1
|
Bai Y, Liu J, Wu X, Pang B, Zhang S, Jiang M, Chen A, Huang H, Chen Y, Zeng Y, Mei L, Gao K. Susceptibility of immature spiral ganglion neurons to aminoglycoside-induced ototoxicity is mediated by the TRPV1 channel in mice. Hear Res 2023; 440:108910. [PMID: 37956582 DOI: 10.1016/j.heares.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Aminoglycoside antibiotics are among the most common agents that can cause sensorineural hearing loss. From clinical experience, premature babies, whose inner ear is still developing, are more susceptible to aminoglycoside-induced ototoxicity, which is echoed by our previous study carried out in organotypic cultures. This study aimed to investigate whether a nonselective cation channel, TRPV1, contributes to the susceptibility of immature spiral ganglion neurons (SGNs) to the damage caused by aminoglycosides. Through western blotting and immunofluorescence, we found that the TRPV1 expression levels were much higher in immature SGNs than in their mature counterparts. In postnatal day 7 cochlear organotypic cultures, AMG-517 reduced reactive oxygen species generation and inhibited SGN apoptosis under aminoglycoside challenge. However, in adult mice, AMG-517 did not ameliorate the ABR threshold increase at high frequencies (16 kHz and 32 kHz) after aminoglycoside administration, and the SGNs within the cochleae had no morphological changes. By further regulating the function of TRPV1 in primary cultured SGNs with its inhibitor AMG-517 and agonist capsaicin, we demonstrated that TRPV1 is a major channel for aminoglycoside uptake: AMG-517 can significantly reduce, while capsaicin can significantly increase, the uptake of GTTR. In addition, TRPV1 knockdown in SGNs can also significantly reduce the uptake of GTTR. Taken together, our results demonstrated that aminoglycosides can directly enter immature SGNs through the TRPV1 channel. High expression of TRPV1 contributes to the susceptibility of immature SGNs to aminoglycoside-induced damage. The TRPV1 inhibitor AMG-517 has the potential to be a therapeutic agent for preventing aminoglycoside-induced ototoxicity in immature SGNs.
Collapse
Affiliation(s)
- Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Jing Liu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Xuewen Wu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bo Pang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, PR China
| | - Shuai Zhang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Mengzhu Jiang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Anhai Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Huping Huang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yongjia Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuan Zeng
- Patient Service Center, Xiangya Hospital Central South University, Changsha, PR China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China.
| | - Kelei Gao
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China.
| |
Collapse
|
2
|
Guerra J, Naidoo V, Cacabelos R. Potential effects of cannabinoids on audiovestibular function: A narrative review. Front Pharmacol 2022; 13:1010296. [PMID: 36605398 PMCID: PMC9807921 DOI: 10.3389/fphar.2022.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The growing interest in the development of drugs that target the endocannabinoid system has extended to conditions that affect the audiovestibular pathway. The expression of cannabinoid (CB) receptors in that pathway has been widely demonstrated, indicating a therapeutic potential for drug development at this level. These medications may be beneficial for conditions such as noise-induced hearing loss, ototoxicity, or various forms of vertigo of central or peripheral origin. The therapeutic targets of interest include natural or synthetic compounds that act as CB1/CB2 receptor agonists/antagonists, and inhibitors of the endocannabinoid-degrading enzymes FAAH and MAGL. Furthermore, genetic variations implicated in the response to treatment and the development of related disorders such as epilepsy or migraine have been identified. Direct methods of administering these medications should be examined beyond the systemic strategy.
Collapse
Affiliation(s)
- Joaquin Guerra
- Neuro-Otolaryngology Unit, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain,*Correspondence: Joaquin Guerra,
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Corunna, Spain
| | - Ramon Cacabelos
- Genomic Medicine, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain
| |
Collapse
|
3
|
Bellairs JA, Redila VA, Wu P, Tong L, Webster A, Simon JA, Rubel EW, Raible DW. An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Front Mol Neurosci 2022; 15:944846. [PMID: 35923755 PMCID: PMC9342690 DOI: 10.3389/fnmol.2022.944846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
There are no approved therapeutics for the prevention of hearing loss and vestibular dysfunction from drugs like aminoglycoside antibiotics. While the mechanisms underlying aminoglycoside ototoxicity remain unresolved, there is considerable evidence that aminoglycosides enter inner ear mechanosensory hair cells through the mechanoelectrical transduction (MET) channel. Inhibition of MET-dependent uptake with small molecules or modified aminoglycosides is a promising otoprotective strategy. To better characterize mammalian ototoxicity and aid in the translation of emerging therapeutics, a biomarker is needed. In the present study we propose that neonatal mice systemically injected with the aminoglycosides G418 conjugated to Texas Red (G418-TR) can be used as a histologic biomarker to characterize in vivo aminoglycoside toxicity. We demonstrate that postnatal day 5 mice, like older mice with functional hearing, show uptake and retention of G418-TR in cochlear hair cells following systemic injection. When we compare G418-TR uptake in other tissues, we find that kidney proximal tubule cells show similar retention. Using ORC-13661, an investigational hearing protection drug, we demonstrate in vivo inhibition of aminoglycoside uptake in mammalian hair cells. This work establishes how systemically administered fluorescently labeled ototoxins in the neonatal mouse can reveal important details about ototoxic drugs and protective therapeutics.
Collapse
Affiliation(s)
- Joseph A. Bellairs
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Van A. Redila
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Ling Tong
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Alyssa Webster
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Julian A. Simon
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edwin W. Rubel
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Ramkumar V, Sheth S, Dhukhwa A, Al Aameri R, Rybak L, Mukherjea D. Transient Receptor Potential Channels and Auditory Functions. Antioxid Redox Signal 2022; 36:1158-1170. [PMID: 34465184 PMCID: PMC9221156 DOI: 10.1089/ars.2021.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, Florida, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Raheem Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leonard Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
5
|
Jaffal SM, Abbas MA. TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem Biol Interact 2021; 345:109567. [PMID: 34166652 PMCID: PMC8217345 DOI: 10.1016/j.cbi.2021.109567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus disease 2019 [COVID-19] is a global health threat caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV2] that requires two proteins for entry: angiotensin-converting enzyme 2 [ACE2] and -membrane protease serine 2 [TMPRSS2]. Many patients complain from pneumonia, cough, fever, and gastrointestinal (GI) problems. Notably, different TRP channels are expressed in various tissues infected by SARS-CoV-2. TRP channels are cation channels that show a common architecture with high permeability to calcium [Ca2+] in most sub-families. Literature review shed light on the possible role of TRP channels in COVID-19 disease. TRP channels may take part in inflammation, pain, fever, anosmia, ageusia, respiratory, cardiovascular, GI and neurological complications related to COVID-19. Also, TRP channels could be the targets for many active compounds that showed effectiveness against SARS-CoV-2. Desensitization or blocking TRP channels by antibodies, aptamers, small molecules or venoms can be an option for COVID-19 prevention and future treatment. This review provides insights into the involvement of TRP channels in different symptoms and mechanisms of SARS-CoV-2 , potential treatments targeting these channels and highlights missing gaps in literature.
Collapse
Affiliation(s)
- Sahar M Jaffal
- Department of Biological Sciences, Faculty of Science, The University of Jordan, 11942, Amman, Jordan.
| | - Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|
6
|
Ghosh S, Stansak K, Walters BJ. Cannabinoid Signaling in Auditory Function and Development. Front Mol Neurosci 2021; 14:678510. [PMID: 34079440 PMCID: PMC8165240 DOI: 10.3389/fnmol.2021.678510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Plants of the genus Cannabis have been used by humans for millennia for a variety of purposes. Perhaps most notable is the use of certain Cannabis strains for their psychoactive effects. More recently, several biologically active molecules within the plants of these Cannabis strains, called phytocannabinoids or simply cannabinoids, have been identified. Furthermore, within human cells, endogenous cannabinoids, or endocannabinoids, as well as the receptors and secondary messengers that give rise to their neuromodulatory effects, have also been characterized. This endocannabinoid system (ECS) is composed of two primary ligands-anandamide and 2-arachidonyl glycerol; two primary receptors-cannabinoid receptors 1 and 2; and several enzymes involved in biosynthesis and degradation of endocannabinoid ligands including diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL). Here we briefly summarize cannabinoid signaling and review what has been discerned to date with regard to cannabinoid signaling in the auditory system and its roles in normal physiological function as well as pathological conditions. While much has been uncovered regarding cannabinoid signaling in the central nervous system, less attention has been paid to the auditory system specifically. Still, evidence is emerging to suggest that cannabinoid signaling is critical for the development, maturation, function, and survival of cochlear hair cells (HCs) and spiral ganglion neurons (SGNs). Furthermore, cannabinoid signaling can have profound effects on synaptic connectivity in CNS structures related to auditory processing. While clinical cases demonstrate that endogenous and exogenous cannabinoids impact auditory function, this review highlights several areas, such as SGN development, where more research is warranted.
Collapse
Affiliation(s)
- Sumana Ghosh
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kendra Stansak
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bradley J Walters
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
7
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
8
|
Liu N, Yan F, Ma Q, Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg Med Chem 2020; 28:115609. [PMID: 32690264 DOI: 10.1016/j.bmc.2020.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
As a member of transient receptor potential family, the transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which belongs to non-voltage gated Ca2+ channel. Large-conductance Ca2+-activated K+ channel (BKCa) represents a unique superfamily of Ca2+-activated K+ channel (KCa) that is both voltage and intracellular Ca2+ dependent. Not surprisingly, aberrant function of either TRPV4 or BKCa in neurons has been associated with brain disorders, such as Alzheimer's disease, cerebral ischemia, brain tumor, epilepsy, as well as headache. In these diseases, vascular dysfunction is a common characteristic. Notably, endothelial and smooth muscle TRPV4 can mediate BKCa to regulate cerebral blood flow and pressure. Therefore, in this review, we not only discuss the diverse functions of TRPV4 and BKCa in neurons to integrate relative signaling pathways in the context of cerebral physiological and pathological situations respectively, but also reveal the relationship between TRPV4 and BKCa in regulation of cerebral vascular tone as an etiologic factor. Based on these analyses, this review demonstrates the effective mechanisms of compounds targeting these two channels, which may be potential therapeutic strategies for diseases in the brain.
Collapse
Affiliation(s)
- Na Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Fang Yan
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingjie Ma
- Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Jianhua Zhao
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| |
Collapse
|
9
|
Wang S, Geng Q, Huo L, Ma Y, Gao Y, Zhang W, Zhang H, Lv P, Jia Z. Transient Receptor Potential Cation Channel Subfamily Vanilloid 4 and 3 in the Inner Ear Protect Hearing in Mice. Front Mol Neurosci 2019; 12:296. [PMID: 31866822 PMCID: PMC6904345 DOI: 10.3389/fnmol.2019.00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
The transient receptor potential cation channel, vanilloid type (TRPV) 3, is a member of the TRPV subfamily that is expressed predominantly in the skin, hair follicles, and gastrointestinal tract. It is also distributed in the organ of Corti of the inner ear and colocalizes with TRPV1 or TRPV4, but its role in auditory function is unknown. In the present study, we demonstrate that TRPV3 is expressed in inner hair cells (HCs) but mainly in cochlear outer HCs in mice, with expression limited to the cytoplasm and not detected in stereocilia. We compared the number of HCs as well as distortion product otoacoustic emissions (DPOAE) and auditory brainstem response (ABR) thresholds between TRPV3 knockout (V3KO) and wild-type (V3WT) mice and found that although most mutants (72.3%) had normal hearing, a significant proportion (27.7%) showed impaired hearing associated with loss of cochlear HCs. Compensatory upregulation of TRPV4 in HCs prevented HC damage and kanamycin-induced hearing loss and preserved normal auditory function in most of these mice. Thus, TRPV4 and TRPV3 in cochlear HCs protect hearing in mice; moreover, the results suggest some functional redundancy in the functions of TRPV family members. Our findings provide novel insight into the molecular basis of auditory function in mammals that can be applied to the development of strategies to mitigate hearing loss.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Qiaowei Geng
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Lifang Huo
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yirui Ma
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Yiting Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| |
Collapse
|
10
|
Jiang M, Li H, Johnson A, Karasawa T, Zhang Y, Meier WB, Taghizadeh F, Kachelmeier A, Steyger PS. Inflammation up-regulates cochlear expression of TRPV1 to potentiate drug-induced hearing loss. SCIENCE ADVANCES 2019; 5:eaaw1836. [PMID: 31328162 PMCID: PMC6636990 DOI: 10.1126/sciadv.aaw1836] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/13/2019] [Indexed: 05/26/2023]
Abstract
Aminoglycoside antibiotics are essential for treating life-threatening bacterial infections, despite the risk of lifelong hearing loss. Infections induce inflammation and up-regulate expression of candidate aminoglycoside-permeant cation channels, including transient receptor potential vanilloid-1 (TRPV1). Heterologous expression of TRPV1 facilitated cellular uptake of (fluorescently tagged) gentamicin that was enhanced by agonists, and diminished by antagonists, of TRPV1. Cochlear TRPV1 was immunolocalized near the apical membranes of sensory hair cells, adjacent supporting cells, and marginal cells in the stria vascularis. Exposure to immunostimulatory lipopolysaccharides, to simulate of bacterial infections, increased cochlear expression of TRPV1 and hair cell uptake of gentamicin. Lipopolysaccharide exposure exacerbated aminoglycoside-induced auditory threshold shifts and loss of cochlear hair cells in wild-type, but not in heterozygous Trpv1+/- or Trpv1 knockout, mice. Thus, TRPV1 facilitates cochlear uptake of aminoglycosides, and bacteriogenic stimulation upregulates TRPV1 expression to exacerbate cochleotoxicity. Furthermore, loss-of-function polymorphisms in Trpv1 can protect against immunogenic exacerbation of aminoglycoside-induced cochleotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Anastasiya Johnson
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yuan Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - William B. Meier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
11
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
12
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
13
|
Lis K, Grygorowicz T, Cudna A, Szymkowski DE, Bałkowiec-Iskra E. Inhibition of TNF reduces mechanical orofacial hyperalgesia induced by Complete Freund's Adjuvant by a TRPV1-dependent mechanism in mice. Pharmacol Rep 2017; 69:1380-1385. [PMID: 29132095 DOI: 10.1016/j.pharep.2017.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Inflammation in the orofacial region results in pain and is associated with many pathological states, including migraine, neuralgias and temporomandibular disorder. Although extensively studied, the mechanisms responsible for these conditions are not known and effective treatments are lacking. We reported earlier that the proinflammatory cytokine tumor necrosis factor (TNF) plays an important role in regulation of trigeminal ganglion (TG) neuron function in vitro. In the present study we investigated the role of TNF in mechanical hypersensitivity in mice. METHODS We employed the Complete Freund's Adjuvant (CFA)-induced model of orofacial pain and evaluated the effect of blocking of soluble TNF activity by peripheral administration of the novel dominant negative TNF biologic, XPro1595. RESULTS We show that CFA administration into the lower lip causes hyperalgesia and an increase in both expression of transient receptor potential vanilloid subfamily member 1 (TRPV1) mRNA and in the average intensity of TRPV1 protein immunoreactivity in TG neurons. We also show that intraperitoneal administration of XPro1595 prevents both CFA-induced mechanical hypersensitivity and, as shown in immunohistochemical staining - upregulation of TRPV1 protein expression in TG neurons. CONCLUSIONS We conclude that one of the possible regulatory mechanisms of TNF in pain involves upregulation of the nociceptor TRPV1, and that peripheral treatment with a selective anti-soluble TNF biologic can prevent hyperalgesia caused by inflammation in the orofacial region. Therefore, these new findings suggest that XPro1595 may serve as a novel treatment for orofacial pain disorders.
Collapse
Affiliation(s)
- Krzysztof Lis
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | - Tomasz Grygorowicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | - Agnieszka Cudna
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | | | - Ewa Bałkowiec-Iskra
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland.
| |
Collapse
|
14
|
Kamakura T, Kondo M, Koyama Y, Hanada Y, Ishida Y, Nakamura Y, Yamada T, Takimoto Y, Kitahara T, Ozono Y, Horii A, Imai T, Inohara H, Shimada S. Functional Expression of an Osmosensitive Cation Channel, Transient Receptor Potential Vanilloid 4, in Rat Vestibular Ganglia. Audiol Neurootol 2016; 21:268-274. [PMID: 27705979 DOI: 10.1159/000449238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
Transient receptor potential vanilloid (TRPV) 4 is a nonselective cation channel expressed in sensory neurons such as those in the dorsal root and trigeminal ganglia, kidney, and inner ear. TRPV4 is activated by mechanical stress, heat, low osmotic pressure, low pH, and phorbol derivatives such as 4α-phorbol 12,13-didecanoate (4α-PDD). We investigated the expression of TRPV4 in rat vestibular ganglion (VG) neurons. The TRPV4 gene was successfully amplified from VG neuron mRNA using reverse-transcription polymerase chain reaction. Furthermore, immunoblotting showed positive expression of TRPV4 protein in VG neurons. Immunohistochemistry indicated that TRPV4 was localized predominantly on the plasma membrane of VG neurons. Calcium (Ca2+) imaging of VG neurons showed that 4α-PDD and/or hypotonic stimuli caused an increase in intracellular Ca2+ concentration ([Ca2+]i) that was almost completely inhibited by ruthenium red, a selective antagonist of TRPV channels. Interestingly, a [Ca2+]i increase was evoked by both hypotonic stimuli and 4α-PDD in approximately 38% of VG neurons. These data indicate that TRPV4 is functionally expressed in VG neurons as an ion channel and that TRPV4 likely participates in VG neurons for vestibular neurotransmission as an osmoreceptor and/or mechanoreceptor.
Collapse
Affiliation(s)
- Takefumi Kamakura
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders.
Collapse
Affiliation(s)
- C D Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences and Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Burgos-Vega C, Moy J, Dussor G. Meningeal afferent signaling and the pathophysiology of migraine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:537-64. [PMID: 25744685 DOI: 10.1016/bs.pmbts.2015.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.
Collapse
Affiliation(s)
- Carolina Burgos-Vega
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Jamie Moy
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Gregory Dussor
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
| |
Collapse
|
17
|
Rah YC, Park KT, Yi YJ, Seok J, Kang SI, Kim YH. Successful treatment of sudden sensorineural hearing loss assures improvement of accompanying tinnitus. Laryngoscope 2014; 125:1433-7. [DOI: 10.1002/lary.25074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Yoon C. Rah
- Department of Otorhinolaryngology-Head and Neck Surgery; Boramae Medical Center, Seoul National University College of Medicine; Seoul South Korea
| | - Kyung T. Park
- Department of Otorhinolaryngology-Head and Neck Surgery; Boramae Medical Center, Seoul National University College of Medicine; Seoul South Korea
| | - Yeo-Jeen Yi
- Department of Otorhinolaryngology-Head and Neck Surgery; Boramae Medical Center, Seoul National University College of Medicine; Seoul South Korea
| | - Jungirl Seok
- Department of Otorhinolaryngology-Head and Neck Surgery; Boramae Medical Center, Seoul National University College of Medicine; Seoul South Korea
| | - Seong I. Kang
- Department of Otorhinolaryngology-Head and Neck Surgery; Boramae Medical Center, Seoul National University College of Medicine; Seoul South Korea
| | - Young H. Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Boramae Medical Center, Seoul National University College of Medicine; Seoul South Korea
| |
Collapse
|
18
|
Dussor G, Yan J, Xie JY, Ossipov MH, Dodick DW, Porreca F. Targeting TRP channels for novel migraine therapeutics. ACS Chem Neurosci 2014; 5:1085-96. [PMID: 25138211 PMCID: PMC4240253 DOI: 10.1021/cn500083e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
![]()
Migraine is increasingly understood
to be a disorder of the brain.
In susceptible individuals, a variety of “triggers”
may influence altered central excitability, resulting in the activation
and sensitization of trigeminal nociceptive afferents surrounding
blood vessels (i.e., the trigeminovascular system), leading to migraine
pain. Transient receptor potential (TRP) channels are expressed in
a subset of dural afferents, including those containing calcitonin
gene related peptide (CGRP). Activation of TRP channels promotes excitation
of nociceptive afferent fibers and potentially lead to pain. In addition
to pain, allodynia to mechanical and cold stimuli can result from
sensitization of both peripheral afferents and of central pain pathways.
TRP channels respond to a variety of endogenous conditions including
chemical mediators and low pH. These channels can be activated by
exogenous stimuli including a wide range of chemical and environmental
irritants, some of which have been demonstrated to trigger migraine
in humans. Activation of TRP channels can elicit CGRP release, and
blocking the effects of CGRP through receptor antagonism or antibody
strategies has been demonstrated to be effective in the treatment
of migraine. Identification of approaches that can prevent activation
of TRP channels provides an additional novel strategy for discovery
of migraine therapeutics.
Collapse
Affiliation(s)
- Gregory Dussor
- School
of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, United States
| | - J. Yan
- Department
of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Jennifer Y. Xie
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| | - Michael H. Ossipov
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| | - David W. Dodick
- Department
of Neurology, Mayo Clinic Arizona, Phoenix, Arizona 85054, United States
| | - Frank Porreca
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| |
Collapse
|
19
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
20
|
Grubisha O, Mogg AJ, Sorge JL, Ball LJ, Sanger H, Ruble CLA, Folly EA, Ursu D, Broad LM. Pharmacological profiling of the TRPV3 channel in recombinant and native assays. Br J Pharmacol 2014; 171:2631-44. [PMID: 23848361 PMCID: PMC4009005 DOI: 10.1111/bph.12303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. EXPERIMENTAL APPROACH Medium-throughput cellular assays were developed using a Ca(2+) -sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. KEY RESULTS A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies.
Collapse
Affiliation(s)
- Olivera Grubisha
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Adrian J Mogg
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Jessica L Sorge
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Laura-Jayne Ball
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Helen Sanger
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | | | - Elizabeth A Folly
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Daniel Ursu
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| | - Lisa M Broad
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd.Windlesham, UK
| |
Collapse
|
21
|
Abstract
Migraine is one of the most common neurological disorders. Despite its prevalence, the basic physiology of the molecules and mechanisms that contribute to migraine headache is still poorly understood, making the discovery of more effective treatments extremely difficult. The consistent presence of head-specific pain during migraine suggests an important role for activation of the peripheral nociceptors localized to the head. Accordingly, this review will cover the current understanding of the biological mechanisms leading to episodic activation and sensitization of the trigeminovascular pain pathway, focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Jin Yan
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
22
|
Vestibular damage in chronic ototoxicity: a mini-review. Neurotoxicology 2013; 43:21-27. [PMID: 24333467 DOI: 10.1016/j.neuro.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Ototoxicity is a major cause of the loss of hearing and balance in humans. Ototoxic compounds include pharmaceuticals such as aminoglycoside antibiotics, anti-malarial drugs, loop diuretics and chemotherapeutic platinum agents, and industrial chemicals including several solvents and nitriles. Human and rodent data indicate that the main target of toxicity is hair cells (HCs), which are the mechanosensory cells responsible for sensory transduction in both the auditory and the vestibular system. Nevertheless, the compounds may also affect the auditory and vestibular ganglion neurons. Exposure to ototoxic compounds has been found to cause HC apoptosis, HC necrosis, and damage to the afferent terminals, of differing severity depending on the ototoxicity model. One major pathway frequently involved in HC apoptosis is the c-jun N-terminal kinase (JNK) signaling pathway activated by reactive oxygen species, but other apoptotic pathways can also play a role in ototoxicity. Moreover, little is known about the effects of chronic low-dose exposure. In rodent vestibular epithelia, extrusion of live HCs from the sensory epithelium may be the predominant form of cell demise during chronic ototoxicity. In addition, greater involvement of the afferent terminals may occur, particularly the calyx units contacting type I vestibular HCs. As glutamate is the neurotransmitter in this synapse, excitotoxic phenomena may participate in afferent and ganglion neuron damage. Better knowledge of the events that take place in chronic ototoxicity is of great interest, as it will increase understanding of the sensory loss associated with chronic exposure and aging.
Collapse
|
23
|
Kamakura T, Ishida Y, Nakamura Y, Yamada T, Kitahara T, Takimoto Y, Horii A, Uno A, Imai T, Okazaki S, Inohara H, Shimada S. Functional expression of TRPV1 and TRPA1 in rat vestibular ganglia. Neurosci Lett 2013; 552:92-7. [PMID: 23916509 DOI: 10.1016/j.neulet.2013.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/15/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022]
Abstract
Both TRPV1 and TRPA1 are non-selective cation channels. They are co-expressed, and interact in sensory neurons such as dorsal root ganglia (DRG) and trigeminal ganglia (TG), and are involved in nociception, being activated by nociceptive stimuli. Immunohistological localization of TRPV1 in vestibular ganglion (VG) neurons has been reported. Although TRPA1 is co-expressed with TRPV1 in DRG and TG neurons, it is unclear whether TRPA1 channels are expressed in VG neurons. Moreover, it is unknown whether TRPV1 and TRPA1 channels are functional in VG neurons. We investigated the expression of TRPV1 and TRPA1 in rat VG neurons by RT-PCR, in situ hybridization, immunohistochemistry, and Ca(2+) imaging experiments. Both TRPV1 and TRPA1 RT-PCR products were amplified from the mRNA of rat VG neurons. In situ hybridization experiments showed TRPV1 and TRPA1 mRNA expression in the majority of VG neurons. Immunohistochemistry experiments confirmed TRPV1 protein expression. In Ca(2+) imaging experiments, capsaicin, a TRPV1 agonist, induced a significant increase in intracellular calcium ion concentration ([Ca(2+)]i) in rat primary cultured VG neurons, which was almost completely blocked by capsazepine, a TRPV1-specific antagonist. Cinnamaldehyde, a TRPA1 agonist, also caused an increase in [Ca(2+)]i, which was completely inhibited by HC030031, a TRPA1-specific antagonist. Moreover, in some VG neurons, a [Ca(2+)]i increase was evoked by both capsaicin and cinnamaldehyde in the same neuron. In summary, our histological and physiological studies reveal that TRPV1 and TRPA1 are expressed in VG neurons. It is suggested that TRPV1 and TRPA1 in VG neurons might participate in vestibular function and/or dysfunction such as vertigo.
Collapse
Affiliation(s)
- Takefumi Kamakura
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wei X, Edelmayer RM, Yan J, Dussor G. Activation of TRPV4 on dural afferents produces headache-related behavior in a preclinical rat model. Cephalalgia 2011; 31:1595-600. [PMID: 22049072 DOI: 10.1177/0333102411427600] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The mechanisms contributing to the pain of migraine are poorly understood although activation of afferent nociceptors in the trigeminovascular system has been proposed as a key event. Prior studies have shown that dural-afferent nociceptors are sensitive to both osmotic and mechanical stimuli. Based on the sensitivity to these stimuli we hypothesized that dural afferents express the osmo/mechano-sensitive channel transient receptor-potential vanilloid 4 (TRPV4). METHODS These studies used in vitro patch-clamp electrophysiology of trigeminal neurons retrogradely labeled from the dura to examine the functional expression of TRPV4. Additionally, we used a rat headache model in which facial/hind paw allodynia following dural stimulation is measured to determine whether activation of meningeal TRPV4 produces responses consistent with migraine. RESULTS These studies found that 56% and 49% of identified dural afferents generate currents in response to hypotonic solutions and 4α-PDD, respectively. The response to these stimuli indicates that dural afferents express TRPV4. Activation of meningeal TPRV4 using hypotonic solution or 4α-PDD in vivo resulted in both facial and hind paw allodynia that was blocked by the TRPV4 antagonist RN1734. CONCLUSION These data indicate that activation of TRPV4 within the meninges produces afferent nociceptive signaling from the head that may contribute to migraine headache.
Collapse
Affiliation(s)
- Xiaomei Wei
- University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
25
|
Karasawa T, Steyger PS. Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol (Camb) 2011; 3:879-86. [PMID: 21799993 DOI: 10.1039/c1ib00034a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since introduction into clinical practice over 60 years ago, aminoglycoside antibiotics remain important drugs in the treatment of bacterial infections, cystic fibrosis and tuberculosis. However, the ototoxic and nephrotoxic properties of these drugs are still a major clinical problem. Recent advances in molecular biology and biochemistry have begun to uncover the intracellular actions of aminoglycosides that lead to cytotoxicity. In this review, we discuss intracellular binding targets of aminoglycosides, highlighting specific aminoglycoside-binding proteins (HSP73, calreticulin and CLIMP-63) and their potential for triggering caspases and Bcl-2 signalling cascades that are involved in aminoglycoside-induced cytotoxicity. We also discuss potential strategies to reduce aminoglycoside cytotoxicity, which are necessary for greater bactericidal efficacy during aminoglycoside pharmacotherapy.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | |
Collapse
|
26
|
Amato V, Viña E, Calavia MG, Guerrera MC, Laurà R, Navarro M, De Carlos F, Cobo J, Germanà A, Vega JA. TRPV4 in the sensory organs of adult zebrafish. Microsc Res Tech 2011; 75:89-96. [PMID: 21678526 DOI: 10.1002/jemt.21029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/13/2011] [Indexed: 11/11/2022]
Abstract
TRPV4 is a nonselective cation channel that belongs to the vanilloid (V) subfamily of transient receptor potential (TRP) ion channels. While TRP channels have been found to be involved in sensing temperature, light, pressure, and chemical stimuli, TPRV4 is believed to be primarily a mechanosensor although it can also respond to warm temperatures, acidic pH, and several chemical compounds. In zebrafish, the expression of trpv4 has been studied during embryonic development, whereas its pattern of TPRV4 expression during the adult life has not been thoroughly analyzed. In this study, the occurrence of TRPV4 was addressed in the zebrafish sensory organs at the mRNA (RT-PCR) and protein (Westernblot) levels. Once the occurrence of TRPV4 was demonstrated, the TRPV4 positive cells were identified by using immunohistochemistry. TPRV4 was detected in mantle and sensory cells of neuromasts, in a subpopulation of hair sensory cells in the macula and in the cristae ampullaris of the inner ear, in sensory cells in the taste buds, in crypt neurons and ciliated sensory neurons of the olfactory epithelium, and in cells of the retina. These results demonstrate the presence of TRPV4 in all sensory organs of adult zebrafish and are consistent with the multiple physiological functions suspected for TRPV4 in mammals (mechanosensation, hearing, and temperature sensing), but furthermore suggest potential roles in olfaction and vision in zebrafish.
Collapse
Affiliation(s)
- V Amato
- Dipartimento di MORBIFIPA, Sezione di Morfología, Università degli Studi di Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Balaban CD, Jacob RG, Furman JM. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications. Expert Rev Neurother 2011; 11:379-94. [PMID: 21375443 PMCID: PMC3107725 DOI: 10.1586/ern.11.19] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The comorbidity among balance disorders, anxiety disorders and migraine has been studied extensively from clinical and basic research perspectives. From a neurological perspective, the comorbid symptoms are viewed as the product of sensorimotor, interoceptive and cognitive adaptations that are produced by afferent interoceptive information processing, a vestibulo-parabrachial nucleus network, a cerebral cortical network (including the insula, orbitofrontal cortex, prefrontal cortex and anterior cingulate cortex), a raphe nuclear-vestibular network, a coeruleo-vestibular network and a raphe-locus coeruleus loop. As these pathways overlap extensively with pathways implicated in the generation, perception and regulation of emotions and affective states, the comorbid disorders and effective treatment modalities can be viewed within the contexts of neurological and psychopharmacological sites of action of current therapies.
Collapse
|
28
|
Furman JM, Marcus DA, Balaban CD. Rizatriptan reduces vestibular-induced motion sickness in migraineurs. J Headache Pain 2010; 12:81-8. [PMID: 20862509 PMCID: PMC3072502 DOI: 10.1007/s10194-010-0250-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/12/2010] [Indexed: 12/18/2022] Open
Abstract
A previous pilot study suggested that rizatriptan reduces motion sickness induced by complex vestibular stimulation. In this double-blind, randomized, placebo-controlled study we measured motion sickness in response to a complex vestibular stimulus following pretreatment with either rizatriptan or a placebo. Subjects included 25 migraineurs with or without migraine-related dizziness (23 females) aged 21–45 years (31.0 ± 7.8 years). Motion sickness was induced by off-vertical axis rotation in darkness, which stimulates both the semicircular canals and otolith organs of the vestibular apparatus. Results indicated that of the 15 subjects who experienced vestibular-induced motion sickness when pretreated with placebo, 13 showed a decrease in motion sickness following pretreatment with rizatriptan as compared to pretreatment with placebo (P < 0.02). This significant effect was not seen when subjects were exposed to more provocative vestibular stimulation. We conclude that the serotonin agonist, rizatriptan, reduces vestibular-induced motion sickness by influencing serotonergic vestibular-autonomic projections.
Collapse
Affiliation(s)
- Joseph M Furman
- Department of Otolaryngology, Eye and Ear Institute, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
29
|
Premkumar LS, Sikand P. TRPV1: a target for next generation analgesics. Curr Neuropharmacol 2010; 6:151-63. [PMID: 19305794 PMCID: PMC2647151 DOI: 10.2174/157015908784533888] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/17/2007] [Accepted: 11/11/2007] [Indexed: 12/11/2022] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA.
| | | |
Collapse
|
30
|
Distribution of 5-HT1B and 5-HT1D receptors in the inner ear. Brain Res 2010; 1346:92-101. [PMID: 20510890 DOI: 10.1016/j.brainres.2010.05.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/21/2022]
Abstract
Migraine and anxiety disorders are frequently co-morbid with balance disorders. This study examined the relative distribution of subtypes of serotonin (5-HT) receptor in the inner ear of monkeys and rats. Most vestibular ganglion cells were immunoreactive for 5-HT(1B) and 5-HT(1D) receptors in macaques and rats. In the inner ear, 5-HT(1B) and 5-HT(1D) receptor immunopositivity was associated with endothelial cells of the vestibular ganglion, spiral ganglion, vestibulocochlear nerve, spiral ligament and stria vascularis. It was noteworthy that 5-HT(1B) and 5-HT(1D) receptors are expressed in parallel sites in peripheral vestibular and trigeminal systems, which may be a factor underlying the efficacy of triptans in treating migraine and migrainous vertigo. Because the vestibular ganglion and trigeminal ganglion are both within the subarachnoid space, an interaction between 5-HT(1B) and TRPV1 receptors on blood vessel and ganglion cells may also contribute to the vasospasm and the comorbid headache, dizziness, nausea and vomiting that accompany subarachnoid hemorrhage.
Collapse
|
31
|
Purinergic signaling in cochleovestibular hair cells and afferent neurons. Purinergic Signal 2010; 6:201-9. [PMID: 20806012 DOI: 10.1007/s11302-010-9183-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 04/27/2010] [Indexed: 02/04/2023] Open
Abstract
Purinergic signaling in the mammalian cochleovestibular hair cells and afferent neurons is reviewed. The scope includes P2 and P1 receptors in the inner hair cells (IHCs) of the cochlea, the type I spiral ganglion neurons (SGNs) that convey auditory signals from IHCs, the vestibular hair cells (VHCs) in the vestibular end organs (macula in the otolith organs and crista in the semicircular canals), and the vestibular ganglion neurons (VGNs) that transmit postural and rotatory information from VHCs. Various subtypes of P2X ionotropic receptors are expressed in IHCs as well as P2Y metabotropic receptors that mobilize intracellular calcium. Their functional roles still remain speculative, but adenosine 5'-triphosphate (ATP) could regulate the spontaneous activity of the hair cells during development and the receptor potentials of mature hair cells during sound stimulation. In SGNs, P2Y metabotropic receptors activate a nonspecific cation conductance that is permeable to large cations as NMDG(+) and TEA(+). Remarkably, this depolarizing nonspecific conductance in SGNs can also be activated by other metabotropic processes evoked by acetylcholine and tachykinin. The molecular nature and the role of this depolarizing channel are unknown, but its electrophysiological properties suggest that it could lie within the transient receptor potential channel family and could regulate the firing properties of the afferent neurons. Studies on the vestibular partition (VHC and VGN) are sparse but have also shown the expression of P2X and P2Y receptors. There is still little evidence of functional P1 (adenosine) receptors in the afferent system of the inner ear.
Collapse
|
32
|
Poirrier A, Van den Ackerveken P, Kim T, Vandenbosch R, Nguyen L, Lefebvre P, Malgrange B. Ototoxic drugs: Difference in sensitivity between mice and guinea pigs. Toxicol Lett 2010; 193:41-9. [DOI: 10.1016/j.toxlet.2009.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/02/2009] [Accepted: 12/06/2009] [Indexed: 01/18/2023]
|
33
|
Kizawa K, Kitahara T, Horii A, Maekawa C, Kuramasu T, Kawashima T, Nishiike S, Doi K, Inohara H. Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats. Neuroscience 2010; 165:1323-32. [DOI: 10.1016/j.neuroscience.2009.11.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/30/2022]
|
34
|
Hikita-Watanabe N, Kitahara T, Horii A, Kawashima T, Doi K, Okumura SI. Tinnitus as a prognostic factor of sudden deafness. Acta Otolaryngol 2010; 130:79-83. [PMID: 19437168 DOI: 10.3109/00016480902897715] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS The 'tinnitus-rare' group had a poorer prognosis for hearing than the 'tinnitus-often' group in all sudden sensorineural hearing loss (SSNHL), although the 'shorter duration' group had better prognosis than the 'longer duration' when restricted to SSNHL accompanied by tinnitus. This indicates that tinnitus itself may not be a sign for poor hearing prognosis but might be an essential sound for the initiation of repair of a damaged auditory system. OBJECTIVES We examined the hearing improvement rate (HIR) and tinnitus at the onset of SSNHL to elucidate the prognostic value of tinnitus accompanying SSNHL. PATIENTS AND METHODS Fifty patients with SSNHL were treated with systemic administration of steroids. Hearing recovery was determined by comparing the hearing levels before and after treatment. Tinnitus was subjectively evaluated by the tinnitus scoring questionnaire. The score for the five-step evaluation of the subjective tinnitus feelings 'loudness', 'duration' and 'annoyance' was obtained at the onset. RESULTS In terms of 'duration', when we divided all the cases into 'tinnitus-rare' group and 'tinnitus-often' group, HIR in the 'tinnitus-rare' group was significantly lower than that in 'tinnitus-often' group. When restricted to the 'tinnitus-often' group, HIR for 'shorter duration' was significantly higher than that for 'longer duration'.
Collapse
|
35
|
Tadros SF, Kim Y, Phan PAB, Birnbaumer L, Housley GD. TRPC3 ion channel subunit immunolocalization in the cochlea. Histochem Cell Biol 2009; 133:137-47. [PMID: 19882163 DOI: 10.1007/s00418-009-0653-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2009] [Indexed: 12/11/2022]
Abstract
Canonical transient receptor potential (TRPC) subunits assemble as tetramers to form ion channels with high calcium (Ca(2+)) permeability. Here, we investigated the possibility that TRPC3 ion channels are broadly expressed in the adult guinea pig and mouse cochleae. Using immunofluorescence, pronounced labeling occurred in the spiral ganglion (SG) neurons, inner hair cells (IHC), outer hair cells (OHC) and epithelial cells lining scala media. TRPC3 expression was homogeneous in the SG throughout the cochlea. In contrast, there was marked spatial variation in the immunolabeling in the cochlear hair cells with respect to location. This likely relates to the tonotopy of these cells. TRPC3 immunolabeling was more pronounced in the IHC than OHC. Both basal region IHC and OHC had higher TRPC3 expression levels than the corresponding cells from the apical region of the cochlea. These data suggest that TRPC3 ion channels contribute to Ca(2+) homeostasis associated with the hair cells, with higher ion fluxes in more basal regions of the cochlea, and may also be a significant pathway for Ca(2+) entry associated with auditory neurotransmission via the SG neurons. TRPC3 expression was also identified within the spiral limbus region, inner and outer sulcus, but without evidence for spatial variation in expression level. Expression in these gap junction-coupled epithelial cells lining scala media is indicative of a contribution of TRPC3 channels to cochlear electrochemical homeostasis.
Collapse
Affiliation(s)
- Sherif F Tadros
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Randwick, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
36
|
Comparison of different aminoglycoside antibiotic treatments to refine ototoxicity studies in adult mice. Lab Anim 2009; 44:124-31. [PMID: 19858169 DOI: 10.1258/la.2009.009046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing and balance receptors in the inner ear are highly susceptible to damage caused by a wide variety of toxic substances, including aminoglycosides. This class of antibiotics is commonly used in medicine, even though they may produce irreversible bilateral neurosensorial deafness. To identify potential ototoxic agents and novel therapeutic targets, it is necessary to generate standardized animal models of aminoglycoside ototoxicity, which will also serve to explore otic cell repair and regeneration. Although the mouse is the species most often used in biomedical research, due to the genetic information and genetically-modified strains available, there are few standard models of aminoglycoside ototoxicity in adult mice. Most protocols to produce ototoxicity in adult mice employ high doses of aminoglycosides for long periods of time, which causes systemic toxicity, side-effects and high mortality rates. Here, we compare the effects of systemic treatment with four different, yet common, aminoglycoside antibiotics in two mouse strains, evaluating their effects on mortality, cochlear morphology and auditory brainstem responses. Our data indicate that gentamicin and neomycin caused high mortality in the adult mouse without significantly changing the auditory threshold. Amikacin produced a tolerable rate of mortality but at doses that did not exhibit ototoxicity. Finally, intramuscular injection of kanamycin in C57BL/6JOlaHsd mice induced significant dose-dependent bilateral hearing loss with a moderate rate of mortality and less discomfort than following subcutaneous administration.
Collapse
|
37
|
The progesterone receptor regulates the expression of TRPV4 channel. Pflugers Arch 2009; 459:105-13. [DOI: 10.1007/s00424-009-0706-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/25/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
|
38
|
Ishibashi T, Takumida M, Akagi N, Hirakawa K, Anniko M. Expression of transient receptor potential vanilloid (TRPV) 1, 2, 3, and 4 in mouse inner ear. Acta Otolaryngol 2009; 128:1286-93. [PMID: 18607942 DOI: 10.1080/00016480801938958] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION It is suggested that transient receptor potential vanilloids (TRPVs) may play a functional role in cell physiology and TRPV-4 and -2 may play an important part in fluid homeostasis in the inner ear. OBJECTIVE Expression of TRPV-1, -2, -3, and -4 in the normal mouse inner ear was studied. MATERIALS AND METHODS CBA/J mice were used in this study. The localization of TRPV-1, -2, -3, and -4 in the inner ear, i.e. cochlea, vestibular end organs, and endolymphatic sac, was investigated by immunohistochemistry. RESULTS TRPV-1, -2, and -3 were co-expressed in hair cells and supporting cells of the organ of Corti, in spiral ganglion cells, sensory cells in vestibular end organs, vestibular ganglion cells, and sensory nerve fibers. TRPV-2 was also detected in the stria vascularis, dark cells, and endolymphatic sac. TRPV-4 was expressed in hair cells and supporting cells of the organ of Corti, in marginal cells of the stria vascularis, spiral ganglion cells, vestibular sensory cells, vestibular dark cells, vestibular ganglion cells, and epithelial cells of the endolymphatic sac.
Collapse
|
39
|
Wang Q, Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol 2009; 10:205-19. [PMID: 19255807 DOI: 10.1007/s10162-009-0160-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 02/05/2009] [Indexed: 01/16/2023] Open
Abstract
Aminoglycosides enter inner ear hair cells across their apical membranes via endocytosis, or through the mechanoelectrical transduction channels in vitro, suggesting that these drugs enter cochlear hair cells from endolymph to exert their cytotoxic effect. We used zebrafish to determine if fluorescently tagged gentamicin (GTTR) also enters hair cells via apically located calcium-sensitive cation channels and the cytotoxicity of GTTR to hair cells. We then examined the serum kinetics of GTTR following systemic injection in mice and which murine cochlear sites preferentially loaded with systemically administered GTTR over time by confocal microscopy. GTTR is taken up by, and is toxic to, wild-type zebrafish neuromast hair cells. Neuromast hair cell uptake of GTTR is attenuated by high concentrations of extracellular calcium or unconjugated gentamicin and is blocked in mariner mutant zebrafish, suggestive of entry via the apical mechanotransduction channel. In murine cochleae, GTTR is preferentially taken up by the stria vascularis compared to the spiral ligament, peaking 3 h after intra-peritoneal injection, following GTTR kinetics in serum. Strial marginal cells display greater intensity of GTTR fluorescence compared to intermediate and basal cells. Immunofluorescent detection of gentamicin in the cochlea also revealed widespread cellular labeling throughout the cochlea, with preferential labeling of marginal cells. Only GTTR fluorescence displayed increasing cytoplasmic intensity with increasing concentration, unlike the cytoplasmic intensity of fluorescence from immunolabeled gentamicin. These data suggest that systemically administered aminoglycosides are trafficked from strial capillaries into marginal cells and clear into endolymph. If so, this will facilitate electrophoretically driven aminoglycoside entry into hair cells from endolymph. Trans-strial trafficking of aminoglycosides from strial capillaries to marginal cells will be dependent on as-yet-unidentified mechanisms that convey these drugs across the intra-strial electrical barrier and into marginal cells.
Collapse
Affiliation(s)
- Qi Wang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
40
|
Ishibashi T, Takumida M, Akagi N, Hirakawa K, Anniko M. Changes in transient receptor potential vanilloid (TRPV) 1, 2, 3 and 4 expression in mouse inner ear following gentamicin challenge. Acta Otolaryngol 2009; 129:116-26. [PMID: 18607956 DOI: 10.1080/00016480802032835] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION It is suggested that transient receptor potential vanilloid (TRPV)-1 and -2 may be of pathological significance for sensory cells and ganglions, while TRPV-3 and -4 may play an important part in neuroprotection of the inner ear. OBJECTIVE Changes in the expression of TRPV-1, -2, -3, and -4 in gentamicin (GM)-treated mouse inner ear were studied. MATERIALS AND METHODS CBA/J mice were used in this study. The localization of TRPV-1, -2, -3, and -4 in the inner ear of both untreated and GM-treated CBA/J animals (intratympanic injection of 5 mg GM) was investigated by immunohistochemistry. RESULTS TRPV-1, -2, and -3 were co-expressed in the inner ear sensory and ganglion cells, while TRPV-4 was also expressed in the stria vascularis and vestibular dark cells. Following GM treatment, the intensity of immunofluorescent reaction to TRPV-1 and TRPV-2 increased, while that to TRPV-3 and TRPV-4 decreased.
Collapse
|
41
|
Changes in caloric responses after temporal bone surgery with posterior tympanotomy. Auris Nasus Larynx 2008; 36:521-4. [PMID: 19111414 DOI: 10.1016/j.anl.2008.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 09/12/2008] [Accepted: 11/03/2008] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To elucidate the role of facial recess bony plate in the thermal transmission route from external auditory canal to lateral semicircular canal during caloric stimulation test, we performed the test on patients before and after removal of the plate, i.e. posterior tympanotomy. In the present study, we adopted facial nerve decompression (FND) as posterior tympanotomy without surgery-induced inner ear damages and cochlear implantation (CI) as posterior tympanotomy with surgery-induced inner ear damages. METHODS Between 1999 and 2003, we performed FND on 19 patients with unilateral facial nerve paresis due to Bell's palsy (n=7), Ramsay-Hunt syndrome (n=7) or facial nerve trauma (n=5) at Osaka Rosai Hospital. We also performed CI on 34 patients with bilateral deafness at Osaka University Hospital. To examine effects of FND or CI on caloric responses in vestibular periphery, caloric stimulation (30 degrees C cold water and 44 degrees C hot water) with ENG was performed twice, just before and 6 months after surgery in each subject. The caloric-induced nystagmus was recorded by using ENG under dark and open-eyes situation to calculate the maximum slow phase eye velocity. RESULTS In cases of FND (n=19), there were significant decreases between pre- and post-operative 30 degrees C responses (t-test: p=0.049<0.05). There were no significant differences between pre- and post-operative 44 degrees C responses (t-test: p=0.467>0.05). In cases of CI (n=34), there were significant changes between pre and post-operative responses in both temperatures (t-test: p<0.0001 in 30 degrees C; p=0.011<0.05 in 44 degrees C). CONCLUSION The insertion of electrodes during CI did some damages to vestibular peripheral function and reduced both hot and cold caloric responses according to the results of CI. However, the procedure during posterior tympanotomy could also decrease caloric responses especially in cold stimulation according to the results of FND. Therefore, we should consider the effect of structural change in temporal bone on the thermal transmission in case of evaluation of vestibular peripheral function by using caloric stimulation test.
Collapse
|
42
|
Rusznák Z, Szucs G. Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch 2008; 457:1303-25. [PMID: 18777041 DOI: 10.1007/s00424-008-0586-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 11/29/2022]
Abstract
The spiral ganglion cells provide the afferent innervation of the hair cells of the organ of Corti. Ninety-five percent of these cells (termed type I spiral ganglion neurones) are in synaptic contact with the inner hair cells, whereas about 5% of them are type II cells, which are responsible for the sensory innervation of the outer hair cells. To understand the function of the spiral ganglion neurones, it is important to explore their membrane properties, understand their activity patterns and describe the variety of ionic channels determining their behaviour. In this review, a brief description is given of the various experimental methods that allow the investigation of the spiral ganglion cells, followed by the discussion of their action potential firing patterns and ionic conductances. The presence, distribution and significance of the K(+) currents of the spiral ganglion cells are specifically addressed, along with the introduction of the putative subunit compositions of the relevant voltage-gated K(+) channels.
Collapse
Affiliation(s)
- Zoltán Rusznák
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, Debrecen, P O Box 22, H-4012, Hungary.
| | | |
Collapse
|
43
|
Gabashvili IS, Sokolowski BHA, Morton CC, Giersch ABS. Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol 2007; 8:305-28. [PMID: 17541769 PMCID: PMC2538437 DOI: 10.1007/s10162-007-0082-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 04/23/2007] [Indexed: 12/13/2022] Open
Abstract
The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms.
Collapse
|
44
|
Cheng W, Yang F, Takanishi CL, Zheng J. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. ACTA ACUST UNITED AC 2007; 129:191-207. [PMID: 17325193 PMCID: PMC2151614 DOI: 10.1085/jgp.200709731] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat-sensitive transient receptor potential (TRP) channels (TRPV1–4) form the major cellular sensors for detecting temperature increases. Homomeric channels formed by thermosensitive TRPV subunits exhibit distinct temperature thresholds. While these subunits do share significant sequence similarity, whether they can coassemble into heteromeric channels has been controversial. In the present study we investigated the coassembly of TRPV subunits using both spectroscopy-based fluorescence resonance energy transfer (FRET) and single-channel recordings. Fluorescent protein–tagged TRPV subunits were coexpressed in HEK 293 cells; FRET between different subunits was measured as an indication of the formation of heteromeric channels. We observed strong FRET when fluorescence signals were collected selectively from the plasma membrane using a “spectra FRET” approach but much weaker or no FRET from intracellular fluorescence. In addition, no FRET was detected when TRPV subunits were coexpressed with members of the TRPM subfamily or CLC-0 chloride channel subunits. These results indicate that a substantial fraction of TRP channels in the plasma membrane of cotransfected cells were heteromeric. Single-channel recordings confirmed the existence of multiple heteromeric channel forms. Interestingly, heteromeric TRPV channels exhibit intermediate conductance levels and gating kinetic properties. As these subunits coexpress both in sensory neurons and in other tissues, including heart and brain, coassembly between TRPV subunits may contribute to greater functional diversity.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Physiology and Membrane Biology, University of California, School of Medcine, Davis, CA 95616
| | | | | | | |
Collapse
|
45
|
Roehm P, Hoffer M, Balaban CD. Gentamicin uptake in the chinchilla inner ear. Hear Res 2007; 230:43-52. [PMID: 17616288 DOI: 10.1016/j.heares.2007.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 10/23/2022]
Abstract
Studies of transtympanic gentamicin have focused on clinical use and outcomes. This study presents evidence of bilateral uptake and retention of gentamicin in certain inner ear cells and structures following transtympanic gentamicin application. Middle ear application of gentamicin was performed by either minipump (Alza model, 2002) or transtympanic injection in a chinchilla model. Histological sections of decalcified temporal bones were stained to identify the distribution of gentamicin. Using both anti-gentamicin immunohistochemistry and autoradiography of tracer amounts of tritiated gentamicin, Scarpa's and spiral ganglion cells, stria vascularis, and vestibular dark cells of the injected ear were found to have higher levels of gentamicin and retain it within cell bodies while staining levels fell to background levels in the rest of the injected ear over the course of 14 days. There was no evidence of an apical to basal gradient of anti-gentamicin staining within the spiral ganglion. Contralateral inner ear cells showed light anti-gentamicin staining. Cell bodies in the ipsilateral dorsal cochlear nucleus bordering the cochlear aqueduct (CA) showed a lateral to medial gradient of gentamicin staining, suggesting the CA as a potential site of transfer of gentamicin to the contralateral ear. Direct effects of aminoglycosides on ganglion cells may have implications on both the success of cochlear implantation in patients deafened following systemic aminoglycoside therapy and on the advisability of clinical practices of transtympanic gentamicin therapy and ototopic aminoglycoside treatment.
Collapse
Affiliation(s)
- Pamela Roehm
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
46
|
Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 2006; 7:159. [PMID: 16787531 PMCID: PMC1557673 DOI: 10.1186/1471-2164-7-159] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 06/20/2006] [Indexed: 11/14/2022] Open
Abstract
Background The purpose of this work was to study the gene expression of transient receptor potential (TRP) channels in the mouse. The application of a standardized and quantitative technique, TaqMan RT-PCR, should give information about the pattern and relative importance of TRP channels for murine tissues and cell types. To verify data sets with an independent method, we studied the occurrence of some of the transcripts by in situ hybridization. Results We have characterized the mRNA expression of 22 TRP channels in the mouse with a focus on nerve and muscle tissues. This is the first study to describe the expression profiles of all channel isoforms of the four related Group 1 subfamilies (TRPC, TRPV, TRPM and TRPA) with a standardized and quantitative technique. Comparisons of transcript abundance showed a consistent dominance of TRPM7 and TRPC3 in most tissues. We further observed characteristic patterns and differences in gene expression of individual channels ranging over three orders of magnitude. The overall level of TRP channel mRNAs was highest in brain areas followed by kidney, lung, reproductive organs and muscle. In brain TRPM3 and TRPM7 dominated and 19 other isoforms were detected. In lung and kidney TRPV4, TRPV5 and TRPM7 were found in highest levels. TRPM7, TRPC3, TRPC6 and TRPM3 mRNAs were characteristically present in all tested muscle tissues. Most data obtained with the C57Bl/10 mouse strain were confirmed with Balb/c and NOD mice. However, TRPC3, C6, TRPM7, M3, TRPV2 and V4 expression showed marked differences in the three tested mouse strains. In situ hybridization revealed co-expression of transcripts on the cellular level and widely confirmed the data obtained with RT-PCR. Conclusion Transcripts coding for members of the TRPC, TRPV, TRPM and TRPA subfamilies of TRP cation channels are present in a broad spectrum of murine tissues. Several channel isoforms often coexist in a specific tissue or cell type. TRP channel expression does not show typical tissue specific dominance of individual members as is known from other ion channel families. Mouse strain specific variations of TRP channel expression indicate that genetic background or physiological requirements considerably influence expression levels.
Collapse
Affiliation(s)
- Christiane Kunert-Keil
- Ernst Moritz Arndt University of Greifswald, Institute of Pathophysiology, Greifswalder Str. 11C, D-17495 Karlsburg, Germany
| | - Frederike Bisping
- Ernst Moritz Arndt University of Greifswald, Institute of Pathophysiology, Greifswalder Str. 11C, D-17495 Karlsburg, Germany
| | - Jana Krüger
- Ernst Moritz Arndt University of Greifswald, Institute of Pathophysiology, Greifswalder Str. 11C, D-17495 Karlsburg, Germany
| | - Heinrich Brinkmeier
- Ernst Moritz Arndt University of Greifswald, Institute of Pathophysiology, Greifswalder Str. 11C, D-17495 Karlsburg, Germany
| |
Collapse
|
47
|
Zhou J, Balaban C, Durrant JD. Effect of intracochlear perfusion of vanilloids on cochlear neural activity in the guinea pig. Hear Res 2006; 218:43-9. [PMID: 16781098 DOI: 10.1016/j.heares.2006.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/31/2006] [Accepted: 02/21/2006] [Indexed: 11/17/2022]
Abstract
Recent findings show that the vanilloid receptor subtype 1 (TRPV1) is expressed by cochlear outer hair cells and spiral ganglion cells, and that its expression is up-regulated in ganglion cells after aminoglycoside treatment. This study tested the hypothesis that agents that act on TRPV1 receptors affect the spectrum of ensemble background activity (EBA). Consecutive intracochlear perfusions of the TRPV1 agonist, capsaicin (CAP 0.1, 1, and 10 parts per million), as well as its antagonist capsazepine (CZP), were used to test effects of TRPV1 activation on EBA recorded from the cochlear base. Perfusion with CAP alone produced a dose-dependent increase of the 900-Hz peak ratio (power normalized re the overall spectrum) of the EBA. The CAP effect was attenuated during concurrent perfusion with CZP. These findings are consistent with the hypothesis that TRPV1 activation increases background activity of spiral ganglion cells and support a role of TRPV1 in gating spontaneous and evoked auditory nerve excitability.
Collapse
Affiliation(s)
- Jianxun Zhou
- Department of Communication Science and Disorders, University of Pittsburgh, Forbes Tower 4033, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
48
|
Dai C, Mangiardi D, Cotanche D, Steyger P. Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo. Hear Res 2006; 213:64-78. [PMID: 16466873 PMCID: PMC2424187 DOI: 10.1016/j.heares.2005.11.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/26/2005] [Accepted: 11/25/2005] [Indexed: 11/16/2022]
Abstract
Aminoglycoside uptake in the inner ear remains poorly understood. We subcutaneously injected a fluorescently-conjugated aminoglycoside, gentamicin-Texas Red (GTTR), to investigate the in vivo uptake of GTTR in the inner ear of several vertebrates, and in various murine sensory cells using confocal microscopy. In bullfrogs, GTTR uptake was prominent in mature hair cells, but not in immature hair cells. Avian hair cells accrued GTTR more rapidly at the base of the basilar papilla. GTTR was associated with the hair bundle; and, in guinea pigs and mice, somatic GTTR fluorescence was initially diffuse before punctate (endosomal) fluorescence could be observed. A baso-apical gradient of intracellular GTTR uptake in guinea pig cochleae could only be detected at early time points (<3h). In 21-28 day mice, cochlear GTTR uptake was greatly reduced compared to guinea pigs, 6-day-old mice, or mice treated with ethacrynic acid. In mice, GTTR was also rapidly taken up, and retained, in the kidney, dorsal root and trigeminal ganglia. In linguinal and vibrissal tissues rapid GTTR uptake cleared over a period of several days. The preferential uptake of GTTR by mature saccular, and proximal hair cells resembles the pattern of aminoglycoside-induced hair cell death in bullfrogs and chicks. Differences in the degree of GTTR uptake in hair cells of different species suggests variation in serum levels, clearance rates from serum, and/or the developmental and functional integrity of the blood-labyrinth barrier. GTTR uptake by hair cells in vivo suggests that GTTR has potential to elucidate aminoglycoside transport mechanisms into the inner ear, and as a bio-tracer for in vivo pharmacokinetic studies.
Collapse
Affiliation(s)
- C.F. Dai
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
- Department of Otolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, PR China
| | - D. Mangiardi
- Department of Otolaryngology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States
| | - D.A. Cotanche
- Department of Otolaryngology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - P.S. Steyger
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
- Corresponding author. Tel.: +1 503 494 1062; fax: +1 503 494 5656. E-mail address: (P.S. Steyger)
| |
Collapse
|
49
|
Abstract
Transient receptor potential vanilloid 4 (TRPV4) was identified as the mammalian homologue of the Caenorhabditis elegans osmosensory channel protein, OSM-9. In mammals, TRPV4 is activated by a variety of stimuli including thermal stress, fatty acid metabolites, and hypotonicity. Two distinct mechanisms have been described through which TRPV4 may be activated by hypotonicity: one involves the Src family of nonreceptor protein tyrosine kinases, whereas a second is mediated via arachidonic acid metabolites. TRPV4 likely plays a role in systemic osmoregulation; accordingly, it is expressed in the blood-brain barrier-deficient osmosensory nuclei of the hypothalamus. TRPV4 is also abundantly expressed in the kidney, and its precisely demarcated distribution along the kidney tubule permits speculation about a physiological role in this tissue. TRPV4-expressing and TRPV4-negative tubule segments co-exist at all levels of the kidney, from the cortex through the inner medulla. It is conceivable that basolaterally expressed TRPV4 transmits signals arising in the interstitium (e.g, changing tonicity) to more-distal tubule segments where "fine-tuning" of the incipient urine takes place.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology and Hypertension, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, 3314 SW US Veterans Hospital Rd., Mailcode PP262, Portland, OR 97239, USA.
| |
Collapse
|
50
|
Kitahara T, Li-Korotky HS, Balaban CD. Regulation of mitochondrial uncoupling proteins in mouse inner ear ganglion cells in response to systemic kanamycin challenge. Neuroscience 2005; 135:639-53. [PMID: 16111824 DOI: 10.1016/j.neuroscience.2005.06.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/27/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
Mitochondrial uncoupling proteins are a proton transporter family involved in regulation mitochondrial superoxide and ATP production. Uncoupling proteins are expressed by rat spiral ganglion and vestibular ganglion cells [Hear Res 196 (2004) 39]. This study tests the hypothesis that uncoupling protein expression is up-regulated in response to the reactive oxygen species challenge imposed by kanamycin and antioxidant (2,3-dihydroxybenzoate) treatment in mice. In control C57BL/6, CBA/J and BALB/c mice, mRNA for uncoupling protein 1, uncoupling protein 2, uncoupling protein 3, Slc25a27 (uncoupling protein 4) and Slc25a14 (uncoupling protein 5/BMCP1) was expressed in the spiral and vestibular ganglia. After kanamycin-treatment (700 mg/kg twice daily for 14 days s.c.), uncoupling protein 2 and uncoupling protein 3 mRNA expression increased significantly in spiral and vestibular ganglia and kidney, but was unaffected in cerebral cortex. Significant Slc25a27 (uncoupling protein 4) mRNA up-regulation was also observed in spiral and vestibular ganglia, but not in kidney or cerebral cortex. These effects were blocked by simultaneous administration of kanamycin and 2,3-dihydroxybenzoate (300 mg/kg twice daily for 14 days s.c.). Western immunoblotting and immunohistochemistry confirmed the uncoupling protein 2 and uncoupling protein 3 up-regulation in inner ear. Finally, 2,3-dihydroxybenzoate treatment alone produced an upregulation of uncoupling protein 1 mRNA in the spiral ganglion, vestibular ganglion and cerebral cortex, but not the kidney. Uncoupling protein 2 and uncoupling protein 3 upregulation in the kidney and inner ear ganglia likely reflects their general role as a feedback pathway to reduce mitochondrial superoxide generation. Slc25a27 (uncoupling protein 4) upregulation in the inner ear ganglia, by contrast, is likely to be a secondary response to kanamycin-induced hair cell death. We propose that increased uncoupling protein 2, uncoupling protein 3 and Slc25a27 expression has several neuroprotective effects via reduction in mitochondrial superoxide generation and local thermogenesis, including: (1) reducing mean ROS load to prevent apoptosis, (2) increasing signal-to-noise characteristics of intracellular ROS signaling pathways (e.g. lipoxygenases, growth factor and transcription factors), (3) heat-related alteration of enzyme kinetics and (4) promotion of cell depolarization (activation of heat-gated ion channels).
Collapse
Affiliation(s)
- T Kitahara
- Department of Otolaryngology, University of Pittsburgh School of Medicine, 107 Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|