1
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Żukowska J, Moss SJ, Subramanian V, Acharya KR. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease. FEBS J 2024; 291:2999-3029. [PMID: 37622248 DOI: 10.1111/febs.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The accumulation of the small 42-residue long peptide amyloid-β (Aβ) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aβ peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aβ clearance are present in individuals living with AD. This accumulation of Aβ can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aβ-degrading enzymes (ADEs) are major players in the clearance of Aβ. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aβ peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aβ which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.
Collapse
|
3
|
Zhang J, Ma Z, Yang Y, Guo L, Du L. Modeling genotype-protein interaction and correlation for Alzheimer's disease: a multi-omics imaging genetics study. Brief Bioinform 2024; 25:bbae038. [PMID: 38348747 PMCID: PMC10939371 DOI: 10.1093/bib/bbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
Integrating and analyzing multiple omics data sets, including genomics, proteomics and radiomics, can significantly advance researchers' comprehensive understanding of Alzheimer's disease (AD). However, current methodologies primarily focus on the main effects of genetic variation and protein, overlooking non-additive effects such as genotype-protein interaction (GPI) and correlation patterns in brain imaging genetics studies. Importantly, these non-additive effects could contribute to intermediate imaging phenotypes, finally leading to disease occurrence. In general, the interaction between genetic variations and proteins, and their correlations are two distinct biological effects, and thus disentangling the two effects for heritable imaging phenotypes is of great interest and need. Unfortunately, this issue has been largely unexploited. In this paper, to fill this gap, we propose $\textbf{M}$ulti-$\textbf{T}$ask $\textbf{G}$enotype-$\textbf{P}$rotein $\textbf{I}$nteraction and $\textbf{C}$orrelation disentangling method ($\textbf{MT-GPIC}$) to identify GPI and extract correlation patterns between them. To ensure stability and interpretability, we use novel and off-the-shelf penalties to identify meaningful genetic risk factors, as well as exploit the interconnectedness of different brain regions. Additionally, since computing GPI poses a high computational burden, we develop a fast optimization strategy for solving MT-GPIC, which is guaranteed to converge. Experimental results on the Alzheimer's Disease Neuroimaging Initiative data set show that MT-GPIC achieves higher correlation coefficients and classification accuracy than state-of-the-art methods. Moreover, our approach could effectively identify interpretable phenotype-related GPI and correlation patterns in high-dimensional omics data sets. These findings not only enhance the diagnostic accuracy but also contribute valuable insights into the underlying pathogenic mechanisms of AD.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Zikang Ma
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Yan Yang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Lei Guo
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Lei Du
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | | |
Collapse
|
4
|
Abuelezz SA, Hendawy N. Spotlight on Coenzyme Q10 in scopolamine-induced Alzheimer's disease: oxidative stress/PI3K/AKT/GSK 3ß/CREB/BDNF/TrKB. J Pharm Pharmacol 2023:rgad048. [PMID: 37315215 DOI: 10.1093/jpp/rgad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Excess amyloid beta (Aβ) and oxidative stress (OS) are inextricable hallmarks of the neuronal damage associated Alzheimer's disease. Aβ-induced cognitive and memory dysfunctions are mediated through different signalling pathways as phosphatidylinositol-3-kinase (PI3K) and their downstream intermediates including protein-kinase-B, known as Akt, glycogen-synthase-kinase-3β (GSK-3β), cAMP-response-element-binding-protein (CREB), brain-derived-neurotrophic factor (BDNF) and tropomyosin-related-kinase receptor-B (TrKB). The current work aims to investigate the protective potentials of CoQ10 against scopolamine (Scop)-induced cognitive disability and the contribution of PI3K/Akt/GSK-3β/CREB/BDNF/TrKB in the neuroprotection effects. METHODS The chronic co-administration of CQ10 (50, 100 and 200 mg/kg/day i.p.) with Scop in Wistar rats for 6 weeks were assayed both behaviourally and biochemically. KEY FINDINGS CoQ10 ameliorated the Scop-induced cognitive and memory defects by restoring alterations in novel object recognition and Morris water maze behavioural tests. CoQ10 favourably changed the Scop-induced deleterious effects in hippocampal malondialdehyde, 8-hydroxy-2' deoxyguanosine, antioxidants and PI3K/Akt/GSK-3β/CREB/BDNF/TrKB levels. CONCLUSIONS These results exhibited the neuroprotective effects of CoQ10 on Scop-induced AD and revealed its ability to inhibit oxidative stress, amyloid deposition and to modulate PI3K/Akt/GSK-3β/CREB/BDNF/TrKB pathway.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
- Basic Medical Sciences Department, Faculty of Medicine, Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
5
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
6
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
Gezen-Ak D, Yurttaş Z, Çamoǧlu T, Dursun E. Could Amyloid-β 1-42 or α-Synuclein Interact Directly with Mitochondrial DNA? A Hypothesis. ACS Chem Neurosci 2022; 13:2803-2812. [PMID: 36125124 PMCID: PMC9542719 DOI: 10.1021/acschemneuro.2c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The amyloid β (Aβ) and the α-synuclein (α-syn) are shown to be translocated into mitochondria. Even though their roles are widely investigated in pathological conditions, information on the presence and functions of Aβ and α-syn in mitochondria in endogenous levels is somewhat limited. We hypothesized that endogenous Aβ fragments or α-syn could interact with mitochondrial DNA (mtDNA) directly or influence RNAs or transcription factors in mitochondria and change the mtDNA transcription profile. In this review, we summarized clues of these possible interactions.
Collapse
Affiliation(s)
| | | | | | - Erdinç Dursun
- E.D.: email, ; phone, +90 212 414 30 00/68025, +90 533 339
98 82
| |
Collapse
|
8
|
Wang R, Lahiri DK. Effects of microRNA-298 on APP and BACE1 translation differ according to cell type and 3'-UTR variation. Sci Rep 2022; 12:3074. [PMID: 35197498 PMCID: PMC8866491 DOI: 10.1038/s41598-022-05164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is marked by neurofibrillary tangles and senile plaques composed of amyloid β (Aβ) peptides. However, specific contributions of different cell types to Aβ deposition remain unknown. Non-coding microRNAs (miRNA) play important roles in AD by regulating translation of major associated proteins, such as Aβ precursor protein (APP) and β-site APP-cleaving enzyme (BACE1), two key proteins associated with Aβ biogenesis. MiRNAs typically silence protein expression via binding specific sites in mRNAs' 3'-untranslated regions (3'-UTR). MiRNAs regulate protein levels in a cell-type specific manner; however, mechanisms of the variation of miRNA activity remain unknown. We report that miR-298 treatment reduced native APP and BACE1 protein levels in an astrocytic but not in a neuron-like cell line. From miR-298's effects on APP-3'-UTR activity and native protein levels, we infer that differences in APP 3'-UTR length could explain differential miR-298 activity. Such varied or truncated, but natural, 3'-UTR specific to a given cell type provides an opportunity to regulate native protein levels by particular miRNA. Thus, miRNA's effect tailoring to a specific cell type, bypassing another undesired cell type with a truncated 3'-UTR would potentially advance clinically-relevant translational research.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of Molecular Neurogenetics' Departments of Psychiatry and Medical & Molecular Genetics' Indiana University School of Medicine' Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, 320 West 15th Street, IN, 46202, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics' Departments of Psychiatry and Medical & Molecular Genetics' Indiana University School of Medicine' Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, 320 West 15th Street, IN, 46202, USA.
| |
Collapse
|
9
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
10
|
D’Andrea L, Stringhi R, Di Luca M, Marcello E. Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules 2021; 11:biom11091261. [PMID: 34572474 PMCID: PMC8467578 DOI: 10.3390/biom11091261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.
Collapse
|
11
|
Gezen-Ak D, Alaylıoğlu M, Genç G, Şengül B, Keskin E, Sordu P, Güleç ZEK, Apaydın H, Bayram-Gürel Ç, Ulutin T, Yılmazer S, Ertan S, Dursun E. Altered Transcriptional Profile of Mitochondrial DNA-Encoded OXPHOS Subunits, Mitochondria Quality Control Genes, and Intracellular ATP Levels in Blood Samples of Patients with Parkinson's Disease. J Alzheimers Dis 2021; 74:287-307. [PMID: 32007957 DOI: 10.3233/jad-191164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunctions are significant contributors to neurodegeneration. One result or a cause of mitochondrial dysfunction might be the disruption of mtDNA transcription. Limited data indicated an altered expression of mtDNA encoded transcripts in Alzheimer's disease (AD) or Parkinson's disease (PD). The number of mitochondria is high in cells with a high energy demand, such as muscle or nerve cells. AD or PD involves increased risk of cardiomyopathy, suggesting that mitochondrial dysfunction might be systemic. If it is systemic, we should observe it in different cell types. Given that, we wanted to investigate any disruption in the regulation of mtDNA encoded gene expression in addition to PINK1, PARKIN, and ATP levels in peripheral blood samples of PD cases who are affected by a neurodegenerative disorder that is very well known by its mitochondrial aspects. Our results showed for the first time that: 1) age of onset > 50 PD sporadic (PDS) cases: mtDNA transcription and quality control genes were affected; 2) age of onset <50 PDS cases: only mtDNA transcription was affected; and 3) PD cases with familial background: only quality control genes were affected. mtDNA copy number was not a confounder. Intracellular ATP levels of PD case subgroups were significantly higher than those of healthy subjects. We suggest that a systemic dysregulation of transcription of mtDNA or mitochondrial quality control genes might result in the development of a sporadic form of the disease. Additionally, ATP elevation might be an independent compensatory and response mechanism. Hyperactive cells in AD and PD require further investigation.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gençer Genç
- Department of Neurology, Şişli Etfal Training and Research Hospital, Istanbul, Turkey
| | - Büşra Şengül
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ebru Keskin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pelin Sordu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Ece Kaya Güleç
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hülya Apaydın
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Çiğdem Bayram-Gürel
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Selma Yılmazer
- Department of Medical Biology, Faculty of Medicine, Altınbaş University, Istanbul, Turkey
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul, Turkey
| | - Erdinç Dursun
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
12
|
Sendra M, Pereiro P, Figueras A, Novoa B. An integrative toxicogenomic analysis of plastic additives. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124975. [PMID: 33388451 DOI: 10.1016/j.jhazmat.2020.124975] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In developed countries, contact with plastics is constant. Plastics contain a vast number of additives such as plasticisers, stabilisers, antioxidants, flame retardants, etc., that can impact human health. Most of them have been studied separately; however, an integrative approach to identify genes, biological processes, molecular functions, and diseases linked to exposure to these compounds has not been addressed until now. The genes most commonly affected by plastic additives are related to apoptosis, cell death, proliferation and differentiation, immunity and insulin-related processes, and are mainly associated with cancer, mental disorders, diabetes mellitus type II and obesity. The most commonly affected molecular functions included steroid hormone receptor activity implicated in cancer, mental disorders, immune signalling and gonadotropin-releasing hormones. These processes and functions affected by plastic additives are related to the diseases of the developed world, most of which are linked to the endocrine system, such as cancer, diabetes, infertility and obesity. The strong interconnection among the top 50 genes modulated by plastic additives shows that the pathways affected are strongly interrelated. Therefore, studying the effects of plastic additives through a single-compound approach cannot be sufficient and a holistic approach is more appropriate for evaluating the potential effects of plastics in human health.
Collapse
Affiliation(s)
- Marta Sendra
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
13
|
Soleimani Zakeri NS, Pashazadeh S, MotieGhader H. Gene biomarker discovery at different stages of Alzheimer using gene co-expression network approach. Sci Rep 2020; 10:12210. [PMID: 32699331 PMCID: PMC7376049 DOI: 10.1038/s41598-020-69249-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder. It is the most common type of dementia that has remained as an incurable disease in the world, which destroys the brain cells irreversibly. In this study, a systems biology approach was adopted to discover novel micro-RNA and gene-based biomarkers of the diagnosis of Alzheimer's disease. The gene expression data from three AD stages (Normal, Mild Cognitive Impairment, and Alzheimer) were used to reconstruct co-expression networks. After preprocessing and normalization, Weighted Gene Co-Expression Network Analysis (WGCNA) was used on a total of 329 samples, including 145 samples of Alzheimer stage, 80 samples of Mild Cognitive Impairment (MCI) stage, and 104 samples of the Normal stage. Next, three gene-miRNA bipartite networks were reconstructed by comparing the changes in module groups. Then, the functional enrichment analyses of extracted genes of three bipartite networks and miRNAs were done, respectively. Finally, a detailed analysis of the authentic studies was performed to discuss the obtained biomarkers. The outcomes addressed proposed novel genes, including MBOAT1, ARMC7, RABL2B, HNRNPUL1, LAMTOR1, PLAGL2, CREBRF, LCOR, and MRI1and novel miRNAs comprising miR-615-3p, miR-4722-5p, miR-4768-3p, miR-1827, miR-940 and miR-30b-3p which were related to AD. These biomarkers were proposed to be related to AD for the first time and should be examined in future clinical studies.
Collapse
Affiliation(s)
| | - Saeid Pashazadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Habib MotieGhader
- Department of Computer Engineering, Gowgan Educational Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
14
|
Lithium alters expression of RNAs in a type-specific manner in differentiated human neuroblastoma neuronal cultures, including specific genes involved in Alzheimer's disease. Sci Rep 2019; 9:18261. [PMID: 31797941 PMCID: PMC6892907 DOI: 10.1038/s41598-019-54076-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
Lithium (Li) is a medication long-used to treat bipolar disorder. It is currently under investigation for multiple nervous system disorders, including Alzheimer's disease (AD). While perturbation of RNA levels by Li has been previously reported, its effects on the whole transcriptome has been given little attention. We, therefore, sought to determine comprehensive effects of Li treatment on RNA levels. We cultured and differentiated human neuroblastoma (SK-N-SH) cells to neuronal cells with all-trans retinoic acid (ATRA). We exposed cultures for one week to lithium chloride or distilled water, extracted total RNA, depleted ribosomal RNA and performed whole-transcriptome RT-sequencing. We analyzed results by RNA length and type. We further analyzed expression and protein interaction networks between selected Li-altered protein-coding RNAs and common AD-associated gene products. Lithium changed expression of RNAs in both non-specific (inverse to sequence length) and specific (according to RNA type) fashions. The non-coding small nucleolar RNAs (snoRNAs) were subject to the greatest length-adjusted Li influence. When RNA length effects were taken into account, microRNAs as a group were significantly less likely to have had levels altered by Li treatment. Notably, several Li-influenced protein-coding RNAs were co-expressed or produced proteins that interacted with several common AD-associated genes and proteins. Lithium's modification of RNA levels depends on both RNA length and type. Li activity on snoRNA levels may pertain to bipolar disorders while Li modification of protein coding RNAs may be relevant to AD.
Collapse
|
15
|
Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 2019; 44:2708-2722. [DOI: 10.1007/s11064-019-02889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
16
|
Sikanyika NL, Parkington HC, Smith AI, Kuruppu S. Powering Amyloid Beta Degrading Enzymes: A Possible Therapy for Alzheimer's Disease. Neurochem Res 2019; 44:1289-1296. [PMID: 30806879 DOI: 10.1007/s11064-019-02756-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/23/2022]
Abstract
The accumulation of amyloid beta (Aβ) in the brain is believed to play a central role in the development and progression of Alzheimer's disease. Revisions to the amyloid cascade hypothesis now acknowledge the dynamic equilibrium in which Aβ exists and the importance of enzymes involved in the production and breakdown of Aβ in maintaining healthy Aβ levels. However, while a wealth of pharmacological and immunological therapies are being generated to inhibit the Aβ-producing enzymes, β-site APP cleavage enzyme 1 and γ-secretase, the therapeutic potential of stimulating Aβ-degrading enzymes such as neprilysin, endothelin-converting enzyme-1 and insulin-degrading enzyme remains relatively unexplored. Recent evidence indicates that increasing Aβ degradation as opposed to inhibiting synthesis is a more effective strategy to prevent Aβ build-up. Therefore Aβ degrading enzymes have become valuable targets of therapy. In this review, we discuss the pathway of Aβ synthesis and clearance along with the opportunities they present for therapeutic intervention, the benefits of increasing the expression/activity of Aβ-degrading enzymes, and the untapped therapeutic potential of enzyme activation.
Collapse
Affiliation(s)
- Nkumbu L Sikanyika
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helena C Parkington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - A Ian Smith
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sanjaya Kuruppu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
17
|
Mancini O, Rolinski OJ, Kubiak-Ossowska K, Mulheran PA. Tyrosine Rotamer States in Beta Amyloid: Signatures of Aggregation and Fibrillation. ACS OMEGA 2018; 3:16046-16056. [PMID: 31458243 PMCID: PMC6643746 DOI: 10.1021/acsomega.8b02408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
During the early stages of β amyloid (Ab) peptide aggregation, toxic oligomers form which have been recognized as a likely cause of Alzheimer's disease. In this work, we use fully atomistic molecular dynamics simulation to study the amorphous aggregation of the peptide as well as model β-sheet protofibril structures. In particular, we study the rotamer states of the single fluorescent tyrosine (Tyr) residue present in each Ab. We find that the occupation of the four previously identified rotamers is different for monomeric and amorphous aggregates because of the differing environments of the Tyr side-chains. Surprisingly, we also identify two new rotamers that uniquely appear for the β-sheet structures, so that together the rotamers provide distinct signatures for the different stages of aggregation and fibrillation. We propose that these rotamers could be identified in fluorescence spectroscopy, with each rotamer having a distinct fluorescence lifetime because of its different exposures to the solvent. The identification of the two new rotamers therefore provides a new means to probe amyloid formation kinetics and to monitor the effect of additives including prospective drugs.
Collapse
Affiliation(s)
- Onorio Mancini
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K.
| | - Olaf J. Rolinski
- Department of Physics, University
of Strathclyde, Glasgow G4 0NG, U.K.
| | | | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K.
- E-mail: (P.A.M.)
| |
Collapse
|
18
|
Alzheimer's Aβ
1‐40
peptide degradation by thermolysin: evidence of inhibition by a C‐terminal Aβ product. FEBS Lett 2018; 593:128-137. [DOI: 10.1002/1873-3468.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/18/2018] [Accepted: 10/30/2018] [Indexed: 01/23/2023]
|
19
|
The Transcriptional Regulatory Properties of Amyloid Beta 1–42 may Include Regulation of Genes Related to Neurodegeneration. Neuromolecular Med 2018; 20:363-375. [DOI: 10.1007/s12017-018-8498-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
|
20
|
Goiran T, Duplan E, Chami M, Bourgeois A, El Manaa W, Rouland L, Dunys J, Lauritzen I, You H, Stambolic V, Biféri MG, Barkats M, Pimplikar SW, Sergeant N, Colin M, Morais VA, Pardossi-Piquard R, Checler F, Alves da Costa C. β-Amyloid Precursor Protein Intracellular Domain Controls Mitochondrial Function by Modulating Phosphatase and Tensin Homolog-Induced Kinase 1 Transcription in Cells and in Alzheimer Mice Models. Biol Psychiatry 2018; 83:416-427. [PMID: 28587718 DOI: 10.1016/j.biopsych.2017.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/10/2017] [Accepted: 04/22/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and β-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.
Collapse
Affiliation(s)
- Thomas Goiran
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Mounia Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Alexandre Bourgeois
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Wejdane El Manaa
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Lila Rouland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Julie Dunys
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Inger Lauritzen
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Vuk Stambolic
- Princess Margaret Center, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Maria-Grazia Biféri
- Center of Research on Myology, Pierre and Marie Curie University, CNRS, INSERM, Paris, France
| | - Martine Barkats
- Center of Research on Myology, Pierre and Marie Curie University, CNRS, INSERM, Paris, France
| | - Sanjay W Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nicolas Sergeant
- Alzheimer & Taopathies, Jean-Pierre Aubert Research Centre, Faculté de Médecine, L'Institut de Médecine Prédictive et de Recherche Thérapeutique, INSERM, Lille, France
| | - Morvane Colin
- Alzheimer & Taopathies, Jean-Pierre Aubert Research Centre, Faculté de Médecine, L'Institut de Médecine Prédictive et de Recherche Thérapeutique, INSERM, Lille, France
| | - Vanessa A Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raphaelle Pardossi-Piquard
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Cristine Alves da Costa
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France.
| |
Collapse
|
21
|
Domínguez-Prieto M, Velasco A, Vega L, Tabernero A, Medina JM. Aberrant Co-localization of Synaptic Proteins Promoted by Alzheimer's Disease Amyloid-β Peptides: Protective Effect of Human Serum Albumin. J Alzheimers Dis 2018; 55:171-182. [PMID: 27662292 PMCID: PMC5115610 DOI: 10.3233/jad-160346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ), Aβ40, Aβ42, and, recently, Aβ25-35 have been directly implicated in the pathogenesis of Alzheimer’s disease. We have studied the effects of Aβ on neuronal death, reactive oxygen species (ROS) production, and synaptic assembling in neurons in primary culture. Aβ25-35, Aβ40, and Aβ42 significantly decreased neuronal viability, although Aβ25-35 showed a higher effect. Aβ25-35 showed a more penetrating ability to reach mitochondria while Aβ40 did not enter the neuronal cytosol and Aβ42 was scarcely internalized. We did not observe a direct correlation between ROS production and cell death because both Aβ40 and Aβ42 decreased neuronal viability but Aβ40 did not change ROS production. Rather, ROS production seems to correlate with the penetrating ability of each Aβ. No significant differences were found between Aβ40 and Aβ42 regarding the extent of the deleterious effects of both peptides on neuronal viability or synaptophysin expression. However, Aβ40 elicited a clear delocalization of PSD-95 and synaptotagmin from prospective synapsis to the neuronal soma, suggesting the occurrence of a crucial effect of Aβ40 on synaptic disassembling. The formation of Aβ40- or Aβ42-serum albumin complexes avoided the effects of these peptides on neuronal viability, synaptophysin expression, and PSD-95/synaptotagmin disarrangement suggesting that sequestration of Aβ by albumin prevents deleterious effects of these peptides. We can conclude that Aβ borne by albumin can be safely transported through body fluids, a fact that may be compulsory for Aβ disposal by peripheral tissues.
Collapse
Affiliation(s)
| | | | | | | | - José M. Medina
- Correspondence to: José M. Medina, Instituto de Neurociencias de Castilla y León (INCYL), c/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain. Tel.: +34 923 294500/Ext.: 5313; E-mail:
| |
Collapse
|
22
|
Mhillaj E, Morgese MG, Tucci P, Furiano A, Luongo L, Bove M, Maione S, Cuomo V, Schiavone S, Trabace L. Celecoxib Prevents Cognitive Impairment and Neuroinflammation in Soluble Amyloid β-treated Rats. Neuroscience 2018; 372:58-73. [PMID: 29306052 DOI: 10.1016/j.neuroscience.2017.12.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Recent findings suggest that soluble forms of amyloid-β (sAβ) peptide contribute to synaptic and cognitive dysfunctions in early stages of Alzheimer's disease (AD). On the other hand, neuroinflammation and cyclooxygenase-2 (COX-2) enzyme have gained increased interest as key factors involved early in AD, although the signaling pathways and pathophysiologic mechanisms underlying a link between sAβ-induced neurotoxicity and inflammation are still unclear. Here, we investigated the effects of selective COX-2 enzyme inhibition on neuropathological alterations induced by sAβ administration in rats. To this purpose, animals received an intracerebroventricular (icv) injection of predominantly monomeric forms of sAβ and, 7 days after, behavioral as well as biochemical parameters and neurotransmitter alterations were evaluated. During this period, rats also received a sub-chronic treatment with celecoxib. Biochemical results demonstrated that icv sAβ injection significantly increased both COX-2 and pro-inflammatory cytokines expression in the hippocampus (Hipp) of treated rats. In addition, the number of hypertrophic microglial cells and astrocytes were upregulated in sAβ-treated group. Interestingly, rats treated with sAβ showed long-term memory deficits, as confirmed by a significant reduction of discrimination index in the novel object recognition test, along with reduced brain-derived neurotrophic factor expression and increased noradrenaline levels in the Hipp. Systemic administration of celecoxib prevented behavioral dysfunctions, as well as biochemical and neurotransmitter alterations. In conclusion, our results suggest that sAβ neurotoxicity might be associated to COX-2-mediated inflammatory pathways and that early treatment with selective COX-2 inhibitor might provide potential remedies to counterbalance the sAβ-induced effects.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Morgese
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Furiano
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Livio Luongo
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Maria Bove
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sabatino Maione
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Vincenzo Cuomo
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Stefania Schiavone
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
23
|
Mancini O, Wellbrock T, Rolinski OJ, Kubiak-Ossowska K, Mulheran PA. Probing beta amyloid aggregation using fluorescence anisotropy: experiments and simulation. Phys Chem Chem Phys 2018; 20:4216-4225. [DOI: 10.1039/c7cp08217g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Simulated fluorescence anisotropy from Tyr residues distinguishes a beta amyloid monomer (black) from oligomers (coloured).
Collapse
Affiliation(s)
- Onorio Mancini
- Department of Chemical Engineering and Process Engineering
- University of Strathclyde
- Glasgow
- UK
| | | | | | | | - Paul A. Mulheran
- Department of Chemical Engineering and Process Engineering
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
24
|
Jayne T, Newman M, Verdile G, Sutherland G, Münch G, Musgrave I, Moussavi Nik SH, Lardelli M. Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. J Alzheimers Dis 2017; 52:781-99. [PMID: 27060961 DOI: 10.3233/jad-151186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of mutations causing familial Alzheimer's disease (fAD) have been found in the gene PRESENILIN1 (PSEN1) with additional mutations in the related gene PRESENILIN2 (PSEN2). The best characterized function of PRESENILIN (PSEN) proteins is in γ-secretase enzyme activity. One substrate of γ-secretase is encoded by the gene AMYLOID BETA A4 PRECURSOR PROTEIN (AβPP/APP) that is a fAD mutation locus. AβPP is the source of the amyloid-β (Aβ) peptide enriched in the brains of people with fAD or the more common, late onset, sporadic form of AD, sAD. These observations have resulted in a focus on γ-secretase activity and Aβ as we attempt to understand the molecular basis of AD pathology. In this paper we briefly review some of the history of research on γ-secretase in AD. We then discuss the main ideas regarding the role of γ-secretase and the PSEN genes in this disease. We examine the significance of the "fAD mutation reading frame preservation rule" that applies to PSEN1 and PSEN2 (and AβPP) and look at alternative roles for AβPP and Aβ in fAD. We present a case for an alternative interpretation of published data on the role of γ-secretase activity and fAD-associated mutations in AD pathology. Evidence supports a "PSEN holoprotein multimer hypothesis" where PSEN fAD mutations generate mutant PSEN holoproteins that multimerize with wild type holoprotein and dominantly interfere with an AD-critical function(s) such as autophagy or secretion of Aβ. Holoprotein multimerization may be required for the endoproteolysis that activates PSENs' γ-secretase activity.
Collapse
Affiliation(s)
- Tanya Jayne
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health Innovation Research Institute - Biosciences, Faculty of Health Sciences, Curtin University, Kent Street, Bentley, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,McCusker Alzheimer's Disease Research Foundation, Hollywood Private Hospital, Hollywood Medical Centre, Nedlands, WA, Australia
| | - Greg Sutherland
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Gerald Münch
- Molecular Medicine Research Group & School of Medicine, Western Sydney University, Campbelltown NSW, Australia
| | - Ian Musgrave
- Discipline of Pharmacology, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Seyyed Hani Moussavi Nik
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| |
Collapse
|
25
|
Cissé M, Duplan E, Checler F. The transcription factor XBP1 in memory and cognition: Implications in Alzheimer disease. Mol Med 2017; 22:905-917. [PMID: 28079229 DOI: 10.2119/molmed.2016.00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic region leucine zipper transcription factor isolated two decades ago in a search for regulators of major histocompatibility complex class II gene expression. XBP1 is a very complex protein regulating many physiological functions, including immune system, inflammatory responses, and lipid metabolism. Evidence over the past few years suggests that XBP1 also plays important roles in pathological settings since its activity as transcription factor has profound effects on the prognosis and progression of diseases such as cancer, neurodegeneration, and diabetes. Here we provide an overview on recent advances in our understanding of this multifaceted molecule, particularly in regulating synaptic plasticity and memory function, and the implications in neurodegenerative diseases with emphasis on Alzheimer disease.
Collapse
Affiliation(s)
- Moustapha Cissé
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
26
|
Manocha GD, Ghatak A, Puig KL, Kraner SD, Norris CM, Combs CK. NFATc2 Modulates Microglial Activation in the AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2017; 58:775-787. [PMID: 28505967 PMCID: PMC6265241 DOI: 10.3233/jad-151203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or deletion of NFATc2 was sufficient to attenuate the ability of the microglia to secrete cytokines. In order to determine whether the NFATc2 isoform, in particular, was a valid immunomodulatory target in vivo, we crossed an NFATc2-/- line to a well-known AD mouse model, an AβPP/PS1 mouse line. As expected, the AβPP/PS1 x NFATc2-/- mice had attenuated cytokine levels compared to AβPP/PS1 mice as well as reduced microgliosis and astrogliosis with no effect on plaque load. Although some species differences in relative isoform expression may exist between murine and human microglia, it appears that microglial NFAT activity is a viable target for modulating the proinflammatory changes that occur during AD.
Collapse
Affiliation(s)
- Gunjan D. Manocha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L. Puig
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Susan D. Kraner
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christopher M. Norris
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
27
|
Westmark CJ, Chuang SC, Hays SA, Filon MJ, Ray BC, Westmark PR, Gibson JR, Huber KM, Wong RKS. APP Causes Hyperexcitability in Fragile X Mice. Front Mol Neurosci 2016; 9:147. [PMID: 28018172 PMCID: PMC5156834 DOI: 10.3389/fnmol.2016.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice. Normalization of APP levels in Fmr1KO mice (Fmr1KO /APPHET mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO /APPHET slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1KO increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Shih-Chieh Chuang
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| | - Seth A. Hays
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mikolaj J. Filon
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Brian C. Ray
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Pamela R. Westmark
- Department of Medicine, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Robert K. S. Wong
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| |
Collapse
|
28
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease. Front Physiol 2016; 7:134. [PMID: 27199760 PMCID: PMC4844916 DOI: 10.3389/fphys.2016.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
In aged subjects, late-onset Alzheimer's disease (LOAD) starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation of neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives in cultured cortical untransformed human neurons and astrocytes. In fact, calcilytics increase Aβ42 proteolysis and discontinue the oversecretion of Aβ42-os, nitric oxide, and vascular endothelial growth factor-A from both astrocytes and neurons. Seemingly, calcilytics would also benefit the other types of glial cells and cerebrovascular cells otherwise damaged by the effects of Aβ42-os•CaSR signaling. Thus, given at amnestic minor cognitive impairment (aMCI) or initial symptomatic stages, calcilytics could prevent or terminate the propagation of LOAD neuropathology and preserve human neurons' viability and hence patients' cognitive abilities.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Daisong Liu
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
- Proteomics Laboratory, Institute for Burn Research, Third Military Medical UniversityChongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| |
Collapse
|
29
|
Ourdev D, Foroutanpay BV, Wang Y, Kar S. The Effect of Aβ₁₋₄₂ Oligomers on APP Processing and Aβ₁₋₄₀ Generation in Cultured U-373 Astrocytes. NEURODEGENER DIS 2015; 15:361-8. [PMID: 26606591 DOI: 10.1159/000438923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amyloid-β (Aβ) peptides are a family of proteins that are considered to be a principal aspect of Alzheimer's disease (AD), the most common cause of senile dementia affecting elderly individuals. These peptides result from the proteolytic processing of amyloid precursor protein (APP) by sequential cleavage mediated via β- and x03B3;-secretases. Evidence suggests that an overproduction and/or a lack of degradation may increase brain Aβ levels which, in turn, contribute to neuronal loss and development of AD. OBJECTIVES In this study, we seek to determine what effect Aβ has on APP processing in cultured astrocytes. METHODS Using the human astrocytoma cell line U-373, we investigated the effects induced by oligomeric Aβ1-42 treatment on the cellular levels/expression of APP and its products, C-terminal fragments αCTF and βCTF, and Aβ1-40. In conjunction with these experiments, we examined the relative levels and activity of β- and x03B3;-secretases in Aβ-treated astrocytes. RESULTS We report here that Aβ1-42 treatment of astrocytes increased the expression of APP and its cleaved products including Aβ1-40 in a time-dependent manner. CONCLUSIONS These results suggest that activated astrocytes can contribute to the development of AD by enhancing levels and processing of APP leading to an increased production/secretion of Aβ-related peptides.
Collapse
Affiliation(s)
- Dimitar Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada
| | | | | | | |
Collapse
|
30
|
Khmeleva SA, Mezentsev YV, Kozin SA, Mitkevich VA, Medvedev AE, Ivanov AS, Bodoev NV, Makarov AA, Radko SP. Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β-amyloid with DNA. Mol Biol 2015. [DOI: 10.1134/s0026893315020053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kulikova AA, Makarov AA, Kozin SA. Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol Biol 2015. [DOI: 10.1134/s0026893315020065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Reale M, Di Nicola M, Velluto L, D'Angelo C, Costantini E, Lahiri DK, Kamal MA, Yu QS, Greig NH. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway. Curr Alzheimer Res 2015; 11:608-22. [PMID: 24359497 DOI: 10.2174/1567205010666131212113218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests that elevated production and/or reduced clearance of amyloid-β peptide (Aβ) drives the early pathogenesis of Alzheimer's disease (AD). Aβ soluble oligomers trigger a neurotoxic cascade that leads to neuronal dysfunction, neurodegeneration and, ultimately, clinical dementia. Inflammation, both within brain and systemically, together with a deficiency in the neurotransmitter acetylcholine (ACh) that underpinned the development of anticholinesterases for AD symptomatic treatment, are invariable hallmarks of the disease. The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each feeding back onto the others to drive disease progression. To elucidate these interactions plasma samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy controls (HC) and AD patients. Plasma levels of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and Aβ were significantly elevated in AD vs. HC subjects, and ACh showed a trend towards reduced levels. Aβ challenge of PBMCs induced a greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) challenge, to allow preliminary analysis of the cellular and molecular pathways underpinning Aβ-induced changes in cytokine expression. As amyloid-β precursor protein expression, and hence Aβ, has been reported regulated by particular cytokines and anticholinesterases, the latter were evaluated on Aβ- and PHA-induced chemocytokine expression. Co-incubation with selective AChE/BuChE inhibitors, (-)-phenserine (AChE) and (-)-cymserine analogues (BuChE), mitigated the rise in cytokine levels and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove valuable in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nigel H Greig
- Dept. of Experimental and Clinical Sciences, Unit ofImmunodiagnostic and Molecular Pathology, University "G. D'Annunzio", N.P.D., Ed. C, III lev., Via dei Vestini, 31, 66123 Chieti, Italy.
| |
Collapse
|
33
|
Kandalepas PC, Vassar R. The normal and pathologic roles of the Alzheimer's β-secretase, BACE1. Curr Alzheimer Res 2015; 11:441-9. [PMID: 24893886 DOI: 10.2174/1567205011666140604122059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/15/2014] [Accepted: 01/25/2014] [Indexed: 01/18/2023]
Abstract
As the most common neurodegenerative disease, therapeutic avenues for the treatment and prevention of Alzheimer's Disease are highly sought after. The aspartic protease BACE1 is the initiator enzyme for the formation of Aβ, a major constituent of amyloid plaques that represent one of the hallmark pathological features of this disorder. Thus, targeting BACE1 for disease-modifying AD therapies represents a rationale approach. The collective knowledge acquired from investigations of BACE1 deletion mutants and characterization of BACE1 substrates has downstream significance not only for the discovery of AD drug therapies but also for predicting side effects of BACE1 inhibition. Here we discuss the identification and validation of BACE1 as the β-secretase implicated in AD, in addition to information regarding BACE1 cell biology, localization, substrates and potential physiological functions derived from BACE1 knockout models.
Collapse
Affiliation(s)
| | - Robert Vassar
- Northwestern University, Feinberg School of Medicine, Department of Cell & Molecular Biology, 300 E. Superior, Tarry 8-713, IL 60611, Chicago.
| |
Collapse
|
34
|
Wang J, Zhao C, Zhao A, Li M, Ren J, Qu X. New Insights in Amyloid Beta Interactions with Human Telomerase. J Am Chem Soc 2015; 137:1213-9. [DOI: 10.1021/ja511030s] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiasi Wang
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chuanqi Zhao
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Andong Zhao
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Meng Li
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinsong Ren
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaogang Qu
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
35
|
Lipids in Amyloid-β Processing, Aggregation, and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:67-94. [PMID: 26149926 DOI: 10.1007/978-3-319-17344-3_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.
Collapse
|
36
|
Barucker C, Harmeier A, Weiske J, Fauler B, Albring KF, Prokop S, Hildebrand P, Lurz R, Heppner FL, Huber O, Multhaup G. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription. J Biol Chem 2014; 289:20182-91. [PMID: 24878959 DOI: 10.1074/jbc.m114.564690] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although soluble species of the amyloid-β peptide Aβ42 correlate with disease symptoms in Alzheimer disease, little is known about the biological activities of amyloid-β (Aβ). Here, we show that Aβ peptides varying in lengths from 38 to 43 amino acids are internalized by cultured neuroblastoma cells and can be found in the nucleus. By three independent methods, we demonstrate direct detection of nuclear Aβ42 as follows: (i) biochemical analysis of nuclear fractions; (ii) detection of biotin-labeled Aβ in living cells by confocal laser scanning microscopy; and (iii) transmission electron microscopy of Aβ in cultured cells, as well as brain tissue of wild-type and transgenic APPPS1 mice (overexpression of amyloid precursor protein and presenilin 1 with Swedish and L166P mutations, respectively). Also, this study details a novel role for Aβ42 in nuclear signaling, distinct from the amyloid precursor protein intracellular domain. Chromatin immunoprecipitation showed that Aβ42 specifically interacts as a repressor of gene transcription with LRP1 and KAI1 promoters. By quantitative RT-PCR, we confirmed that mRNA levels of the examined candidate genes were exclusively decreased by the potentially neurotoxic Aβ42 wild-type peptide. Shorter peptides (Aβ38 or Aβ40) and other longer peptides (nontoxic Aβ42 G33A substitution or Aβ43) did not affect mRNA levels. Overall, our data indicate that the nuclear translocation of Aβ42 impacts gene regulation, and deleterious effects of Aβ42 in Alzheimer disease pathogenesis may be influenced by altering the expression profiles of disease-modifying genes.
Collapse
Affiliation(s)
- Christian Barucker
- From the Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, 14195 Berlin, Germany, the Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Anja Harmeier
- From the Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Joerg Weiske
- the Institute of Clinical Chemistry and Pathobiochemistry, Charite-Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Beatrix Fauler
- the Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kai Frederik Albring
- the Institute of Clinical Chemistry and Pathobiochemistry, Charite-Campus Benjamin Franklin, 12203 Berlin, Germany, the Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany, and
| | | | - Peter Hildebrand
- Institute of Medical Physics and Biophysics, Charite-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Rudi Lurz
- the Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Otmar Huber
- the Institute of Clinical Chemistry and Pathobiochemistry, Charite-Campus Benjamin Franklin, 12203 Berlin, Germany, the Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany, and
| | - Gerhard Multhaup
- From the Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, 14195 Berlin, Germany, the Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec H3G 0B1, Canada,
| |
Collapse
|
37
|
Evidence of a novel mechanism for partial γ-secretase inhibition induced paradoxical increase in secreted amyloid β protein. PLoS One 2014; 9:e91531. [PMID: 24658363 PMCID: PMC3962361 DOI: 10.1371/journal.pone.0091531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/12/2014] [Indexed: 02/02/2023] Open
Abstract
BACE1 (β-secretase) and α-secretase cleave the Alzheimer's amyloid β protein (Aβ) precursor (APP) to C-terminal fragments of 99 aa (CTFβ) and 83 aa (CTFα), respectively, which are further cleaved by γ-secretase to eventually secrete Aβ and Aα (a.k.a. P3) that terminate predominantly at residues 40 and 42. A number of γ-secretase inhibitors (GSIs), such as N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), have been developed with the goal of reducing Aβ to treat Alzheimer's disease (AD). Although most studies show that DAPT inhibits Aβ in a dose-dependent manner several studies have also detected a biphasic effect with an unexpected increase at low doses of DAPT in cell cultures, animal models and clinical trials. In this article, we confirm the increase in Aβ40 and Aβ42 in SH-SY5Y human neuroblastoma cells treated with low doses of DAPT and identify one of the mechanisms for this paradox. We studied the pathway by first demonstrating that stimulation of Aβ, a product of γ-secretase, was accompanied by a parallel increase of its substrate CTFβ, thereby demonstrating that the inhibitor was not anomalously stimulating enzyme activity at low levels. Secondly, we have demonstrated that inhibition of an Aβ degrading activity, endothelin converting enzyme (ECE), yielded more Aβ, but abolished the DAPT-induced stimulation. Finally, we have demonstrated that Aα, which is generated in the secretory pathway before endocytosis, is not subject to the DAPT-mediated stimulation. We therefore conclude that impairment of γ-secretase can paradoxically increase Aβ by transiently skirting Aβ degradation in the endosome. This study adds to the growing body of literature suggesting that preserving γ-secretase activity, rather than inhibiting it, is important for prevention of neurodegeneration.
Collapse
|
38
|
Perez FP, Bose D, Maloney B, Nho K, Shah K, Lahiri DK. Late-onset Alzheimer's disease, heating up and foxed by several proteins: pathomolecular effects of the aging process. J Alzheimers Dis 2014; 40:1-17. [PMID: 24326519 PMCID: PMC4126605 DOI: 10.3233/jad-131544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common neurodegenerative disorder in older adults, affecting over 50% of those over age 85. Aging is the most important risk factor for the development of LOAD. Aging is associated with the decrease in the ability of cells to cope with cellular stress, especially protein aggregation. Here we describe how the process of aging affects pathways that control the processing and degradation of abnormal proteins including amyloid-β (Aβ). Genetic association studies in LOAD have successfully identified a large number of genetic variants involved in the development of the disease. However, there is a gap in understanding the interconnections between these pathomolecular events that prevent us from discovering therapeutic targets. We propose novel, pertinent links to elucidate how the biology of aging affects the sequence of events in the development of LOAD. Furthermore we analyze and synthesize the molecular-pathologic-clinical correlations of the aging process, involving the HSF1 and FOXO family pathways, Aβ metabolic pathway, and the different clinical stages of LOAD. Our new model postulates that the aging process would precede Aβ accumulation, and attenuation of HSF1 is an "upstream" event in the cascade that results in excess Aβ and synaptic dysfunction, which may lead to cognitive impairment and/or trigger "downstream" neurodegeneration and synaptic loss. Specific host factors, such as the activity of FOXO family pathways, would mediate the response to Aβ toxicity and the pace of progression toward the clinical manifestations of AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Geriatric Medicine Division, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Bose
- Department of Medicine, Geriatric Medicine Division, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kavita Shah
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Debomoy K. Lahiri
- Department of Psychiatry, and of Medical & Molecular Genetics, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
39
|
Grimm MOW, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer's Disease. Front Aging Neurosci 2013; 5:98. [PMID: 24391587 PMCID: PMC3870290 DOI: 10.3389/fnagi.2013.00098] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
One of the characteristic hallmarks of Alzheimer's disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| | - Janine Mett
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | | | | | - Valerie C Zimmer
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| |
Collapse
|
40
|
Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects. J Biol Chem 2013; 289:5184-98. [PMID: 24352696 DOI: 10.1074/jbc.m113.518241] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β (Aβ) peptide as neuritic plaques in the brain. The short Aβ peptide is derived from the large transmembrane Aβ precursor protein (APP). The rate-limiting step in the production of Aβ from APP is mediated by the β-site APP-cleaving enzyme 1 (BACE1). Dysregulation of BACE1 levels leading to excess Aβ deposition is implicated in sporadic AD. Thus, elucidating the full complement of regulatory pathways that control BACE1 expression is key to identifying novel drug targets central to the Aβ-generating process. MicroRNAs (miRNAs) are expected to participate in this molecular network. Here, we identified a known miRNA, miR-339-5p, as a key contributor to this regulatory network. Two distinct miR-339-5p target sites were predicted in the BACE1 3'-UTR by in silico analyses. Co-transfection of miR-339-5p with a BACE1 3'-UTR reporter construct resulted in significant reduction in reporter expression. Mutation of both target sites eliminated this effect. Delivery of the miR-339-5p mimic also significantly inhibited expression of BACE1 protein in human glioblastoma cells and human primary brain cultures. Delivery of target protectors designed against the miR-339-5p BACE1 3'-UTR target sites in primary human brain cultures significantly elevated BACE1 expression. Finally, miR-339-5p levels were found to be significantly reduced in brain specimens isolated from AD patients as compared with age-matched controls. Therefore, miR-339-5p regulates BACE1 expression in human brain cells and is most likely dysregulated in at least a subset of AD patients making this miRNA a novel drug target.
Collapse
Affiliation(s)
- Justin M Long
- From the Laboratory of Molecular Neurogenetics, Institute of Psychiatric Research, Departments of Psychiatry and
| | | | | |
Collapse
|
41
|
Kurapati KRV, Atluri VSR, Samikkannu T, Nair MPN. Ashwagandha (Withania somnifera) reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 2013; 8:e77624. [PMID: 24147038 PMCID: PMC3797707 DOI: 10.1371/journal.pone.0077624] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/04/2013] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. At present no curative treatment is available, and research focuses on drugs for slowing disease progression or providing prophylaxis. Withania somnifera (WS) also known as 'ashwagandha' is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is a paucity of data on the potential neuroprotective effects of W.somnifera against β-Amyloid (1-42)-induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of methanol:Chloroform (3:1) extract of ashwagandha against β-amyloid induced toxicity and HIV-1Ba-L (clade B) infection using a human neuronal SK-N-MC cell line. Our results showed that β-amyloid induced cytotoxic effects in SK-N-MC cells as shown by decreased cell growth when tested individually. Also, confocal microscopic analysis showed decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC cells compared to uninfected cells. However, when ashwagandha was added to β-amyloid treated and HIV-1 infected samples, the toxic effects were neutralized. Further, the MTT cell viability assays and the peroxisome proliferator-activated receptor-γ (PPARγ) levels supported these observations indicating the neuroprotective effect of WS root extract against β-amyloid and HIV-1Ba-L (clade B) induced neuro-pathogenesis.
Collapse
Affiliation(s)
- Kesava Rao Venkata Kurapati
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Venkata Subba Rao Atluri
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Madhavan P. N. Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| |
Collapse
|
42
|
Octave JN, Pierrot N, Ferao Santos S, Nalivaeva NN, Turner AJ. From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein. J Neurochem 2013; 126:183-90. [DOI: 10.1111/jnc.12239] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Affiliation(s)
- Jean-Noël Octave
- Université Catholique de Louvain; Institute of Neuroscience (IoNS); Brussels Belgium
| | - Nathalie Pierrot
- Université Catholique de Louvain; Institute of Neuroscience (IoNS); Brussels Belgium
| | - Susana Ferao Santos
- Université Catholique de Louvain; Institute of Neuroscience (IoNS); Brussels Belgium
| | - Natalia N. Nalivaeva
- School of Molecular and Cellular Biology; Faculty of Biological Sciences; University of Leeds; Leeds UK
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry; RAS; St. Petersburg Russia
| | - Anthony J. Turner
- School of Molecular and Cellular Biology; Faculty of Biological Sciences; University of Leeds; Leeds UK
| |
Collapse
|
43
|
Lahiri DK, Maloney B, Rogers JT, Ge YW. PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE). BMC Genomics 2013; 14:68. [PMID: 23368879 PMCID: PMC3582491 DOI: 10.1186/1471-2164-14-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/10/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is intimately tied to amyloid-β (Aβ) peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP) account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP) may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or "proximal regulatory element" (PRE), at -76/-47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA) and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones. RESULTS EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2), nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF), and specificity protein 1 (SP1). These sites crossed a known single nucleotide polymorphism (SNP). EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis. CONCLUSIONS We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also interacts with the integrins. These proteins are connected to vital cellular and neurological functions. In addition, the transcription factor PuF is a known inhibitor of metastasis and regulates cell growth during development. Given that APP is a known cell adhesion protein and ferroxidase, this suggests biochemical links among cell signaling, the cell cycle, iron metabolism in cancer, and AD in the context of overall aging.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| | - Jack T Rogers
- Neurochemistry lab, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charleston, MA, 02129, USA
| | - Yuan-Wen Ge
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
44
|
Camero S, Ayuso JM, Barrantes A, Benítez MJ, Jiménez JS. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides. Int J Biol Macromol 2013; 55:201-6. [PMID: 23352599 DOI: 10.1016/j.ijbiomac.2013.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/06/2013] [Accepted: 01/08/2013] [Indexed: 01/09/2023]
Abstract
Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloid-β peptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergio Camero
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Camero S, Benítez MJ, Jiménez JS. Anomalous Protein–DNA Interactions Behind Neurological Disorders. PROTEIN-NUCLEIC ACIDS INTERACTIONS 2013; 91:37-63. [DOI: 10.1016/b978-0-12-411637-5.00002-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Testa G, Gamba P, Di Scipio F, Sprio AE, Salamone P, Gargiulo S, Sottero B, Biasi F, Berta GN, Poli G, Leonarduzzi G. Potentiation of amyloid-β peptide neurotoxicity in human dental-pulp neuron-like cells by the membrane lipid peroxidation product 4-hydroxynonenal. Free Radic Biol Med 2012; 53:1708-17. [PMID: 22981873 DOI: 10.1016/j.freeradbiomed.2012.08.581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/24/2012] [Accepted: 08/21/2012] [Indexed: 12/30/2022]
Abstract
Lipid peroxidation is generally considered as primarily implicated in the pathogenesis of Alzheimer's disease (AD); one of its more reactive end products, 4-hydroxynonenal (HNE), has been shown to cause neuron dysfunction and degeneration. HNE production in the brain is stimulated by the amyloid-β peptide (Aβ), whose excessive accumulation in specific brain areas is a hallmark of AD. Conversely, Aβ production is up-regulated by this multifunctional aldehyde. Findings reported here point to the ability of HNE and Aβ to interact, with consequent potentiation of Aβ's cytotoxicity as determined in vitro using neuron-like cells derived from human dental-pulp progenitor cells. Preincubation of cells with the aldehyde markedly up-regulated Aβ uptake and intracellular accumulation, by overexpressing two of the three components of the plasma membrane multireceptor complex CD36/CD47/β1-integrin: experimental and clinical data indicate that intraneuronal accumulation of Aβ is an early event possibly playing a primary role in AD pathogenesis. That HNE-mediated overexpression of CD36 and β1-integrin, which plays a key role in HNE's potentiating Aβ neurotoxicity, in terms of necrosis, was confirmed when this effect was prevented by specific antibodies against the two receptors.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Mol Neurodegener 2012; 7:52. [PMID: 23039869 PMCID: PMC3507664 DOI: 10.1186/1750-1326-7-52] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex age-related pathology, the etiology of which has not been firmly delineated. Among various histological stigmata, AD-affected brains display several cellular dysfunctions reflecting enhanced oxidative stress, inflammation process and calcium homeostasis disturbance. Most of these alterations are directly or indirectly linked to amyloid β-peptides (Aβ), the production, molecular nature and biophysical properties of which likely conditions the degenerative process. It is particularly noticeable that, in a reverse control process, the above-described cellular dysfunctions alter Aβ peptides levels. β-secretase βAPP-cleaving enzyme 1 (BACE1) is a key molecular contributor of this cross-talk. This enzyme is responsible for the primary cleavage generating the N-terminus of “full length” Aβ peptides and is also transcriptionally induced by several cellular stresses. This review summarizes data linking brain insults to AD-like pathology and documents the key role of BACE1 at the cross-road of a vicious cycle contributing to Aβ production.
Collapse
Affiliation(s)
- Linda Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, 06560 Valbonne, France
| | | |
Collapse
|
48
|
Nalivaeva NN, Belyaev ND, Zhuravin IA, Turner AJ. The Alzheimer's amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimers Dis 2012; 2012:383796. [PMID: 22900228 PMCID: PMC3412116 DOI: 10.1155/2012/383796] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/01/2012] [Indexed: 02/07/2023] Open
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) postulates that accumulation in the brain of amyloid β-peptide (Aβ) is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP) and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs). During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP) is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD) opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance.
Collapse
Affiliation(s)
- N. N. Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - N. D. Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - I. A. Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - A. J. Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
49
|
Claeysen S, Cochet M, Donneger R, Dumuis A, Bockaert J, Giannoni P. Alzheimer culprits: cellular crossroads and interplay. Cell Signal 2012; 24:1831-40. [PMID: 22627093 DOI: 10.1016/j.cellsig.2012.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in the elderly and one of the major health problems worldwide. Since its first description by Alois Alzheimer in 1907, noticeable but insufficient scientific comprehension of this complex pathology has been achieved. All the research that has been pursued takes origin from the identification of the pathological hallmarks in the forms of amyloid-β (Aβ) deposits (plaques), and aggregated hyperphosphorylated tau protein filaments (named neurofibrillary tangles). Since this discovery, many hypotheses have been proposed to explain the origin of the pathology. The "amyloid cascade hypothesis" is the most accredited theory. The mechanism suggested to be one of the initial causes of AD is an imbalance between the production and the clearance of Aβ peptides. Therefore, Amyloid Precursor Protein (APP) synthesis, trafficking and metabolism producing either the toxic Aβ peptide via the amyloidogenic pathway or the sAPPα fragment via the non amyloidogenic pathway have become appealing subjects of study. Being able to reduce the formation of the toxic Aβ peptides is obviously an immediate approach in the trial to prevent AD. The following review summarizes the most relevant discoveries in the field of the last decades.
Collapse
Affiliation(s)
- Sylvie Claeysen
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
50
|
Kim Y, Kong M, Lee C. Lack of common genetic factors for susceptibility to vascular dementia and Alzheimer's disease. Gene 2012; 497:298-300. [DOI: 10.1016/j.gene.2012.01.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/30/2012] [Indexed: 11/30/2022]
|