1
|
Caneos WG, Shrivastava J, Ndugwa M, De Boeck G. Physiological responses of European sea bass (Dicentrarchus labrax) exposed to increased carbon dioxide and reduced seawater salinities. Mol Biol Rep 2024; 51:496. [PMID: 38587695 DOI: 10.1007/s11033-024-09460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The iono- and osmoregulatory capacities of marine teleosts, such as European sea bass (Dicentrarchus labrax) are expected to be challenged by high carbon dioxide exposure, and the adverse effects of elevated CO2 could be amplified when such fish migrate into less buffered hypo-osmotic estuarine environments. Therefore, the effects of increased CO2 on the physiological responses of European sea bass (Dicentrarchus labrax) acclimated to 32 ppt, 10 ppt and 2.5 ppt were investigated. METHODS Following acclimation to different salinities for two weeks, fish were exposed to present-day (400 µatm) and future (1000 µatm) atmospheric CO2 for 1, 3, 7 and 21 days. Blood pH, plasma ions (Na+, K+, Cl-), branchial mRNA expression of ion transporters such as Na+/K+-ATPase (NKA), Na+/K+/2Cl- co-transporters (NKCC) and ammonia transporters (e.g. Rhesus glycoproteins Rhbg, Rhcg1 and Rhcg2) were examined to understand the iono- and osmoregulatory consequences of elevated CO2. RESULTS A transient but significant increase in the blood pH of exposed fish acclimated at 10 ppt (day 1) and 2.5 ppt (day 21) was observed possibly due to an overshoot of the blood HCO3- accumulation while a significant reduction of blood pH was observed after 21 days at 2.5ppt. However, no change was seen at 32 ppt. Generally, Na + concentration of control fish was relatively higher at 10 ppt and lower at 2.5 ppt compared to 32 ppt control group at all sampling periods. Additionally, NKA was upregulated in gill of juvenile sea bass when acclimated to lower salinities compared to 32 ppt control group. CO2 exposure generally downregulated NKA mRNA expression at 32ppt (day 1), 10 ppt (days 3, 7 and 21) and 2.5ppt (days 1 and 7) and also a significant reduction of NKCC mRNA level of the exposed fish acclimated at 32 ppt (1-3 days) and 10 ppt (7-21 days) was observed. Furthermore, Rhesus glycoproteins were generally upregulated in the fish acclimated at lower salinities indicating a higher dependance on gill ammonia excretion. Increased CO2 led to a reduced expression of Rhbg and may therefore reduce ammonia excretion rate. CONCLUSION Juvenile sea bass were relatively successful in keeping acid base balance under an ocean acidification scenario. However, this came at a cost for ionoregulation with reduced NKA, NKCC and Rhbg expression rates as a consequence.
Collapse
Affiliation(s)
- Warren G Caneos
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium.
- Fisheries Department, College of Fisheries and Aquatic Sciences, Mindanao State University-Marawi, Marawi City, 9700, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines.
| | - Jyotsna Shrivastava
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| | - Moses Ndugwa
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| |
Collapse
|
2
|
Blondeau-Bidet E, Banousse G, L'Honoré T, Farcy E, Cosseau C, Lorin-Nebel C. The role of salinity on genome-wide DNA methylation dynamics in European sea bass gills. Mol Ecol 2023; 32:5089-5109. [PMID: 37526137 DOI: 10.1111/mec.17089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Epigenetic modifications, like DNA methylation, generate phenotypic diversity in fish and ultimately lead to adaptive evolutionary processes. Euryhaline marine species that migrate between salinity-contrasted habitats have received little attention regarding the role of salinity on whole-genome DNA methylation. Investigation of salinity-induced DNA methylation in fish will help to better understand the potential role of this process in salinity acclimation. Using whole-genome bisulfite sequencing, we compared DNA methylation patterns in European sea bass (Dicentrarchus labrax) juveniles in seawater and after freshwater transfer. We targeted the gill as a crucial organ involved in plastic responses to environmental changes. To investigate the function of DNA methylation in gills, we performed RNAseq and assessed DNA methylome-transcriptome correlations. We showed a negative correlation between gene expression levels and DNA methylation levels in promoters, first introns and first exons. A significant effect of salinity on DNA methylation dynamics with an overall DNA hypomethylation in freshwater-transferred fish compared to seawater controls was demonstrated. This suggests a role of DNA methylation changes in salinity acclimation. Genes involved in key functions as metabolism, ion transport and transepithelial permeability (junctional complexes) were differentially methylated and expressed between salinity conditions. Expression of genes involved in mitochondrial metabolism (tricarboxylic acid cycle) was increased, whereas the expression of DNA methyltransferases 3a was repressed. This study reveals novel links between DNA methylation, mainly in promoters and first exons/introns, and gene expression patterns following salinity change.
Collapse
Affiliation(s)
| | | | - Thibaut L'Honoré
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Emilie Farcy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | | |
Collapse
|
3
|
Yang S, Li D, Feng L, Zhang C, Xi D, Liu H, Yan C, Xu Z, Zhang Y, Li Y, Yan T, He Z, Wu J, Gong Q, Du J, Huang X, Du X. Transcriptome analysis reveals the high temperature induced damage is a significant factor affecting the osmotic function of gill tissue in Siberian sturgeon (Acipenser baerii). BMC Genomics 2023; 24:2. [PMID: 36597034 PMCID: PMC9809011 DOI: 10.1186/s12864-022-08969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Maintaining osmotic equilibrium plays an important role in the survival of cold-water fishes. Heat stress has been proven to reduce the activity of Na+/K+-ATPase in the gill tissue, leading to destruction of the osmotic equilibrium. However, the mechanism of megatemperature affecting gill osmoregulation has not been fully elucidated. RESULTS In this study, Siberian sturgeon (Acipenser baerii) was used to analyze histopathological change, plasma ion level, and transcriptome of gill tissue subjected to 20℃, 24℃and 28℃. The results showed that ROS level and damage were increased in gill tissue with the increasing of heat stress temperature. Plasma Cl- level at 28℃ was distinctly lower than that at 20℃ and 24℃, while no significant difference was found in Na+ and K+ ion levels among different groups. Transcriptome analysis displayed that osmoregulation-, DNA-repair- and apoptosis-related terms or pathways were enriched in GO and KEGG analysis. Moreover, 194 osmoregulation-related genes were identified. Amongst, the expression of genes limiting ion outflow, occluding (OCLN), and ion absorption, solute carrier family 4, member 2 (AE2) solute carrier family 9, member 3 (NHE3) chloride channel 2 (CLC-2) were increased, while Na+/K+-ATPase alpha (NKA-a) expression was decreased after heat stress. CONCLUSIONS This study reveals for the first time that the effect of heat stress on damage and osmotic regulation in gill tissue of cold-water fishes. Heat stress increases the permeability of fish's gill tissue, and induces the gill tissue to keep ion balance through active ion absorption and passive ion outflow. Our study will contribute to research of global-warming-caused effects on cold-water fishes.
Collapse
Affiliation(s)
- Shiyong Yang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Datian Li
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Langkun Feng
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaoyang Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dandan Xi
- grid.80510.3c0000 0001 0185 3134College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Hongli Liu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaozhan Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zihan Xu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yujie Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yunkun Li
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Taiming Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhi He
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jiayun Wu
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Xiaoli Huang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiaogang Du
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| |
Collapse
|
4
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
5
|
Moniruzzaman M, Mukherjee M, Kumar S, Chakraborty SB. Effects of salinity stress on antioxidant status and inflammatory responses in females of a "Near Threatened" economically important fish species Notopterus chitala: a mechanistic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75031-75042. [PMID: 35650341 DOI: 10.1007/s11356-022-21142-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In the present study, acute stress responses of adult female Notopterus chitala were scrutinized by antioxidant status and inflammation reaction in the gill and liver at five different salinity exposures (0, 3, 6, 9, 12 ppt). Oxidative defense was assessed by determining superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase, and glutathione reductase activities, while malondialdehyde (MDA), glutathione, and xanthine oxidase levels were determined as indicators of oxidative load. Pro-inflammatory cytokines (IL-1β, IL-6, IL-10, and TNFα) and caspase 1 levels were also analyzed. Expression levels of transcription factors (NRF2 and NF-κB) and molecular chaperons (HSF, HSP70, and HSP90) were estimated to evaluate their relative contribution to overcome salinity stress. MDA showed a significant (P < 0.05) increase (gill, + 25.35-90.14%; liver, + 23.88-80.59%) with salinity; SOD (+ 13.72-45.09%) and CAT (+ 12.73-33.96%) exhibited a sharp increase until 9 ppt, followed by a decrease at the highest salinity (12 ppt) (gill, - 3.92%; liver, - 2.18%). Levels of cytokines were observed to increase (+ 52.8-127.42%) in a parallel pattern with increased salinity. HSP70 and HSP90 expressions were higher in gill tissues than those in liver tissues. NRF2 played pivotal role in reducing salinity-induced oxidative load in both the liver and gills. Serum cortisol and carbonic anhydrase were measured and noted to be significantly (P < 0.05) upregulated in salinity stressed groups. Gill Na+-K+-ATPase activity decreased significantly (P < 0.05) in fish exposed to 6, 9, and 12 ppt compared to control. Present study suggests that a hyperosmotic environment induces acute oxidative stress and inflammation, which in turn causes cellular death and impairs tissue functions in freshwater fish species such as Notopterus chitala.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Mainak Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
- Department of Zoology, Fakir Chand College, Diamond Harbour, India
| | - Saheli Kumar
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
6
|
Montgomery DW, Kwan GT, Davison WG, Finlay J, Berry A, Simpson SD, Engelhard GH, Birchenough SNR, Tresguerres M, Wilson RW. Rapid blood acid-base regulation by European sea bass (Dicentrarchus labrax) in response to sudden exposure to high environmental CO2. J Exp Biol 2022; 225:jeb242735. [PMID: 35005768 PMCID: PMC8917447 DOI: 10.1242/jeb.242735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000-10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3- in blood, which increased from ∼4 to ∼22 mmol l-1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3- and pH, probably because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.
Collapse
Affiliation(s)
| | - Garfield T. Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- National Oceanic and Atmospheric Administration Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - William G. Davison
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Jennifer Finlay
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Alex Berry
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Stephen D. Simpson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Georg H. Engelhard
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Silvana N. R. Birchenough
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rod W. Wilson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
7
|
Islam MJ, Kunzmann A, Slater MJ. Extreme winter cold-induced osmoregulatory, metabolic, and physiological responses in European seabass (Dicentrarchus labrax) acclimatized at different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145202. [PMID: 33736134 DOI: 10.1016/j.scitotenv.2021.145202] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Despite climate-change challenges, for most aquaculture species, physiological responses to different salinities during ambient extreme cold events remain unknown. Here, European seabass acclimatized at 3, 6, 12, and 30 PSU were subjected to 20 days of an ambient extreme winter cold event (8 °C), and monitored for growth and physiological performance. Growth performance decreased significantly (p < 0.05) in fish exposed at 3 and 30 PSU compared to 6 and 12 PSU. During cold stress exposure, serum Na+, Cl-, and K+ concentrations were significantly (p < 0.05) increased in fish exposed at 30 PSU. Serum cortisol, glucose, and blood urea nitrogen (BUN) were increased significantly (p < 0.05) in fish exposed at 3 and 30 PSU. In contrast, opposite trends were observed for serum protein, lactate, and triglycerides content during cold exposure. Transaminase activities [glutamic-pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactic acid dehydrogenase (LDH), gamma-glutamyl-transaminase (γGGT)] were significantly higher in fish exposed at 3 and 30 PSU on days 10 and 20. The abundance of heat shock protein 70 (HSP70), tumor necrosis factor-α (TNF-α), cystic fibrosis transmembrane conductance (CFTR) were significantly (p < 0.05) increased in fish exposed at 3 and 30 PSU during cold shock exposure. In contrast, insulin-like growth factor 1 (Igf1) expression was significantly lower in fish exposed at 3 and 30 PSU. Whereas, on day 20, Na+/K+ ATPase α1 and Na+/K+/Cl- cotransporter-1 (NKCC1) were significantly upregulated in fish exposed at 30 PSU, followed by 12, 6, and 3 PSU. Results demonstrated that ambient extreme winter cold events induce metabolic and physiological stress responses and provide a conceivable mechanism by which growth and physiological fitness are limited at cold thermal events. However, during ambient extreme cold (8 °C) exposure, European seabass exhibited better physiological fitness at 12 and 6 PSU water, providing possible insight into future aquaculture management options.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
8
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
9
|
Thalib YA, Razali RS, Mohamad S, Zainuddin R'A, Rahmah S, Ghaffar MA, Nhan HT, Liew HJ. Environmental changes affecting physiological responses and growth of hybrid grouper - The interactive impact of low pH and temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116375. [PMID: 33422747 DOI: 10.1016/j.envpol.2020.116375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Rising of temperature in conjunction with acidification due to the anthropogenic climates has tremendously affected all aquatic life. Small changes in the surrounding environment could lead to physiological constraint in the individual. Therefore, this study was designed to investigate the effects of warm water temperature (32 °C) and low pH (pH 6) on physiological responses and growth of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles for 25 days. Growth performance was significantly affected under warm water temperature and low-pH conditions. Surprisingly, the positive effect on growth was observed under the interactive effects of warm water and low pH exposure. Hybrid grouper exposed to the interactive stressor of warm temperature and low pH exhibited higher living cost, where HSI content was greatly depleted to about 2.3-folds than in normal circumstances. Overall, challenge to warm temperature and low pH induced protein mobilization as an energy source followed by glycogen and lipid to support basal metabolic needs.
Collapse
Affiliation(s)
- Yusnita A Thalib
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ros Suhaida Razali
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Suhaini Mohamad
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rabi'atul 'Adawiyyah Zainuddin
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Sharifah Rahmah
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mazlan Abd Ghaffar
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hua Thai Nhan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Viet Nam
| | - Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 232 Hesong St, Daoli District, Harbin, Heilongjiang, 150070, China.
| |
Collapse
|
10
|
Egnew N, Renukdas N, Romano N, Kelly AM, Lohakare J, Bishop WM, Lochmann RT, Sinha AK. Physio-biochemical, metabolic nitrogen excretion and ion-regulatory assessment in largemouth bass (Micropterus salmoides) following exposure to high environmental iron. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111526. [PMID: 33099141 DOI: 10.1016/j.ecoenv.2020.111526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 05/20/2023]
Abstract
Iron overload is a significant water quality issue in many parts of the world. Therefore, we evaluated the potential toxic effects of waterborne elevated iron on largemouth bass (Micropterus salmoides), a highly valued sport and aquaculture fish species. First, a 96 h-LC50 toxicity assay was performed to understand the tolerance limit of this species to iron; and was determined to be 22.07 mg/L (as Fe3+). Thereafter, to get a better insight on the fish survival during long-term exposure to high environmental iron (HEI) (5.52 mg/L, 25% of the determined 96 h-LC50 value), a suite of physio-biochemical, nitrogenous metabolic and ion-regulatory compensatory responses were examined at 7, 14, 21 and 28 days. Results showed that oxygen consumption dropped significantly at 21 and 28 days of HEI exposure. Ammonia excretion rate (Jamm) was significantly inhibited from day 14 and remained suppressed until the last exposure period. The transcript concentration of Rhesus glycoproteins Rhcg2 declined; likely diminishing ammonia efflux out of gills. These changes were also reflected by a parallel increment in plasma ammonia levels. Under HEI exposure, ion-balance was negatively affected, manifested by reduced plasma [Na+] and parallel inhibition in branchial Na+/K+-ATPase activity. Muscle water content was elevated in HEI-exposed fish, signifying an osmo-regulatory compromise. HEI exposure also increased iron burden in plasma and gills. The iron accumulation pattern in gills was significantly correlated with a suppression of Jamm, branchial Rhcg2 expression and Na+/K+-ATPase activity. There was also a decline in the glycogen, protein and lipid reserves in the hepatic tissue from 14 days, 28 days and 21 days, respectively. Overall, we conclude that sub-lethal chronic iron exposure can impair normal physio-biochemical and ion-regulatory functions in largemouth bass. Moreover, this data set can be applied in assessing the environmental risk posed by a waterborne iron overload on aquatic life.
Collapse
Affiliation(s)
- Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Nilima Renukdas
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Nicholas Romano
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Anita M Kelly
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA; Alabama Fish Farming Center, Auburn University, Greensboro, AL 36744, USA
| | - Jayant Lohakare
- Department of Agriculture-Animal Science, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - West M Bishop
- SePRO Research and Technology Campus, 16013 Watson Seed Farm Rd., Whitakers, NC 27891, USA
| | - Rebecca T Lochmann
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA.
| |
Collapse
|
11
|
L'Honoré T, Farcy E, Blondeau-Bidet E, Lorin-Nebel C. Inter-individual variability in freshwater tolerance is related to transcript level differences in gill and posterior kidney of European sea bass. Gene 2020; 741:144547. [PMID: 32165299 DOI: 10.1016/j.gene.2020.144547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/30/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Acclimation to low salinities is a vital physiological challenge for euryhaline fish as the European sea bass Dicentrarchus labrax. This species undertakes seasonal migrations towards lagoons and estuaries where a wide range of salinity variations occur along the year. We have previously reported intraspecific differences in freshwater tolerance, with an average 30% mortality rate. In this study, we bring new evidence of mechanisms underlying freshwater tolerance in sea bass at gill and kidney levels. In fresh water (FW), intraspecific differences in mRNA expression levels of several ion transporters and prolactin receptors were measured. We showed that the branchial Cl-/HCO3- anion transporter (slc26a6c) was over-expressed in freshwater intolerant fish, probably as a compensatory response to low blood chloride levels and potential metabolic alkalosis. Moreover, prolactin receptor a (prlra) and Na+/Cl- cotransporter (ncc1) but not ncc-2a expression seemed to be slightly increased and highly variable between individuals in freshwater intolerant fish. In the posterior kidney, freshwater intolerant fish exhibited differential expression levels of slc26 anion transporters and Na+/K+/2Cl- cotransporter 1b (nkcc1b). Lower expression levels of prolactin receptors (prlra, prlrb) were measured in posterior kidney which probably contributes to the failure in ion reuptake at the kidney level. Freshwater intolerance seems to be a consequence of renal failure of ion reabsorption, which is not sufficiently compensated at the branchial level.
Collapse
Affiliation(s)
- Thibaut L'Honoré
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), Montpellier, France
| | - Emilie Farcy
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), Montpellier, France
| | | | | |
Collapse
|
12
|
Lee SY, Lee HJ, Kim YK. Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Sci Rep 2020; 10:1987. [PMID: 32029805 PMCID: PMC7005315 DOI: 10.1038/s41598-020-58915-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Salmonid fishes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand wide salinity changes from the early life stage. This study investigated gene expression patterns of cell membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity acclimation of the fish in changing environments ranging from freshwater (0 ppt) to brackish water (17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their functional groups such as ion transport, transmembrane transporter activity and metal ion binding were identified. The expression patterns of membrane protein genes, including pump-mediated protein (NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar to those of other salmonid fishes in the smolt or adult stages. Based on the protein-protein interaction analysis between transmembrane proteins and other related genes, we identified osmotic-related genes expressed with salinity changes and analyzed their expression patterns. The findings of this study may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding of the osmophysiology of the species.
Collapse
Affiliation(s)
- Sang Yoon Lee
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hwa Jin Lee
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Yi Kyung Kim
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
13
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Is the dendritic organ of the striped eel catfish Plotosus lineatus an ammonia excretory organ? Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110640. [PMID: 31870932 DOI: 10.1016/j.cbpa.2019.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022]
Abstract
The dendritic organ (DO) is a salt secretory organ in the Plotosidae marine catfishes. The potential role of the DO in ammonia excretion was investigated by examining the effects of salinity [brackishwater (BW 3‰), seawater (SW 34‰) and hypersaline water (HSW 60‰)] acclimation and DO ligation on ammonia excretion and ammonia transporter expression by immunohistochemistry (IHC), immunoblotting (IB) and qPCR. Ammonia flux rates (JAmm) were significantly lower in BW compared to SW and HSW. DO ligation resulted in a significantly lower JAmm in SW but not BW fish. IHC demonstrated apical and basolateral localization of Rhesus-associated glycoprotein (Rhag-like) and Rhbg-like proteins, respectively, in parenchymal cells of the DO acini. In the gills, which are the primary site of ammonia excretion in teleost fishes, IHC showed an apical localization of Rhag-like protein in some Na+/K+-ATPase (NKA) immunoreactive (IR) cells limited to a few interlamellar regions of the filament and, in both apical and basolateral membranes of pillar cells irrespective of treatment group. In gills, the distribution of NKA-IR cells showed no salinity and/or ligation dependency. IB of Rhag and Rhbg-like proteins was found only in the gills and expression levels did not change with salinity but ligation in BW decreased Rhbg-like levels. Although Rhcg was not detected with heterologous antibodies, rhcg1 mRNA expression was detected in both gills and DO. HSW was associated with the lowest expression in DO and ligations in SW and BW were without effect on branchial expression levels. Taken together these results indicate the DO potentially has a physiological role in ammonia excretion under SW conditions.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Coldwater Fisheries Research Center (CFRC), Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research, Education and Extension Organization, Tonekabon, Iran.
| | - João Coimbra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Jonathan M Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Department of Biology, Wilfrid Laurier University, Waterloo, Canada.
| |
Collapse
|
14
|
Effect of salinity and temperature on the expression of genes involved in branchial ion transport processes in European sea bass. J Therm Biol 2019; 85:102422. [DOI: 10.1016/j.jtherbio.2019.102422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022]
|
15
|
Shrivastava J, Ndugwa M, Caneos W, De Boeck G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:54-69. [PMID: 31075620 DOI: 10.1016/j.aquatox.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this era of global climate change, ocean acidification is becoming a serious threat to the marine ecosystem. Despite this, it remains almost unknown how fish will respond to the co-occurrence of ocean acidification with other conventional environmental perturbations typically salinity fluctuation and high ammonia threat. Therefore, the present work evaluated the interactive effects of elevated pCO2, salinity reduction and high environmental ammonia (HEA) on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to seawater (32 ppt), to brackish water (10 ppt) and to hyposaline water (2.5 ppt). Following acclimation to different salinities for at least two weeks, fish were exposed to CO2-induced water acidification representing present-day (control pCO2, 400 μatm, LoCO2) and future (high pCO2, 1000 μatm, HiCO2) sea-surface CO2 level for 3, 7 and 21 days. At the end of each exposure period, fish were challenged with HEA for 6 h (1.18 mM representing 50% of 96 h LC50). Results show that, in response to the individual HiCO2 exposure, fish within each salinity compensated for blood acidosis. Fish subjected to HiCO2 were able to maintain ammonia excretion rate (Jamm) within control levels, suggesting that HiCO2 exposure alone had no impact on Jamm at any of the salinities. For 32 and 10 ppt fish, up-regulated expression of Na+/K+-ATPase was evident in all exposure groups (HEA, HiCO2 and HEA/HiCO2 co-exposed), whereas Na+/K+/2Cl- co-transporter was up-regulated mainly in HiCO2 group. Plasma glucose and lactate content were augmented in all exposure conditions for all salinity regimes. During HEA and HEA/HiCO2, Jamm was inhibited at different time points for all salinities, which resulted in a significant build-up of ammonia in plasma and muscle. Branchial expressions of Rhesus glycoproteins (Rhcg isoforms and Rhbg) were upregulated in response to HiCO2 as well as HEA at 10 ppt, with a more moderate response in 32 ppt groups. Overall, our findings denote that the adverse effect of single exposures of ocean acidification or HEA is exacerbated when present together, and suggests that fish are more vulnerable to these environmental threats at low salinities.
Collapse
Affiliation(s)
- Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Moses Ndugwa
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Warren Caneos
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|