1
|
Jin K, Shen S, Shi R, Xu X, Hu M. Exosomal miRNAs in prenatal diagnosis: Recent advances. Medicine (Baltimore) 2024; 103:e38717. [PMID: 38996168 PMCID: PMC11245187 DOI: 10.1097/md.0000000000038717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
Exosomes, small membranous microvesicles released by cells, contain a range of bioactive molecules, including proteins and miRNAs, which play critical roles in intercellular communication and physiological and pathological processes. Current research suggests that exosomal miRNAs could serve as valuable biomarkers for prenatal diseases, offering a noninvasive method for early detection and monitoring. Studies linking exosomal miRNAs to various birth defects, including fetal growth restriction, urinary tract malformations, cardiovascular system malformations, and hereditary diseases like Down syndrome, were discussed. However, there are some conflicting study findings due to different exosome separation methods. Here, we also discussed exosome separation methods, emphasizing the importance of method selection based on specific purposes and sample types. Further studies are needed to standardize isolation techniques, understand the specific mechanisms underlying exosomal miRNA function, and develop reliable noninvasive prenatal diagnostic indicators. Overall, exosomal miRNAs show promise as potential biomarkers for prenatal diagnosis, but further research is necessary to validate their clinical utility.
Collapse
Affiliation(s)
- Keqin Jin
- Genetic Laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Shuangshuang Shen
- Prenatal Diagnostic Center, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Ruyong Shi
- Department of Ultrasound Medicine, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Xiayuan Xu
- Genetic Laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Min Hu
- Gynaecology and Obstetrics, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| |
Collapse
|
2
|
Pérez-Villarreal JM, Aviña-Padilla K, Beltrán-López E, Guadrón-Llanos AM, López-Bayghen E, Magaña-Gómez J, Meraz-Ríos MA, Varela-Echavarría A, Angulo-Rojo C. Profiling of circulating chromosome 21-encoded microRNAs, miR-155, and let-7c, in down syndrome. Mol Genet Genomic Med 2022; 10:e1938. [PMID: 35411714 PMCID: PMC9184673 DOI: 10.1002/mgg3.1938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Down syndrome (DS) is the most common chromosomal survival aneuploidy. The increase in DS life expectancy further heightens the risk of dementia, principally early‐onset Alzheimer's disease (AD). AD risk in DS is higher, considering that this population may also develop metabolic diseases such as obesity, dyslipidemias, and diabetes mellitus. The extra genetic material that characterizes DS causes an imbalance in the genetic dosage, including over‐expression of AD's key pathophysiological molecules and the gene expression regulators, the microRNAs (miRNAs). Two miRNAs, chromosome 21‐encoded, miR‐155, and let‐7c, are associated with cognitive impairment and dementia in adults; but, expression dynamics and relationship with clinical variables during the DS's lifespan had remained hitherto unexplored. Methods The anthropometric, clinical, biochemical, and profile expression of circulating miR‐155 and let‐7c were analyzed in a population of 52 control and 50 DS subjects divided into the young group (Aged ≤20 years) and the adult group (Aged ≥21 years). Results The expression changes for miR‐155 were not significant; nevertheless, a negative correlation with HDL‐Cholesterol concentrations was observed. Notably, let‐7c was over‐expressed in DS from young and old ages. Conclusion Overall, our results suggest that let‐7c plays a role from the early stages of DS's cognitive impairment while overexpression of miR‐155 may be related to lipid metabolism changes. Further studies of both miRNAs will shed light on their potential as therapeutic targets to prevent or delay DS's cognitive impairment.
Collapse
Affiliation(s)
- Jesús Manuel Pérez-Villarreal
- Laboratorio de Neurociencias, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio de Nutrición Molecular, Escuela de Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Laboratorio de Bioinformática y de Redes Complejas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IRAPUATO), Mexico
| | - Evangelina Beltrán-López
- Laboratorio Edificio Central, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Alma Marlene Guadrón-Llanos
- Laboratorio de Diabetes y comorbilidades, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | - Javier Magaña-Gómez
- Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio de Nutrición Molecular, Escuela de Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Marco Antonio Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | | | - Carla Angulo-Rojo
- Laboratorio de Neurociencias, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Centro de Investigación y Docencia en Ciencias de la Salud (CIDOCS), Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
3
|
Biselli JM, Zampieri BL, Biselli-Chicote PM, de Souza JES, Bürger MC, da Silva WA, Goloni-Bertollo EM, Pavarino ÉC. Differential microRNA expression profile in blood of children with Down syndrome suggests a role in immunological dysfunction. Hum Cell 2022; 35:639-648. [PMID: 35060072 PMCID: PMC8773395 DOI: 10.1007/s13577-022-00672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21 (HSA21), results in a broad range of phenotypes. However, the determinants contributing to the complex and variable phenotypic expression of DS are still not fully known. Changes in microRNAs (miRNAs), short non-coding RNA molecules that regulate gene expression post-transcriptionally, have been associated with some DS phenotypes. Here, we investigated the genome-wide mature miRNA expression profile in peripheral blood mononuclear cells (PBMCs) of children with DS and controls and identified biological processes and pathways relevant to the DS pathogenesis. The expression of 754 mature miRNAs was profiled in PBMCs from six children with DS and six controls by RT-qPCR using TaqMan® Array Human MicroRNA Cards. Functions and signaling pathways analyses were performed using DIANA-miRPath v.3 and DIANA-microT-CDS software. Children with DS presented six differentially expressed miRNAs (DEmiRs): four overexpressed (miR-378a-3p, miR-130b-5p, miR-942-5p, and miR-424-3p) and two downregulated (miR-452-5p and miR-668-3p). HSA21-derived miRNAs investigated were not found to be differentially expressed between the groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed potential target genes involved in biological processes and pathways pertinent to immune response, e.g., toll-like receptors (TLRs) signaling, Hippo, and transforming growth factor β (TGF-β) signaling pathways. These results suggest that altered miRNA expression could be contributing to the well-known immunological dysfunction observed in individuals with DS.
Collapse
Affiliation(s)
- Joice Matos Biselli
- Department of Molecular Biology, Faculdade de Medicina de São José Do Rio Preto , Genetics and Molecular Biology Research Unit (UPGEM), São José Do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, nº 5416 - UPGEM/Bloco U-6, CEP: 15.090-000, São José Do Rio Preto, São Paulo, Brazil
| | - Bruna Lancia Zampieri
- Department of Molecular Biology, Faculdade de Medicina de São José Do Rio Preto , Genetics and Molecular Biology Research Unit (UPGEM), São José Do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, nº 5416 - UPGEM/Bloco U-6, CEP: 15.090-000, São José Do Rio Preto, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Patrícia Matos Biselli-Chicote
- Department of Molecular Biology, Faculdade de Medicina de São José Do Rio Preto , Genetics and Molecular Biology Research Unit (UPGEM), São José Do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, nº 5416 - UPGEM/Bloco U-6, CEP: 15.090-000, São José Do Rio Preto, São Paulo, Brazil
| | - Jorge Estefano Santana de Souza
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Metrópole Digital Institute (IMD), UFRN, Natal, RN, Brazil
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirao Preto, São Paulo, Brazil
| | - Matheus Carvalho Bürger
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirao Preto, São Paulo, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirao Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Department of Molecular Biology, Faculdade de Medicina de São José Do Rio Preto , Genetics and Molecular Biology Research Unit (UPGEM), São José Do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, nº 5416 - UPGEM/Bloco U-6, CEP: 15.090-000, São José Do Rio Preto, São Paulo, Brazil
| | - Érika Cristina Pavarino
- Department of Molecular Biology, Faculdade de Medicina de São José Do Rio Preto , Genetics and Molecular Biology Research Unit (UPGEM), São José Do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, nº 5416 - UPGEM/Bloco U-6, CEP: 15.090-000, São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Reza Karimzadeh M, Ehtesham N, Mortazavi D, Azhdari S, Mosallaei M, Nezamnia M. Alterations of epigenetic landscape in Down syndrome carrying pregnancies: A systematic review of case-control studies. Eur J Obstet Gynecol Reprod Biol 2021; 264:189-199. [PMID: 34325214 DOI: 10.1016/j.ejogrb.2021.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Great attention is currently paid to both the pathogenetic mechanisms and non-invasive prenatal diagnosis (NIPD) of Down syndrome (DS). It has been posited that dysregulation of epigenetic signatures including DNA methylation and microRNAs (miRNAs) crucially contribute to the pathomechanism of DS. Therefore, we aimed to perform a systematic review of case-control publications that have examined the differences in epigenetic landscape between pregnancies bearing euploid fetuses and those affected with DS to provide a focused insight into the pathophysiology of DS and also novel biomarkers for NIPD of DS. STUDY DESIGN Pertinent keywords were utilized to search into PubMed, Scopus, and Google Scholar. We enrolled studies that have compared the pattern of miRNAs expression profile or DNA methylation between pregnant women who carries DS fetuses and those with euploid fetuses. RESULTS An assessment of 599 articles resulted in, finally, 18 eligible studies (12 miRNAs and 6 DNA methylation). The most investigated miRNAs were those that are encoded by genes on chromosome 21 and more hypermethylation regions in DS fetuses than euploids with nearly evenly distribution on all chromosomes were found. Distinct mechanisms with potential therapeutic purposes have been put forward for the involvement of epigenetic perturbations in the etiopathogenesis of DS. CONCLUSION There is a disagreement in the recruiting of epigenetic biomarkers for NIPD of DS. This heterogeneity in results of the qualified publications emanates from confounding factors such as differences in demographic data of participants, analytical platforms, and study design. Hence, before harnessing epigenetic signatures for NIPD of DS, more experiments are required.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences , Tehran, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
5
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
6
|
Comparative analysis of the down syndrome hippocampal non-coding RNA transcriptomes using a mouse model. Genes Genomics 2020; 42:1259-1265. [PMID: 32946063 DOI: 10.1007/s13258-020-00996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Down syndrome (DS), caused by trisomy 21, is the most common human chromosomal disorder. Hippocampal abnormalities have been believed to be responsible for the DS developmental cognitive deficits. Cumulative evidences indicated that non-coding RNAs (ncRNAs) participated in brain development and function. Currently, few was known whether dysregulated ncRNAs existed in DS whether the dysregulated ncRNAs played important pathology roles in DS. OBJECTIVE The purpose of this study was generating an overview map of the dysregulated ncRNAs in DS, including the microRNA (miRNA), long ncRNA (lncRNA) and circular RNA (circRNAs). DS mouse models are invaluable tools for further mechanism and therapy studies. METHODS The well-studied DS mouse model Dp(16)1/Yey was used in this study as it contains the trisomy of the whole human chromosome 21 syntenic region on mouse chromosomes 16. Hippocampi were isolated from pups of seven-days-old. Libraries for miRNA, lncRNA and circRNAs were constructed separately, and the next generation sequencing method was utilized. RESULTS Differentially expressed (DE) miRNAs, lncRNAs and circRNAs were reported. Relative few regulating relationship were found between the DE miRNAs and DE mRNAs. LncRNAs originated from the trisomic regions expressed in clusters, but not all of them were 1.5-fold increased expressed. Dramatic DE circular RNAs were found in the DS hippocampus. The host genes of the DE circRNAs were enriched on functions which were well-known impaired in DS, e.g. long-term-potentiation, glutamatergic synapse, and GABAergic synapse. CONCLUSIONS We generated the first DS developmental hippocampal ncRNA transcriptome map. This work laid foundations for further investigations on role of ncRNAs in hippocampal functions.
Collapse
|
7
|
Huang X, Li S, Liu X, Huang S, Li S, Zhuo M. Analysis of conserved miRNAs in cynomolgus macaque genome using small RNA sequencing and homology searching. PeerJ 2020; 8:e9347. [PMID: 32728489 PMCID: PMC7357559 DOI: 10.7717/peerj.9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators that fine-tune diverse cellular activities. Cynomolgus macaques (Macaca fascicularis) are used extensively in biomedical and pharmaceutical research; however, substantially fewer miRNAs have been identified in this species than in humans. Consequently, we investigated conserved miRNA profiles in cynomolgus macaques by homology searching and small RNA sequencing. In total, 1,455 high-confidence miRNA gene loci were identified, 408 of which were also confirmed by RNA sequencing, including 73 new miRNA loci reported in cynomolgus macaques for the first time. Comparing miRNA expression with age, we found a positive correlation between sequence conservation and expression levels during miRNA evolution. Additionally, we found that the miRNA gene locations in cynomolgus macaque genome were very flexible. Most were embedded in intergenic spaces or introns and clustered together. Several miRNAs were found in certain gene locations, including 64 exon-resident miRNAs, six splice-site-overlapping miRNAs (SO-miRNAs), and two pairs of distinct mirror miRNAs. We also identified 78 miRNA clusters, 68 of which were conserved in the human genome, including 10 large miRNA clusters predicted to regulate diverse developmental and cellular processes in cynomolgus macaque. Thus, this study not only expands the number of identified miRNAs in cynomolgus macaques but also provides clues for future research on the differences in miRNA repertoire between macaques and humans.
Collapse
Affiliation(s)
- Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shijia Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoming Liu
- Guangzhou Tulip Information Technologies Ltd., Guangzhou, Guangdong, China
| | - Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Verstegen RHJ, Kusters MAA. Inborn Errors of Adaptive Immunity in Down Syndrome. J Clin Immunol 2020; 40:791-806. [PMID: 32638194 DOI: 10.1007/s10875-020-00805-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Down syndrome fits an immunophenotype of combined immunodeficiency with immunodysregulation, manifesting with increased susceptibility to infections, autoimmunity, autoinflammatory diseases, and hematologic malignancies. Qualitative and quantitative alterations in innate and adaptive immunity are found in most individuals with Down syndrome. However, there is substantial heterogeneity and no correlation between immunophenotype and clinical presentation. Previously, it was thought that the immunological changes in Down syndrome were caused by precocious aging. We emphasize in this review that the immune system in Down syndrome is intrinsically different from the very beginning. The overexpression of specific genes located on chromosome 21 contributes to immunodeficiency and immunodysregulation, but gene expression differs between genes located on chromosome 21 and depends on tissue and cell type. In addition, trisomy 21 results in gene dysregulation of the whole genome, reflecting the complex nature of this syndrome in comparison to well-known inborn errors of immunity that result from monogenic germline mutations. In this review, we provide an updated overview focusing on inborn errors of adaptive immunity in Down syndrome.
Collapse
Affiliation(s)
- Ruud H J Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Maaike A A Kusters
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
9
|
Neuroinflammatory Markers in the Serum of Prepubertal Children with Down Syndrome. J Immunol Res 2020; 2020:6937154. [PMID: 32280719 PMCID: PMC7125499 DOI: 10.1155/2020/6937154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Down Syndrome (DS) is the most common chromosomal disorder. Although DS individuals are mostly perceived as characterized by some distinct physical features, cognitive disabilities, and cardiac defects, they also show important dysregulations of immune functions. While critical information is available for adults with DS, little literature is available on the neuroinflammation in prepubertal DS children. We aimed to evaluate in prepubertal DS children the serum levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), oxidative stress as free oxygen radicals defense (FORD), free oxygen radicals test (FORT), and cytokines playing key roles in neuroinflammation and oxidative processes as TNF-α, TGF-β, MCP-1, IL-1α, IL-2, IL-6, IL-10, and IL-12. No differences were found in NGF between DS children and controls. However, BDNF was higher in DS subjects compared to controls. We also did not reveal changes in FORD and FORT. Quite interestingly, the serum of DS children disclosed a marked decrease in all analyzed cytokines with evident differences in serum cytokine presence between male and female DS children. In conclusion, the present study evidences in DS prepubertal children a disruption in the neurotrophins and immune system pathways.
Collapse
|
10
|
Salvi A, Vezzoli M, Busatto S, Paolini L, Faranda T, Abeni E, Caracausi M, Antonaros F, Piovesan A, Locatelli C, Cocchi G, Alvisi G, De Petro G, Ricotta D, Bergese P, Radeghieri A. Analysis of a nanoparticle‑enriched fraction of plasma reveals miRNA candidates for Down syndrome pathogenesis. Int J Mol Med 2019; 43:2303-2318. [PMID: 31017260 PMCID: PMC6488180 DOI: 10.3892/ijmm.2019.4158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA-carriers were separated from the plasma of young participants with DS and their non-trisomic siblings and miRNAs were extracted. A microarray-based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR-16-5p, miR-99b-5p and miR-144-3p. These miRNAs were then profiled for 15 pairs of DS and non-trisomic sibling couples by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non-trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including 'nervous system development', 'neuronal cell body' and certain forms of 'leukemia'. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS-associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis.
Collapse
Affiliation(s)
- Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Marika Vezzoli
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Teresa Faranda
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Edoardo Abeni
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, I‑40138 Bologna, Italy
| | - Francesca Antonaros
- CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I‑50019 Florence, Italy
| | - Allison Piovesan
- CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I‑50019 Florence, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola‑Malpighi Polyclinic, I‑40138 Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola‑Malpighi Polyclinic, I‑40138 Bologna, Italy
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, I‑35121 Padua, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Doris Ricotta
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| |
Collapse
|
11
|
Farroni C, Marasco E, Marcellini V, Giorda E, Valentini D, Petrini S, D'Oria V, Pezzullo M, Cascioli S, Scarsella M, Ugazio AG, De Vincentiis GC, Grimsholm O, Carsetti R. Dysregulated miR-155 and miR-125b Are Related to Impaired B-cell Responses in Down Syndrome. Front Immunol 2018; 9:2683. [PMID: 30515165 PMCID: PMC6255899 DOI: 10.3389/fimmu.2018.02683] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Children with Down Syndrome (DS) suffer from immune deficiency with a severe reduction in switched memory B cells (MBCs) and poor response to vaccination. Chromosome 21 (HSA21) encodes two microRNAs (miRs), miR-125b, and miR-155, that regulate B-cell responses. We studied B- and T- cell subpopulations in tonsils of DS and age-matched healthy donors (HD) and found that the germinal center (GC) reaction was impaired in DS. GC size, numbers of GC B cells and Follicular Helper T cells (TFH) expressing BCL6 cells were severely reduced. The expression of miR-155 and miR-125b was increased in tonsillar memory B cells and miR-125b was also higher than expected in plasma cells (PCs). Activation-induced cytidine deaminase (AID) protein, a miR-155 target, was significantly reduced in MBCs of DS patients. Increased expression of miR-155 was also observed in vitro. MiR-155 was significantly overexpressed in PBMCs activated with CpG, whereas miR-125b was constitutively higher than normal. The increase of miR-155 and its functional consequences were blocked by antagomiRs in vitro. Our data show that the expression of HSA21-encoded miR-155 and miR-125b is altered in B cells of DS individuals both in vivo and in vitro. Because of HSA21-encoded miRs may play a role also in DS-associated dementia and leukemia, our study suggests that antagomiRs may represent pharmacological tools useful for the treatment of DS.
Collapse
Affiliation(s)
- Chiara Farroni
- B cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emiliano Marasco
- Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Ezio Giorda
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Diletta Valentini
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Cascioli
- B cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Scarsella
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto G Ugazio
- Institute of Child and Adolescent Health, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Ola Grimsholm
- B cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Rita Carsetti
- B cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Unit of Diagnostic Immunology, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Cimino L, Salemi M, Cannarella R, Condorelli RA, Giurato G, Marchese G, La Vignera S, Calogero AE. Decreased miRNA expression in Klinefelter syndrome. Sci Rep 2017; 7:16672. [PMID: 29192217 PMCID: PMC5709391 DOI: 10.1038/s41598-017-16892-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/13/2017] [Indexed: 01/18/2023] Open
Abstract
The widelyvariable phenotypic spectrum and the different severity of symptoms in men with Klinefelter syndrome (KS) suggest a role for epigenetic mediators. Therefore, the aim of this study is to evaluate the possible involvement of miRNAs in the clinical manifestations of KS. To accomplish this, we performed a transcriptome analysis in peripheral blood mononuclear cells (PBMCs) of 10 non-mosaic KS patients, 10 aged-matched healthy men and 10 aged-matched healthy female controls with normal karyotype. After RNA extraction from PBMC and the preparation of RNA libraries, the samples were sequenced using next generation high-throughput sequencing technology. Expression profiling analysis revealed a significant differential expression of 2 miRNAs in KS compared to male controls. In particular, MIR3648 resulted significantly (q-value < 0.0001) down-regulated by -19.084- fold, while MIR3687was strongly down-regulated (q-value < 0.0001) considering KS patients. These results were confirmed by qRT-PCR. The functional analysis of the two transcripts showed that they seem to play a role in breast cancer, hemopoietic abnormalities, immune defects and adipocyte differentiation and fat cell maturation. Therefore, we speculate that both miRNAs may play a role in the immune and metabolic disorders and in the risk of breast cancer development in men with KS.
Collapse
Affiliation(s)
- Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Michele Salemi
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, 94018, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy.
| |
Collapse
|
13
|
Brás A, Rodrigues AS, Gomes B, Rueff J. Down syndrome and microRNAs. Biomed Rep 2017; 8:11-16. [PMID: 29403643 DOI: 10.3892/br.2017.1019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
In recent years numerous studies have indicated the importance of microRNAs (miRNA/miRs) in human pathology. Down syndrome (DS) is the most prevalent survivable chromosomal disorder and is attributed to trisomy 21 and the subsequent alteration of the dosage of genes located on this chromosome. A number of miRNAs are overexpressed in down syndrome, including miR-155, miR-802, miR- 125b-2, let-7c and miR-99a. This overexpression may contribute to the neuropathology, congenital heart defects, leukemia and low rate of solid tumor development observed in patients with DS. MiRNAs located on other chromosomes and with associated target genes on or off chromosome 21 may also be involved in the DS phenotype. In the present review, an overview of miRNAs and the haploinsufficiency and protein translation of specific miRNA targets in DS are discussed. This aimed to aid understanding of the pathogenesis of DS, and may contribute to the development of novel strategies for the prevention and treatment of the pathologies of DS.
Collapse
Affiliation(s)
- Aldina Brás
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - António S Rodrigues
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Bruno Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
14
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
15
|
Arumugam A, Raja K, Venugopalan M, Chandrasekaran B, Kovanur Sampath K, Muthusamy H, Shanmugam N. Down syndrome-A narrative review with a focus on anatomical features. Clin Anat 2016; 29:568-77. [PMID: 26599319 DOI: 10.1002/ca.22672] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Down syndrome (DS) is the most common aneuploidy of chromosome 21, characterized by the presence of an extra copy of that chromosome (trisomy 21). Children with DS present with an abnormal phenotype, which is attributed to a loss of genetic balance or an excess dose of chromosome 21 genes. In recent years, advances in prenatal screening and diagnostic tests have aided in the early diagnosis and appropriate management of fetuses with DS. A myriad of clinical symptoms resulting from cognitive, physical, and physiological impairments caused by aberrations in various systems of the body occur in DS. However, despite these impairments, which range from trivial to fatal manifestations, the survival rate of individuals with DS has increased dramatically from less than 50% during the mid-1990s to 95% in the early 2000s, with a median life expectancy of 60 years reported recently. The aim of this narrative review is to review and summarize the etiopathology, prenatal screening and diagnostic tests, prognosis, clinical manifestations in various body systems, and comorbidities associated with DS. Clin. Anat. 29:568-577, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ashokan Arumugam
- Department of Physical Therapy, College of Applied Medical Sciences, Majmaah University, Kingdom of Saudi Arabia
| | - Kavitha Raja
- JSS College of Physiotherapy, Mysore, Karnataka, India
| | | | | | - Kesava Kovanur Sampath
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Hariraja Muthusamy
- Department of Physical Therapy, College of Applied Medical Sciences, Majmaah University, Kingdom of Saudi Arabia
| | | |
Collapse
|
16
|
Deng S, Zhang Y, Xu C, Ma D. MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells. Int J Mol Med 2015; 36:355-62. [PMID: 26059631 PMCID: PMC4501654 DOI: 10.3892/ijmm.2015.2238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
microRNAs (miRNAs or miRS) have been demonstrated to be essential for neural development. miR-125b-2, presented on human chromosome 21, is overexpressed in neurons of individuals with Down syndrome (DS) with cognitive impairments. It has been reported that miR-125b-2 promotes specific types of neuronal differentiation; however, the function of miR-125b-2 in the early development of the embryo has remained to be fully elucidated. In the present study, a mouse embryonic stem cell (mESC) line was stably transfected with a miR-125b-2 lentiviral expression vector and found that miR-125b-2 overexpression did not affect the self-renewal or proliferation of mESCs. However, miR-125b-2 overexpression inhibited the differentiation of mESCs into endoderm and ectoderm. Finally, miR-125b-2 overexpression was found to impair all-trans-retinoic acid-induced neuron development in embryoid bodies. The findings of the present study implied that miR-125b-2 overexpression suppressed the differentiation of mESCs into neurons, which highlights that miR‑125b-2 is important in the regulation of ESC differentiation. The present study provided a basis for the further identification of novel targets of miR-125b-2, which may contribute to an enhanced understanding of the molecular mechanisms of ESC differentiation.
Collapse
Affiliation(s)
- Shanshan Deng
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yanli Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Chundi Xu
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Duan Ma
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
17
|
MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J Assist Reprod Genet 2015; 32:827-37. [PMID: 25749789 DOI: 10.1007/s10815-015-0429-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The objective of this study was to discover a panel of microRNAs (miRNAs) as potential biomarkers for noninvasive prenatal testing (NIPT) of trisomy 21 (T21) and to predict the biological functions of identified biomarkers using bioinformatics tools. METHODS Using microarray-based genome-wide expression profiling, we compared the expression levels of miRNAs in whole blood samples from non-pregnant women, whole blood samples from pregnant women with euploid or T21 fetuses, and placenta samples from euploid or T21 fetuses. We analyzed the differentially expressed miRNAs according to disease and tissue type (P value <0.05 and two-fold expression change). To predict functions of target genes of miRNAs, the functional annotation tools were used. RESULTS We identified 299 miRNAs which reasonably separate the whole blood from the placenta. Among the identified miRNAs, 150 miRNAs were up-regulated in the placenta, and 149 miRNAs were down-regulated. Most of the up-regulated miRNAs in the placenta were members of the mir-498, mir-379, and mir-127 clusters. Among the up-regulated miRNAs in the placenta, mir-1973 and mir-3196 were expressed at higher levels in the T21 placenta than in the euploid placenta. The two miRNAs potentially regulate 203 target genes that are involved in development of brain, central nervous system, and nervous system. The genes are significantly associated with T21-related disorder such as congenital abnormalities, mental disorders, and nervous system diseases. CONCLUSIONS Our study indicates placenta-specific miRNAs that may be potential biomarkers for NIPT of fetal T21 and provides new insights into the molecular mechanisms of T21 via regulation of miRNAs.
Collapse
|
18
|
Lim J, Kim D, Lee D, Han J, Chung J, Ahn H, Lee S, Lim D, Lee Y, Park S, Ryu H. Genome-wide microRNA expression profiling in placentas of fetuses with Down syndrome. Placenta 2015; 36:322-8. [DOI: 10.1016/j.placenta.2014.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/11/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
|
19
|
Carsetti R, Valentini D, Marcellini V, Scarsella M, Marasco E, Giustini F, Bartuli A, Villani A, Ugazio AG. Reduced numbers of switched memory B cells with high terminal differentiation potential in Down syndrome. Eur J Immunol 2014; 45:903-14. [PMID: 25472482 PMCID: PMC4674966 DOI: 10.1002/eji.201445049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/07/2014] [Accepted: 11/28/2014] [Indexed: 01/21/2023]
Abstract
Children with Down syndrome (DS) have increased susceptibility to infections and a high frequency of leukemia and autoimmune disorders, suggesting that immunodeficiency and immune dysfunction are integral parts of the syndrome. A reduction in B-cell numbers has been reported, associated with moderate immunodeficiency and normal immunoglobulin levels. Here, we compared B-cell populations of 19 children with DS with those in healthy age-matched controls. We found that all steps of peripheral B-cell development are altered in DS, with a more severe defect during the later stages of B-cell development. Transitional and mature-naïve B-cell numbers are reduced by 50% whereas switched memory B cells represent 10–15% of the numbers in age-matched controls. Serum IgM levels were slightly reduced, but all other immunoglobulin isotypes were in the normal range. The frequency of switched memory B cells specific for vaccine antigens was significantly lower in affected children than in their equivalently vaccinated siblings. In vitro switched memory B cells of patients with DS have an increased ability to differentiate into antibody-forming cells in response to TLR9 signals. Tailored vaccination schedules increasing the number of switched memory B cells may improve protection and reduce the risk of death from infection in DS.
Collapse
Affiliation(s)
- Rita Carsetti
- Immunology Unit, Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Giménez-Barcons M, Casteràs A, Armengol MDP, Porta E, Correa PA, Marín A, Pujol-Borrell R, Colobran R. Autoimmune predisposition in Down syndrome may result from a partial central tolerance failure due to insufficient intrathymic expression of AIRE and peripheral antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3872-9. [PMID: 25217160 DOI: 10.4049/jimmunol.1400223] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Down syndrome (DS), or trisomy of chromosome 21, is the most common genetic disorder associated with autoimmune diseases. Autoimmune regulator protein (AIRE), a transcription factor located on chromosome 21, plays a crucial role in autoimmunity by regulating promiscuous gene expression (pGE). To investigate if autoimmunity in DS is promoted by the reduction of pGE owing to dysregulation of AIRE, we assessed the expression of AIRE and of several peripheral tissue-restricted Ag genes by quantitative PCR in thymus samples from 19 DS subjects and 21 euploid controls. Strikingly, despite the 21 trisomy, AIRE expression was significantly reduced by 2-fold in DS thymuses compared with controls, which was also confirmed by fluorescent microscopy. Allele-specific quantification of intrathymic AIRE showed that despite its lower expression, the three copies are expressed. More importantly, decreased expression of AIRE was accompanied by a reduction of pGE because expression of tissue-restricted Ags, CHRNA1, GAD1, PLP1, KLK3, SAG, TG, and TSHR, was reduced. Of interest, thyroid dysfunction (10 cases of hypothyroidism and 1 of Graves disease) developed in 11 of 19 (57.9%) of the DS individuals and in none of the 21 controls. The thymuses of these DS individuals contained significantly lower levels of AIRE and thyroglobulin, to which tolerance is typically lost in autoimmune thyroiditis leading to hypothyroidism. Our findings provide strong evidence for the fundamental role of AIRE and pGE, namely, central tolerance, in the predisposition to autoimmunity of DS individuals.
Collapse
Affiliation(s)
- Mireia Giménez-Barcons
- Divisió d'Immunologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona 08035, Spain
| | - Anna Casteràs
- Divisió d'Endocrinologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona 08035, Spain
| | - Maria del Pilar Armengol
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona 08916, Spain; and
| | - Eduard Porta
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona 08916, Spain; and
| | - Paula A Correa
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona 08916, Spain; and
| | - Ana Marín
- Divisió d'Immunologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona 08035, Spain
| | - Ricardo Pujol-Borrell
- Divisió d'Immunologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona 08035, Spain; Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Roger Colobran
- Divisió d'Immunologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona 08035, Spain; Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
21
|
Sandhir R, Gregory E, Berman NEJ. Differential response of miRNA-21 and its targets after traumatic brain injury in aging mice. Neurochem Int 2014; 78:117-21. [PMID: 25277076 DOI: 10.1016/j.neuint.2014.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
The present study investigated the possible role of miR-21, a miRNA that has known prosurvival function, in poor outcomes in the elderly following traumatic brain injury compared to adults. Controlled cortical impact injury was induced in adult (5-6 months) and aged (22-24 months) C57/BL6 mice. miR-21 and four of its targets (PDCD4, TIMP3, RECK, PTEN) were analyzed at 1, 3, 7 days post injury in samples of injured cortex using real-time PCR analysis. Basal miR-21 expression was higher in the aged brain than in the adult brain. In the adult brain, miR-21 expression increased in response to injury, with the maximum increase 24 hours after injury followed by a gradual decrease, returning to baseline 7 days post-injury. In contrast, in aged mice, miR21 showed no injury response, and expression of miR-21 target genes (PTEN, PDCD4, RECK, TIMP3) was up-regulated at all post injury time points, with a maximal increase at 24 hours post injury. Based on these results, we conclude that the diminished miR21 injury response in the aged brain leads to up-regulation of its targets, with the potential to contribute to the poor prognosis following TBI in aging brain. Therefore, strategies aimed at up-regulation of miR-21 and/or down regulation of its targets might be useful in improving outcomes in the elderly following TBI.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Anatomy & Cell Biology, Kansas University Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Eugene Gregory
- Department of Anatomy & Cell Biology, Kansas University Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Nancy E J Berman
- Department of Anatomy & Cell Biology, Kansas University Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
22
|
Sha Z, Gong G, Wang S, Lu Y, Wang L, Wang Q, Chen S. Identification and characterization of Cynoglossus semilaevis microRNA response to Vibrio anguillarum infection through high-throughput sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:59-69. [PMID: 24296438 DOI: 10.1016/j.dci.2013.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNA) play key regulatory roles in diverse biological processes. Cynoglossus semilaevis is an important commercial mariculture fish species in China. To identify miRNAs and investigate immune-related miRNAs of C. semilaevis, we performed high-throughput sequencing on three small RNA libraries prepared from C. semilaevis immune tissues (liver, head kidney, spleen, and intestine). One library was prepared under normal conditions (control, CG); two were prepared during Vibrio anguillarum infection, where vibriosis symptoms were obvious and non-obvious (HOSG and NOSG, respectively). We obtained 11,216,875, 12,313,404, and 11,398,695 clean reads per library, respectively. Bioinformatic analysis identified 452 miRNAs, including 24 putative novel miRNAs. We analyzed differentially expressed miRNAs between two libraries using pairwise comparison. For NOSG-CG, there was significant differential expression of 175 (38.72%) miRNAs. There was significant differential expression of 215 (47.57%) miRNAs between HOSG and CG. Compared with CG, The HOSG-NOSG comparison revealed significantly different expression of 122 (26.99%) miRNAs respectively. Real-time quantitative PCR (RT-qPCR) experiments were performed for 10 miRNAs of the three samples, and agreement was found between the sequencing and RT-qPCR data. For miRNAs that were significantly differentially expressed, functional annotation of target genes by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that a set of miRNAs that were expressed highly abundantly and significantly differentially were might involved in immune system development and immune response. To our understanding, this is the first report of comprehensive identification of C. semilaevis miRNAs being differentially regulated in immune tissues (liver, head kidney, spleen, and intestine) in normal conditions relating to V. anguillarum infection. Many miRNAs were differentially regulated upon pathogen exposure. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in C. semilaevis host-pathogen interactions.
Collapse
Affiliation(s)
- Zhenxia Sha
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| | - Guangye Gong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Shaolin Wang
- Department of Psychiatry & Neurobiology Science, University of Virginia, VA 22911, USA
| | - Yang Lu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lei Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Qilong Wang
- Tengzhou Fisheries Service Center, Tengzhou 277500, PR China
| | - Songlin Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| |
Collapse
|
23
|
Rodrigues R, Debom G, Soares F, Machado C, Pureza J, Peres W, de Lima Garcias G, Duarte MF, Schetinger MRC, Stefanello F, Braganhol E, Spanevello R. Alterations of ectonucleotidases and acetylcholinesterase activities in lymphocytes of Down syndrome subjects: relation with inflammatory parameters. Clin Chim Acta 2014; 433:105-10. [PMID: 24631131 DOI: 10.1016/j.cca.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/22/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Subjects with Down syndrome (DS) have an increased susceptibility to infections and autoimmune disorders. ATP, adenosine, and acetylcholine contribute to the immune response regulation, and NTPDase, adenosine deaminase (ADA) and acetylcholinesterase (AChE) are important enzymes in the control of the extracellular levels of these molecules. We evaluated the activities of these enzymes and the cytokine levels in samples of DS individuals. METHODS The population consisted of 23 subjects with DS and 23 healthy subjects. Twelve milliliters of blood was obtained from each subject and used for lymphocyte and serum preparation. Lymphocytes were separated on Ficoll density gradients. After isolation, NTPDase and AChE activities were determined. RESULTS The NTPDase activity using ADP as substrate was increased in lymphocytes of DS patients compared to control (P<0.05); however, no alterations were observed in the ATP hydrolysis. An increase was observed in the AChE activity in lymphocytes and in ADA activity in serum of DS patients when compared to healthy subjects (P<0.05). In DS subjects, an increase in the levels of IL-1β, IL-6, TNF-α and IFN-γ and a decrease in the IL-10 levels were also observed (P<0.05). CONCLUSIONS Alterations in the NTPDase, ADA and AChE activities as well changes in the cytokine levels may contribute to immunological alterations observed in DS.
Collapse
Affiliation(s)
- Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Gabriela Debom
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fabiano Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Caroline Machado
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Jéssica Pureza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - William Peres
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | | | - Marta Frescura Duarte
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900 Santa Maria, RS, Brazil
| | - Francieli Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
24
|
Interindividual variability in the cardiac expression of anthracycline reductases in donors with and without Down syndrome. Pharm Res 2014; 31:1644-55. [PMID: 24562808 DOI: 10.1007/s11095-013-1267-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The intracardiac synthesis of anthracycline alcohol metabolites (e.g., daunorubicinol) contributes to the pathogenesis of anthracycline-related cardiotoxicity. Cancer patients with Down syndrome (DS) are at increased risk for anthracycline-related cardiotoxicity. We profiled the expression of anthracycline metabolizing enzymes in hearts from donors with- and without- DS. METHODS Cardiac expression of CBR1, CBR3, AKR1A1, AKR1C3 and AKR7A2 was examined by quantitative real time PCR, quantitative immunoblotting, and enzyme activity assays using daunorubicin. The CBR1 polymorphism rs9024 was investigated by allelic discrimination with fluorescent probes. The contribution of CBRs/AKRs proteins to daunorubicin reductase activity was examined by multiple linear regression. RESULTS CBR1 was the most abundant transcript (average relative expression; DS: 81%, non-DS: 58%), and AKR7A2 was the most abundant protein (average relative expression; DS: 38%, non-DS: 35%). Positive associations between cardiac CBR1 protein levels and daunorubicin reductase activity were found for samples from donors with- and without- DS. Regression analysis suggests that sex, CBR1, AKR1A1, and AKR7A2 protein levels were significant contributors to cardiac daunorubicin reductase activity. CBR1 rs9024 genotype status impacts on cardiac CBR1 expression in non-DS hearts. CONCLUSIONS CBR1, AKR1A1, and AKR7A2 protein levels point to be important determinants for predicting the synthesis of cardiotoxic daunorubicinol in heart.
Collapse
|