1
|
Kazimierczak U, Przybyla A, Smielowska M, Kolenda T, Mackiewicz A. Targeting the Hippo Pathway in Cutaneous Melanoma. Cells 2024; 13:1062. [PMID: 38920690 PMCID: PMC11201827 DOI: 10.3390/cells13121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer. In the advanced stage of development, it is resistant to currently available therapeutic modalities. Increased invasiveness and metastatic potential depend on several proteins involved in various signal transduction pathways. Hippo signaling plays a vital role in malignant transformation. Dysfunctions of the Hippo pathway initiate the expression of tumor growth factors and are associated with tumor growth and metastasis formation. This review summarizes the recent achievements in studying the role of the Hippo pathway in melanoma pathogenesis and points to the potential specific targets for anti-melanoma therapy.
Collapse
Affiliation(s)
- Urszula Kazimierczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Anna Przybyla
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Marianna Smielowska
- Department of Genome Engineering, The Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland
| |
Collapse
|
2
|
Bulos ML, Grzelak EM, Li-Ma C, Chen E, Hull M, Johnson KA, Bollong MJ. Pharmacological inhibition of CLK2 activates YAP by promoting alternative splicing of AMOTL2. eLife 2023; 12:RP88508. [PMID: 38126343 PMCID: PMC10735217 DOI: 10.7554/elife.88508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Yes-associated protein (YAP), the downstream effector of the evolutionarily conserved Hippo pathway, promotes cellular proliferation and coordinates certain regenerative responses in mammals. Small molecule activators of YAP may, therefore, display therapeutic utility in treating disease states involving insufficient proliferative repair. From a high-throughput chemical screen of the comprehensive drug repurposing library ReFRAME, here we report the identification of SM04690, a clinical stage inhibitor of CLK2, as a potent activator of YAP-driven transcriptional activity in cells. CLK2 inhibition promotes alternative splicing of the Hippo pathway protein AMOTL2, producing an exon-skipped gene product that can no longer associate with membrane-bound proteins, resulting in decreased phosphorylation and membrane localization of YAP. This study reveals a novel mechanism by which pharmacological perturbation of alternative splicing inactivates the Hippo pathway and promotes YAP-dependent cellular growth.
Collapse
Affiliation(s)
- Maya L Bulos
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Edyta M Grzelak
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Emily Chen
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | - Mitchell Hull
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | | | - Michael J Bollong
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
3
|
Bulos ML, Grzelak EM, Li-Ma C, Chen E, Hull M, Johnson KA, Bollong MJ. Pharmacological inhibition of CLK2 activates YAP by promoting alternative splicing of AMOTL2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537449. [PMID: 37131806 PMCID: PMC10153145 DOI: 10.1101/2023.04.19.537449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Yes-associated protein (YAP), the downstream effector of the evolutionarily conserved Hippo pathway, promotes cellular proliferation and coordinates certain regenerative responses in mammals. Small molecule activators of YAP may therefore display therapeutic utility in treating disease states involving insufficient proliferative repair. From a high-throughput chemical screen of the comprehensive drug repurposing library ReFRAME, here we report the identification of SM04690, a clinical stage inhibitor of CLK2, as a potent activator of YAP driven transcriptional activity in cells. CLK2 inhibition promotes alternative splicing of the Hippo pathway protein AMOTL2, producing an exon-skipped gene product that can no longer associate with membrane-bound proteins, resulting in decreased phosphorylation and membrane localization of YAP. This study reveals a novel mechanism by which pharmacological perturbation of alternative splicing inactivates the Hippo pathway and promotes YAP dependent cellular growth.
Collapse
Affiliation(s)
- Maya L. Bulos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Edyta M. Grzelak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- Calibr, A Division of Scripps Research, La Jolla, CA, 92037, USA
| | - Mitchell Hull
- Calibr, A Division of Scripps Research, La Jolla, CA, 92037, USA
| | | | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
4
|
Toh PJY, Sudol M, Saunders TE. Optogenetic control of YAP can enhance the rate of wound healing. Cell Mol Biol Lett 2023; 28:39. [PMID: 37170209 PMCID: PMC10176910 DOI: 10.1186/s11658-023-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Tissues need to regenerate to restore function after injury. Yet, this regenerative capacity varies significantly between organs and between species. For example, in the heart, some species retain full regenerative capacity throughout their lifespan but human cardiac cells display a limited ability to repair the injury. After a myocardial infarction, the function of cardiomyocytes is impaired and reduces the ability of the heart to pump, causing heart failure. Therefore, there is a need to restore the function of an injured heart post myocardial infarction. We investigate in cell culture the role of the Yes-associated protein (YAP), a transcriptional co-regulator with a pivotal role in growth, in driving repair after injury. METHODS We express optogenetic YAP (optoYAP) in three different cell lines. We characterised the behaviour and function of optoYAP using fluorescence imaging and quantitative real-time PCR of downstream YAP target genes. Mutant constructs were generated using site-directed mutagenesis. Nuclear localised optoYAP was functionally tested using wound healing assay. RESULTS Utilising optoYAP, which enables precise control of pathway activation, we show that YAP induces the expression of downstream genes involved in proliferation and migration. optoYAP can increase the speed of wound healing in H9c2 cardiomyoblasts. Interestingly, this is not driven by an increase in proliferation, but by collective cell migration. We subsequently dissect specific phosphorylation sites in YAP to identify the molecular driver of accelerated healing. CONCLUSIONS This study shows that optogenetic YAP is functional in H9c2 cardiomyoblasts and its controlled activation can potentially enhance wound healing in a range of conditions.
Collapse
Affiliation(s)
- Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy Edward Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
5
|
Choi S, Cho N, Kim KK. The implications of alternative pre-mRNA splicing in cell signal transduction. Exp Mol Med 2023; 55:755-766. [PMID: 37009804 PMCID: PMC10167241 DOI: 10.1038/s12276-023-00981-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
Cells produce multiple mRNAs through alternative splicing, which ensures proteome diversity. Because most human genes undergo alternative splicing, key components of signal transduction pathways are no exception. Cells regulate various signal transduction pathways, including those associated with cell proliferation, development, differentiation, migration, and apoptosis. Since proteins produced through alternative splicing can exhibit diverse biological functions, splicing regulatory mechanisms affect all signal transduction pathways. Studies have demonstrated that proteins generated by the selective combination of exons encoding important domains can enhance or attenuate signal transduction and can stably and precisely regulate various signal transduction pathways. However, aberrant splicing regulation via genetic mutation or abnormal expression of splicing factors negatively affects signal transduction pathways and is associated with the onset and progression of various diseases, including cancer. In this review, we describe the effects of alternative splicing regulation on major signal transduction pathways and highlight the significance of alternative splicing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
6
|
Kuo YZ, Kang YR, Chang WL, Sim LCL, Hsieh TC, Chang CH, Wang YC, Tsai CJ, Huang LC, Tsai ST, Wu LW. YAP1 acts as a negative regulator of pro-tumor TAZ expression in esophageal squamous cell carcinoma. Cell Oncol 2022; 45:893-909. [PMID: 35930163 PMCID: PMC9579103 DOI: 10.1007/s13402-022-00695-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Although YAP1 and TAZ are believed to be equivalent downstream effectors of the Hippo pathway, differential expression of YAP1 or TAZ suggests distinct functions during cancer progression. The exact role of YAP1 and TAZ in esophageal cancer, the 6th leading cancer-related mortality in the world, remains elusive. Methods Following single or double manipulation of YAP1 or TAZ expression, we subjected these manipulated cells to proliferation, migration, invasion, and xenograft tumorigenesis assays. We used RT-qPCR and Western blotting to examine their expression in the manipulated cells with or without inhibition of transcription or translation. We also examined the impact of YAP1 or TAZ deregulation on clinical outcome of esophageal cancer patients from the TCGA database. Results We found that YAP1 functions as a tumor suppressor whereas TAZ exerts pro-tumor functions in esophageal cancer cells. We also found a significant increase in TAZ mRNA expression upon YAP1 depletion, but not vice versa, despite the downregulation of CTGF and CYR61, shared targets of YAP1 and TAZ, in xenografted tissue cells. In addition to transcriptional regulation, YAP1-mediated TAZ expression was found to occur via protein synthesis. Restored TAZ expression mitigated YAP1-mediated suppression of cellular behavior. By contrast, TAZ silencing reduced the promoting effect exerted by YAP1 depletion on cellular behaviors. The observed anti-tumor function of YAP1 was further supported by a better overall survival among esophageal cancer patients with a high YAP1 expression. Conclusion From our data we conclude that YAP1 functions as a suppressor and negatively regulates pro-tumor TAZ expression via transcriptional and translational control in esophageal cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-022-00695-4.
Collapse
Affiliation(s)
- Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Ya-Rong Kang
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Wei-Lun Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 70428, Taiwan, Republic of China
| | - Lydia Chin-Ling Sim
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Tzu-Chin Hsieh
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Chu-Han Chang
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Ching-Jung Tsai
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Li-Chun Huang
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China.
| | - Li-Wha Wu
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China.
- Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
7
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
8
|
YAP and TAZ: Monocorial and bicorial transcriptional co-activators in human cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188756. [PMID: 35777600 DOI: 10.1016/j.bbcan.2022.188756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
The transcriptional regulators YAP and TAZ are involved in numerous physiological processes including organ development, growth, immunity and tissue regeneration. YAP and TAZ dysregulation also contribute to tumorigenesis, thereby making them attractive cancer therapeutic targets. Arbitrarily, YAP and TAZ are often considered as a single protein, and are referred to as YAP/TAZ in most studies. However, increasing experimental evidences documented that YAP and TAZ perform both overlapping and distinct functions in several physiological and pathological processes. In addition to regulating distinct processes, YAP and TAZ are also regulated by distinct upstream cues. The aim of the review is to describe the distinct roles of YAP and TAZ focusing particularly on cancer. Therapeutic strategies targeting either YAP and TAZ proteins or only one of them should be carefully evaluated. Selective targeting of YAP or TAZ may in fact impair different pathways and determine diverse clinical outputs.
Collapse
|
9
|
Choi S, Lee HS, Cho N, Kim I, Cheon S, Park C, Kim EM, Kim W, Kim KK. RBFOX2-regulated TEAD1 alternative splicing plays a pivotal role in Hippo-YAP signaling. Nucleic Acids Res 2022; 50:8658-8673. [PMID: 35699208 PMCID: PMC9410899 DOI: 10.1093/nar/gkac509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative pre-mRNA splicing is key to proteome diversity; however, the biological roles of alternative splicing (AS) in signaling pathways remain elusive. Here, we focus on TEA domain transcription factor 1 (TEAD1), a YAP binding factor in the Hippo signaling pathway. Public database analyses showed that expression of YAP-TEAD target genes negatively correlated with the expression of a TEAD1 isoform lacking exon 6 (TEAD1ΔE6) but did not correlate with overall TEAD1 expression. We confirmed that the transcriptional activity and oncogenic properties of the full-length TEAD1 isoform were greater than those of TEAD1ΔE6, with the difference in transcription related to YAP interaction. Furthermore, we showed that RNA-binding Fox-1 homolog 2 (RBFOX2) promoted the inclusion of TEAD1 exon 6 via binding to the conserved GCAUG element in the downstream intron. These results suggest a regulatory mechanism of RBFOX2-mediated TEAD1 AS and provide insight into AS-specific modulation of signaling pathways.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyo Seong Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Inyoung Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.,Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Wantae Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
10
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
11
|
Lui JW, Moore SP, Huang L, Ogomori K, Li Y, Lang D. YAP facilitates melanoma migration through regulation of actin-related protein 2/3 complex subunit 5 (ARPC5). Pigment Cell Melanoma Res 2022; 35:52-65. [PMID: 34468072 PMCID: PMC8958630 DOI: 10.1111/pcmr.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/31/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023]
Abstract
Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators that have been implicated in driving metastasis and progression in many cancers, mainly through their transcriptional regulation of downstream targets. Although YAP and TAZ have shown redundancy in many contexts, it is still unknown whether or not this is true in melanoma. Here, we show that while both YAP and TAZ are expressed in a panel of melanoma cell lines, depletion of YAP results in decreased cell numbers, focal adhesions, and the ability to invade matrigel. Using non-biased RNA-sequencing analysis, we find that melanoma cells depleted of YAP, TAZ, or YAP/TAZ exhibit drastically different transcriptomes. We further uncover the ARP2/3 subunit ARPC5 as a specific target of YAP but not TAZ and that ARPC5 is essential for YAP-dependent maintenance of melanoma cell focal adhesion numbers. Our findings suggest that in melanoma, YAP drives melanoma progression, survival, and invasion.
Collapse
Affiliation(s)
- Jason W. Lui
- Department of Dermatology, Boston University, Boston MA, 02118,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637,These authors contributed equally
| | - Stephen P.G. Moore
- Department of Dermatology, Boston University, Boston MA, 02118,These authors contributed equally
| | - Lee Huang
- Department of Dermatology, Boston University, Boston MA, 02118
| | - Kelsey Ogomori
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago Il, 60637
| | - Deborah Lang
- Department of Dermatology, Boston University, Boston MA, 02118
| |
Collapse
|
12
|
Chuang LSH, Ito Y. The Multiple Interactions of RUNX with the Hippo-YAP Pathway. Cells 2021; 10:2925. [PMID: 34831147 PMCID: PMC8616315 DOI: 10.3390/cells10112925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
The Hippo-YAP signaling pathway serves roles in cell proliferation, stem cell renewal/maintenance, differentiation and apoptosis. Many of its functions are central to early development, adult tissue repair/regeneration and not surprisingly, tumorigenesis and metastasis. The Hippo pathway represses the activity of YAP and paralog TAZ by modulating cell proliferation and promoting differentiation to maintain tissue homeostasis and proper organ size. Similarly, master regulators of development RUNX transcription factors have been shown to play critical roles in proliferation, differentiation, apoptosis and cell fate determination. In this review, we discuss the multiple interactions of RUNX with the Hippo-YAP pathway, their shared collaborators in Wnt, TGFβ, MYC and RB pathways, and their overlapping functions in development and tumorigenesis.
Collapse
Affiliation(s)
| | - Yoshiaki Ito
- NUS Centre for Cancer Research, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| |
Collapse
|
13
|
Xu Y, Wang X, Yu M, Ruan Y, Zhang J, Tian Y, Xiong J, Liu L, Cheng Y, Yang Y, Ren B, Chen G, Zhang Y, Zhao B, Wang J, Wang J, Jian R, Liu Y, Wang J. Identification, subcellular localization, and functional comparison of novel Yap splicing isoforms in mouse embryonic stem cells. IUBMB Life 2021; 73:1432-1445. [PMID: 34687583 DOI: 10.1002/iub.2571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022]
Abstract
Hippo signaling pathway is involved in many biological processes including the fate decision of embryonic stem cells (ESCs). Yes-associated protein (Yap) function as a key effector of Hippo pathway, but its role in ESCs is still controversial. So far, only two isoforms of Yap have been identified and they have both overlapping and distinct functions. Here, we identify six novel isoforms of mouse Yap, bringing the total number of isoforms to eight. According to the differences in the first exon, they are divided into two subtypes (a and b). Isoform-a and isoform-b exhibit different subcellular localizations. Moreover, isoform-a can fully reverse the impaired self-renewal phenotype induced by Yap knockout (KO). Upon overexpression, isoform-a moderately promotes mESCs self-renewal and markedly delays differentiation. On the contrary, no significant pro-self-renewal phenotype is observed when isoform-b overexpressed in wildtype (WT) mESCs or re-expressed in Yap KO cell lines. These finding not only help to clarify the role of Yap in mESCs, but also lay the foundation for advancing functional researches of Yap in other processes.
Collapse
Affiliation(s)
- Yixiao Xu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Pediatrics, The General Hospital of PLA Tibet Military Area Command, Lhasa, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Joint Surgery Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Guangxing Chen
- Joint Surgery Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yue Zhang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Binyu Zhao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Physiology, Army Medical University, Chongqing, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Institute of Immunology PLA and Department of Immunology, Army Medical University, Chongqing, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Cell Biology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiali Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Brewer CM, Nelson BR, Wakenight P, Collins SJ, Okamura DM, Dong XR, Mahoney WM, McKenna A, Shendure J, Timms A, Millen KJ, Majesky MW. Adaptations in Hippo-Yap signaling and myofibroblast fate underlie scar-free ear appendage wound healing in spiny mice. Dev Cell 2021; 56:2722-2740.e6. [PMID: 34610329 DOI: 10.1016/j.devcel.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Spiny mice (Acomys cahirinus) are terrestrial mammals that evolved unique scar-free regenerative wound-healing properties. Myofibroblasts (MFs) are the major scar-forming cell type in skin. We found that following traumatic injury to ear pinnae, MFs appeared rapidly in both Acomys and mouse yet persisted only in mouse. The timing of MF loss in Acomys correlated with wound closure, blastema differentiation, and nuclear localization of the Hippo pathway target protein Yap. Experiments in vitro revealed an accelerated PP2A-dependent dephosphorylation activity that maintained nuclear Yap in Acomys dermal fibroblasts (DFs) and was not detected in mouse or human DFs. Treatment of Acomys in vivo with the nuclear Yap-TEAD inhibitor verteporfin prolonged MF persistence and converted tissue regeneration to fibrosis. Forced Yap activity prevented and rescued TGF-β1-induced human MF formation in vitro. These results suggest that Acomys evolved modifications of Yap activity and MF fate important for scar-free regenerative wound healing in vivo.
Collapse
Affiliation(s)
- Chris M Brewer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah J Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Daryl M Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Xiu Rong Dong
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - William M Mahoney
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Aaron McKenna
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Andrew Timms
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kathleen J Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Mark W Majesky
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
15
|
Sun C, He B, Sun M, Lv X, Wang F, Chen J, Zhang J, Ye Z, Wen J, Liu P. Yes-Associated Protein in Atherosclerosis and Related Complications: A Potential Therapeutic Target That Requires Further Exploration. Front Cardiovasc Med 2021; 8:704208. [PMID: 34513949 PMCID: PMC8430249 DOI: 10.3389/fcvm.2021.704208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis and its complications diseases remain leading causes of cardiovascular morbidity and mortality, bringing a massive burden on public health worldwide. Atherosclerosis is recognized as chronic inflammation, and involves several highly correlated processes, including lipid metabolism dysfunction, endothelial cell dysfunction, inflammation, oxidative stress, vascular smooth muscle cell activation, platelet activation, thrombosis, altered matrix metabolism, and vascular remodeling. Within the past few decades, accumulating evidence has shown that the Yes-associated protein (YAP), the major effector of the Hippo pathway, can play a crucial role in pathogenesis and development of atherosclerosis. Activation of YAP-related pathways, which are induced by alerting flow pattern and matrix stiffness among others, can regulate processes including vascular endothelial cell dysfunction, monocyte infiltration, and smooth muscle cell migration, which contribute to atherosclerotic lesion formation. Further, YAP potentially modulates atherosclerotic complications such as vascular calcification and intraplaque hemorrhage, which require further investigation. Here, we summarized the relevant literature to outline current findings detailing the relationship between of YAP and atherosclerosis and highlight areas for future research.
Collapse
Affiliation(s)
- Congrui Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin He
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mingsheng Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Chen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
16
|
Wang X, Ruan Y, Zhang J, Tian Y, Liu L, Wang J, Liu G, Cheng Y, Xu Y, Yang Y, Yu M, Zhao B, Zhang Y, Wang J, Wang J, Wu W, He P, Xiao L, Xiong J, Jian R. Expression levels and activation status of Yap splicing isoforms determine self-renewal and differentiation potential of embryonic stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1178-1191. [PMID: 33938099 DOI: 10.1002/stem.3389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Yap is the key effector of Hippo signaling; however, its role in embryonic stem cells (ESCs) remains controversial. Here, we identify two Yap splicing isoforms (Yap472 and Yap488), which show equal expression levels but heterogeneous distribution in ESCs. Knockout (KO) of both isoforms reduces ESC self-renewal, accelerates pluripotency exit, but arrests terminal differentiation, while overexpression of each isoform leads to the reverse phenotype. The effect of both Yap isoforms on self-renewal is Teads-dependent and mediated by c-Myc. Nonetheless, different isoforms are found to affect overlapping yet distinct genes, and confer different developmental potential to Yap-KO cells, with Yap472 exerting a more pronounced biological effect and being more essential for neuroectoderm differentiation. Constitutive activation of Yaps, particularly Yap472, dramatically upregulates p53 and Cdx2, inducing trophectoderm trans-differentiation even under self-renewal conditions. These findings reveal the combined roles of different Yap splicing isoforms and mechanisms in regulating self-renewal efficiency and differentiation potential of ESCs.
Collapse
Affiliation(s)
- Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Department of Paediatrics, The General Hospital of PLA Tibet Military Area Command, Lhasa, People's Republic of China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Gaoke Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Southwest Hospital/Southwest Eye Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, People's Republic of China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Binyu Zhao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yue Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Southwest Hospital/Southwest Eye Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Ping He
- Cardiac Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Lan Xiao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, People's Republic of China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
17
|
Merritt N, Garcia K, Rajendran D, Lin ZY, Zhang X, Mitchell KA, Borcherding N, Fullenkamp C, Chimenti MS, Gingras AC, Harvey KF, Tanas MR. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 2021; 10:62857. [PMID: 33913810 PMCID: PMC8143797 DOI: 10.7554/elife.62857] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next-generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers. The proliferation of human cells is tightly regulated to ensure that enough cells are made to build and repair organs and tissues, while at the same time stopping cells from dividing uncontrollably and damaging the body. To get the right balance, cells rely on physical and chemical cues from their environment that trigger the biochemical signals that regulate two proteins called TAZ and YAP. These proteins control gene activity by regulating the rate at which genes are copied to produce proteins. If this process becomes dysregulated, cells can grow uncontrollably, causing cancer. In cancer cells, it is common to find TAZ and YAP fused to other proteins. In epithelioid hemangioendothelioma, a rare cancer that grows in the blood vessels, cancerous growth can be driven by a version of TAZ fused to the protein CAMTA1, or a version of YAP fused to the protein TFE3. While the role of TAZ and YAP in promoting gene activity is known, it is unclear how CAMTA1 and TFE3 contribute to cell growth becoming dysregulated. Merritt, Garcia et al. studied sarcoma cell lines to show that these two fusion proteins, TAZ-CAMTA1 and YAP-TFE3, change the pattern of gene activity seen in the cells compared to TAZ or YAP alone. An analysis of molecules that interact with the two fusion proteins identified a complex called ATAC as the cause of these changes. This complex adds chemical markers to DNA-packaging proteins, which control which genes are available for activation. The fusion proteins combine the ability of TAZ and YAP to control gene activity and the ability of CAMTA1 and TFE3 to make DNA more accessible, allowing the fusion proteins to drive uncontrolled cancerous growth. Similar TAZ and YAP fusion proteins have been found in other cancers, which can activate genes and potentially alter DNA packaging. Targeting drug development efforts at the proteins that complex with TAZ and YAP fusion proteins may lead to new therapies.
Collapse
Affiliation(s)
- Nicole Merritt
- Department of Pathology, University of Iowa, Iowa City, United States
| | - Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | | | - Katrina A Mitchell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, United States
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States.,Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States
| |
Collapse
|
18
|
Vrbský J, Vinarský V, Perestrelo AR, De La Cruz JO, Martino F, Pompeiano A, Izzi V, Hlinomaz O, Rotrekl V, Sudol M, Pagliari S, Forte G. Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics 2021; 113:1349-1365. [PMID: 33713822 DOI: 10.1016/j.ygeno.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional co-activator downstream of Hippo pathway. The pathway exerts crucial roles in organogenesis and its dysregulation is associated with the spreading of different cancer types. YAP1 gene encodes for multiple protein isoforms, whose specific functions are not well defined. We demonstrate the splicing of isoform-specific mRNAs is controlled in a stage- and tissue-specific fashion. We designed expression vectors encoding for the most-represented isoforms of YAP1 with either one or two WW domains and studied their specific signaling activities in YAP1 knock-out cell lines. YAP1 isoforms display both common and unique functions and activate distinct transcriptional programs, as the result of their unique protein interactomes. By generating TEAD-based transcriptional reporter cell lines, we demonstrate individual YAP1 isoforms display unique effects on cell proliferation and differentiation. Finally, we illustrate the complexity of the regulation of Hippo-YAP1 effector in physiological and in pathological conditions of the heart.
Collapse
Affiliation(s)
- Jan Vrbský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic.
| | - Vladimir Vinarský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jorge Oliver De La Cruz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Fabiana Martino
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic; Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Valerio Izzi
- University of Oulu, FI-90014 Oulu, Finland; Finnish Cancer Institute, 00130 Helsinki, Finland
| | - Ota Hlinomaz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Marius Sudol
- Department of Physiology, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, 117597, Singapore; Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, New York 10029, United States of America
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
19
|
Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell 2021; 81:1216-1230.e9. [PMID: 33606996 DOI: 10.1016/j.molcel.2021.01.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Interferon-γ (IFN-γ)-mediated adaptive resistance is one major barrier to improving immunotherapy in solid tumors. However, the mechanisms are not completely understood. Here, we report that IFN-γ promotes nuclear translocation and phase separation of YAP after anti-PD-1 therapy in tumor cells. Hydrophobic interactions of the YAP coiled-coil domain mediate droplet initiation, and weak interactions of the intrinsically disordered region in the C terminus promote droplet formation. YAP partitions with the transcription factor TEAD4, the histone acetyltransferase EP300, and Mediator1 and forms transcriptional hubs for maximizing target gene transcriptions, independent of the canonical STAT1-IRF1 transcription program. Disruption of YAP phase separation reduced tumor growth, enhanced immune response, and sensitized tumor cells to anti-PD-1 therapy. YAP activity is negatively correlated with patient outcome. Our study indicates that YAP mediates the IFN-γ pro-tumor effect through its nuclear phase separation and suggests that YAP can be used as a predictive biomarker and target of anti-PD-1 combination therapy.
Collapse
|
20
|
Feltri ML, Weaver MR, Belin S, Poitelon Y. The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. J Peripher Nerv Syst 2021; 26:4-16. [PMID: 33449435 DOI: 10.1111/jns.12431] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Initially identified in Drosophila, the Hippo signaling pathway regulates how cells respond to their environment by controlling proliferation, migration and differentiation. Many recent studies have focused on characterizing Hippo pathway function and regulation in mammalian cells. Here, we present a brief overview of the major components of the Hippo pathway, as well as their regulation and function. We comprehensively review the studies that have contributed to our understanding of the Hippo pathway in the function of the peripheral nervous system and in peripheral nerve diseases. Finally, we discuss innovative approaches that aim to modulate Hippo pathway components in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
21
|
Lee Y, Finch-Edmondson M, Cognart H, Zhu B, Song H, Low BC, Sudol M. Common and Unique Transcription Signatures of YAP and TAZ in Gastric Cancer Cells. Cancers (Basel) 2020; 12:cancers12123667. [PMID: 33297432 PMCID: PMC7762230 DOI: 10.3390/cancers12123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary YAP and TAZ are cancer-causing genes that encode proteins with similar, but not identical functions. YAP and TAZ function in diverse biological processes including cell proliferation and organ size control. Because of the high similarity in functions between YAP and TAZ, they have often been described as one entity: YAP/TAZ. However, new lines of evidence started to suggest that YAP and TAZ have unique functions as well. To understand the YAP- and TAZ-specific functions, we identified genes that are regulated solely by YAP or by TAZ. Our study revealed that YAP plays a distinct role in cell-substrate junctions, which are critical for tumour cell growth, migration, and metastasis, and both YAP and TAZ are involved in regulating blood platelets and lipid metabolism in gastric cancer cells. Abstract YAP and its paralog TAZ are the nuclear effectors of the Hippo tumour-suppressor pathway, and function as transcriptional co-activators to control gene expression in response to mechanical cues. To identify both common and unique transcriptional targets of YAP and TAZ in gastric cancer cells, we carried out RNA-sequencing analysis of overexpressed YAP or TAZ in the corresponding paralogous gene-knockouts (KOs), TAZ KO or YAP KO, respectively. Gene Ontology (GO) analysis of the YAP/TAZ-transcriptional targets revealed activation of genes involved in platelet biology and lipoprotein particle formation as targets that are common for both YAP and TAZ. However, the GO terms for cell-substrate junction were a unique function of YAP. Further, we found that YAP was indispensable for the gastric cancer cells to re-establish cell-substrate junctions on a rigid surface following prolonged culture on a soft substrate. Collectively, our study not only identifies common and unique transcriptional signatures of YAP and TAZ in gastric cancer cells but also reveals a dominant role for YAP over TAZ in the control of cell-substrate adhesion.
Collapse
Affiliation(s)
- Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Correspondence: (Y.L.); (M.F.-E.)
| | - Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Correspondence: (Y.L.); (M.F.-E.)
| | - Hamizah Cognart
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
| | - Bowen Zhu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore;
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore;
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
22
|
Zhao W, Wang M, Cai M, Zhang C, Qiu Y, Wang X, Zhang T, Zhou H, Wang J, Zhao W, Shao R. Transcriptional co-activators YAP/TAZ: Potential therapeutic targets for metastatic breast cancer. Biomed Pharmacother 2020; 133:110956. [PMID: 33189066 DOI: 10.1016/j.biopha.2020.110956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. Although routine and targeted therapies have improved the survival rate, there are still considerable challenges in the treatment of breast cancer. Metastasis is the leading cause of death in patients diagnosed with breast cancer. Yes-associated protein (YAP) and/or PDZ binding motif (TAZ) are usually abnormally activated in breast cancer leading to a variety of effects on tumour promotion, such as epithelial-mesenchymal transition, cancer stem cell production and drug-resistance. The abnormal activation of YAP/TAZ can affect metastasis-related processes and promote cancer progression and metastasis by interacting with some metastasis-related factors and pathways. In this article, we summarise the evidence that YAP/TAZ regulates breast cancer metastasis, its post-translational modification mechanisms, and the latest advances in the treatment of YAP/TAZ-related breast cancer metastasis, besides providing a new strategy of YAP/TAZ-based treatment of human breast cancer.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Conghui Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Yuhan Qiu
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiaowei Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Tianshu Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Huimin Zhou
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Junxia Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
23
|
Mesrouze Y, Bokhovchuk F, Meyerhofer M, Zimmermann C, Fontana P, Erdmann D, Chène P. Study of the TEAD-binding domain of the YAP protein from animal species. Protein Sci 2020; 30:339-349. [PMID: 33146905 PMCID: PMC7784741 DOI: 10.1002/pro.3988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
The Hippo signaling pathway, which plays a central role in the control of organ size in animals, is well conserved in metazoans. The most downstream elements of this pathway are the TEAD transcription factors that are regulated by their association with the transcriptional coactivator YAP. Therefore, the creation of the binding interface that ensures the formation of the YAP:TEAD complex is a critical molecular recognition event essential for the development/survival of many living organisms. In this report, using the available structural information on the YAP:TEAD complex, we study the TEAD‐binding domain of YAP from different animal species. This analysis of more than 400 amino acid sequences reveals that the residues from YAP involved in the formation of the two main contact regions with TEAD are very well conserved. Therefore, the binding interface between YAP and TEAD, as found in humans, probably appeared at an early evolutionary stage in metazoans. We find that, in contrast to most other animal species, several Actinopterygii species possess YAP variants with a different TEAD‐binding domain. However, these variants bind to TEAD with a similar affinity. Our studies show that the protein identified as a YAP homolog in Caenorhabditis elegans does not contain the TEAD‐binding domain found in YAP of other metazoans. Finally, we do not identify in non‐metazoan species, amino acid sequences containing both a TEAD‐binding domain, as in metazoan YAP, and WW domain(s).
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fedir Bokhovchuk
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Zimmermann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrizia Fontana
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
24
|
Xie W, Xiao W, Tang K, Zhang L, Li Y. Yes-Associated Protein 1: Role and Treatment Prospects in Orthopedic Degenerative Diseases. Front Cell Dev Biol 2020; 8:573455. [PMID: 33178690 PMCID: PMC7593614 DOI: 10.3389/fcell.2020.573455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023] Open
Abstract
The Hippo/yes-associated protein 1 signaling pathway is an evolutionarily conserved signaling pathway. This signaling pathway is primarily involved in the regulation of stem cell self-renewal, organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. It plays an important role in embryonic development and tissue organ formation. Yes-associated protein 1 (YAP1) is a key transcription factor in the Hippo signaling pathway and is negatively regulated by this pathway. Changes in YAP1 expression levels affect the occurrence and development of a variety of tumors, but the specific mechanism associated with this phenomenon has not been thoroughly studied. Recently, several studies have described the role of YAP1 in osteoarthritis (OA). Indeed, YAP1 is involved in orthopedic degenerative diseases such as osteoporosis (OP) in addition to OA. In this review, we will summarize the significance of YAP1 in orthopedic degenerative diseases and discuss the potential of the targeted modulation of YAP1 for the treatment of these diseases.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ Are Not Identical Twins. Trends Biochem Sci 2020; 46:154-168. [PMID: 32981815 DOI: 10.1016/j.tibs.2020.08.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Yes-associated protein (YAP) and TAZ (WW domain containing transcription regulator 1, or WWTR1) are paralog transcriptional regulators, able to integrate mechanical, metabolic, and signaling inputs to regulate cell growth and differentiation during development and neoplastic progression. YAP and TAZ hold common and distinctive structural features, reflecting only partially overlapping regulatory mechanisms. The two paralogs interact with both shared and specific transcriptional partners and control nonidentical transcriptional programs. Although most of the available literature considers YAP and TAZ as functionally redundant, they play distinctive or even contrasting roles in different contexts. The issue of their divergent roles is currently underexplored but holds fundamental implications for mechanistic and translational studies. Here, we aim to review the available literature on the biological functions of YAP and TAZ, highlighting differential roles that distinguish these two paralogues.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
26
|
Ben C, Wu X, Takahashi-Kanemitsu A, Knight CT, Hayashi T, Hatakeyama M. Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1. J Biol Chem 2020; 295:13965-13980. [PMID: 32763976 DOI: 10.1074/jbc.ra120.013820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to acting as a transcriptional co-activator, YAP1 directly mediates translocalization of the pro-oncogenic phosphatase SHP2 from the cytoplasm to nucleus. In the cytoplasm, SHP2 potentiates RAS-ERK signaling, which promotes cell proliferation and cell motility, whereas in the nucleus, it mediates gene regulation. As a result, elucidating the details of SHP2 trafficking is important for understanding its biological roles, including in cancer. YAP1 comprises multiple splicing isoforms defined in part by the presence (as in YAP1-2γ) or absence (as in YAP1-2α) of a γ-segment encoded by exon 6 that disrupts a critical leucine zipper. Although the disruptive segment is known to reduce co-activator function, it is unclear how this element impacts the physical and functional relationships between YAP1 and SHP2. To explore this question, we first demonstrated that YAP1-2γ cannot bind SHP2. Nevertheless, YAP1-2γ exhibits stronger mitogenic and motogenic activities than does YAP1-2α because the YAP1-2α-mediated delivery of SHP2 to the nucleus weakens cytoplasmic RAS-ERK signaling. However, YAP1-2γ confers less in vivo tumorigenicity than does YA1-2α by recruiting tumor-inhibitory macrophages. Mechanistically, YAP1-2γ transactivates and the YAP1-2α-SHP2 complex transrepresses the monocyte/macrophage chemoattractant CCL2 Thus, cell-intrinsic and cell-extrinsic pro-oncogenic YAP1 activities are inversely regulated by alternative splicing of exon 6. Notably, oncogenic KRAS down-regulates the SRSF3 splicing factor that prevents exon 6 skipping, thereby creating a YAP1-2α-dominant situation that supports a "cold" immune microenvironment.
Collapse
Affiliation(s)
- Chi Ben
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Xiaojing Wu
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Guo Q, Quan M, Dong J, Bai J, Wang J, Han R, Wang W, Cai Y, Lv YQ, Chen Q, Xu H, Lyu HD, Deng L, Zhou D, Xiao X, De Langhe S, Billadeau DD, Lou Z, Zhang JS. The WW domains dictate isoform-specific regulation of YAP1 stability and pancreatic cancer cell malignancy. Theranostics 2020; 10:4422-4436. [PMID: 32292505 PMCID: PMC7150473 DOI: 10.7150/thno.42795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
YAP1 is a key mediator of the Hippo pathway capable of exerting a profound effect on organ size as well as tumorigenesis. Alternative mRNA splicing of human YAP1 results in at least 8 protein isoforms that differ within the 2nd WW motif and the transcriptional activation domain. Methods: To investigate the isoform-specific differences in their mRNA expression, transcriptional activity and tumor-promoting function, we cloned cDNA encoding all of the eight YAP1 protein isoforms. Then, we examined their mRNA expression, subcellular localization, transcriptional regulation properties, interactions with key regulatory partners, and protein stability in response to changes in cell density, as well as their effects on pancreatic cancer cell malignancy both in vitro and in vivo. Results: Multiple YAP1 mRNA isoforms are expressed in commonly used pancreatic cancer lines as well as human pancreatic cancer PDX lines. Based on the analysis of heterologous reporter and endogenous target genes, all YAP1 isoforms are capable of activating transcription, albeit to a different extent. Importantly, we unveiled a marked discrepancy between the mRNA and protein expression levels of the YAP1-1 and YAP1-2 isoforms. We further discovered that the YAP1-2 isoform, which contains two tandem WW motifs, is less stable at the protein level, particularly at high cell densities. Mechanistically, we found that the presence of the 2nd WW motif in YAP1-2 facilitates the de novo formation of the YAP1-2/AMOT/LATS1 complex and contributes to a stronger binding of YAP1-2 to LATS1 and subsequently increased YAP1-2 ubiquitination and degradation by β-TRCP. Conclusion: Our data reveals a potent effect of YAP1-1 on pancreatic cancer malignancy in vitro and in vivo and provides novel mechanistic insight into isoform-specific and cell density-dependent regulation of YAP1 stability, as well as its impact on cancer malignancy.
Collapse
Affiliation(s)
- Qiang Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meiyu Quan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinglai Dong
- Center for Precision Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jing Bai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Wang
- Center for Precision Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yaxin Cai
- Center for Precision Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu-Qing Lv
- Center for Precision Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qianjie Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huijing Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Han-Deng Lyu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liancheng Deng
- Center for Precision Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Depu Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xueyuan Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Stijn De Langhe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, 35294-2182 AL, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology Research, and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Center for Precision Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Division of Oncology Research, and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
28
|
Santos-de-Frutos K, Segrelles C, Lorz C. Hippo Pathway and YAP Signaling Alterations in Squamous Cancer of the Head and Neck. J Clin Med 2019; 8:jcm8122131. [PMID: 31817001 PMCID: PMC6947155 DOI: 10.3390/jcm8122131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer affects the upper aerodigestive tract and is the sixth leading cancer worldwide by incidence and the seventh by cause of death. Despite significant advances in surgery and chemotherapy, molecularly targeted therapeutic options for this type of cancer are scarce and long term survival rates remain low. Recently, comprehensive genomic studies have highlighted the most commonly altered genes and signaling pathways in this cancer. The Hippo-YAP pathway has been identified as a key oncogenic pathway in multiple tumors. Expression of genes controlled by the Hippo downstream transcriptional coactivators YAP (Yes-associated protein 1) and TAZ (WWTR1, WW domain containing transcription regulator 1) is widely deregulated in human cancer including head and neck squamous cell carcinoma (HNSCC). Interestingly, YAP/TAZ signaling might not be as essential for the normal homeostasis of adult tissues as for oncogenic growth, altogether making the pathway an amenable therapeutic target in cancer. Recent advances in the role of Hippo-YAP pathway in HNSCC have provided evidence that genetic alterations frequent in this type of cancer such as PIK3CA (phosphatidylinositide 3-kinase catalytic subunit alpha) overexpression or FAT1 (FAT atypical cadherin 1) functional loss can result in YAP activation. We discuss current therapeutic options targeting this pathway which are currently in use for other tumor types.
Collapse
Affiliation(s)
- Karla Santos-de-Frutos
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-4962-521; Fax: +34-91-3466-484
| |
Collapse
|
29
|
Han S, Cui Y, Helbing DL. Differential effects of hydrogen peroxide (H2O2) treatment on epitope recognition in western blotting. Anal Biochem 2019; 586:113417. [DOI: 10.1016/j.ab.2019.113417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/16/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
|
30
|
Yan F, Qian M, He Q, Zhu H, Yang B. The posttranslational modifications of Hippo-YAP pathway in cancer. Biochim Biophys Acta Gen Subj 2019; 1864:129397. [PMID: 31306710 DOI: 10.1016/j.bbagen.2019.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Yes-associated protein (YAP) is a key effector of the Hippo pathway and is frequently dysregulated in aggressive human cancers. Aberrant YAP activation has emerged as an important driver of tumorigenesis, chemoresistance and metastasis. Since posttranslational modifications (PTMs) are pivotal modifiers that determine protein activation or subcellular localization, the malfunction of YAP due to dysregulated PTMs has been linked to various cancers. Collectively, although YAP has long been considered an "undruggable" transcription cofactor, its PTMs may be its "Achilles' heel". To provide theoretical support for developing small molecule inhibitors based on PTMs, in this review article, we summarize the current understanding of the impact of PTMs in regulating the Hippo-YAP pathway and further discuss potential therapeutic intervention. SCOPE OF REVIEW In our review, we summarize the known posttranslational modifications (PTMs) of YAP that dictate its protein stability, transcriptional activity and subcellular localization at different stages. Here, we clearly summarize the specific enzymes and sites involved in YAP PTMs and place additional focus on the consequences of PTM-modulated YAP activity and translocation. MAIN CONCLUSION PTMs of YAP play fundamental roles in controlling the protein abundance and function. Therefore, interfering with PTMs of YAP may contribute to solving the "undruggable" problem in YAP inhibition, thus providing new approaches for YAP-based cancer therapy. GENERAL SIGNIFICANCE Future studies that target corresponding PTM-related kinases/enzymes will provide new strategies for cancer therapy, particularly in tumors with YAP dysregulation.
Collapse
Affiliation(s)
- Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Zaltsman Y, Masuko S, Bensen JJ, Kiessling LL. Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports 2019; 12:869-877. [PMID: 31006631 PMCID: PMC6523060 DOI: 10.1016/j.stemcr.2019.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/02/2022] Open
Abstract
Leveraging the extraordinary potential of human pluripotent stem cells (hPSCs) requires an understanding of the mechanisms underlying cell-fate decisions. Substrate elasticity can induce differentiation by signaling through the transcriptional coactivator Yes-associated protein (YAP). Cells cultured on surfaces mimicking brain elasticity exclude YAP from their nuclei and differentiate to neurons. How YAP localization is controlled during neural differentiation has been unclear. We employed CRISPR/Cas9 to tag endogenous YAP in hPSCs and used this fusion protein to identify YAP's interaction partners. This engineered cell line revealed that neural differentiation promotes a change in YAP interactors, including a dramatic increase in angiomotin (AMOT) interaction with YAP. AMOT regulates YAP localization during differentiation. AMOT expression increases during neural differentiation and leads to YAP nuclear exclusion. Our findings that AMOT-dependent regulation of YAP helps direct hPSC fate provide insight into the molecular mechanisms by which the microenvironment can induce neural differentiation. Endogenous tagging reveals YAP interactors in hPSCs AMOT-YAP complex concentration increases during neural differentiation AMOT regulates YAP localization in hPSCs hPSC cytoskeleton influences YAP localization via AMOT
Collapse
Affiliation(s)
- Yefim Zaltsman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sayaka Masuko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Bensen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura L Kiessling
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
32
|
Callus BA, Finch-Edmondson ML, Fletcher S, Wilton SD. YAPping about and not forgetting TAZ. FEBS Lett 2019; 593:253-276. [PMID: 30570758 DOI: 10.1002/1873-3468.13318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
The Hippo pathway has emerged as a major eukaryotic signalling pathway and is increasingly the subject of intense interest, as are the key effectors of canonical Hippo signalling, YES-associated protein (YAP) and TAZ. The Hippo pathway has key roles in diverse biological processes, including network signalling regulation, development, organ growth, tissue repair and regeneration, cancer, stem cell regulation and mechanotransduction. YAP and TAZ are multidomain proteins and function as transcriptional coactivators of key genes to evoke their biological effects. YAP and TAZ interact with numerous partners and their activities are controlled by a complex set of processes. This review provides an overview of Hippo signalling and its role in growth. In particular, the functional domains of YAP and TAZ and the complex mechanisms that regulate their protein stability and activity are discussed. Notably, the similarities and key differences are highlighted between the two paralogues including which partner proteins interact with which functional domains to regulate their activity.
Collapse
Affiliation(s)
| | - Megan L Finch-Edmondson
- Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, University of Sydney Medical School, Australia.,Cerebral Palsy Alliance Research Institute, University of Sydney, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Australia.,Perron Institute for Neurological and Translational Research, Nedlands, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Australia.,Perron Institute for Neurological and Translational Research, Nedlands, Australia
| |
Collapse
|
33
|
Jamous A, Salah Z. WW-Domain Containing Protein Roles in Breast Tumorigenesis. Front Oncol 2018; 8:580. [PMID: 30619734 PMCID: PMC6300493 DOI: 10.3389/fonc.2018.00580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are key factors in executing protein function. These interactions are mediated through different protein domains or modules. An important domain found in many different types of proteins is WW domain. WW domain-containing proteins were shown to be involved in many human diseases including cancer. Some of these proteins function as either tumor suppressor genes or oncogenes, while others show dual identity. Some of these proteins act on their own and alter the function(s) of specific or multiple proteins implicated in cancer, others interact with their partners to compose WW domain modular pathway. In this review, we discuss the role of WW domain-containing proteins in breast tumorigenesis. We give examples of specific WW domain containing proteins that play roles in breast tumorigenesis and explain the mechanisms through which these proteins lead to breast cancer initiation and progression. We discuss also the possibility of using these proteins as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Abrar Jamous
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| | - Zaidoun Salah
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| |
Collapse
|
34
|
Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration. Nat Struct Mol Biol 2018; 25:928-939. [PMID: 30250226 PMCID: PMC6173981 DOI: 10.1038/s41594-018-0129-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
During liver regeneration, most new hepatocytes arise via self-duplication; yet, the underlying mechanisms that drive hepatocyte proliferation following injury remain poorly defined. By combining high-resolution transcriptome- and polysome-profiling of hepatocytes purified from quiescent and toxin-injured mouse livers, we uncover pervasive alterations in the mRNA translation of metabolic and RNA processing factors, which modulate the protein levels of a set of splicing regulators. Specifically, downregulation of ESRP2 activates a neonatal alternative splicing program that rewires the Hippo signaling pathway in regenerating hepatocytes. We show that production of neonatal splice isoforms attenuates Hippo signaling, enables greater transcriptional activation of downstream target genes, and facilitates liver regeneration. We further demonstrate that ESRP2 deletion in mice causes excessive hepatocyte proliferation upon injury, whereas forced expression of ESRP2 inhibits proliferation by suppressing the expression of neonatal Hippo pathway isoforms. Thus, our findings reveal an ESRP2-Hippo pathway-alternative splicing axis that supports regeneration following chronic liver injury.
Collapse
|
35
|
Segrelles C, Paramio JM, Lorz C. The transcriptional co-activator YAP: A new player in head and neck cancer. Oral Oncol 2018; 86:25-32. [PMID: 30409308 DOI: 10.1016/j.oraloncology.2018.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
The Hippo-YAP (Yes-associated protein) pathway is a key regulator of tissue growth, organ size and stem cell function. More recently, a fundamental role for this pathway has emerged in stem cell function and tumorigenesis. Activation of the transcriptional co-activator YAP promotes cell-contact independent proliferation, epithelial to mesenchymal transition (EMT), cancer stem cell features and drug resistance. In this review, we describe the main components of the pathway, the microenvironment and the cell-intrinsic cues governing its activation, the downstream players of the pathway and the biological implications of their activation in the context of cancer. We will focus on the existing knowledge of this pathway in head and neck squamous carcinoma (HNSCC), its clinical value in this type of cancer as a marker of poor prognosis and resistance to therapy, as well as the most encouraging therapeutic strategies targeting the pathway.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
36
|
Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms. Clin Transl Med 2018; 7:23. [PMID: 30101371 PMCID: PMC6087706 DOI: 10.1186/s40169-018-0202-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Yes-associated protein (YAP) and its paralog WW domain containing transcription regulator 1 (TAZ) are important regulators of multiple cellular functions such as proliferation, differentiation, and survival. On the tissue level, YAP/TAZ are essential for embryonic development, organ size control and regeneration, while their deregulation leads to carcinogenesis or other diseases. As an underlying principle for YAP/TAZ-mediated regulation of biological functions, a growing body of research reveals that YAP/TAZ play a central role in delivering information of mechanical environments surrounding cells to the nucleus transcriptional machinery. In this review, we discuss mechanical cue-dependent regulatory mechanisms for YAP/TAZ functions, as well as their clinical significance in cancer progression and treatment.
Collapse
|
37
|
Zhu JY, Lin S, Ye J. YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol 2018; 234:246-258. [PMID: 30094836 DOI: 10.1002/jcp.26870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators established as a nexus in numerous signaling pathways, notably in Hippo signaling. Previous research revealed multifarious function of YAP and TAZ in oncology and cardiovasology. Recently, the focus has been laid on their pivotal role in eye morphogenesis and homeostasis. In this review, we synthesize advances of YAP and TAZ function during eye development in different model organisms, introduce their function in different ocular tissues and eye diseases, and highlight the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
38
|
Ege N, Dowbaj AM, Jiang M, Howell M, Hooper S, Foster C, Jenkins RP, Sahai E. Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export. Cell Syst 2018; 6:692-708.e13. [PMID: 29909276 PMCID: PMC6035388 DOI: 10.1016/j.cels.2018.05.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
The transcriptional regulator YAP1 is critical for the pathological activation of fibroblasts. In normal fibroblasts, YAP1 is located in the cytoplasm, while in activated cancer-associated fibroblasts, it is nuclear and promotes the expression of genes required for pro-tumorigenic functions. Here, we investigate the dynamics of YAP1 shuttling in normal and activated fibroblasts, using EYFP-YAP1, quantitative photobleaching methods, and mathematical modeling. Imaging of migrating fibroblasts reveals the tight temporal coupling of cell shape change and altered YAP1 localization. Both 14-3-3 and TEAD binding modulate YAP1 shuttling, but neither affects nuclear import. Instead, we find that YAP1 nuclear accumulation in activated fibroblasts results from Src and actomyosin-dependent suppression of phosphorylated YAP1 export. Finally, we show that nuclear-constrained YAP1, upon XPO1 depletion, remains sensitive to blockade of actomyosin function. Together, these data place nuclear export at the center of YAP1 regulation and indicate that the cytoskeleton can regulate YAP1 within the nucleus.
Collapse
Affiliation(s)
- Nil Ege
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cell and Developmental Biology Department, University College London, London WC1E 6BT, UK
| | - Anna M Dowbaj
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ming Jiang
- High Throughput Screening, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Charles Foster
- Transcription Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
39
|
Liu H, Du S, Lei T, Wang H, He X, Tong R, Wang Y. Multifaceted regulation and functions of YAP/TAZ in tumors (Review). Oncol Rep 2018; 40:16-28. [PMID: 29749524 PMCID: PMC6059739 DOI: 10.3892/or.2018.6423] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway, initially identified through screenings for mutant tumor suppressors in Drosophila, is an evolutionarily conserved signaling pathway that controls organ size by regulating cell proliferation and apoptosis. Abnormal regulation of the Hippo pathway may lead to cancer in mammals. As the major downstream effectors of the Hippo pathway, unphosphorylated Yes-associated protein (YAP) and its homolog transcriptional co-activator TAZ (also called WWTR1) (hereafter called YAP/TAZ) are translocated into the nucleus. In the nucleus, in order to induce target gene expression, YAP/TAZ bind to the TEA domain (TEAD) proteins, and this binding subsequently promotes cell proliferation and inhibits apoptosis. In contrast, as key regulators of tumorigenesis and development, YAP/TAZ are phosphorylated and regulated by multiple molecules and pathways including Lats1/2 of Hippo, Wnt and G-protein-coupled receptor (GPCR) signaling, with a regulatory role in cell physiology, tumor cell development and pathological abnormalities simultaneously. In particular, the crucial role of YAP/TAZ in tumors ensures their potential as targets in designing anticancer drugs. To date, mounting research has elucidated the suppression of YAP/TAZ via effective inhibitors, which significantly highlights their application in cancer treatment. In the present review, we focus on the functions of YAP/TAZ in cancer, discuss their potential as new therapeutic target for tumor treatment, and provide valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Huirong Liu
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Suya Du
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Hailian Wang
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xia He
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
40
|
Holden JK, Cunningham CN. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers (Basel) 2018; 10:cancers10030081. [PMID: 29558384 PMCID: PMC5876656 DOI: 10.3390/cancers10030081] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway is a critical transcriptional signaling pathway that regulates cell growth, proliferation and organ development. The transcriptional enhanced associate domain (TEAD) protein family consists of four paralogous transcription factors that function to modulate gene expression in response to the Hippo signaling pathway. Transcriptional activation of these proteins occurs upon binding to the co-activator YAP/TAZ whose entry into the nucleus is regulated by Lats1/2 kinase. In recent years, it has become apparent that the dysregulation and/or overexpression of Hippo pathway effectors is implicated in a wide range of cancers, including prostate, gastric and liver cancer. A large body of work has been dedicated to understanding the therapeutic potential of modulating the phosphorylation and localization of YAP/TAZ. However, YAP/TAZ are considered to be natively unfolded and may be intractable as drug targets. Therefore, TEAD proteins present themselves as an excellent therapeutic target for intervention of the Hippo pathway. This review summarizes the functional role of TEAD proteins in cancer and assesses the therapeutic potential of antagonizing TEAD function in vivo.
Collapse
Affiliation(s)
- Jeffrey K Holden
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Christian N Cunningham
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
41
|
Abstract
Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets.
Collapse
|
42
|
BmYki is transcribed into four functional splicing isoforms in the silk glands of the silkworm Bombyx mori. Gene 2018; 646:39-46. [DOI: 10.1016/j.gene.2017.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
|
43
|
Khanal P, Jia Z, Yang X. Cysteine residues are essential for dimerization of Hippo pathway components YAP2L and TAZ. Sci Rep 2018; 8:3485. [PMID: 29472569 PMCID: PMC5823869 DOI: 10.1038/s41598-018-21828-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 12/24/2022] Open
Abstract
Hippo signalling pathway is an emerging signalling pathway that plays important roles in organ size control, tumorigenesis, metastasis, stress response, apoptosis, stem cell differentiation and renewal during development and tissue homeostasis. Recent studies reported that human serine/threonine protein kinase, Mst1, a core component of the Hippo pathway can be activated through formation of homodimer. However, it is still unclear whether or not other components of the Hippo pathway are also regulated through dimerization. Here we provide the first evidence that Hippo components and oncoprotein YAP2L and TAZ can form homodimer in vitro and in vivo by forming disulphide bond through cysteine residue(s). We have also shown that the homodimers of YAP2L/TAZ are more stable and showed more oncogenic behaviour than their corresponding monomers as revealed by colony formation and cell transformation assay. Since cysteine post-translational regulation plays important roles in redox signalling, tumorigenesis and drug resistance, further studies on the functional effect of this dimerization through post-translational modulation of cysteine residues in YAP2L/TAZ will provide a significant contribution to our understanding of the roles of YAP2L/TAZ in cancer development and therapy.
Collapse
Affiliation(s)
- Prem Khanal
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.
| |
Collapse
|
44
|
Verma A, Jing-Song F, Finch-Edmondson ML, Velazquez-Campoy A, Balasegaran S, Sudol M, Sivaraman J. Biophysical studies and NMR structure of YAP2 WW domain - LATS1 PPxY motif complexes reveal the basis of their interaction. Oncotarget 2018; 9:8068-8080. [PMID: 29487715 PMCID: PMC5814282 DOI: 10.18632/oncotarget.23909] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/05/2017] [Indexed: 11/30/2022] Open
Abstract
YES-associated protein (YAP) is a major effector protein of the Hippo tumor suppressor pathway, and is phosphorylated by the serine/threonine kinase LATS. Their binding is mediated by the interaction between WW domains of YAP and PPxY motifs of LATS. Their isoforms, YAP2 and LATS1 contain two WW domains and two PPxY motifs respectively. Here, we report the study of the interaction of these domains both in vitro and in human cell lines, to better understand the mechanism of their binding. We show that there is a reciprocal binding preference of YAP2-WW1 with LATS1-PPxY2, and YAP2-WW2 with LATS1-PPxY1. We solved the NMR structures of these complexes and identified several conserved residues that play a critical role in binding. We further created a YAP2 mutant by swapping the WW domains, and found that YAP2 phosphorylation at S127 by LATS1 is not affected by the spatial configuration of its WW domains. This is likely because the region between the PPxY motifs of LATS1 is unstructured, even upon binding with its partner. Based on our observations, we propose possible models for the interaction between YAP2 and LATS1.
Collapse
Affiliation(s)
- Apoorva Verma
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fan Jing-Song
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Spain, Department of Biochemistry and Molecular and Cellular Biology, Universidad de Zaragoza, Fundacion ARAID, Gobierno de Aragon, Spain, Aragon Health Research Institute (IIS Aragon), Universidad de Zaragoza, Zaragoza, Spain
| | - Shanker Balasegaran
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore
| | - Jayaraman Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
45
|
Zhang X, Sun F, Qiao Y, Zheng W, Liu Y, Chen Y, Wu Q, Liu X, Zhu G, Chen Y, Yu Y, Pan Q, Wang J. TFCP2 Is Required for YAP-Dependent Transcription to Stimulate Liver Malignancy. Cell Rep 2017; 21:1227-1239. [DOI: 10.1016/j.celrep.2017.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
|
46
|
The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun 2017; 8:15280. [PMID: 28474680 PMCID: PMC5424161 DOI: 10.1038/ncomms15280] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
O-GlcNAcylation has been implicated in the tumorigenesis of various tissue origins, but its function in liver tumorigenesis is not clear. Here, we demonstrate that O-GlcNAcylation can enhance the expression, stability and function of Yes-associated protein (YAP), the downstream transcriptional regulator of the Hippo pathway and a potent oncogenic factor in liver cancer. O-GlcNAcylation induces transformative phenotypes of liver cancer cells in a YAP-dependent manner. An O-GlcNAc site of YAP was identified at Thr241, and mutating this site decreased the O-GlcNAcylation, stability, and pro-tumorigenic capacities of YAP, while increasing YAP phosphorylation. Importantly, we found via in vitro cell-based and in vivo mouse model experiments that O-GlcNAcylation of YAP was required for high-glucose-induced liver tumorigenesis. Interestingly, a positive feedback between YAP and global cellular O-GlcNAcylation is also uncovered. We conclude that YAP O-GlcNAcylation is a potential therapeutic intervention point for treating liver cancer associated with high blood glucose levels and possibly diabetes. Yap is a transcriptional factor involved in tumorigenesis. Here the authors show that a previously unknown post-translational modification of Yap, O-GlcNAcylation, increases its transcriptional activity and is required for high glucose-induced liver cancer development.
Collapse
|
47
|
González-Mariscal L, Miranda J, Raya-Sandino A, Domínguez-Calderón A, Cuellar-Perez F. ZO-2, a tight junction protein involved in gene expression, proliferation, apoptosis, and cell size regulation. Ann N Y Acad Sci 2017; 1397:35-53. [PMID: 28415133 DOI: 10.1111/nyas.13334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
ZO-2 is a peripheral tight junction protein that belongs to the membrane-associated guanylate kinase protein family. Here, we explain the modular and supramodular organization of ZO-2 that allows it to interact with a wide variety of molecules, including cell-cell adhesion proteins, cytoskeletal components, and nuclear factors. We also describe how ZO proteins evolved through metazoan evolution and analyze the intracellular traffic of ZO-2, as well as the roles played by ZO-2 at the plasma membrane and nucleus that translate into the regulation of proliferation, cell size, and apoptosis. In addition, we focus on the impact of ZO-2 expression on male fertility and on maladies like cancer, cholestasis, and hearing loss.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alaide Domínguez-Calderón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
48
|
Passaniti A, Brusgard JL, Qiao Y, Sudol M, Finch-Edmondson M. Roles of RUNX in Hippo Pathway Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:435-448. [PMID: 28299672 DOI: 10.1007/978-981-10-3233-2_26] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Runt-domain (RD) transcription factors (RUNX genes) are an important family of transcriptional mediators that interact with a variety of proteins including the Hippo pathway effector proteins, YAP and TAZ. In this chapter we focus on two examples of RUNX-TAZ/YAP interactions that have particular significance in human cancer. Specifically, recent evidence has found that RUNX2 cooperates with TAZ to promote epithelial to mesenchymal transition mediated by the soluble N-terminal ectodomain of E-Cadherin, sE-Cad. Contrastingly, in gastric cancer, RUNX3 acts as a tumor suppressor via inhibition of the YAP-TEAD complex and disruption of downstream YAP-mediated gene transcription and the oncogenic phenotype. The reports highlighted in this chapter add to the growing repertoire of instances of Hippo pathway crosstalk that have been identified in cancer. Elucidation of these increasingly complex interactions may help to identify novel strategies to target Hippo pathway dysregulation in human cancer.
Collapse
Affiliation(s)
- Antonino Passaniti
- Department of Pathology and Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, and the Veterans Administration Health Service, Baltimore, MD, USA.
| | - Jessica L Brusgard
- Department of Pathology and Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, and the Veterans Administration Health Service, Baltimore, MD, USA
| | - Yiting Qiao
- The Mechanobiology Institute (MBI) and the NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Marius Sudol
- The Mechanobiology Institute (MBI) and the NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Institute of Molecular and Cell Biology A*STAR, Singapore, Republic of Singapore
| | - Megan Finch-Edmondson
- The Mechanobiology Institute (MBI) and the NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
49
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
50
|
Cox AG, Hwang KL, Brown KK, Evason K, Beltz S, Tsomides A, O'Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DY, Goessling W. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 2016; 18:886-896. [PMID: 27428308 PMCID: PMC4990146 DOI: 10.1038/ncb3389] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
The Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signalling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumour formation. Transcriptomic and metabolomic profiling identify that Yap1 reprograms glutamine metabolism. Yap1 directly enhances glutamine synthetase (glul) expression and activity, elevating steady-state levels of glutamine and enhancing the relative isotopic enrichment of nitrogen during de novo purine and pyrimidine biosynthesis. Genetic or pharmacological inhibition of GLUL diminishes the isotopic enrichment of nitrogen into nucleotides, suppressing hepatomegaly and the growth of liver cancer cells. Consequently, Yap-driven liver growth is susceptible to nucleotide inhibition. Together, our findings demonstrate that Yap1 integrates the anabolic demands of tissue growth during development and tumorigenesis by reprogramming nitrogen metabolism to stimulate nucleotide biosynthesis.
Collapse
Affiliation(s)
- Andrew G. Cox
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Katie L. Hwang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA
| | - Kristin K. Brown
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Sebastian Beltz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Allison Tsomides
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keelin O'Connor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Dean Yimlamai
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sagar Chhangawala
- Weill Cornell Medical College and New York Presbyterian Hospital, NY
| | - Min Yuan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Evan C. Lien
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Sahar Nissim
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Akihiro Minami
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David E. Cohen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Fernando D. Camargo
- Boston Children's Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - John M. Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian Hospital, NY
| | | | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|