 1.924, 95% CI 1.073-2.724, p = 0.002). The adjusted results showed that all CRC increased in the hysterectomy alone group (HR 1.406, 95% CI 1.057-1.871, p = 0.019), colon cancer increased in the hysterectomy alone group (HR 1.523, 95% CI 1.068-2.17, p = 0.02), and rectal cancer increased in the hysterectomy with adnexal surgery group (HR 1.933, 95% CI 1.131-3.302, p = 0.016). The all-cause mortality of GI cancer increased in the hysterectomy alone group (HR 3.495, 95% CI 1.347-9.07, p = 0.001). CONCLUSIONS This study showed that the risk of all CRC increased in women who underwent hysterectomy compared with women who did not. In particular, the risk of rectal cancer was significantly higher in the women who underwent hysterectomy with adnexal surgery than in the controls. There was no association between hysterectomy and other GI cancers.
Collapse
Affiliation(s)
- Jin -Sung Yuk
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Sang-Hee Yoon
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Myoung Hwan Kim
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Yong-Soo Seo
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Yujin Lee
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Jungbin Kim
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Keunho Yang
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Geumhee Gwak
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Hyunjin Cho
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea.
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, Dongil-Ro, Nowon-Gu, Seoul, 1342, Republic of Korea.
| |
Collapse
|
25
|
Zeighamy Alamdary S, Halimi S, Rezaei A, Afifirad R. Association between Probiotics and Modulation of Gut Microbial Community Composition in Colorectal Cancer Animal Models: A Systematic Review (2010-2021). THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3571184. [PMID: 37719797 PMCID: PMC10505085 DOI: 10.1155/2023/3571184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies and is considered the third major cause of mortality globally. Probiotics have been shown to protect against the CRC cascade in numerous studies. Aims The goal of this systematic review was to gather the preclinical studies that examined the impact of probiotics on the alteration of gut microbiota profiles (bacterial communities) and their link to colorectal carcinogenesis as well as the potential processes involved. Methods The search was performed using Scopus, Web of Science, and PubMed databases. Five parameters were used to develop search filters: "probiotics," "prebiotics," "synbiotics," "colorectal cancer," and "animal model." Results Of the 399 full texts that were screened, 33 original articles met the inclusion criteria. According to the current findings, probiotics/synbiotics could significantly attenuate aberrant crypt foci (ACF) formation, restore beneficial bacteria in the microbiota population, increase short-chain fatty acids (SCFAs), and change inflammatory marker expression. Conclusions The present systematic review results indicate that probiotics could modulate the gut microbial composition and immune regulation to combat/inhibit CRC in preclinical models. However, where the evidence is more limited, it is critical to transfer preclinical research into clinical data.
Collapse
Affiliation(s)
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Rezaei
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Wang T, Wang P, Yin L, Wang X, Shan Y, Yi Y, Zhou Y, Liu B, Wang X, Lü X. Dietary Lactiplantibacillus plantarum KX041 attenuates colitis-associated tumorigenesis and modulates gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
27
|
Su S, Bu Q, Bai X, Huang Y, Wang F, Hong J, Fang JY, Wu S, Sheng C. Discovery of potent natural product higenamine derivatives as novel Anti-Fusobacterium nucleatum agents. Bioorg Chem 2023; 138:106586. [PMID: 37178651 DOI: 10.1016/j.bioorg.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is closely associated with the occurrence and development of colorectal cancer (CRC). Discovery of specific antibacterial agents against F. nucleatum was urgent for the prevention and treatment of CRC. We screened a natural product library and successfully identified higenamine as an antibacterial hit against F. nucleatum. Further hit optimizations led to the discovery of new higenamine derivatives with improved anti-F. nucleatum activity. Among them, compound 7c showed potent antibacterial activity against F. nucleatum (MIC50 = 0.005 μM) with good selectivity toward intestinal bacteria and normal cells. It significantly inhibited the migration of CRC cells induced by F. nucleatum. Mechanism study revealed that compound 7c impaired the integrity of biofilm and cell wall, which represents a good starting point for the development of novel anti-F. nucleatum agents.
Collapse
Affiliation(s)
- Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, Zheijang 325035, China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Qingwei Bu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, Zheijang 325035, China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Xuexin Bai
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Yahui Huang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Fangfang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, Zheijang 325035, China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
28
|
Khan I. Drugs and gut microbiome interactions-an emerging field of tailored medicine. BMC Pharmacol Toxicol 2023; 24:43. [PMID: 37649091 PMCID: PMC10469409 DOI: 10.1186/s40360-023-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Gut dwelling microbes provide profound biochemical advantages to the host, including nutrient and drug absorption, metabolism, and excretion. It is an emerging understanding that drug-response bias (particularly for orally intake medicine) is related to variation in the microbial composition in the gut. This Editorial at BMC Pharmacology and Toxicology introduces our collection which is discussing the role of gut microbes in modulating drugs' efficacy and bioavailability.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan city, 23200, Pakistan.
| |
Collapse
|
29
|
Bonomo C, Bonacci PG, Bivona DA, Mirabile A, Bongiorno D, Nicitra E, Marino A, Bonaccorso C, Consiglio G, Fortuna CG, Stefani S, Musso N. Evaluation of the Effects of Heteroaryl Ethylene Molecules in Combination with Antibiotics: A Preliminary Study on Control Strains. Antibiotics (Basel) 2023; 12:1308. [PMID: 37627728 PMCID: PMC10451629 DOI: 10.3390/antibiotics12081308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The discovery of compounds with antibacterial activity is crucial in the ongoing battle against antibiotic resistance. We developed two QSAR models to design six novel heteroaryl drug candidates and assessed their antibacterial properties against nine ATCC strains, including Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and also Salmonella enterica and Escherichia coli, many of which belong to the ESKAPE group. We combined PB4, a previously tested compound from published studies, with GC-VI-70, a newly discovered compound, with the best cytotoxicity/MIC profile. By testing sub-MIC concentrations of PB4 with five antibiotics (linezolid, gentamycin, ampicillin, erythromycin, rifampin, and imipenem), we evaluated the combination's efficacy against the ATCC strains. To assess the compounds' cytotoxicity, we conducted a 24 h and 48 h 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on colorectal adenocarcinoma (CaCo-2) cells. We tested the antibiotics alone and in combination with PB4. Encouragingly, PB4 reduced the MIC values for GC-VI-70 and for the various clinically used antibiotics. However, it is essential to note that all the compounds studied in this research exhibited cytotoxic activity against cells. These findings highlight the potential of using these compounds in combination with antibiotics to enhance their effectiveness at lower concentrations while minimizing cytotoxic effects.
Collapse
Affiliation(s)
- Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| | - Paolo Giuseppe Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| | - Dalida Angela Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| | - Alessia Mirabile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| | - Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, Università degli Studi di Catania, Via Palermo, 95122 Catania, Italy;
| | - Carmela Bonaccorso
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (C.G.F.)
| | - Giuseppe Consiglio
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (C.G.F.)
| | - Cosimo Gianluca Fortuna
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (C.G.F.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Università degli Studi di Catania, Via S. Sofia, 89, 95123 Catania, Italy; (C.B.); (P.G.B.); (D.A.B.); (A.M.); (E.N.); (S.S.); (N.M.)
| |
Collapse
|
30
|
Dos Santos Lima A, Novaes RD, Pinheiro LC, de Almeida LA, Martino HSD, Giusti-Paiva A, Pap N, Granato D, Azevedo L. From waste to the gut: Can blackcurrant press cake be a new functional ingredient? Insights on in vivo microbiota modulation, oxidative stress, and inflammation. Food Res Int 2023; 170:112917. [PMID: 37316039 DOI: 10.1016/j.foodres.2023.112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
Blackcurrant press cake (BPC) is a source of anthocyanins, and this study evaluated the bioactivity and gut microbiota modulation of blackcurrant diets with or without 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in rats. In colon cancer-induced rats (CRC), BPC at the highest dosages increased pro-inflammatory parameters and the expression of anti-apoptotic cytokines, accentuating colon cancer initiation by aberrant crypts and morphological changes. Fecal microbiome analysis showed that BPC altered the composition and function of the gut microbiome. This evidence suggests that high doses of BPC act as a pro-oxidant, accentuating the inflammatory environment and CRC progression.
Collapse
Affiliation(s)
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Lucas Cezar Pinheiro
- Department of Pharmacology, Federal University Santa Catarina, Santa Catarina, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Nora Pap
- Biorefinery and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Yangyanqiu W, Jian C, Yuqing Y, Zhanbo Q, Shuwen H. Gut microbes involvement in gastrointestinal cancers through redox regulation. Gut Pathog 2023; 15:35. [PMID: 37443096 DOI: 10.1186/s13099-023-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common and lethal cancers worldwide. GI microbes play an important role in the occurrence and development of GI cancers. The common mechanisms by which GI microbes may lead to the occurrence and development of cancer include the instability of the microbial internal environment, secretion of cancer-related metabolites, and destabilization of the GI mucosal barrier. In recent years, many studies have found that the relationship between GI microbes and the development of cancer is closely associated with the GI redox level. Redox instability associated with GI microbes may induce oxidative stress, DNA damage, cumulative gene mutation, protein dysfunction and abnormal lipid metabolism in GI cells. Redox-related metabolites of GI microbes, such as short-chain fatty acids, hydrogen sulfide and nitric oxide, which are involved in cancer, may also influence GI redox levels. This paper reviews the redox reactions of GI cells regulated by microorganisms and their metabolites, as well as redox reactions in the cancer-related GI microbes themselves. This study provides a new perspective for the prevention and treatment of GI cancers.
Collapse
Affiliation(s)
- Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Graduate School of Medical College, Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Yang Yuqing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China.
| |
Collapse
|
32
|
Clavenna MG, La Vecchia M, Sculco M, Joseph S, Barberis E, Amede E, Mellai M, Brossa S, Borgonovi G, Occhipinti P, Boldorini R, Robotti E, Azzimonti B, Bona E, Pasolli E, Ferrante D, Manfredi M, Aspesi A, Dianzani I. Distinct Signatures of Tumor-Associated Microbiota and Metabolome in Low-Grade vs. High-Grade Dysplastic Colon Polyps: Inference of Their Role in Tumor Initiation and Progression. Cancers (Basel) 2023; 15:3065. [PMID: 37370676 DOI: 10.3390/cancers15123065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
According to the driver-passenger model for colorectal cancer (CRC), the tumor-associated microbiota is a dynamic ecosystem of bacterial species where bacteria with carcinogenic features linked to CRC initiation are defined as "drivers", while opportunistic bacteria colonizing more advanced tumor stages are known as "passengers". We reasoned that also gut microbiota-associated metabolites may be differentially enriched according to tumor stage, and be potential determinants of CRC development. Thus, we characterized the mucosa- and lumen-associated microbiota (MAM and LAM, respectively) and mucosa-associated metabolites in low- vs. high-grade dysplastic colon polyps from 78 patients. We show that MAM, obtained with a new biopsy-preserving approach, and LAM differ in composition and α/β-diversity. By stratifying patients for polyp histology, we found that bacteria proposed as passengers by previous studies colonized high-grade dysplastic adenomas, whereas driver taxa were enriched in low-grade polyps. Furthermore, we report altered "mucosa-associated metabolite" levels in low- vs. high-grade groups. Integrated microbiota-metabolome analysis suggests the involvement of the gut microbiota in the production and consumption of these metabolites. Altogether, our findings support the involvement of bacterial species and associated metabolites in CRC mucosal homeostasis in a tumor-stage-specific manner. These distinct signatures may be used to distinguish low-grade from high-grade dysplastic polyps.
Collapse
Affiliation(s)
| | - Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Soni Joseph
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elettra Barberis
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Elia Amede
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marta Mellai
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Silvia Brossa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Giulia Borgonovi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pietro Occhipinti
- Department of Gastroenterology, "Maggiore della Carità" Hospital, 28100 Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy
| | - Barbara Azzimonti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Elisa Bona
- Department for Sustainable Development and Ecological Transition, Università del Piemonte Orientale, 13100 Vercelli, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Daniela Ferrante
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
33
|
Jiang XR, Dai YY, Wang YR, Guo K, Du Y, Gao JF, Lin LH, Li P, Li H, Ji X, Qu YF. Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel, 1836). Animals (Basel) 2023; 13:ani13081365. [PMID: 37106928 PMCID: PMC10134999 DOI: 10.3390/ani13081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine the dietary and sexual correlates of the gut microbiota. We used 16S rRNA gene sequencing technology to determine the composition of the gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota, and Firmicutes. Gut microbial community richness and diversity were higher in mealworm-fed geckos than in wild geckos. Neither community evenness nor beta diversity of gut microbiota differed among wild, mealworm-fed, and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex dependent. Based on the relative abundance of gut bacteria and their gene functions, we concluded that gut microbiota contributed more significantly to the host's metabolic and immune functions. A higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin content in insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus but also shows that gut microbiota correlates with dietary habits and sex in the species.
Collapse
Affiliation(s)
- Xin-Ru Jiang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying-Yu Dai
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Rong Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kun Guo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jian-Fang Gao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Long-Hui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
34
|
Singh S, Sharma P, Sarma DK, Kumawat M, Tiwari R, Verma V, Nagpal R, Kumar M. Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers (Basel) 2023; 15:1913. [PMID: 36980799 PMCID: PMC10047102 DOI: 10.3390/cancers15061913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The complexity and variety of gut microbiomes within and among individuals have been extensively studied in recent years in connection to human health and diseases. Our growing understanding of the bidirectional communication between metabolic diseases and the gut microbiome has also highlighted the significance of gut microbiome dysbiosis in the genesis and development of obesity-related cancers. Therefore, it is crucial to comprehend the possible role of the gut microbiota in the crosstalk between obesity and colorectal cancer (CRC). Through the induction of gut microbial dysbiosis, gut epithelial barrier impairment, metabolomic dysregulation, chronic inflammation, or dysregulation in energy harvesting, obesity may promote the development of colorectal tumors. It is well known that strategies for cancer prevention and treatment are most effective when combined with a healthy diet, physical activity, and active lifestyle choices. Recent studies also suggest that an improved understanding of the complex linkages between the gut microbiome and various cancers as well as metabolic diseases can potentially improve cancer treatments and overall outcomes. In this context, we herein review and summarize the clinical and experimental evidence supporting the functional role of the gut microbiome in the pathogenesis and progression of CRC concerning obesity and its metabolic correlates, which may pave the way for the development of novel prognostic tools for CRC prevention. Therapeutic approaches for restoring the microbiome homeostasis in conjunction with cancer treatments are also discussed herein.
Collapse
Affiliation(s)
- Samradhi Singh
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Poonam Sharma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Manoj Kumawat
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
| | - Manoj Kumar
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
35
|
Tajasuwan L, Kettawan A, Rungruang T, Wunjuntuk K, Prombutara P. Role of Dietary Defatted Rice Bran in the Modulation of Gut Microbiota in AOM/DSS-Induced Colitis-Associated Colorectal Cancer Rat Model. Nutrients 2023; 15:nu15061528. [PMID: 36986258 PMCID: PMC10052090 DOI: 10.3390/nu15061528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Defatted rice bran (DRB) is a by-product of rice bran derived after the oil extraction. DRB contains several bioactive compounds, including dietary fiber and phytochemicals. The supplementation with DRB manifests chemopreventive effects in terms of anti-chronic inflammation, anti-cell proliferation, and anti-tumorigenesis in the azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colitis-associated colorectal cancer (CRC) model in rats. However, little is known about its effect on gut microbiota. Herein, we investigated the effect of DRB on gut microbiota and short chain fatty acid (SCFA) production, colonic goblet cell loss, and mucus layer thickness in the AOM/DSS-induced colitis-associated CRC rat model. The results suggested that DRB enhanced the production of beneficial bacteria (Alloprevotella, Prevotellaceae UCG-001, Ruminococcus, Roseburia, Butyricicoccus) and lessened the production of harmful bacteria (Turicibacter, Clostridium sensu stricto 1, Escherichia-Shigella, Citrobacter) present in colonic feces, mucosa, and tumors. In addition, DRB also assisted the cecal SCFAs (acetate, propionate, butyrate) production. Furthermore, DRB restored goblet cell loss and improved the thickness of the mucus layer in colonic tissue. These findings suggested that DRB could be used as a prebiotic supplement to modulate gut microbiota dysbiosis, which decreases the risks of CRC, therefore encouraging further research on the utilization of DRB in various nutritional health products to promote the health-beneficial bacteria in the colon.
Collapse
Affiliation(s)
- Laleewan Tajasuwan
- Graduate Student in Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Aikkarach Kettawan
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kansuda Wunjuntuk
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
37
|
Ağagündüz D, Cocozza E, Cemali Ö, Bayazıt AD, Nanì MF, Cerqua I, Morgillo F, Saygılı SK, Berni Canani R, Amero P, Capasso R. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front Pharmacol 2023; 14:1130562. [PMID: 36762108 PMCID: PMC9903080 DOI: 10.3389/fphar.2023.1130562] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Gastrointestinal cancer represents one of the most diagnosed types of cancer. Cancer is a genetic and multifactorial disease, influenced by the host and environmental factors. It has been stated that 20% of cancer is caused by microorganisms such as Helicobacter pylori, hepatitis B and C virus, and human papillomavirus. In addition to these well-known microorganisms associated with cancer, it has been shown differences in the composition of the microbiota between healthy individuals and cancer patients. Some studies have suggested the existence of the selected microorganisms and their metabolites that can promote or inhibit tumorigenesis via some mechanisms. Recent findings have shown that gut microbiome and their metabolites can act as cancer promotors or inhibitors. It has been shown that gastrointestinal cancer can be caused by a dysregulation of the expression of non-coding RNA (ncRNA) through the gut microbiome. This review will summarize the latest reports regarding the relationship among gut microbiome, ncRNAs, and gastrointestinal cancer. The potential applications of diagnosing and cancer treatments will be discussed.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | - Ayşe Derya Bayazıt
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Ida Cerqua
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Suna Karadeniz Saygılı
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Histology and Embryology, Kütahya Health Sciences University, Kütahya, Turkey
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: Raffaele Capasso, ; Paola Amero,
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy,*Correspondence: Raffaele Capasso, ; Paola Amero,
| |
Collapse
|
38
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
39
|
Pellegrino GM, Browne TS, Sharath K, Bari KA, Vancuren S, Allen-Vercoe E, Gloor GB, Edgell DR. Metabolically-targeted dCas9 expression in bacteria. Nucleic Acids Res 2023; 51:982-996. [PMID: 36629257 PMCID: PMC9881133 DOI: 10.1093/nar/gkac1248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
The ability to restrict gene expression to a relevant bacterial species in a complex microbiome is an unsolved problem. In the context of the human microbiome, one desirable target metabolic activity are glucuronide-utilization enzymes (GUS) that are implicated in the toxic re-activation of glucuronidated compounds in the human gastrointestinal (GI) tract, including the chemotherapeutic drug irinotecan. Here, we take advantage of the variable distribution of GUS enzymes in bacteria as a means to distinguish between bacteria with GUS activity, and re-purpose the glucuronide-responsive GusR transcription factor as a biosensor to regulate dCas9 expression in response to glucuronide inducers. We fused the Escherichia coli gusA regulatory region to the dCas9 gene to create pGreg-dCas9, and showed that dCas9 expression is induced by glucuronides, but not other carbon sources. When conjugated from E. coli to Gammaproteobacteria derived from human stool, dCas9 expression from pGreg-dCas9 was restricted to GUS-positive bacteria. dCas9-sgRNAs targeted to gusA specifically down-regulated gus operon transcription in Gammaproteobacteria, with a resulting ∼100-fold decrease in GusA activity. Our data outline a general strategy to re-purpose bacterial transcription factors responsive to exogenous metabolites for precise ligand-dependent expression of genetic tools such as dCas9 in diverse bacterial species.
Collapse
Affiliation(s)
- Gregory M Pellegrino
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Tyler S Browne
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Keerthana Sharath
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Khaleda A Bari
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Gregory B Gloor
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- To whom correspondence should be addressed. Tel: +1 519 661 3133; Fax: +1 519 661 3175;
| |
Collapse
|
40
|
Zhang Y, Zhang J, Xia Y, Sun J. Bacterial translocation and barrier dysfunction enhance colonic tumorigenesis. Neoplasia 2023; 35:100847. [PMID: 36334333 PMCID: PMC9640348 DOI: 10.1016/j.neo.2022.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
In the development of colon cancer, the intestinal dysbiosis and disruption of barrier function are common manifestations. In the current study, we hypothesized that host factors, e.g., vitamin D receptor deficiency or adenomatous polyposis coli (APC) mutation, contribute to the enhanced dysbiosis and disrupted barrier in the pathogenesis of colorectal cancer (CRC). Using the human CRC database, we found enhanced tumor-invading bacteria and reduced colonic VDR expression, which was correlated with a reduction of Claudin-10 mRNA and protein. In the colon of VDRΔIEC mice, deletion of intestinal epithelial VDR led to lower protein of tight junction protein Claudin-10. Lacking VDR and a reduction of Claudin-10 are associated with an increased number of tumors in the mice without myeloid VDR. Intestinal permeability was significantly increased in the mice with myeloid VDR conditional deletion. Further, mice with conditional colonic APC mutation showed reduced mucus layer, enhanced bacteria in tumors, and loss of Claudin-10. Our data from human samples and colon cancer models provided solid evidence- on the host factor regulation of bacterial translocation and dysfunction on barriers in colonic tumorigenesis. Studies on the host factor regulation of microbiome and barriers could be potentially applied to risk assessment, early detection, and prevention of colon cancer.
Collapse
Affiliation(s)
- Yongguo Zhang
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jilei Zhang
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA; UIC Cancer Center, University of Illinois Chicago, Chicago, IL, USA; Department of Microbiology/Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center Chicago, IL (537), USA.
| |
Collapse
|
41
|
Promotion of Deoxycholic Acid Effect on Colonic Cancer Cell Lines In Vitro by Altering the Mucosal Microbiota. Microorganisms 2022; 10:microorganisms10122486. [PMID: 36557741 PMCID: PMC9788287 DOI: 10.3390/microorganisms10122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent neoplasm and the second leading cause of cancer death worldwide. Microbiota and their products, such as bile acids (BAs), are important causal factors for the occurrence and development of CRC. Therefore, we performed 16S ribosomal RNA (16S rRNA) and liquid chromatography/mass spectrometry (LC-MS) to measure mucosal microbiota and BA composition in paired cancerous and noncancerous gut tissue samples from 33 patients with CRC at a hospital in Beijing. In cancerous tissues, we detected altered mucosal microbiota with increased levels of the genera Bacteroides, Curtobacterium, and Campylobacter and an increase in deoxycholic acid (DCA), which was the only BA elevated in cancerous tissues. Ex vivo coculture showed that the mucosal microbiota in cancerous tissues indeed had a stronger DCA production ability, indicating that DCA-producing bacteria are enriched in tumors. Results from the CCK8 and Transwell assays indicated that DCA enhances the overgrowth, migration, and invasion of CRC cell lines, and, through qPCR and Western blot analyses, downregulation of FXR was observed in CRC cell lines after DCA culture. We then verified the downregulation of FXR expression in cancerous tissues using our data and the TCGA database, and we found that FXR downregulation plays an important role in the development of CRC. In conclusion, differing mucosal microbiota, increased amounts of mucosal DCA, and lower FXR expression were demonstrated in cancerous tissues compared to normal tissue samples. The results of this study can be applied to the development of potential therapeutic targets for CRC prevention, such as altering mucosal microbiota, DCA, or FXR.
Collapse
|
42
|
Qin R, Tian G, Liu J, Cao L. The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Front Cell Infect Microbiol 2022; 12:1069557. [PMID: 36506023 PMCID: PMC9729346 DOI: 10.3389/fcimb.2022.1069557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis is a common gynecological disease, that often leads to pain and infertility. At present, the specific pathogenesis of endometriosis has not been clarified, but it may be closely related to an imbalance of sex hormones in the body, ectopic hyperplasia stimulated by immune inflammation, and invasion and escape based on tumor characteristics. Gut microbiota is associated with many inflammatory diseases. With the further study of the gut microbiota, people are paying increasing attention to its relationship with endometriosis. Studies have shown that there is an association between the gut microbiota and endometriosis. The specific ways and mechanisms by which the gut microbiota participates in endometriosis may involve estrogen, immune inflammation, and tumor characteristics, among others. Therefore, in the future, regulating gut microbiota disorders in various ways can help in the treatment of endometriosis patients. This study reviewed the research on the gut microbiota and endometriosis in order to provide ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Lu Cao,
| |
Collapse
|
43
|
Gut Microbiota Host-Gene Interaction. Int J Mol Sci 2022; 23:ijms232213717. [PMID: 36430197 PMCID: PMC9698405 DOI: 10.3390/ijms232213717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Studies carried out in the last ten years have shown that the metabolites made up from the gut microbiota are essential for multiple functions, such as the correct development of the immune system of newborns, interception of pathogens, and nutritional enrichment of the diet. Therefore, it is not surprising that alteration of the gut microbiota is the starting point of gastrointestinal infection, obesity, type 2 diabetes, inflammatory bowel disease, colorectal cancer, and lung cancer. Diet changes and antibiotics are the major factors damaging the gut microbiota. Early exposure of the newborns to antibiotics may prevent their correct development of the immune system, exposing them to pathogen infections, allergies, and chronic inflammatory diseases. We already know much on how host genes, microbiota, and the environment interact, owing to experiments in several model animals, especially in mice; advances in molecular technology; microbiota transplantation; and comparative metagenomic analysis. However, much more remains to be known. Longitudinal studies on patients undergoing to therapy, along with the identification of bacteria prevalent in responding patients may provide valuable data for improving therapies.
Collapse
|
44
|
Huang Q, Wei X, Li W, Ma Y, Chen G, Zhao L, Jiang Y, Xie S, Chen Q, Chen T. Endogenous Propionibacterium acnes Promotes Ovarian Cancer Progression via Regulating Hedgehog Signalling Pathway. Cancers (Basel) 2022; 14:5178. [PMID: 36358596 PMCID: PMC9658903 DOI: 10.3390/cancers14215178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The oncogenesis and progression of epithelial ovarian cancer (EOC) is a complicated process involving several key molecules and factors, yet whether microbiota are present in EOC, and their role in the development of EOC, remains greatly unknown. METHODS In this study, 20 patients were enrolled to compare the similarities and differences of intratumour microbiota among patients with epithelial benign ovarian tumours (EBOTs) and patients with EOC based on the high-throughput sequencing method. Subsequently, we further isolated the specific EOC-related bacteria and defined Propionibacterium acnes as a key strain in facilitating EOC progression. More importantly, we constructed a mouse EOC model to evaluate the effect of the P. acnes strain on EOC using immunohistochemistry, Western blotting, and RT-qPCR. RESULTS The high-throughput sequencing showed that the intratumour microbiota in EOC tissues had a higher microbial diversity and richness compared to EBOT tissues. The abundance of previously considered pathogens, Actinomycetales, Acinetobacter, Streptococcus, Ochrobacterium, and Pseudomonadaceae Pseudomonas, was increased in the EOC tissues. Meanwhile, we discovered the facilitating role of the P. acnes strain in the progression of EOC, which may be partially associated with the increased inflammatory response to activate the hedgehog (Hh) signalling pathway. This microbial-induced EOC progression mechanism is further confirmed using the inhibitor GANT61. CONCLUSIONS This study profiled the intratumour microbiota of EBOT and EOC tissues and demonstrated that the diversity and composition of the intratumour microbiota were significantly different. Furthermore, through in vivo and in vitro experiments, we confirmed the molecular mechanism of intratumour microbiota promotion of EOC progression in mice, which induces inflammation to activate the Hh signalling pathway. This could provide us clues for improving EOC treatment.
Collapse
Affiliation(s)
- Qifa Huang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xin Wei
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yanbing Ma
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Guanxiang Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lu Zhao
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Jiang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Siqi Xie
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qi Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
45
|
Walencik PK. The redox-active Cu-FomA complex: the mode that provides coordination of Cu II/Cu I ions during the reduction/oxidation cycle. Dalton Trans 2022; 51:15515-15529. [PMID: 36165635 DOI: 10.1039/d2dt02398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed form of cancer worldwide. Recent studies have indicated a strong correlation between microbial imbalance and the development of CRC. An abundance of Fusobacterium nucleatum, an anaerobic Gram-negative bacterium, has been considered a biomarker of CRC progression. Several investigations have also proposed that binding copper ions to various bacterial proteins enhances the CuII + e- ⇄ CuI redox cycle, which consequently promotes uncontrolled production of reactive oxygen species (ROS) and propels colorectal carcinogenesis. In this work, a multidisciplinary approach was applied to study the molecular relation of copper with the peptide models of FomA, a protein expressed by Fusobacterium nucleatum. The main goal was to investigate all the factors that tune the CuII + e- ⇄ CuI equilibrium. A linear peptide Fom1 (Ac-KGHGNGEEGTPTVHNE-NH2) and cyclic peptide Fom2 (cyclo-(KGHGNGEEGTPTVHNE)) were used as ligands. The coordination of CuI was deduced from the NMR data. The conditional dissociation constants KcondD defined the stability of CuI complexes. The electrochemical activity of CuII and CuI compounds was analysed using cyclic voltammetry. A quasi-reversible redox conversion CuII-peptide + e- ⇄ CuI-peptide was revealed for all studied systems. In the presence of ascorbic acid (HAsc), CuII complexes were immediately reduced to CuI species; however, their re-oxidation was kinetically sluggish. The HAsc-induced redox cycle provoked the metal-catalyzed oxidation (MCO) effect. That in the end prevented coordination of the re-appearing CuII ion to its initial binding site. The toxicity of the FomA-CuII/CuI complexes and their role in CRC progression were briefly discussed.
Collapse
Affiliation(s)
- Paulina K Walencik
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
46
|
Xia W, Liu B, Tang S, Yasir M, Khan I. The science behind TCM and Gut microbiota interaction-their combinatorial approach holds promising therapeutic applications. Front Cell Infect Microbiol 2022; 12:875513. [PMID: 36176581 PMCID: PMC9513201 DOI: 10.3389/fcimb.2022.875513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The trend toward herbal medicine as an alternative treatment for disease medication is increasing worldwide. However, insufficient pharmacologic information is available about the orally taken medicines. Not only herbal medicine, but also Western drugs, when passing through the gastrointestinal tract, interact with trillions of microbes (known as the gut microbiome [GM]) and their enzymes. Gut microbiome enzymes induce massive structural and functional changes to the herbal products and impact the bioavailability and efficacy of the herbal therapeutics. Therefore, traditional Chinese medicine (TCM) researchers extend the horizon of TCM research to the GM to better understand TCM pharmacology and enhance its efficacy and bioavailability. The study investigating the interaction between herbal medicine and gut microbes utilizes the holistic approach, making landmark achievements in the field of disease prognosis and treatment. The effectiveness of TCM is a multipathway modulation, and so is the GM. This review provides an insight into the understanding of a holistic view of TCM and GM interaction. Furthermore, this review briefly describes the mechanism of how the TCM-GM interaction deals with various illnesses.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bei Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- National Drug Clinical Trial Agency, Teaching Hospital of Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
47
|
Liu Y, Lau HCH, Cheng WY, Yu J. Gut Microbiome in Colorectal Cancer: Clinical Diagnosis and Treatment. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00086-9. [PMID: 35914737 PMCID: PMC10372906 DOI: 10.1016/j.gpb.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers and the leading cause of cancer-associated deaths. Epidemiological studies have shown that both genetic and environmental risk factors contribute to the development of CRC. Several metagenomic studies of CRC have identified gut dysbiosis as a fundamental risk factor in the evolution of colorectal malignancy. Although enormous efforts and substantial progresses have been made in understanding the relationship between the human gut microbiome and CRC, the precise mechanisms involved remain elusive. Recent data have shown a direct causative role of the gut microbiome in DNA damage, inflammation, and drug resistance in CRC, suggesting that modulation of the gut microbiome can act as a powerful tool in CRC prevention and therapy. Here, we provide an overview of the relationship between the gut microbiome and CRC, and explore relevant mechanisms of colorectal tumorigenesis. We next highlight the potential of bacterial species as clinical biomarkers, as well as their roles in therapeutic response. Factors limiting the clinical translation of the gut microbiome and strategies for resolving the current challenges are further discussed.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Wing Yin Cheng
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China.
| |
Collapse
|
48
|
The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response to Systemic Therapy against Cancer. Cancers (Basel) 2022; 14:cancers14153563. [PMID: 35892821 PMCID: PMC9330582 DOI: 10.3390/cancers14153563] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota can have opposing functions from pro-tumorigenic to anti-tumorigenic effects. Increasing preclinical and clinical evidence suggests that the intestinal microbiota affects cancer patients’ response to immune checkpoint inhibitors (ICIs) immunotherapy, such as anti-programmed cell death protein 1 (PD-1) and its ligand (PD-L1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Microbiota-induced inflammation possibly contributes to tumor growth and cancer development. Microbiota-derived metabolites can also be converted to carcinogenic agents related to genetic mutations and DNA damage in organs such as the colon. However, other attributes of microbiota, such as greater diversity and specific bacterial species and their metabolites, are linked to better clinical outcomes and potentially improved anti-tumor immunity. In addition, the intratumoral microbial composition strongly affects T-cell-mediated cytotoxicity and anti-tumor immune surveillance, adding more complexity to the cancer-microbiome-immune axis. Despite the emerging clinical evidence for the activity of the gut microbiota in immuno-oncology, the fundamental mechanisms of such activity are not well understood. This review provides an overview of underlying mechanisms by which the gut microbiota and its metabolites enhance or suppress anti-tumor immune responses. Understanding such mechanisms allows for better design of microbiome-specific treatment strategies to improve the clinical outcome in cancer patients undergoing systemic therapy.
Collapse
|
49
|
Evaluation of Enterococcus faecalis, Lactobacillus acidophilus, and Lactobacillus plantarum in Biopsy Samples of Colorectal Cancer and Polyp Patients Compared to Healthy People. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Colorectal cancer (CRC) is one of the leading causes of death in both men and women worldwide. According to different studies, infectious agents or microbiota dysbiosis can play a role in CRC progression. Objective: This study aimed to evaluate the prevalence of Enterococcus faecalis, Lactobacillus acidophilus, and Lactobacillus plantarum in people with polyps or CRC compared to healthy individuals. Methods: In this study, 60 biopsy samples were collected from three groups, including patients with CRC, polyps, and healthy people. The genomic DNA was extracted from the collected samples and amplified by polymerase chain reaction (PCR) to detect E. faecalis, L. acidophilus, and L. plantarum. In the next step, quantitative Real-Time PCR was used to evaluate the copy number of the bacteria in the studied groups. Results: There was no statistically significant difference between the studied groups regarding age and gender (P > 0.05). The mean number of E. faecalis was higher in patients with CRC than in patients with polyps and healthy individuals (P < 0.05). Also, the mean numbers of L. acidophilus and L. plantarum were higher in healthy individuals than in patients with polyps and CRC (P < 0.05). Conclusions: Our findings indicate that L. acidophilus and L. plantarum in people with a family history of CRC and patients with polyps may effectively prevent or reduce CRC progression.
Collapse
|
50
|
Wang T, Zheng J, Dong S, Ismael M, Shan Y, Wang X, Lü X. Lacticaseibacillus rhamnosus LS8 Ameliorates Azoxymethane/Dextran Sulfate Sodium-Induced Colitis-Associated Tumorigenesis in Mice via Regulating Gut Microbiota and Inhibiting Inflammation. Probiotics Antimicrob Proteins 2022; 14:947-959. [PMID: 35788907 DOI: 10.1007/s12602-022-09967-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Gut microbiota dysbiosis may promote the process of colorectal cancer (CRC). Lacticaseibacillus rhamnosus LS8 (LRL) is a potential gut microbiota regulating strain because it can produce a novel antimicrobial substance (like cycloalanopine). In addition, this probiotic had an inflammation-ameliorating effect on the dextran sulfate sodium (DSS)-induced colitis mice. However, it is not known whether treatment with this probiotic could ameliorate colitis-associated CRC via regulating gut microbiota. In this study, a CRC mouse model was induced by a single intraperitoneal injection of azoxymethane (AOM, 10 mg/kg) and followed by three 7-day cycles of 2% DSS administration. Results showed that LRL could inhibit tumor formation. Moreover, LRL enhanced the gut barrier by preventing goblet cell loss and promoting the expression of ZO-1, occludin, and claudin-1. Furthermore, LRL ameliorated gut microbiota dysbiosis, which was conducive to the growth of beneficial bacteria (e.g., Faecalibaculum and Akkermansia), and further led to an increase in SCFAs and a decrease in LPS. In addition, LRL alleviated colonic inflammation by inhibiting the overexpression of TLR4/NF-κB, pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-γ, and IL-17a), and chemokines (Cxcl1, Cxcl2, Cxcl3, Cxcl5, and Cxcl7). In conclusion, LRL could alleviate CRC by regulating gut microbiota and preventing gut barrier damage and inflammation.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiaqi Zheng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shuchen Dong
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Mohamedelfaieh Ismael
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|