1
|
Paerl HW, Plaas HE, Nelson LM, Korbobo AS, Cheshire JH, Yue L, Preece EP. Dual nitrogen and phosphorus reductions are needed for long-term mitigation of eutrophication and harmful cyanobacterial blooms in the hydrologically-variable San Francisco Bay Delta, CA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177499. [PMID: 39536866 DOI: 10.1016/j.scitotenv.2024.177499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) are a major concern for water quality, public health and viability of aquatic ecosystems. Increased inputs of nutrients, i.e., nitrogen (N) and phosphorus (P), are known to amplify the occurrence, severity, and duration of CyanoHABs. There is growing concern that CyanoHABs are proliferating along the freshwater to marine continuum, including throughout estuaries. We assessed the influence of nutrient enrichment on the abundance and composition of CyanoHABs and accompanying phytoplankton communities in the San Francisco Bay Delta (SFBD) estuarine ecosystem, a vital resource for California's water supply, fisheries, and recreation. In situ nutrient addition bioassays were conducted in June and September 2022, at the end of a record three-year drought period, and May and August 2023, an extremely high rainfall and discharge year. Water was collected from two locations in the SFBD recognized for having CyanoHAB issues, Discovery Bay (DB) and the Stockton Channel (STK). Both sites showed the highest proportion of cyanobacteria in the total phytoplankton community biomass during summer months, and this was particularly noticeable at STK. In June 2022, additions of N and N+P were both shown to increase overall phytoplankton biomass in DB and N+P specifically stimulated cyanobacteria. P alone was not stimulatory. In September 2022, NH4 promoted the growth of cyanobacteria faster than NO3, particularly in DB communities. A similar set of responses to N occurred in 2023 in DB, despite major differences in freshwater input between years. In 2022, nutrient additions had no significant stimulatory effects on STK phytoplankton communities, suggesting nutrients were replete throughout the bloom season. However, in 2023 N limitation became more evident in STK, likely due to a dilution effect from the very high freshwater discharge from a record snowpack and reservoir releases, ultimately changing the availability of inorganic N during the CyanoHAB growth period. The combined effect of high flow and nutrient dilution in 2023 was responsible for the reduced CyanoHAB potential. By examining these key differences between seasons in these hydrologically contrasting years, it appears that internal supplies of "legacy P" ensure P availability throughout the summer bloom season regardless of hydrologic variability, while N enrichment plays a key role in stimulating algal production and CyanoHABs under hydrologically variable conditions. Once N was added, P further stimulated biomass production in some cases, indicating potential N+P co-limitation. We conclude that under varying hydrologic conditions, long-term dual N and P input reductions are needed to control eutrophication and CyanoHAB outbreaks throughout the SFBD.
Collapse
Affiliation(s)
- Hans W Paerl
- University of North Carolina at Chapel Hill, Institute of Marine Sciences-Department of Earth, Marine and Environmental Sciences, 3431 Arendell Street, Morehead City, NC 28557, United States of America.
| | - Haley E Plaas
- University of North Carolina at Chapel Hill, Institute of Marine Sciences-Department of Earth, Marine and Environmental Sciences, 3431 Arendell Street, Morehead City, NC 28557, United States of America; North Carolina State University, Department of Marine, Earth and Atmospheric Sciences, Raleigh, NC 27695-8208, United States of America
| | - Leah M Nelson
- University of North Carolina at Chapel Hill, Institute of Marine Sciences-Department of Earth, Marine and Environmental Sciences, 3431 Arendell Street, Morehead City, NC 28557, United States of America; University of North Carolina at Chapel Hill, Environment, Ecology, and Energy Program, Chapel Hill, NC 27516, United States of America
| | - Alexandrea Sabo Korbobo
- Lehigh University, Earth and Environmental Sciences, Bethlehem, PA 18015, United States of America
| | - Jack H Cheshire
- University of North Carolina at Chapel Hill, Institute of Marine Sciences-Department of Earth, Marine and Environmental Sciences, 3431 Arendell Street, Morehead City, NC 28557, United States of America
| | - Lindsay Yue
- University of North Carolina at Chapel Hill, Institute of Marine Sciences-Department of Earth, Marine and Environmental Sciences, 3431 Arendell Street, Morehead City, NC 28557, United States of America; Moss Landing Marine Laboratories, San José State University, Moss Landing, CA 95039, United States of America
| | - Ellen P Preece
- Division of Integrated Sciences and Engineering, California Department of Water Resources, Sacramento, CA 95691, United States of America
| |
Collapse
|
2
|
Stoll JT, Larson JH, Bailey SW, Blackwood CB, Costello DM. Macro- and micronutrient effects on phytoplankton in Green Bay, Lake Michigan, and the western basin of Lake Erie. JOURNAL OF PHYCOLOGY 2024; 60:1514-1527. [PMID: 39632663 DOI: 10.1111/jpy.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024]
Abstract
Efforts to reduce the frequency, extent, and toxicity of harmful algal blooms (HABs) require knowledge about drivers of algal growth, toxin production, and shifts in phytoplankton community composition to cyanobacterial dominance. Although labile nitrogen (N) and phosphorus (P) fuel primary production, micronutrients also play roles as the enzymatic engines that facilitate rapid and efficient growth and toxin production. Macro- and micronutrient availability can shape community composition and function by selecting for particular taxa. To address how phytoplankton in two Great Lakes subbasins respond to macro- and micronutrients, we conducted bottle incubation enrichment experiments using water collected from two blooming and two nonblooming sites in Lakes Erie and Michigan during late summer (August). Three of the four sites exhibited multi-nutrient limitation of growth. Both blooming sites responded strongest toNH 4 + enrichment. Both nonblooming sites responded the strongest toPO 4 3 - enrichment, and three of the four sites responded in some way to a mix of micronutrients (Fe, Mn, Mo, Ni, and Zn). Microcystis aeruginosa relative abundance increased most with N enrichment, while P enrichment increased the abundance of diatoms and chlorophytes. At the Fox River, N-enriched communities grew 10%-20% more than non-N enriched communities (measured as chlorophyll a), and N-enriched communities had, on average, over twice as much microcystin (non-N communities average MC = 2.45 μg · L-1, +N communities MC = 5.35 μg · L-1). These overarching trends support the idea that control of HABs may not be effective with a P-only approach.
Collapse
Affiliation(s)
- Jordyn T Stoll
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Michigan Trout Unlimited, DeWitt, Michigan, USA
| | - James H Larson
- Upper Midwest Environmental Sciences Center (UMESC), United States Geological Survey, Reston, Virginia, USA
| | - Sean W Bailey
- Upper Midwest Environmental Sciences Center (UMESC), United States Geological Survey, Reston, Virginia, USA
| | - Christopher B Blackwood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - David M Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
3
|
Fang J, Li Y, Su M, Cao T, Sun X, Ai Y, Qin J, Yu J, Yang M. Mitigating harmful cyanobacterial blooms in drinking water reservoirs through in-situ sediment resuspension. WATER RESEARCH 2024; 267:122509. [PMID: 39353347 DOI: 10.1016/j.watres.2024.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/30/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Mitigating harmful cyanobacterial blooms is a global challenge, particularly crucial for safeguarding source water. Given the limitations of current technologies for application in drinking water reservoirs, we propose an innovative strategy based on in-situ sediment resuspension (SR). This method's effectiveness in cyanobacterial control and its potential impacts on water quality were assessed through laboratory culture experiments and further validated via field applications in five drinking water reservoirs. The results revealed that SR could significantly mitigate cyanobacterial growth, evidenced by the treated sets (removal rate: 3.82×106 cells L-1d-1) compared to the control set (growth rate: 2.22×107 cells L-1d-1) according to the laboratory experiments. The underlying mechanisms identified included underwater light reduction (2.38× increase in extinction coefficient) and flocculation and entrainment of cells by resuspended particles (30 % reduction per operation). Additional contributions were noted in the reduction of bioavailable phosphate and remediation of anaerobic sediment characterized by increased redox potential. This facilitated the oxidation of iron, which in turn promoted the co-precipitation of phosphate (removal rate: 46 μg L-1d-1) and inhibited its release from the sediment. The SR operation, devoid of importing extra substances, represents a safe and economical technology for controlling harmful cyanobacteria in drinking water reservoirs.
Collapse
Affiliation(s)
- Jiao Fang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; School of Environment and Spatial Informatics, China University of Mining and Technology, P.O. Box 2871, Xuzhou 221116, PR China
| | - Yande Li
- Management Station of Shuangxikou Reservoir, Reservoir Management Service Center of Yuyao City, P.O. Box 2871, Ningbo, Zhejiang Province 315423, PR China
| | - Ming Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Tengxin Cao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xufeng Sun
- Zhejiang Weicheng Huanbao Co. Ltd., Yunxiu North Road 1200, Huzhou 313200, PR China
| | - Yufan Ai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinyi Qin
- School of Civil Engineering, Chang'an University, P.O. Box 2871, Xi'an 710054, PR China
| | - Jianwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
4
|
Krausfeldt LE, Samuel PS, Smith RP, Urakawa H, Rosen BH, Colwell RR, Lopez JV. Transcriptional profiles of Microcystis reveal gene expression shifts that promote bloom persistence in in situ mesocosms. Microbiol Spectr 2024:e0136924. [PMID: 39555930 DOI: 10.1128/spectrum.01369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024] Open
Abstract
Harmful algal blooms caused by cyanobacteria threaten aquatic ecosystems, the economy, and human health. Previous work has tried to identify the mechanisms that allow blooms to form, focusing on the role of nutrients. However, little is known about how introduced nutrients influence gene expression in situ. To address this knowledge gap, we used in situ mesocosms initiated with water experiencing a Microcystis bloom. We added pulses of nutrients that are commonly associated with anthropogenic sources to the mesocosms for 72 hours and collected samples for metatranscriptomics to examine how the physiological function of Microcystis and bloom status changed. The addition of nitrogen (N) as urea, but not the addition of PO4, resulted in conspicuous bloom persistence for at least 9 days after the final introduction of nutrients. The addition of urea initially resulted in the upregulation of photosynthesis machinery, as well as phosphate, carbon, and N transport and metabolism. Once Microcystis presumably became N-replete, upregulation of amino acid metabolism, microcystin biosynthesis, and other processes associated with biomass generation occurred. These capacities coincided with the upregulation of toxin-antitoxin systems, CRISPR-cas genes, and transposases suggesting that phage defense and genome rearrangement are critical in bloom persistence. Overall, our results show the stepwise transcriptional response of a Microcystis bloom to the introduction of nutrients, specifically urea, as it is sustained in a natural setting. The transcriptomic shifts observed herein may serve as markers of the longevity of blooms while providing insight into why Microcystis blooms over other cyanobacteria.IMPORTANCEHarmful algal blooms represent a threat to human health and ecosystems. Understanding why blooms persist may help us develop warning indicators of bloom persistence and create novel mitigation strategies. Using mesocosm experiments initiated with water with an active bloom, we measured the stepwise transcription changes of the toxin-producing cyanobacterium Microcystis in response to the addition of nutrients that are important in causing blooms. We found that nitrogen (N), but not phosphorus, promoted bloom longevity. The initial introduction of N resulted in the upregulation of genes involved in photosynthesis and N import. At later times in the bloom, upregulation of genes involved in biomass generation, phage protection, genomic rearrangement, and toxin production was observed. Our results suggest that Microcystis first fulfills nutritional requirements before investing energy in pathways associated with growth and protection against competitors, which allowed bloom persistence more than a week after the final addition of nutrients.
Collapse
Affiliation(s)
- Lauren E Krausfeldt
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Paisley S Samuel
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Robert P Smith
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Barry H Rosen
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Rita R Colwell
- Institute for Advanced Computer Studies, University of Maryland College Park, College Park, Maryland, USA
| | - Jose V Lopez
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| |
Collapse
|
5
|
Newell SE, Doll JC, Jutte MC, Davidson JL, McCarthy MJ, Jacquemin SJ. Drivers and mechanisms of harmful algal blooms across hydrologic extremes in hypereutrophic grand lake st marys (Ohio). HARMFUL ALGAE 2024; 138:102684. [PMID: 39244227 DOI: 10.1016/j.hal.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 09/09/2024]
Abstract
Grand Lake St. Marys (GLSM) is a large, shallow, hypereutrophic lake situated in an agricultural watershed with high-nutrient, non-point source runoff. The resulting harmful algal blooms (HABs) are typically dominated by Planktothrix, which can produce microcystin, a potent cyanobacterial toxin that has varied in concentration over the past decade. Some drivers of bloom biomass and toxicity in GLSM are described, but recent years (2019-2022) have exhibited anomalous combinations of winter ice cover and spring runoff, suggesting that additional factors contribute to variability in HAB severity and toxicity. 2020 and 2022 were typical water years, with normal tributary runoff volumes occurring primarily in late winter and spring after either little to no ice cover (2019-2020) or heavy/prolonged ice cover (2021-2022). However, 2021 exhibited prolonged winter ice and low winter/spring runoff. 2020 and 2022 were typical bloom years, with near monoculture, Planktothrix-dominated biomass (11 to 405 μg/L total chlorophyll) and high total concentrations of microcystins (<0.3 to 65 μg/L). However, the first half of 2021 exhibited lower biomass (18 to 65 μg/L chlorophyll a) and toxin concentrations (0.4 to 2.0 μg/L). While biomass returned to bloom levels when external tributary loading increased, ammonium uptake and regeneration rates and microcystin concentrations remained low throughout 2021 (in contrast to other years). Overall, potential ammonium uptake rates strongly correlated with chlorophyll and microcystin concentrations (Bayesian R2 = 0.59; 95% CI = 0.44 to 0.65). Phytoplankton diversity was higher in 2021 than other years, especially in spring/early summer, with increased dinoflagellates and diatoms in spring, followed by a mixed cyanobacterial assemblage in summer. These results suggest that lower external nutrient loads can drive immediate positive impacts on water quality, such as reduced HAB biomass and toxicity and higher phytoplankton diversity, even in hypereutrophic, shallow lakes.
Collapse
Affiliation(s)
- Silvia E Newell
- University of Michigan, Michigan Sea Grant, Ann Arbor, MI 48109, USA; Wright State University, Department of Biology, Dayton, OH 45458, USA; Wright State University, Earth and Environmental Sciences, Dayton, OH 45458, USA.
| | - Jason C Doll
- Francis Marion University, Department of Biology, Florence, South Carolina 29502, USA
| | - Morgan C Jutte
- Wright State University - Lake Campus, Department of Biological Sciences, Agriculture and Water Quality Education Center, Celina, Ohio 45822, USA
| | - Joseph L Davidson
- Wright State University, Earth and Environmental Sciences, Dayton, OH 45458, USA
| | - Mark J McCarthy
- Wright State University, Earth and Environmental Sciences, Dayton, OH 45458, USA; Estonian University of Life Sciences, Estonia
| | - Stephen J Jacquemin
- Wright State University - Lake Campus, Department of Biological Sciences, Agriculture and Water Quality Education Center, Celina, Ohio 45822, USA
| |
Collapse
|
6
|
Preece EP, Hartman R. Exploring factors that affect Microcystis abundance in the sacramento san joaquin delta. HARMFUL ALGAE 2024; 138:102682. [PMID: 39244225 DOI: 10.1016/j.hal.2024.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
Cyanobacteria harmful algal blooms (cHABs) are increasing in frequency, intensity and duration in estuaries worldwide. In the upper San Francisco Estuary, also known as the Sacramento San Joaquin Delta (Delta), cHABs have been a topic of concern over the past two decades. In response, managers are urgently working to understand the factors that drive cHABs and identify feasible management options to avert ecological and human health consequences. We used a six year data set to explore relationships between flow parameters, temperature, and Microcystis biovolume to determine the potential for managing large scale hydrodynamic conditions to address Delta cHABs. We also looked at the relationship between Microcystis biovolume and the low salinity zone to see if it could be used as a proxy for residence time, because residence time is positively related to cyanobacteria abundance. We found the low salinity zone is not a useful proxy for residence time in the area of the Delta that experiences the most severe cHABs. Our finding suggest that climatic conditions (i.e., temperature and water year type) have the greatest influence on Microcystis biovolume in the Delta, with higher biovolume during years with lower flow and higher temperatures. Further, there are interannual differences in Microcystis biovolume that cannot be fully explained by flow parameters or temperature, meaning other factors not included in our model may be involved. We conclude that management actions to increase flow may be ineffective at reducing Microcystis to desired levels if water temperatures remain high.
Collapse
Affiliation(s)
- Ellen P Preece
- California Department of Water Resources, 3500 Industrial Blvd, West Sacramento, CA 95691, USA.
| | - Rosemary Hartman
- California Department of Water Resources, 3500 Industrial Blvd, West Sacramento, CA 95691, USA
| |
Collapse
|
7
|
Brown KM, Barker KB, Wagner RS, Ward CS, Sitoki L, Njiru J, Omondi R, Achiya J, Getabu A, McKay RM, Bullerjahn GS. Bacterial community and cyanotoxin gene distribution of the Winam Gulf, Lake Victoria, Kenya. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13297. [PMID: 38885952 PMCID: PMC11182661 DOI: 10.1111/1758-2229.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin-producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevated cyrA abundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022, cyrA exceeded 10 million copies L-1 where there were more than 6000 Cylindrospermopsis spp. cells mL-1. In contrast, the southwestern region had elevated mcyE gene (microcystin synthesis) detections near Homa Bay where Microcystis and Dolichospermum spp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.
Collapse
Affiliation(s)
- Katelyn M. Brown
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Katelyn B. Barker
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Ryan S. Wagner
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Christopher S. Ward
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Lewis Sitoki
- Department of Earth, Environmental Science and TechnologyTechnical University of KenyaNairobiKenya
| | - James Njiru
- Kenya Marine and Fisheries Research InstituteKisumuKenya
| | - Reuben Omondi
- Department of Fisheries and LimnologyKisii UniversityKisiiKenya
| | - James Achiya
- Kenya Marine and Fisheries Research InstituteKisumuKenya
| | - Albert Getabu
- Department of Fisheries and LimnologyKisii UniversityKisiiKenya
| | - R. Michael McKay
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - George S. Bullerjahn
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | | |
Collapse
|
8
|
Nauman C, Stanislawczyk K, Reitz LA, Chaffin JD. The spatiotemporal distribution of potential saxitoxin-producing cyanobacteria in western Lake Erie. JOURNAL OF GREAT LAKES RESEARCH 2024; 50:102342. [PMID: 39703858 PMCID: PMC11658238 DOI: 10.1016/j.jglr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cyanobacterial blooms in the western basin of Lake Erie have been well studied with a focus on planktonic Microcystis and the cyanotoxin microcystin, but recent research has shown that blooms are not entirely Microcystis. Previous studies have documented other taxa in blooms capable of producing other cyanotoxins. Furthermore, benthic cyanobacteria have historically been overlooked in Lake Erie. Saxitoxin is a cyanotoxin of emerging concern in freshwater, and the sxtA gene which encodes its production has been found in the Maumee River and central basin of Lake Erie. Collectively, these points indicated that saxitoxin-producing cyanobacteria may also occur in the western basin. We utilized three sources of data to determine the spatial and temporal distribution of potential saxitoxin-producing cyanobacteria in the water column (years 2018-2022) and deployed nutrient diffusing substrata (NDS) to determine the impact of nutrients, depth, and season on potential-STX producing benthic cyanobacteria (years 2018 & 2019). The water column datasets showed that "hotspots" of sxtA lasted only a few weeks. sxtA gene copies per mL did not correlate with Dolichospermum or Aphanizomenon biovolume, which have been associated with sxtA elsewhere. In the NDS, saxitoxin (ng/cm2) and cyanobacteria chlorophyll were inversely correlated with the highest saxitoxin in September and at the deeper depth, whereas cyanobacteria chlorophyll was highest during June and at the shallower depth. This research suggests continued monitoring is needed to determine drivers of saxitoxin in the western basin, and we recommend that future Lake Erie cyanobacteria research should not solely focus on microcystins and planktonic blooms.
Collapse
Affiliation(s)
- Callie Nauman
- Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Keara Stanislawczyk
- F.T Stone Laboratory, The Ohio State University, 878 Bayview Ave. Put-in-Bay, OH 43456, USA
| | - Laura A. Reitz
- Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Justin D. Chaffin
- F.T Stone Laboratory, The Ohio State University, 878 Bayview Ave. Put-in-Bay, OH 43456, USA
| |
Collapse
|
9
|
Driscoll C, Milford JB, Henze DK, Bell MD. Atmospheric reduced nitrogen: Sources, transformations, effects, and management. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:362-415. [PMID: 38819428 DOI: 10.1080/10962247.2024.2342765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
Human activities have increased atmospheric emissions and deposition of oxidized and reduced forms of nitrogen, but emission control programs have largely focused on oxidized nitrogen. As a result, in many regions of the world emissions of oxidized nitrogen are decreasing while emissions of reduced nitrogen are increasing. Emissions of reduced nitrogen largely originate from livestock waste and fertilizer application, with contributions from transportation sources in urban areas. Observations suggest a discrepancy between trends in emissions and deposition of reduced nitrogen in the U.S., likely due to an underestimate in emissions. In the atmosphere, ammonia reacts with oxides of sulfur and nitrogen to form fine particulate matter that impairs health and visibility and affects climate forcings. Recent reductions in emissions of sulfur and nitrogen oxides have limited partitioning with ammonia, decreasing long-range transport. Continuing research is needed to improve understanding of how shifting emissions alter formation of secondary particulates and patterns of transport and deposition of reactive nitrogen. Satellite remote sensing has potential for monitoring atmospheric concentrations and emissions of ammonia, but there remains a need to maintain and strengthen ground-based measurements and continue development of chemical transport models. Elevated nitrogen deposition has decreased plant and soil microbial biodiversity and altered the biogeochemical function of terrestrial, freshwater, and coastal ecosystems. Further study is needed on differential effects of oxidized versus reduced nitrogen and pathways and timescales of ecosystem recovery from elevated nitrogen deposition. Decreases in deposition of reduced nitrogen could alleviate exceedances of critical loads for terrestrial and freshwater indicators in many U.S. areas. The U.S. Environmental Protection Agency should consider using critical loads as a basis for setting standards to protect public welfare and ecosystems. The U.S. and other countries might look to European experience for approaches to control emissions of reduced nitrogen from agricultural and transportation sectors.Implications: In this Critical Review we synthesize research on effects, air emissions, environmental transformations, and management of reduced forms of nitrogen. Emissions of reduced nitrogen affect human health, the structure and function of ecosystems, and climatic forcings. While emissions of oxidized forms of nitrogen are regulated in the U.S., controls on reduced forms are largely absent. Decreases in emissions of sulfur and nitrogen oxides coupled with increases in ammonia are shifting the gas-particle partitioning of ammonia and decreasing long-range atmospheric transport of reduced nitrogen. Effort is needed to understand, monitor, and manage emissions of reduced nitrogen in a changing environment.
Collapse
Affiliation(s)
- Charles Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA
| | - Jana B Milford
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Michael D Bell
- Ecologist, National Park Service - Air Resources Division, Boulder, CO, USA
| |
Collapse
|
10
|
Muñoz-Marín MDC, López-Lozano A, Moreno-Cabezuelo JÁ, Díez J, García-Fernández JM. Mixotrophy in cyanobacteria. Curr Opin Microbiol 2024; 78:102432. [PMID: 38325247 DOI: 10.1016/j.mib.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Cyanobacteria evolved the oxygenic photosynthesis to generate organic matter from CO2 and sunlight, and they were responsible for the production of oxygen in the Earth's atmosphere. This made them a model for photosynthetic organisms, since they are easier to study than higher plants. Early studies suggested that only a minority among cyanobacteria might assimilate organic compounds, being considered mostly autotrophic for decades. However, compelling evidence from marine and freshwater cyanobacteria, including toxic strains, in the laboratory and in the field, has been obtained in the last decades: by using physiological and omics approaches, mixotrophy has been found to be a more widespread feature than initially believed. Furthermore, dominant clades of marine cyanobacteria can take up organic compounds, and mixotrophy is critical for their survival in deep waters with very low light. Hence, mixotrophy seems to be an essential trait in the metabolism of most cyanobacteria, which can be exploited for biotechnological purposes.
Collapse
Affiliation(s)
- María Del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain.
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
11
|
Ye L, Huang M, Liu H, Gu J, Wu J. Flocculation under combined effects of hydrodynamic and subaqueous biomass in the bottom boundary layer (BBL) of a microtidal estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169660. [PMID: 38159756 DOI: 10.1016/j.scitotenv.2023.169660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The flocculation dynamics within the bottom boundary layer (BBL) of tidal estuaries constitute a pivotal and intricate aspect entwined with hydrodynamics and morphodynamics. In microtidal estuaries, where saltwater intrusion occurs, the ensuing impacts on ecosystems, biological habitats, and human activities underscore necessity for comprehensive understanding. In pursuit of elucidating flocculation dynamics within estuarine BBLs, an extensive 25-hour survey was conducted throughout a complete tidal-cycle in the Huangmaohai estuary, China. This investigation encompassed the collection of data pertaining hydrodynamics, biochemical characteristics of suspended flocs within the BBL. The observed irregular semidiurnal tide was delineated into six distinct stages: I) Weak flood, II) Flood slack, III) Strong ebb, IV) Ebb slack, V) Strong flood and VI) Flood slack. The amalgamation of empirical findings and theoretical analyses has facilitated the development of conceptual model delineating the intricate processes and interactions of multiple factors within each stage (I-VI) in the BBL of a prototypical micro-tidal estuary. Notably, it reveals biological factors exhibit a significantly higher efficacy in estuarine flocculation dynamics within the BBL compared to the chemical ion attractions, attributable to variations in salinity. Further nuances emerged, indicating that semi-liquid extracellular polymeric substance (EPS) plays a substantial role in the formation of high-density flocs, particularly during periods of heightened turbulent shear conditions in flood and ebb times (I, III, V). Conversely, particulate biological debris predominantly contributes to low-density flocs characterized by a low settling velocity, particularly for large flocs >200 μm during tidal slacks (I, IV), and smaller median-sized flocs (70-200 μm) during flood or ebb times (III, V) due to turbulent induced breakage of bio-particles. This study underscores the significance of quantitative investigations into the biological components within individual flocs under estuarine hydrodynamics as a pivotal step towards comprehending flocculation mechanisms and predicting cohesive sediment transport within the BBLs of estuaries.
Collapse
Affiliation(s)
- Leiping Ye
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Min Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Huan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China.
| | - Junjie Gu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China.
| |
Collapse
|
12
|
Li W, Baliu-Rodriguez D, Premathilaka SH, Thenuwara SI, Kimbrel JA, Samo TJ, Ramon C, Kiledal EA, Rivera SR, Kharbush J, Isailovic D, Weber PK, Dick GJ, Mayali X. Microbiome processing of organic nitrogen input supports growth and cyanotoxin production of Microcystis aeruginosa cultures. THE ISME JOURNAL 2024; 18:wrae082. [PMID: 38718148 PMCID: PMC11126159 DOI: 10.1093/ismejo/wrae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.
Collapse
Affiliation(s)
- Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - David Baliu-Rodriguez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sharmila I Thenuwara
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Ty J Samo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Erik Anders Kiledal
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Sara R Rivera
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Jenan Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI 48104, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| |
Collapse
|
13
|
Villanueva P, Yang J, Radmer L, Liang X, Leung T, Ikuma K, Swanner ED, Howe A, Lee J. One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20636-20646. [PMID: 38011382 DOI: 10.1021/acs.est.3c07764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models. Using water samples from 38 Iowa lakes collected between 2018 and 2021, feature selection was conducted considering both linear and nonlinear properties. Subsequently, we developed three model types (Neural Network, XGBoost, and Logistic Regression) with different sampling strategies using the nine selected variables (mcyA_M, TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857, LR+ 5.993, and 1/LR- 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928, specificity 0.833, LR+ 5.557, and 1/LR- 11.569). This study exhibited the intricacies of modeling with limited data and class imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
Collapse
Affiliation(s)
- Paul Villanueva
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lorien Radmer
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xuewei Liang
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Tania Leung
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jaejin Lee
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Kieley CM, Roelke DL, Park R, Campbell KL, Klobusnik NH, Walker JR, Cagle SE, Kneer ML, Stroski KM, Brooks BW, Labonté JM. Concentration of total microcystins associates with nitrate and nitrite, and may disrupt the nitrogen cycle, in warm-monomictic lakes of the southcentral United States. HARMFUL ALGAE 2023; 130:102542. [PMID: 38061823 DOI: 10.1016/j.hal.2023.102542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Cyanobacterial blooms and the toxins they produce pose a growing threat worldwide. Mitigation of such events has primarily focused on phosphorus management and has largely neglected the role of nitrogen. Previous bloom research and proposed management strategies have primarily focused on temperate, dimictic lakes, and less on warm-monomictic systems like those at subtropical latitudes. The in-lake conditions, concentration of total microcystins, and microbial functioning of twenty warm-monomictic lakes in the southcentral United States were explored in the spring and summer of 2021. Our data revealed widespread microcystins in lakes across this region, some of which exceeded regulatory limits. Microcystins were higher in the spring compared to the summer, indicating that warm-monomictic lakes, even across a large range of precipitation, do not follow the trends of temperate dimictic lakes. Microcystins were found in surface waters and bottom waters well below the photic zone, reflecting the persistence of these toxins in the environment. Principal components analyses showed a strong association between microcystins, nitrate + nitrite, and Planktothrix relative abundance and transcriptional activity. Many systems exhibited stronger denitrification in the spring, perhaps contributing to the decreased toxin concentrations in the summer. Counter to most sampled lakes, one lake with the highest concentration of total microcystins indicated nitrogen cycle disruption, including inhibited denitrification. These findings are relevant to mitigating cyanobacterial blooms and toxin production in warm-monomictic systems, and suggests a need to consider nitrogen, and not solely phosphorus, in nutrient management discussions.
Collapse
Affiliation(s)
- Crista M Kieley
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA.
| | - Royoung Park
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Kathryn L Campbell
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - N Hagen Klobusnik
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Jordan R Walker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Sierra E Cagle
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Marissa L Kneer
- US Army Corps of Engineers ERDC-EL, Vicksburg, MS 39180, USA
| | - Kevin M Stroski
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| |
Collapse
|
15
|
French BW, Kaul R, George J, Haller ST, Kennedy DJ, Mukundan D. A Case Series of Potential Pediatric Cyanotoxin Exposures Associated with Harmful Algal Blooms in Northwest Ohio. Infect Dis Rep 2023; 15:726-734. [PMID: 37987403 PMCID: PMC10660511 DOI: 10.3390/idr15060065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) are increasing in prevalence and severity in the Great Lakes region, as well as both globally and locally. CyanoHABs have the potential to cause adverse effects on human health due to the production of cyanotoxins from cyanobacteria. Common routes of exposure include recreational exposure (swimming, skiing, and boating), ingestion, and aerosolization of contaminated water sources. Cyanotoxins have been shown to adversely affect several major organ systems contributing to hepatotoxicity, gastrointestinal distress, and pulmonary inflammation. We present three pediatric case reports that coincided with CyanoHABs exposure with a focus on presentation of illness, diagnostic work-up, and treatment of CyanoHAB-related illnesses. Potential cyanotoxin exposure occurred while swimming in the Maumee River and Maumee Bay of Lake Erie in Ohio during the summer months with confirmed CyanoHAB activity. Primary symptoms included generalized macular rash, fever, vomiting, diarrhea, and severe respiratory distress. Significant labs included leukocytosis and elevated C-reactive protein. All patients ultimately recovered with supportive care. Symptoms following potential cyanotoxin exposure coincide with multiple disease states representing an urgent need to develop specific diagnostic tests of exposure.
Collapse
Affiliation(s)
- Benjamin W. French
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - Rajat Kaul
- Department of Pediatrics, College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA;
| | - Jerrin George
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - Deepa Mukundan
- Department of Pediatrics, College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
16
|
Yao EK, Ahoutou MK, Olokotum M, Hamlaoui S, Lance E, Marie B, Bernard C, Djeha RY, Quiblier C, Humbert JF, Coulibaly JK. Assessment of cyanotoxins in water and fish in an African freshwater lagoon (Lagoon Aghien, Ivory Coast) and the application of WHO guidelines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97857-97871. [PMID: 37603248 DOI: 10.1007/s11356-023-29025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
In comparison with northern countries, limited data are available on the occurrence and potential toxicity of cyanobacterial blooms in lakes and ponds in sub-Saharan countries. With the aim of enhancing our knowledge on cyanobacteria and their toxins in Africa, we performed a 17-month monitoring of a freshwater ecosystem, Lagoon Aghien (Ivory Coast), which is used for multiple practices by riverine populations and for drinking water production in Abidjan city. The richness and diversity of the cyanobacterial community were high and displayed few variations during the entire survey. The monthly average abundances ranged from 4.1 × 104 to 1.8 × 105 cell mL-1, with higher abundances recorded during the dry seasons. Among the five cyanotoxin families analyzed (anatoxin-a, cylindrospermopsin, homoanatoxin, microcystins, saxitoxin), only microcystins (MC) were detected with concentrations ranging from 0 to 0.364 μg L-1 in phytoplankton cells, from 32 to 1092 μg fresh weight (FW) kg-1 in fish intestines, and from 33 to 383 μg FW kg-1 in fish livers. Even if the MC concentrations in water and fish are low, usually below the thresholds defined in WHO guidelines, these data raise the issue of the relevance of these WHO guidelines for sub-Saharan Africa, where local populations are exposed throughout the year to these toxins in multiple ways.
Collapse
Affiliation(s)
| | - Mathias Koffi Ahoutou
- Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Mark Olokotum
- National Fisheries Resources Research Institute, Jinja, Uganda
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Sahima Hamlaoui
- UMR Molécules de Communication et Adaptation des Micro-organismes, Muséum d'Histoire Naturelle de Paris, Paris, France
| | - Emilie Lance
- UMR Molécules de Communication et Adaptation des Micro-organismes, Muséum d'Histoire Naturelle de Paris, Paris, France
- UMR Stress environnementaux et biosurveillance des milieux aquatiques, Université de Reims Champagne-Ardenne, Reims, France
| | - Benjamin Marie
- UMR Molécules de Communication et Adaptation des Micro-organismes, Muséum d'Histoire Naturelle de Paris, Paris, France
| | - Cécile Bernard
- UMR Molécules de Communication et Adaptation des Micro-organismes, Muséum d'Histoire Naturelle de Paris, Paris, France
| | | | - Catherine Quiblier
- UMR Molécules de Communication et Adaptation des Micro-organismes, Muséum d'Histoire Naturelle de Paris, Paris, France
- Université Paris Cité, Paris, France
| | - Jean-François Humbert
- Centre Île-de-France-Versailles-Grignon, Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement, Paris, France.
| | | |
Collapse
|
17
|
Chaffin JD, Westrick JA, Reitz LA, Bridgeman TB. Microcystin congeners in Lake Erie follow the seasonal pattern of nitrogen availability. HARMFUL ALGAE 2023; 127:102466. [PMID: 37544667 PMCID: PMC10867787 DOI: 10.1016/j.hal.2023.102466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 08/08/2023]
Abstract
Cyanobacteria harmful algal blooms produce many toxic secondary metabolites called cyanotoxins. The most studied group of cyanotoxins are microcystins (MC), with over 300 congeners reported. MC-LR is the most studied congener because of its abundance and toxicity. Recent toxicology studies suggest that more hydrophobic MC congeners such as MC-LA, MC-LF, and MC-LW may be less abundant but up to seven times more toxic than MC-LR, whereas, MC-RR's toxicity is only one-fifth that of MC-LR. Hence, understanding the environmental stressors that change the MC congener profile is critical to assessing the negative impact on environmental and human health. A two-year field and experimental study investigated seasonal and spatial changes of MC congener profiles in the western basin of Lake Erie. Both studies showed that nitrogen enrichment favored the production of nitrogen-rich MC-RR (C49H75N13O12). The field study showed that nitrogen depletion favored the low-nitrogen MC-LA (C46H67N7O12). MC-LR (a medium N level, C49H75N10O12) accounted for ∼30% to 50% of the total MC concentration and was stable across nitrogen concentrations. Using the relative toxicity and concentrations of each MC congener, both LC-MS/MS and ELISA overestimated the toxicity early bloom (July) and underestimated it late bloom (September). On 24 July 2019, highly toxic MC-LW and MC-LF were detected at nearshore stations with relative toxicity exceeding drinking water standards. This study demonstrated that the less toxic, high nitrogen MC-RR dominated under nitrogen-replete conditions in the early season, whereas the more toxic, less nitrogen MC-LA dominated under nitrogen-limited conditions later in the season.
Collapse
Affiliation(s)
- Justin D Chaffin
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA.
| | - Judy A Westrick
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Life Sciences Building, Bowling Green, OH 43402, USA
| | | |
Collapse
|
18
|
Anderson M, Valera M, Schnetzer A. Co-occurrence of freshwater and marine phycotoxins: A record of microcystins and domoic acid in Bogue Sound, North Carolina (2015 to 2020). HARMFUL ALGAE 2023; 125:102412. [PMID: 37220972 DOI: 10.1016/j.hal.2023.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 05/25/2023]
Abstract
Harmful algal blooms (HABs) create issues both environmentally and economically in coastal regions, especially if algal growth is linked to the production of toxins which can affect ecosystems, wildlife, and humans. This study is the first to confirm near year-round presence and co-occurrence of microcystins (MCs) and domoic acid (DA) within the outskirts of the largest lagoonal US estuary, the Pamlico-Albemarle Sound System (PASS). Monthly sampling at a time-series location in Bogue Sound, located within the eastern part of the PASS, showed DA and MCs were commonly present and detected together 50% of the time based on an in situ toxin tracking approach over a 6-year time period (2015-2020). Particulate toxin concentrations based on monthly grab sampling remained well below regulatory thresholds for MCs and below DA concentrations associated with animal sickness and mortality elsewhere. Time-integrated levels for dissolved MCs and DA, however, indicated a continuous presence of both toxins within Bogue Sound where high flushing rates (∼2-day average residence time) presumably alleviate potential issues linked to nutrient inputs, subsequent algal growth, or toxin accumulation. Pseudo-nitzschia spp. contributed 0 to 19% to the resident microplankton community. Light microscopy analyses did not reveal the source of MCs production in the sound but suggested potential downstream transport and/or autochthonous production due to taxa not accounted for in this study (e.g., picocyanobacteria). Nitrate+nitrite (NOx) concentrations, wind speed, and water temperature explained a third of the variations in accumulated dissolved MCs, but no relationship was seen for DA concentrations based on monthly sampling within this highly dynamic system. This study emphasizes the importance of continued algal toxin monitoring in systems like Bogue Sound which might experience decreases in water quality similar to adjacent, nutrient-impaired regions within the PASS.
Collapse
Affiliation(s)
- Madeline Anderson
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Marco Valera
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Astrid Schnetzer
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
19
|
Li Z, Chio SN, Gao L, Zhang P. Assessing the algal population dynamics using multiple machine learning approaches: Application to Macao reservoirs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117505. [PMID: 36801801 DOI: 10.1016/j.jenvman.2023.117505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The quality of reservoir water is important to the health and wellbeing of human and animals. Eutrophication is one of the most serious problems threatening the safety of reservoir water resource. Machine learning (ML) approaches are effective tools to understand and evaluate various environmental processes of concern, such as eutrophication. However, limited studies have compared the performances of different ML models to reveal algal dynamics using time-series data of redundant variables. In this study, the water quality data from two reservoirs in Macao were analyzed by adopting various ML approaches, including stepwise multiple linear regression (LR), principal component (PC)-LR, PC-artificial neuron network (ANN) and genetic algorithm (GA)-ANN-connective weight (CW) models. The influence of water quality parameters on algal growth and proliferation in two reservoirs was systematically investigated. The GA-ANN-CW model demonstrated the best performance in reducing the size of data and interpreting the algal population dynamics data, which displayed higher R-squared, lower mean absolute percentage error and lower root mean squared error values. Moreover, the variable contribution based on ML approaches suggest that water quality parameters, such as silica, phosphorus, nitrogen, and suspended solid have a direct impact on algal metabolisms in two reservoirs' water systems. This study can expand our capacity in adopting ML models in predicting algal population dynamics based on time-series data of redundant variables.
Collapse
Affiliation(s)
- Zhejun Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Sin Neng Chio
- Macao Water Supply Company Limited, Macau SAR, China
| | - Liang Gao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
20
|
King KW, Hanrahan BR, LaBarge GA, Stinner JH, Rumora K. Subsurface phosphorus and nitrogen loss following liquid dairy manure and commercial fertilizer application on a clay soil in northwest Ohio. JOURNAL OF ENVIRONMENTAL QUALITY 2023. [PMID: 36971335 DOI: 10.1002/jeq2.20478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Nutrient source has been the focus of much debate regarding the re-eutrophication of Lake Erie, despite that only 20% of nutrients applied to crops in the Western Lake Erie Basin (WLEB) originate from organic sources. However, limited data and assessments exist on the subsurface tile drainage water quality comparison between organic (liquid dairy manure) and commercial (mono-ammonium phosphate [MAP]) sources in crop production systems. Subsurface tile drainage, dissolved reactive phosphorus (DRP) and total phosphorus (TP) losses in tile drainage discharge following equal phosphorus (P) based applications of liquid dairy manure and MAP were assessed using a before-after control-impact design and 4 years of data from a paired field system located in northwest Ohio. Nitrate-nitrogen (NO3 - -N ) and total nitrogen (TN) losses were also examined to supplement the P findings; however, due to dissimilar nitrogen application rates, losses were assessed in a different context. No significant differences (p > 0.05) were detected in drainage discharge volumes or TP loads between the control and impact sites. However, statistically significant increases (p < 0.05) were measured for mean daily DRP, NO3 - -N, and TN loads from the dairy manure site. While significant, mean daily DRP differences between commercial (MAP) and liquid dairy manure treatments were only on the order of 0.01 g DRP ha-1 . Assuming current manure application extent and rates, when accumulated annually across the WLEB watershed, these losses are equivalent to less than 1% of target loads. These findings also help to inform nutrient management stewardship as it relates to nutrient source. Furthermore, additional research across a range of soil characteristics and cropping managements should be explored as well as the impacts of other livestock manure nutrients.
Collapse
Affiliation(s)
- Kevin W King
- USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio, USA
| | | | - Gregory A LaBarge
- Ohio State Extension, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
21
|
Baer MM, Godwin CM, Johengen TH. The effect of single versus dual nutrient decreases on phytoplankton growth rates, community composition, and Microcystin concentration in the western basin of Lake Erie. HARMFUL ALGAE 2023; 123:102382. [PMID: 36894205 DOI: 10.1016/j.hal.2023.102382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
The primary management strategy for minimizing harmful algal blooms (HABs) in Lake Erie has been to reduce springtime loading of phosphorus (P) to the lake. However, some studies have shown that the growth rate and toxin content for the HABs-causing cyanobacterium Microcystis also respond to the availability of dissolved inorganic nitrogen (N). This evidence is based on both observational studies that correlate bloom development with changes in N forms and concentrations in the lake, and experiments in which P and/or N are added at concentrations in excess of those present in the lake. The goal of this study was to determine whether a combined decrease in N and P concentrations from ambient levels in Lake Erie could limit the development of HABs more than a reduction in P concentration only. To directly test the impact of P-only versus dual N and P concentration decreases on phytoplankton in the western basin of Lake Erie, we evaluated changes in growth rate, community composition, and microcystin (MC) concentration through eight bioassay experiments performed from June through October 2018, which encompassed the normal Lake Erie Microcystis-dominated HAB season. Our results showed that during the first five experiments covering June 25 to August 13, the P-only and the dual N and P decrease treatments had similar effects. However, when ambient N became scarce later in the season, the N and P decrease treatments resulted in negative growth rates for cyanobacteria, whereas -P only decreases did not. During low ambient N conditions, dual nutrient decreases lowered the prevalence of cyanobacteria among the total phytoplankton community and decreased microcystin concentrations. The results presented here complement previous experimental work on Lake Erie and suggest that dual nutrient control could be an effective management strategy to decrease microcystin production during the bloom and even possibly diminish or shorten the duration of the bloom based on creating nutrient limiting conditions sooner in the HAB growing season.
Collapse
Affiliation(s)
- Mikayla M Baer
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan
| | - Casey M Godwin
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan.
| | - Thomas H Johengen
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan; Michigan Sea Grant, School for Environment and Sustainability, University of Michigan
| |
Collapse
|
22
|
Jacquemin SJ, Doll JC, Johnson LT, Newell SE. Exploring long-term trends in microcystin toxin values associated with persistent harmful algal blooms in Grand Lake St Marys. HARMFUL ALGAE 2023; 122:102374. [PMID: 36754460 DOI: 10.1016/j.hal.2023.102374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
High external nutrient loads from agricultural runoff have led to persistent and highly toxic algal blooms in Grand Lake St Marys (GLSM) for decades. These pervasive blooms are concurrent with long-term (2009 - 2021) toxin and environmental monitoring, providing a robust weekly dataset for modeling microcystins. Median weekly microcystin concentrations (23.2 µg/L) routinely exceeded World Health Organization recreational limits (20 µg/L) for the study period (ranged 0.03 - 185.0 µg/L). Here, we used a Bayesian hierarchical dynamic linear model to hindcast weekly microcystin toxins using external nutrient loads from tributary data as well as internal lake nutrient and physicochemical concentrations. Overall, lake TN was the biggest driver of microcystin concentration in GLSM. Likewise, TN:TP was a strong negative driver of microcystin (i.e. low N:P ratios align with lower total microcystins), suggesting that N availability directly impacts toxins. External nutrient loading was positively related to microcystin during winter and spring; however, there was no relationship detected between toxin and external loading during summer or fall (particulate phosphorus exhibited the strongest signal but all external nutrients were unsurprisingly correlated). This lack of direct correlation on a weekly timescale between external loads and cyanobacterial toxins during the summer months likely results from nutrient saturation and reflects the importance of internal loading for bloom maintenance as supported by the correlation between in-lake TN and microcystin. Thus, management goals to reduce the highest biomass and toxins in the summer should focus on reduction of winter and spring external nutrient loads. Supporting this, both 2010 and 2021 had lower rain in the first half of the year (winter/spring), resulting in less loading, and experienced smaller/later low toxicity blooms. This suggests that, although internal nutrient loads are important for bloom maintenance, reduced external loads are an effective management strategy even in nutrient saturated systems such as GLSM.
Collapse
Affiliation(s)
- Stephen J Jacquemin
- Wright State University - Lake Campus, Department of Biological Sciences, Agriculture and Water Quality Education Center, Celina, Ohio 45822, United States.
| | - Jason C Doll
- Francis Marion University, Department of Biology, Florence, South Carolina 29502, United States
| | - Laura T Johnson
- Heidelberg University, National Center for Water Quality Research, Tiffin, Ohio 44883, United States
| | - Silvia E Newell
- Wright State University, Department of Earth and Environmental Sciences, Dayton, Ohio 45435, United States
| |
Collapse
|
23
|
Xue Q, Kong M, Xie L, Li T, Liao M, Yan Z, Zhao Y. Temporal dynamics of microcystins in two reservoirs with different trophic status during the early growth stage of cyanobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87132-87143. [PMID: 35802334 DOI: 10.1007/s11356-022-21665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Harmful cyanobacterial blooms are increasing in frequency and severity, which makes their toxic secondary metabolites of microcystins (MCs) have been widely studied, especially in their distribution and influence factors in different habitats. However, the distribution of MCs on the early growth stage of harmful cyanobacteria and its influence factors and risks are still largely unknown. Thus, in the present study, two reservoirs (Lutian Reservoir and Lake Haitang) with different trophic status in China have been studied weekly from March to May in 2018, when the cyanobacteria communities were just in the early growth stage, to investigate the variation of MCs concentration and the relationships between MCs and environmental parameters. During the investigation, Lutian Reservoir and Lake Haitang were found to be mesotrophic and light eutrophic, respectively. In Lutian Reservoir, the concentration of EMCs (extracellular MCs) was obviously higher than that of IMCs (intracellular MCs) with a mean value of 0.323 and 0.264 μg/L, respectively. Meanwhile, the concentration of EMCs also fluctuated more sharply than that of IMCs. Congeners of IMC-YR and EMC-LR were respectively dominant in total concentrations of IMCs and EMCs. Unsurprisingly, in Lake Haitang, the concentrations of IMC and EMC were both significantly higher than that in Lutian Reservoir with a mean concentration of 0.482 and 0.472 μg/L, respectively. Differently, the concentration of MC-YR was dominant in both IMCs and EMCs, followed by MC-LR. In correlation analysis, the IMCs were significantly and positively correlated with the density and biomass of phytoplankton phyla and potential MCs-producing cyanobacteria and the parameters of water temperature (WT), nutrients, and organic matters. Similar results were also observed for EMCs. While the different variations of MCs in the two reservoirs might be primarily caused by the differences in WT, nutrients (especially phosphorus), organic matters, and the composition of MCs-producing cyanobacteria. In addition, the coexistence of the dominant species of Pseudoanabaena sp., which can produce a taste-and-odor compound of 2-methylisoborneol (2-MIB), might have a significant impact on the concentration and toxicity of MCs. Our results suggested that the risks posed by MCs at the early growth stage of cyanobacteria should also deserve our attention, especially in mesotrophic water bodies.
Collapse
Affiliation(s)
- Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Ming Kong
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, 8 Jiangwangmiao, 10 Street, Nanjing, 210042, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Tong Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Mengna Liao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Zebin Yan
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
24
|
Benayache NY, Afri-Mehennaoui FZ, Kherief-Nacereddine S, Vo-Quoc B, Hushchyna K, Nguyen-Quang T, Bouaïcha N. Massive fish death associated with the toxic cyanobacterial Planktothrix sp. bloom in the Béni-Haroun Reservoir (Algeria). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80849-80859. [PMID: 35729384 DOI: 10.1007/s11356-022-21538-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
In July 2017, a massive bloom of the potentially toxic cyanobacterial species Planktothrix sp. was observed in the Béni-Haroun Reservoir (Algeria), which was followed by a massive fish death. Many questions were raised in association with the role of cyanotoxins and the fish massive mortality. The objective of this paper is twofold: (1) to investigate the variability of physicochemical and cyanobacterial parameters (chlorophyll-a, phycocyanin, allophycocyanin, and microcystins) throughout the period of July 2017 to June 2018; and (2) to determine the free and total MC levels in viscera and muscle tissues of the common carp (Cyprinus carpio), which are found dead in the considered reservoir in October 2017. Our results showed microcystin (MC) concentrations in water samples (by the protein phosphatase PP2A assay) had reached 651.2 ng MC-LR equiv./L. Total MC levels (free + bound) in the viscera and muscle tissues of sampled dead fish were at 960.24 and 438.54 µg MC-LR equiv./kg dw, respectively. It is assumed that high concentrations of MC observed in the tissues of common carp induced a strong degradation of the visceral contents resulting in the complete lysis of the hepatopancreas, and presumably the massive fish death.
Collapse
Affiliation(s)
- Naila-Yasmine Benayache
- Laboratoire Biologie Et Environnement, Université Frères Mentouri, Constantine1, 25000, Constantine, Algeria.
- Laboratoire Ecologie, Systématique, Evolution UMR 8079, Université Paris-Saclay, 12 Route 128 (Bât. IDEEV), 91190, Gif-sur Yvette, France.
| | | | - Saliha Kherief-Nacereddine
- Laboratoire Biologie Et Environnement, Université Frères Mentouri, Constantine1, 25000, Constantine, Algeria
| | - Bao Vo-Quoc
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Kateryna Hushchyna
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Noureddine Bouaïcha
- Laboratoire Ecologie, Systématique, Evolution UMR 8079, Université Paris-Saclay, 12 Route 128 (Bât. IDEEV), 91190, Gif-sur Yvette, France
| |
Collapse
|
25
|
King WM, Curless SE, Hood JM. River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms. WATER RESEARCH 2022; 222:118845. [PMID: 35868100 DOI: 10.1016/j.watres.2022.118845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial harmful blooms have been increasing worldwide, due in part to excessive phosphorus (P) losses from agriculture-dominated watersheds. Unfortunately, cyanobacteria bloom management is often complicated by uncertainty associated with river P cycling. River P cycling mediates P exports during low flow but has been assumed to be unimportant during high flows. Thus, we examined interactions between dissolved reactive phosphorus (DRP) and suspended sediment P during high flows in the Maumee River network, focusing on March-June Maumee River DRP exports, which fuel recurring cyanobacteria blooms in Lake Erie. We estimate that during 2003-2019 March to June high flow events, P sorption reduced DRP exports by an average of 13-27%, depending upon the colloidal-P:DRP ratio, decreasing the bioavailability of P exports, and potentially constraining cyanobacteria blooms by 13-40%. Phosphorus sorption was likely lower during 2003-2019 than 1975-2002 due to reductions in suspended sediment loads, associated with soil-erosion-minimizing agricultural practices. This unintended outcome of erosion management has likely decreased P sorption, increased DRP exports to Lake Erie, and subsequent cyanobacteria blooms. In other watersheds, DRP-sediment P interactions during high flow could have a positive or negative effect on DRP exports; therefore, P management should consider riverine P cycles, particularly during high flow events, to avoid undermining expensive P mitigation efforts.
Collapse
Affiliation(s)
- Whitney M King
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Behavior, The Ohio State University, 230 Research Center, 1314 Kinnear Road, Columbus, OH 43212, USA
| | - Susan E Curless
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Behavior, The Ohio State University, 230 Research Center, 1314 Kinnear Road, Columbus, OH 43212, USA
| | - James M Hood
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Behavior, The Ohio State University, 230 Research Center, 1314 Kinnear Road, Columbus, OH 43212, USA; Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Uptake of Phytoplankton-Derived Carbon and Cobalamins by Novel Acidobacteria Genera in Microcystis Blooms Inferred from Metagenomic and Metatranscriptomic Evidence. Appl Environ Microbiol 2022; 88:e0180321. [PMID: 35862730 PMCID: PMC9317899 DOI: 10.1128/aem.01803-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H2O2. Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis, which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide.
Collapse
|
27
|
Liu FS, Lockett BR, Sorichetti RJ, Watmough SA, Eimers MC. Agricultural intensification leads to higher nitrate levels in Lake Ontario tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154534. [PMID: 35304140 DOI: 10.1016/j.scitotenv.2022.154534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Eutrophication remains the most widespread water quality impairment globally and is commonly associated with excess nitrogen (N) and phosphorus (P) inputs to surface waters from agricultural runoff. In southern Ontario, Canada, increases in nitrate (NO3-N) concentrations as well as declines in total phosphorus (TP) concentration have been observed over the past four decades at predominantly agricultural watersheds, where major expansions in row crop production at the expense of pasture and forage have occurred. This study used a space-for-time approach to test whether 'agricultural intensification', herein defined as increases in row crop area (primarily corn-soybean-winter wheat rotation) at the expense of mixed livestock and forage/pasture, could explain increases in NO3-N and declines in TP over time. We found a clear, positive relationship between the extent of row crop area within watersheds and NO3-N losses, such that tributary NO3-N concentrations and export were predicted to increase by ~0.4 mg/L and ~130 kg/km2 respectively, for every 10% expansion in row crop area. There was also a significant positive relationship between row crop area and total dissolved phosphorus (TDP) concentration, but not export, and TP was not correlated with any form of landcover. Instead, TP was strongly associated with storm events, and was more sensitive to hydrologic condition than to landcover. These results suggest that pervasive shifts toward tile-drained corn and soybean production could explain increases in tributary NO3-N levels in this region. The relationship between changes in agriculture and P is less clear, but the significant association between dissolved P and row crop area suggests that increased adoption of reduced tillage practices and tile drainage may enhance subsurface losses of P.
Collapse
Affiliation(s)
- F S Liu
- Trent School of the Environment, Trent University, 1600 West Bank Dr., Peterborough, Ontario, Canada
| | - B R Lockett
- Trent School of the Environment, Trent University, 1600 West Bank Dr., Peterborough, Ontario, Canada
| | - R J Sorichetti
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, Ontario, Canada
| | - S A Watmough
- Trent School of the Environment, Trent University, 1600 West Bank Dr., Peterborough, Ontario, Canada
| | - M C Eimers
- Trent School of the Environment, Trent University, 1600 West Bank Dr., Peterborough, Ontario, Canada.
| |
Collapse
|
28
|
Chaffin JD, Westrick JA, Furr E, Birbeck JA, Reitz LA, Stanislawczyk K, Li W, Weber PK, Bridgeman TB, Davis TW, Mayali X. Quantification of microcystin production and biodegradation rates in the western basin of Lake Erie. LIMNOLOGY AND OCEANOGRAPHY 2022; 67:1470-1483. [PMID: 36248197 PMCID: PMC9543754 DOI: 10.1002/lno.12096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial biomass forecasts currently cannot predict the concentrations of microcystin, one of the most ubiquitous cyanotoxins that threaten human and wildlife health globally. Mechanistic insights into how microcystin production and biodegradation by heterotrophic bacteria change spatially and throughout the bloom season can aid in toxin concentration forecasts. We quantified microcystin production and biodegradation during two growth seasons in two western Lake Erie sites with different physicochemical properties commonly plagued by summer Microcystis blooms. Microcystin production rates were greater with elevated nutrients than under ambient conditions and were highest nearshore during the initial phases of the bloom, and production rates were lower in later bloom phases. We examined biodegradation rates of the most common and toxic microcystin by adding extracellular stable isotope-labeled microcystin-LR (1 μg L-1), which remained stable in the abiotic treatment (without bacteria) with minimal adsorption onto sediment, but strongly decreased in all unaltered biotic treatments, suggesting biodegradation. Greatest biodegradation rates (highest of -8.76 d-1, equivalent to the removal of 99.98% in 18 h) were observed during peak bloom conditions, while lower rates were observed with lower cyanobacteria biomass. Cell-specific nitrogen incorporation from microcystin-LR by nanoscale imaging mass spectrometry showed that a small percentage of the heterotrophic bacterial community actively degraded microcystin-LR. Microcystin production and biodegradation rates, combined with the microcystin incorporation by single cells, suggest that microcystin predictive models could be improved by incorporating toxin production and biodegradation rates, which are influenced by cyanobacterial bloom stage (early vs. late bloom), nutrient availability, and bacterial community composition.
Collapse
Affiliation(s)
- Justin D. Chaffin
- F.T. Stone Laboratory and Ohio Sea GrantThe Ohio State UniversityPut‐In‐BayOhioUSA
| | - Judy A. Westrick
- Lumigen Instrument CenterWayne State UniversityDetroitMichiganUSA
| | - Elliot Furr
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
| | | | - Laura A. Reitz
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Present address:
Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Keara Stanislawczyk
- F.T. Stone Laboratory and Ohio Sea GrantThe Ohio State UniversityPut‐In‐BayOhioUSA
| | - Wei Li
- Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreCaliforniaUSA
| | - Peter K. Weber
- Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreCaliforniaUSA
| | | | - Timothy W. Davis
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
| | - Xavier Mayali
- Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreCaliforniaUSA
| |
Collapse
|
29
|
Reinl KL, Harris TD, Elfferich I, Coker A, Zhan Q, De Senerpont Domis LN, Morales-Williams AM, Bhattacharya R, Grossart HP, North RL, Sweetman JN. The role of organic nutrients in structuring freshwater phytoplankton communities in a rapidly changing world. WATER RESEARCH 2022; 219:118573. [PMID: 35643062 DOI: 10.1016/j.watres.2022.118573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Carbon, nitrogen, and phosphorus are critical macroelements in freshwater systems. Historically, researchers and managers have focused on inorganic forms, based on the premise that the organic pool was not available for direct uptake by phytoplankton. We now know that phytoplankton can tap the organic nutrient pool through a number of mechanisms including direct uptake, enzymatic hydrolysis, mixotrophy, and through symbiotic relationships with microbial communities. In this review, we explore these mechanisms considering current and projected future anthropogenically-driven changes to freshwater systems. In particular, we focus on how naturally- and anthropogenically- derived organic nutrients can influence phytoplankton community structure. We also synthesize knowledge gaps regarding phytoplankton physiology and the potential challenges of nutrient management in an organically dynamic and anthropogenically modified world. Our review provides a basis for exploring these topics and suggests several avenues for future work on the relation between organic nutrients and eutrophication and their ecological implications in freshwater systems.
Collapse
Affiliation(s)
- Kaitlin L Reinl
- Lake Superior National Estuarine Research Reserve, University of Wisconsin-Madison Division of Extension, 14 Marina Drive, Superior, Wisconsin 54880, US; University of Wisconsin-Madison, Center for Limnology, 608 N. Park St., Madison, WI, US; University of Minnesota-Duluth, Large Lakes Observatory, 2205 E. 5th St., Duluth, MN, US.
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, 2101 Constant Ave., Lawrence, KS, US
| | - Inge Elfferich
- Cardiff University, Earth and Environmental Sciences, Main Building, Park Place CF10 3AT, Cardiff, UK
| | - Ayooluwateso Coker
- University of Minnesota-Duluth, Large Lakes Observatory, 2205 E. 5th St., Duluth, MN, US
| | - Qing Zhan
- Netherlands Institute of Ecology, Dept. of Aquatic Ecology, Droevendaalsesteeg 10, Wageningen, NL
| | | | - Ana M Morales-Williams
- University of Vermont, Rubenstein School of Environment and Natural Resources, 81 Carrigan Drive, Burlington, VT, US
| | - Ruchi Bhattacharya
- University of Waterloo, Department of Earth and Environmental Sciences, 200 University Ave., N2L 1V6, Waterloo, ON, CA
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Dept. Plankton and Microbial Ecology, Zur alten Fischerhuette 2, D-16775 Stechlin, DE; Potsdam University, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam
| | - Rebecca L North
- University of Missouri-Columbia, School of Natural Resources, 303L Anheuser Busch Natural Resource Building, Columbia, MO, US
| | - Jon N Sweetman
- Pennsylvania State University, Ecological Science and Management, 457 Agriculture Sciences and Industries Building, State College, PA, US
| |
Collapse
|
30
|
Ren B, Weitzel KA, Duan X, Nadagouda MN, Dionysiou DD. A comprehensive review on algae removal and control by coagulation-based processes: mechanism, material, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Yancey CE, Smith DJ, Den Uyl PA, Mohamed OG, Yu F, Ruberg SA, Chaffin JD, Goodwin KD, Tripathi A, Sherman DH, Dick GJ. Metagenomic and Metatranscriptomic Insights into Population Diversity of Microcystis Blooms: Spatial and Temporal Dynamics of mcy Genotypes, Including a Partial Operon That Can Be Abundant and Expressed. Appl Environ Microbiol 2022; 88:e0246421. [PMID: 35438519 PMCID: PMC9088275 DOI: 10.1128/aem.02464-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [mcyA-J]), partial (truncated mcyA, complete mcyBC, and missing mcyD-J), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ, suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Derek J. Smith
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul A. Den Uyl
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| | - Osama G. Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fengan Yu
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven A. Ruberg
- National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan, USA
| | - Justin D. Chaffin
- F. T. Stone Laboratory, The Ohio State University, Put-In-Bay, Ohio, USA
- Ohio Sea Grant, The Ohio State University, Put-In-Bay, Ohio, USA
| | - Kelly D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory (AOML), NOAA, Miami, Florida, USA
- Southwest Fisheries Science Center, NOAA, La Jolla, California, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H. Sherman
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory J. Dick
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Ahoutou MK, Yao EK, Djeha RY, Kone M, Tambosco K, Duval C, Hamlaoui S, Bernard C, Bouvy M, Marie B, Montuelle B, Troussellier M, Konan FK, Coulibaly JK, Dosso M, Humbert J, Quiblier C. Impacts of nutrient loading and fish grazing on the phytoplankton community and cyanotoxin production in a shallow tropical lake: Results from mesocosm experiments. Microbiologyopen 2022; 11:e1278. [PMID: 35478289 PMCID: PMC9059227 DOI: 10.1002/mbo3.1278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Given the increasing eutrophication of water bodies in Africa due to increasing anthropogenic pressures, data are needed to better understand the responses of phytoplankton communities to these changes in tropical lakes. These ecosystems are used by local human populations for multiple purposes, including fish and drinking water production, potentially exposing these populations to health threats if, for example, an increase in toxic cyanobacterial blooms is associated with increasing eutrophication. To test the short-term response of the phytoplankton community to the addition of nutrients (phosphorus and nitrogen, alone or in combination) and Nile tilapia, we developed an in situ mesocosm experiment in a freshwater lagoon located near Abidjan (Ivory Coast). We found that phytoplankton growth (estimated by chlorophyll-a quantification) was highly stimulated when both nitrogen and phosphorus were added, while there was no clear evidence for such colimitation by these two nutrients when considering their concentrations in the lagoon. Phytoplankton growth was accompanied by significant changes in the diversity and composition of this community and did not lead to an increase in the proportions of cyanobacteria. However, the addition of fish to some mesocosms resulted in a drastic decrease in phytoplankton biomass and a dominance of chlorophytes in this community. Finally, these experiments showed that the addition of nitrogen, alone or combined with phosphorus, stimulated microcystin production by cyanobacteria. In addition, no evidence of microcystin accumulation in the fish was found. Taken together, these data allow us to discuss strategies for controlling cyanobacterial blooms in this tropical ecosystem.
Collapse
Affiliation(s)
- Mathias K. Ahoutou
- Institut Pasteur d'AbidjanAbidjanCôte d'Ivoire
- Université Jean Lorougnon Guédé UFR EnvironnementDaloaCôte d'Ivoire
| | | | | | | | | | - Charlotte Duval
- MNHN, UMR 7245 Molécules de Communication et Adaptation des Micro‐organismesParisFrance
| | - Sahima Hamlaoui
- MNHN, UMR 7245 Molécules de Communication et Adaptation des Micro‐organismesParisFrance
| | - Cécile Bernard
- MNHN, UMR 7245 Molécules de Communication et Adaptation des Micro‐organismesParisFrance
| | - Marc Bouvy
- UMR MARBEC, IRD‐Université de MontpellierMontpellierFrance
| | - Benjamin Marie
- MNHN, UMR 7245 Molécules de Communication et Adaptation des Micro‐organismesParisFrance
| | | | | | - Felix K. Konan
- Université Jean Lorougnon Guédé UFR EnvironnementDaloaCôte d'Ivoire
| | | | | | | | - Catherine Quiblier
- MNHN, UMR 7245 Molécules de Communication et Adaptation des Micro‐organismesParisFrance
- Université Paris Cité UFR Sciences du vivantParisFrance
| |
Collapse
|
33
|
Liu J, Chen L, Zhang X. Current research scenario for biological effect of exogenous factors on microcystin synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26190-26201. [PMID: 35089514 DOI: 10.1007/s11356-021-18256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
In natural water bodies, numerous cyanobacteria have the potential to intracellularly synthesize cyanotoxins, among which microcystin (MC) is the ubiquitous toxin that has been well known to be carcinogenic for hepatocytes. MC synthesis is a complex process, which involves about 10 non-ribosomal proteins encoded by the mcy gene cluster. In the natural environments containing MC-producing cyanobacteria, a variety of external factors can affect the generation of MC by mediating the expression of synthesizing genes. These factors can be generally divided into biotic factors (e.g., daphnia, virioplankton, MC-degrading bacteria, algicidal bacteria) and abiotic factors (e.g., nutrients, physical factors, chemicals, phytochemicals, essential trace elements), which are of great significance to the effective reduction of MC. Furthermore, comparison of MC-synthesizing genes in different cyanobacterial strains was performed, and the related factors affecting MC synthesis were summarized. Then, the problems and gaps regarding the biological effect of exogenous factors on microcystin synthesis were discussed. This review article may provide new ideas for addressing the challenges and bottlenecks of MC management.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China.
| |
Collapse
|
34
|
Moretto JAS, de Freitas PNN, de Almeida ÉC, Altarugio LM, da Silva SV, de Fátima Fiore M, Pinto E. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. BMC Microbiol 2022; 22:78. [PMID: 35321650 PMCID: PMC8944028 DOI: 10.1186/s12866-022-02473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds β-cyclocitral and β-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01—non-producing and LTPNA 08—toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of β-ionone in both cultures. Results The results showed that β-cyclocitral and β-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of β-cyclocitral and β-ionone in normal culture conditions. It was observed that the β-cyclocitral concentration was higher than β-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more β-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more β-ionone, mainly at the initial times. In addition, the experiment results with the external addition of β-ionone in the cultures showed that the strain LTPNA 01 produced more β-cyclocitral in control conditions than in treatment. Nonetheless, β-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of β-ionone may favor the production of these compounds and inhibit the production of β-cyclocitral. Conclusion Our results showed that some abiotic factors, such as different light intensities and external application of β-ionone, can be triggers that lead to the production of VOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02473-6.
Collapse
Affiliation(s)
| | - Paloma Nathane Nunes de Freitas
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | | | - Marli de Fátima Fiore
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil. .,Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil. .,Food Research Center (FoRC - CEPID), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|
36
|
Wan X, Guo Q, Li X, Wang G, Zhao Y. Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures. Toxicon 2022; 210:49-57. [PMID: 35217023 DOI: 10.1016/j.toxicon.2022.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/15/2022]
Abstract
With the continued influx and accumulation of polycyclic aromatic hydrocarbons (PAHs) in eutrophic waters, the effects of PAHs on cyanobacteria bloom need to be clarified. PAHs usually existed as mixtures in aquatic environments, but the combined toxicity of PAH mixtures to toxigenic cyanobacteria remained unknown. This study investigated the effects of phenanthrene (Phe) and benzo [a]pyrene (BaP), alone or in combination, on the growth and physiology of Microcystis aeruginosa. The results showed that a hormesis effect on growth at low doses of the single Phe (≤1 mg/L) or PAH mixtures (≤0.279 mg/L) was observed, whereas the single BaP induced significant growth inhibitions at all concentrations (≥0.2 mg/L). The median effective concentrations (96 h) for Phe, BaP and their mixtures were 4.29, 1.29 and 1.07 mg/L, respectively. Mixture toxicity models showed that Phe and BaP elicited a synergistic interaction on M. aeruginosa. The synergy may be ascribed to the excessive oxidative stress induced by PAH mixtures, which further led to membrane structure damages, photosynthesis inhibitions and decreased metabolic activity. Moreover, the microcystins (MCs) release significantly increased by 25.3% and 31.9% upon exposure to 0.558 and 1.116 mg/L of PAH mixtures. In all, this study suggested that the enhanced release of MCs by PAH mixtures might exacerbate potential risks to the aquatic environment.
Collapse
Affiliation(s)
- Xiang Wan
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China
| | - Qingchun Guo
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaojun Li
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Guoxiang Wang
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China.
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
37
|
Law JY, Long LA, Kaleita A, Helmers M, Brendel C, van der Woude K, Soupir M. Stacked conservation practices reduce nitrogen loss: A paired watershed study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114053. [PMID: 34741942 DOI: 10.1016/j.jenvman.2021.114053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Combinations of best management practices (BMPs) are needed to achieve nutrient reduction goals in the Mississippi/Atchafalaya River Basin (MARB), but field results are crucial to encourage stacked adoption of BMPs. A paired catchment-scale study (2015-18) was done to assess the impact of (i) BMPs, (ii) precipitation patterns, and (iii) seasonality on nitrogen (N) export. Flow-weighted samples were collected and analyzed for total ammonia nitrogen (TAN), nitrate (NO3-N), and total nitrogen (TN). Catchments Low-BMP 11 and High-BMP 12 had 27.6% and 87.6% areal coverage of BMPs, respectively. No significant difference (p > 0.05) in TAN concentrations was found between Low-BMP 11 (0.023 mg L-1) and High-BMP 12 (0.020 mg L-1). However, NO3-N and TN concentrations were significantly higher (p < 0.05) at Low-BMP 11 (NO3-N: 26.0 mg L-1, TN: 28.7 mg L-1) than at High-BMP 12 (NO3-N: 8.8 mg L-1, TN: 9.2 mg L-1). Two precipitation factors that affected N export patterns were observed. First, N flushing could continue for several years after a drought as elevated NO3-N concentrations were observed in 2015 (i.e., two years after the 2011-2013 drought). Second, higher annual N export was observed when more precipitation occurred during the pre-planting or early-growing season versus later periods. For both catchments, the highest 50% of flows were responsible for majority of the NO3-N export. We estimated that 33-37%, 61-62%, and 82-85% of the NO3-N loads occurred in the 90th, 75th, and 50th flow percentiles, respectively. As demonstrated in High-BMP 12, stacked BMP application effectively lowered NO3-N and TN loads by 60.3% and 59.1%, respectively, relative to Low-BMP 11. Although 27.6% BMP coverage area in Low-BMP 11 was considered low for this study, this coverage area is higher than many other parts of the MARB. This research highlights the importance of joint efforts between landowners in a watershed to meet downstream water quality goals.
Collapse
Affiliation(s)
- Ji Yeow Law
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA.
| | - Leigh Ann Long
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| | - Amy Kaleita
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| | - Matthew Helmers
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| | - Conrad Brendel
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA; Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76, Norrköping, Sweden
| | - Katherine van der Woude
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA; Dep. of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St. Golden, CO, 80401, USA
| | - Michelle Soupir
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| |
Collapse
|
38
|
Tanvir RU, Hu Z, Zhang Y, Lu J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118056. [PMID: 34488165 PMCID: PMC8547520 DOI: 10.1016/j.envpol.2021.118056] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 05/06/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) in freshwater bodies are mainly attributed to excess loading of nutrients [nitrogen (N) and phosphorus (P)]. This study provides a comprehensive review of how the existing nutrient (i.e., N and P) conditions and microbial ecological factors affect cyanobacterial community succession and cyanotoxin production in freshwaters. Different eutrophic scenarios (i.e., hypereutrophic vs. eutrophic conditions) in the presence of (i) high levels of N and P, (ii) a relatively high level of P but a low level of N, and (iii) a relatively high level of N but a low level of P, are discussed in association with cyanobacterial community succession and cyanotoxin production. The seasonal cyanobacterial community succession is mostly regulated by temperature in hypereutrophic freshwaters, where both temperature and nitrogen fixation play a critical role in eutrophic freshwaters. While the early cyanoHAB mitigation strategies focus on reducing P from water bodies, many more studies show that both N and P have a profound contribution to cyanobacterial blooms and toxin production. The availability of N often shapes the structure of the cyanobacterial community (e.g., the relative abundance of N2-fixing and non-N2-fixing cyanobacterial genera) and is positively linked to the levels of microcystin. Ecological aspects of cyanotoxin production and release, related functional genes, and corresponding nutrient and environmental conditions are also elucidated. Research perspectives on cyanoHABs and cyanobacterial community succession are discussed and presented with respect to the following: (i) role of internal nutrients and their species, (ii) P- and N-based control vs. solely P-based control of cyanoHABs, and (iii) molecular investigations and prediction of cyanotoxin production.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (USEPA), Cincinnati, OH, 45268, USA.
| |
Collapse
|
39
|
Vilar MCP, da Costa Pena Rodrigues TF, da Silva Ferrão-Filho A, de Oliveira E Azevedo SMF. Grazer-Induced Chemical Defense in a Microcystin-Producing Microcystis aeruginosa (Cyanobacteria) Exposed to Daphnia gessneri Infochemicals. J Chem Ecol 2021; 47:847-858. [PMID: 34569003 DOI: 10.1007/s10886-021-01315-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that compose phytoplankton and therefore have a trophic relationship with zooplankton, which represent an important link for energy flux in aquatic food webs. Several species can form blooms and produce bioactive metabolites known as cyanotoxins. However, the ecological and adaptative role of these toxins are still under debate. Many studies have addressed the cyanotoxins' function in defense against herbivory when grazing pressure by zooplankton plays a role in phytoplankton top-down control. Thus, the present study evaluated the ecophysiological responses of the cyanobacterial strain Microcystis aeruginosa NPLJ-4 underlying the chemical induced defense against the cladoceran Daphnia gessneri. Exposure to predator infochemicals consisted of cultures established in ASM-1 medium prepared in a filtrate from a culture of adults of D. gessneri at an environmentally relevant density. Daphnia infochemicals promoted a significant increase in toxin production by M. aeruginosa. However, no differences in growth were observed, despite a significant increase in both maximum photosynthetic efficiency and electron transport rate in response to zooplankton. Additionally, there was no significant variation in the production of exopolysaccharides. Overall, although a grazer-induced defense response was demonstrated, there were no effects on M. aeruginosa fitness, which maintained its growth in the presence of Daphnia alarm cues.
Collapse
Affiliation(s)
- Mauro Cesar Palmeira Vilar
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil.
| | - Thiago Ferreira da Costa Pena Rodrigues
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| | - Aloysio da Silva Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Sandra Maria Feliciano de Oliveira E Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| |
Collapse
|
40
|
Kim D, Lim JH, Chun Y, Nayna OK, Begum MS, Park JH. Phytoplankton nutrient use and CO 2 dynamics responding to long-term changes in riverine N and P availability. WATER RESEARCH 2021; 203:117510. [PMID: 34375930 DOI: 10.1016/j.watres.2021.117510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Long-term trends in riverine nutrient availability have rarely been linked to both phytoplankton composition and functioning. To explore how the changing availability of N and P affects not only phytoplankton abundance and composition but also the resource use efficiency of N, P, and CO2, a 25-year time series of water quality in the lower Han River, Korea, was combined with additional measurements of riverine dissolved organic carbon (DOC) and CO2. Despite persistent eutrophication, recent decreases in P relative to N have been steep in the lowest reach, increasing the annual mean mass ratio of N to P (N/P) from 24 (1994-2015) to 65 (2016-2018). While Chl a and cyanobacterial abundance exhibited overall positive and inverse relationships with P concentrations and N/P, respectively, severe harmful algal blooms (HABs) concurred with short-term increases in P and temperature. Microcystis often dominated HABs at low N/P that usually favors N-fixing cyanobacteria such as Anabaena. In the middle and lower reaches, phytoplanktonic P use efficiency was typically lower at low N/P. V-shaped relationships between N/P and CO2 concentrations, together with longitudinal upward shifts in the inverse relationship between Chl a and CO2, implied that eutrophication-enhanced phytoplankton biomass could turn into a significant source of CO2. after passing a threshold. The combined results suggest that cyanobacterial dominance co-limited by P availability and temperature can lower planktonic P use efficiency, while enhancing riverine CO2 emissions at low N/P ratios.
Collapse
Affiliation(s)
- Dohee Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Ju-Hee Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Yewon Chun
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Omme Kulsum Nayna
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Most Shirina Begum
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Ji-Hyung Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
41
|
Tang Y, Chen C, Sheng Y, Ding P, Wu X, Beardall J, Wu Y. The inhibitory effects of the antifouling compound Irgarol 1051 on the marine diatom Skeletonema sp. across a broad range of photosynthetically active radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48535-48542. [PMID: 33909247 DOI: 10.1007/s11356-021-14135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The release of anthropogenic organic pollutants has resulted in extensive environmental risks to coastal waters. Among pollutants released, the most common antifoulant, Irgarol 1051, is an effective inhibitor of photosystem II of photoautotrophs; thus, the continuous release of this compound into surrounding seawater would potentially threaten marine algae. To investigate this, we grew the model marine diatom Skeletonema sp. at different concentrations of Irgarol 1051 and levels of photosynthetically active radiation (PAR). Irgarol did not affect the photochemical capacity when cells were incubated in the dark, but photochemical yields all significantly decreased, and relative inhibition by Irgarol increased once cells were exposed to even the lowest PAR, with lower photochemical yields observed under increased level of Irgarol. In addition, the rate of decrease in yield increased with Irgarol concentration but was unchanged among PAR treatments. The growth rates showed a similar pattern to photochemical yields, with lower values under higher Irgarol concentrations, but with no significant differences in the effect of Irgarol observed between the light levels employed. The ratio of repair to damage rates of PSII clearly shows that this ratio decreased with light intensity, largely due to increases in damage rates and that the PAR level at which repair balanced damage decreased under a high level of Irgarol. Our results suggest that the inhibitory effects of Irgarol become obvious after PAR exposure even at a relatively low light level, suggesting that Irgarol would affect phytoplankton throughout the daytime, and may therefore have a broad environmental risk, potentially limiting coastal primary production.
Collapse
Affiliation(s)
- Yao Tang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Cheng Chen
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yangjie Sheng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Peijian Ding
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyu Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Yaping Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
42
|
Chaffin JD, Bratton JF, Verhamme EM, Bair HB, Beecher AA, Binding CE, Birbeck JA, Bridgeman TB, Chang X, Crossman J, Currie WJS, Davis TW, Dick GJ, Drouillard KG, Errera RM, Frenken T, MacIsaac HJ, McClure A, McKay RM, Reitz LA, Domingo JWS, Stanislawczyk K, Stumpf RP, Swan ZD, Snyder BK, Westrick JA, Xue P, Yancey CE, Zastepa A, Zhou X. The Lake Erie HABs Grab: A binational collaboration to characterize the western basin cyanobacterial harmful algal blooms at an unprecedented high-resolution spatial scale. HARMFUL ALGAE 2021; 108:102080. [PMID: 34588116 PMCID: PMC8682807 DOI: 10.1016/j.hal.2021.102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 05/12/2023]
Abstract
Monitoring of cyanobacterial bloom biomass in large lakes at high resolution is made possible by remote sensing. However, monitoring cyanobacterial toxins is only feasible with grab samples, which, with only sporadic sampling, results in uncertainties in the spatial distribution of toxins. To address this issue, we conducted two intensive "HABs Grabs" of microcystin (MC)-producing Microcystis blooms in the western basin of Lake Erie. These were one-day sampling events during August of 2018 and 2019 in which 100 and 172 grab samples were collected, respectively, within a six-hour window covering up to 2,270 km2 and analyzed using consistent methods to estimate the total mass of MC. The samples were analyzed for 57 parameters, including toxins, nutrients, chlorophyll, and genomics. There were an estimated 11,513 kg and 30,691 kg of MCs in the western basin during the 2018 and 2019 HABs Grabs, respectively. The bloom boundary poses substantial issues for spatial assessments because MC concentration varied by nearly two orders of magnitude over very short distances. The MC to chlorophyll ratio (MC:chl) varied by a factor up to 5.3 throughout the basin, which creates challenges for using MC:chl to predict MC concentrations. Many of the biomass metrics strongly correlated (r > 0.70) with each other except chlorophyll fluorescence and phycocyanin concentration. While MC and chlorophyll correlated well with total phosphorus and nitrogen concentrations, MC:chl correlated with dissolved inorganic nitrogen. More frequent MC data collection can overcome these issues, and models need to account for the MC:chl spatial heterogeneity when forecasting MCs.
Collapse
Affiliation(s)
- Justin D Chaffin
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA.
| | | | | | - Halli B Bair
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA
| | - Amber A Beecher
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Caren E Binding
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario L7S1A1, Canada
| | - Johnna A Birbeck
- Lumigen Instrument Center, Wayne State University, 5101Cass Ave., Detroit, MI 48202, USA
| | - Thomas B Bridgeman
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China
| | - Jill Crossman
- School of the Environment, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Warren J S Currie
- Fisheries and Oceans Canada, Canada Centre for Inland Waters, 867 Lakeshore Rd., Burlington, Ontario L7S 1A1, Canada
| | - Timothy W Davis
- Biological Sciences, Bowling Green State University, Life Sciences Building, Bowling Green, OH 43402, United States
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Kenneth G Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Reagan M Errera
- Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, MI 48108, USA
| | - Thijs Frenken
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Andrew McClure
- Division of Water Treatment, City of Toledo, Toledo, OH 43605, USA
| | - R Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Laura A Reitz
- Biological Sciences, Bowling Green State University, Life Sciences Building, Bowling Green, OH 43402, United States
| | | | - Keara Stanislawczyk
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA
| | - Richard P Stumpf
- National Ocean Service, National Oceanic and Atmospheric Administration, 1305 East West Highway, Silver Spring, MD 20910, USA
| | - Zachary D Swan
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Brenda K Snyder
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Judy A Westrick
- Lumigen Instrument Center, Wayne State University, 5101Cass Ave., Detroit, MI 48202, USA
| | - Pengfei Xue
- Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario L7S1A1, Canada
| | - Xing Zhou
- Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA
| |
Collapse
|
43
|
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 2021; 23:7278-7313. [PMID: 34056822 DOI: 10.1111/1462-2920.15615] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob T Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Reagan M Errera
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Casey M Godwin
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Jenan J Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Helena S Nitschky
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - McKenzie A Powers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Henry A Vanderploeg
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Claire C Zwiers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Is the Cyanobacterial Bloom Composition Shifting Due to Climate Forcing or Nutrient Changes? Example of a Shallow Eutrophic Reservoir. Toxins (Basel) 2021; 13:toxins13050351. [PMID: 34068425 PMCID: PMC8153585 DOI: 10.3390/toxins13050351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
Cyanobacterial blooms in eutrophic freshwater is a global threat to the functioning of ecosystems, human health and the economy. Parties responsible for the ecosystems and human health increasingly demand reliable predictions of cyanobacterial development to support necessary decisions. Long-term data series help with identifying environmental drivers of cyanobacterial developments in the context of climatic and anthropogenic pressure. Here, we analyzed 13 years of eutrophication and climatic data of a shallow temperate reservoir showing a high interannual variability of cyanobacterial development and composition, which is a less occurring and/or less described phenomenon compared to recurrant monospecific blooms. While between 2007–2012 Planktothrix agardhii dominated the cyanobacterial community, it shifted towards Microcystis sp. and then Dolichospermum sp. afterwards (2013–2019). The shift to Microcystis sp. dominance was mainly influenced by generally calmer and warmer conditions. The later shift to Dolichospermum sp. was driven by droughts influencing, amongst others, the N-load, as P remained unchanged over the time period. Both, climatic pressure and N-limitation contributed to the high variability of cyanobacterial blooms and may lead to a new equilibrium. The further reduction of P-load in parallel to the decreasing N-load is important to suppress cyanobacterial blooms and ameliorate ecosystem health.
Collapse
|
45
|
Depth profiles of protein-bound microcystin in Küçükçekmece Lagoon. Toxicon 2021; 198:156-163. [PMID: 33992691 DOI: 10.1016/j.toxicon.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Microcystis is the most commonly found toxic cyanobacterial genus around the world and has a negative impact on the ecosystem. As a predominant producer of the potent hepatotoxin microcystin (MC), the genus causes outbreaks in freshwaters worldwide. Standard analytical methods that are used for the detection of microcystin variants can only measure the free form of microcystin in cells. Since microcystin was found as free and protein-bound forms in the cells, a significant proportion of microcystin is underestimated with analytical methods. The aim of the study was to measure protein-bound microcystins and determine the environmental factors that affect the binding of microcystin to proteins. Samples were taken at depths of surface, 1 m, 5 m, 10 m, 15 m, and 18 m in Küçükçekmece Lagoon to analyze depth profiles of two different microcystin forms from June to September 2012 at regular monthly intervals. Our findings suggest that the most important parameter affecting protein-bound microcystin at surface water is high light. Due to favorable environmental conditions such as temperature, light, and physicochemical parameters, the higher microcystin contents, both free and protein-bound MCs, were found in summer periods.
Collapse
|
46
|
Dan Z, Chuan W, Qiaohong Z, Xingzhong Y. Sediments nitrogen cycling influenced by submerged macrophytes growing in winter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1728-1738. [PMID: 33843755 DOI: 10.2166/wst.2021.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Restoration of submerged macrophytes is one of the important measures for ecological treatment of eutrophic lakes. The changes in physical and chemical conditions caused by submerged macrophytes also affect the process of benthic nitrogen cycling. The growth period of Potamogeton crispus is mainly in winter. In order to understand the effect of submerged macrophytes growing in winter on nitrification rate and denitrification rate in the process of nitrogen cycling, experiments were carried out from winter to summer with vegetated and non-vegetated treatments. The results showed that the effect of submerged macrophytes on water temperature was not significant in winter. The nitrogen cycling was mainly affected by variables, which were inorganic nitrogen and dissolved oxygen. Submerged macrophytes had little effect on nitrification rate, but had a certain inhibition on denitrification rate by providing oxygen from photosynthesis. In total, submerged macrophytes growing in winter have little effect on nitrogen cycling in sediment. However, submerged macrophytes growing in winter can increase the attachment surface of microbes and inhibit resuspension of sediment, which play a complementary role to submerged macrophytes growing in summer for maintaining stability of eutrophic lakes.
Collapse
Affiliation(s)
- Zhang Dan
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400030, China; Key Laboratory of Eco-environment in the Three Gorges Reservoir Region of the Ministry of Education, Chongqing 400715, China and Chongqing Key Laboratory of Wetland Science Research Center of the Upper Reaches of the Yangtze River, Chongqing 401331, China
| | - Wang Chuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences,, Wuhan, Hubei 430072, China
| | - Zhou Qiaohong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences,, Wuhan, Hubei 430072, China
| | - Yuan Xingzhong
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400030, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing 400030, China and Chongqing Key Laboratory of Wetland Science Research Center of the Upper Reaches of the Yangtze River, Chongqing 401331, China E-mail:
| |
Collapse
|
47
|
Wynne TT, Stumpf RP, Litaker RW, Hood RR. Cyanobacterial bloom phenology in Saginaw Bay from MODIS and a comparative look with western Lake Erie. HARMFUL ALGAE 2021; 103:101999. [PMID: 33980439 DOI: 10.1016/j.hal.2021.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Saginaw Bay and western Lake Erie basin (WLEB) are eutrophic catchments in the Laurentian Great Lakes that experience annual, summer-time cyanobacterial blooms. Both basins share many features including similar size, shallow depths, and equivalent-sized watersheds. They are geographically close and both basins derive a preponderance of their nutrient supply from a single river. Despite these similarities, the bloom phenology in each basin is quite different. The blooms in Saginaw Bay occur at the same time and place and at the same moderate severity level each year. The WLEB, in contrast, exhibits far greater interannual variability in the timing, location, and severity of the bloom than Saginaw Bay, consistent with greater and more variable phosphorus inputs. Saginaw Bay has bloom biomass that corresponds to relatively mild blooms in WLEB, and also has equivalent phosphorus loads. This result suggests that if inputs of P into the WLEB were reduced to similarly sized loads as Saginaw Bay the most severe blooms would be abated. Above 500 t P input, which occur in WLEB, blooms increase non-linearly indicating any reduction in P-input at the highest inputs levels currently occurring in the WLEB, would yield disproportionately large reductions in cyanobacterial bloom intensity. As the maximum phosphorus loads in Saginaw Bay lie just below this inflection point, shifts in the Saginaw Bay watershed toward greater agriculture uses and less wetlands may substantially increase the risk of more intense cyanobacterial blooms than presently occur.
Collapse
Affiliation(s)
- Timothy T Wynne
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, MD 20910, United States
| | - Richard P Stumpf
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, MD 20910, United States
| | - R Wayne Litaker
- CSS, Inc. Under contract with National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, MD 20910, United States
| | - Raleigh R Hood
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD United States
| |
Collapse
|
48
|
Brêda-Alves F, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11528-11539. [PMID: 33128150 DOI: 10.1007/s11356-020-11367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The large-scale use of herbicides deteriorates water quality and threatens aquatic biodiversity. Unfortunately, there are few studies on the ecological effects of herbicides on toxin-producing strains of cyanobacteria under changing nutrient conditions. The objective of the present study was to investigate the effects of the herbicide clethodim and nitrogen variation on the allelopathic interactions and toxin production of Microcystis aeruginosa BCCUSP232 and Raphidiopsis raciborskii (formerly known as Cylindrospermopsis raciborskii) ITEPA1. M. aeruginosa had increased cell density when exposed to the clethodim (H +) (23.55 mg/L), whereas the highest cell density of R. raciborskii was observed in the treatment with clethodim plus limited nitrogen. Also, the cell-free exudate of R. raciborskii significantly stimulated the growth of M. aeruginosa on day 3 of the experiment. The concentration of chlorophyll-a in M. aeruginosa cultures generally increased in all the treatments, while in R. raciborskii cultures, the opposite occurred. Total microcystins (MCs) content of M. aeruginosa in the mixed cultures was 68% higher in nitrogen-enriched conditions than the control. A similar increase in MC content occurred in M. aeruginosa unialgal culture treated with R. raciborskii exudate. Total saxitoxin concentration was 81% higher in mixed cultures of R. raciborskii simultaneously exposed to high nitrogen and clethodim. Similarly, unialgal cultures of R. raciborskii exposed to either high nitrogen or clethodim had higher saxitoxins concentrations than the control. The intracellular H2O2 content of M. aeruginosa cultures decreased, whereas, in R. raciborskii cultures, it increased during exposure to high nitrogen and clethodim. Only R. raciborskii had a significant variation in peroxidase activity. The activities of glutathione S-transferase of both strains were higher in the presence of clethodim. These results revealed that nitrogen enrichment and the presence of clethodim might lead to the excessive proliferation of M. aeruginosa and R. raciborskii and increased production of cyanotoxins in aquatic environments.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil.
| | - Valéria de Oliveira Fernandes
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria
| |
Collapse
|
49
|
Invasive mussels regulate nutrient cycling in the largest freshwater ecosystem on Earth. Proc Natl Acad Sci U S A 2021; 118:2100275118. [PMID: 33547254 DOI: 10.1073/pnas.2100275118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production. Toxins (Basel) 2021; 13:toxins13010047. [PMID: 33435505 PMCID: PMC7828104 DOI: 10.3390/toxins13010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.
Collapse
|