1
|
Schädlich IS, Buschbaum S, Magnus T, Reinshagen K, Wintges K, Gelderblom M. Median nerve lesions in pediatric displaced supracondylar humerus fracture: A prospective neurological, electrodiagnostic and ultrasound characterization. Eur J Neurol 2024; 31:e16459. [PMID: 39230443 PMCID: PMC11555132 DOI: 10.1111/ene.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND AND PURPOSE Supracondylar humerus fractures (SCHFs) are the most common elbow fractures in children. Traumatic median nerve injury and isolated lesions of its pure forearm motor branch, anterior interosseus nerve (AIN), have both been independently reported as complications of displaced SCHFs. Our main objectives were to characterize the neurological syndrome to distinguish median nerve from AIN lesions and to determine the prognosis of median nerve lesions after displaced SCHFs. METHODS Ten children were prospectively followed for an average of 11.6 months. Patients received a standardized clinical examination and high-resolution ultrasound of the median nerve every 1-3 months starting 1-2 months after trauma. Electrodiagnostic studies were performed within the first 4 months and after complete clinical recovery. RESULTS All children shared a clinical syndrome with predominant but not exclusive affection of AIN innervated muscles. High-resolution ultrasound uniformly excluded persistent nerve entrapment and neurotmesis requiring revision surgery but visualized post-traumatic median nerve neuroma at the fracture site in all patients. Electrodiagnostic studies showed axonal motor and sensory median nerve neuropathy. All children achieved complete functional recovery under conservative management. Motor recovery required up to 11 months and differed between involved muscles. CONCLUSIONS It was shown that neurological deficits of the median nerve in displaced SCHFs exceeded an isolated AIN lesion. Notably, detailed neurological follow-up examinations and sonographic exclusion of persistent nerve compression were able to guide conservative therapy in affected children. Under these conditions the prognosis of median nerve lesions was excellent despite severe initial deficits, development of neuroma and axonal injury.
Collapse
Affiliation(s)
| | - Sabriena Buschbaum
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Magnus
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Konrad Reinshagen
- Department of Pediatric SurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kristofer Wintges
- Department of Pediatric SurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mathias Gelderblom
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
2
|
Klein D, Yépez MG, Martini R. Physical exercise halts further functional decline in an animal model for Charcot-Marie-Tooth disease 1X at an advanced disease stage. J Peripher Nerv Syst 2024. [PMID: 39523026 DOI: 10.1111/jns.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Charcot-Marie-Tooth (CMT) type 1 neuropathies are the most common inherited diseases of the peripheral nervous system. Although more than 100 causative genes have been identified so far, therapeutic options are still missing. We could previously identify that early-onset physical exercise (voluntary wheel running, VWR) dampens peripheral nerve inflammation, improves neuropathological alterations, and clinical outcome in Cx32def mice, a model for CMT1X. We here investigate the clinical and histopathological effect of late-onset exercise in Cx32def mice at an advanced disease stage. METHODS Nine-month-old Cx32def mice were allowed to run for 4 days/week on a commercially available running wheel for 3 months, with timely limited access to running wheels, representing a running distance of ~2000 m. Control mutants had no access to running wheels. Afterward, mice were investigated by distinct functional tests and by immunohistochemical and electron microscopical techniques. RESULTS We found that late-onset physical exercise (late VWRlim) prevented the robust functional decline in 12-month-old Cx32def mice. This was accompanied by improved neuromuscular innervation of distal muscles and axonal preservation in femoral quadriceps nerves. In contrast to a "pre-symptomatic" start of physical exercise in Cx32def mice, late-onset VWR did not alter nerve inflammation and myelin thickness at 12 months of age. INTERPRETATION We conclude that VWR has robust beneficial effects on nerve function in Cx32def mice, even when applied at a progressed disease stage. These results have important translational implications, suggesting that physical exercise might be an effective treatment option for CMT1 patients, even when disease symptoms have already progressed.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Maria Grijalva Yépez
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Chiu PE, Fu Z, Tsai YC, Tsai CY, Hsu WJ, Chou LW, Lai DW. Fu's subcutaneous needling promotes axonal regeneration and remyelination by inhibiting inflammation and endoplasmic reticulum stress. Transl Res 2024; 273:46-57. [PMID: 38950695 DOI: 10.1016/j.trsl.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Fu's subcutaneous needling (FSN) is a traditional Chinese acupuncture procedure used to treat pain-related neurological disorders. Moreover, the regulation of inflammatory cytokines may provide a favorable environment for peripheral nerve regeneration. In light of this, FSN may be an important novel therapeutic strategy to alleviate pain associated with peripheral neuropathy; however, the underlying molecular mechanisms remain unclear. This study revealed that patients who had osteoarthritis with peripheral neuropathic pain significantly recovered after 1 to 2 weeks of FSN treatment according to the visual analog scale, Western Ontario and McMaster Universities Osteoarthritis Index, Lequesne index, walking speed, and passive range of motion. Similarly, we demonstrated that FSN treatment in an animal model of chronic constriction injury (CCI) significantly improved sciatic nerve pain using paw withdrawal thresholds, sciatic functional index scores, and compound muscle action potential amplitude tests. In addition, transmission electron microscopy images of sciatic nerve tissue showed that FSN effectively reduced axonal swelling, abnormal myelin sheaths, and the number of organelle vacuoles in CCI-induced animals. Mechanistically, RNA sequencing and gene set enrichment analysis revealed significantly reduced inflammatory pathways, neurotransmitters, and endoplasmic reticulum stress pathways and increased nerve regeneration factors in the FSN+CCI group, compared with that in the CCI group. Finally, immunohistochemistry, immunoblotting and enzyme-linked immunosorbent assay showed similar results in the dorsal root ganglia and sciatic nerve. Our findings suggest that FSN can effectively ameliorate peripheral neuropathic pain by regulate inflammation and endoplasmic reticulum stress, thereby determine its beneficial application in patients with peripheral nerve injuries.
Collapse
Affiliation(s)
- Po-En Chiu
- Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Zhonghua Fu
- Institute of Fu's Subcutaneous Needling, Beijing University of Chinese Medicine, Beijing, China; Clinical Medical College of Acupuncture & Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Ching Tsai
- Department of Immune Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chia-Yun Tsai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wei-Jen Hsu
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Li-Wei Chou
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan; Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Physical Medicine and Rehabilitation, Asia University Hospital, Asia University, Taichung, Taiwan.
| | - De-Wei Lai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Alahmari KA, Reddy RS. Knee proprioception, muscle strength, and stability in Type 2 Diabetes Mellitus- A cross-sectional study. Heliyon 2024; 10:e39270. [PMID: 39498014 PMCID: PMC11533566 DOI: 10.1016/j.heliyon.2024.e39270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Background The burgeoning prevalence of Type 2 Diabetes Mellitus (T2DM) has been linked to a spectrum of health complications, including those affecting the musculoskeletal system. Knee proprioception, muscle strength, and stability are essential for maintaining functional mobility and preventing falls, yet their relationship with T2DM is not fully elucidated. Objectives This study aimed to compare knee proprioception, muscle strength, and limits of stability (LOS) between individuals with T2DM and asymptomatic controls and to examine the moderating role of physical activity on these relationships. Methods In a cross-sectional design, 192 participants (96 with T2DM and 96 asymptomatic) underwent assessments for knee proprioception using a digital inclinometer, muscle strength via a handheld dynamometer, and LOS through dynamic posturography, graded as a percentage of maximum lean without losing balance. Results Our analysis revealed that individuals with T2DM demonstrated reduced knee muscle strength, with mean differences of 12.90 Nm (right) and 18.80 Nm (left) in 25° of flexion, and 25.78 Nm (right) and 26.36 Nm (left) in 40° of flexion, compared to asymptomatic controls. Proprioception errors were greater in the T2DM group (p < 0.001), with significant deficits noted in both knee 25° of flexion and 40° of flexion. Stability limits were also compromised, with the T2DM group displaying a decreased ability to maintain balance across all tested directions (p < 0.001). Physical activity emerged as a positive moderator, with higher activity levels correlating with improved muscle strength and stability. Conclusion T2DM significantly impairs musculoskeletal function, highlighting the need for integrated management strategies. The study underscores the importance of physical activity in mitigating T2DM-related musculoskeletal deterioration, suggesting that therapeutic interventions should include a focus on enhancing muscle strength and stability to improve the quality of life in this population.
Collapse
Affiliation(s)
- Khalid A. Alahmari
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ravi Shankar Reddy
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
5
|
Kwon EH, Steininger J, Scherbaum R, Gold R, Pitarokoili K, Tönges L. Large-fiber neuropathy in Parkinson's disease: a narrative review. Neurol Res Pract 2024; 6:51. [PMID: 39465424 PMCID: PMC11514528 DOI: 10.1186/s42466-024-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Numerous studies reported a higher prevalence of polyneuropathy (PNP) in patients with Parkinson's disease (PD) compared to the general population. Importantly, PNP symptoms can aggravate both motor and sensory disturbances in PD patients and negatively impact the disease course. Recent analyses indicate distinct PNP patterns in PD. MAIN TEXT This review aims to provide an overview of the current insights into etiological factors, diagnostic methods, and management strategies of large fiber neuropathy in PD. Despite the higher prevalence, the causes of PNP in PD are still not fully understood. A genetic predisposition can underlie PNP onset in PD. Main research attention is focused on long-term levodopa exposure which is suggested to increase PNP risk by depletion of methylation cofactors such as vitamin B12 and accumulation of homocysteine that altogether can alter peripheral nerve homeostasis. Beyond a potential "iatrogenic" cause, alpha-synuclein deposition has been detected in sural nerve fibers that could contribute to peripheral neuronal degeneration as part of the systemic manifestation of PD. Whereas mild axonal sensory PNP predominates in PD, a considerable proportion of patients also show motor and upper limb nerve involvement. Intriguingly, a correlation between PNP severity and PD severity has been demonstrated. Therefore, PNP screening involving clinical and instrument-based assessments should be implemented in the clinical routine for early detection and monitoring. Given the etiological uncertainty, therapeutic or preventive options remain limited. Vitamin supplementation and use of catechol-O-methyltransferase-inhibitors can be taken into consideration. CONCLUSION PNP is increasingly recognized as a complicating comorbidity of PD patients. Long-term, large-scale prospective studies are required to elucidate the causative factors for the development and progression of PD-associated PNP to optimize treatment approaches. The overall systemic role of "idiopathic" PNP in PD and a putative association with the progression of neurodegeneration should also be investigated further.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| | - Julia Steininger
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Raphael Scherbaum
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr-University, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr-University, Bochum, Germany
| |
Collapse
|
6
|
Ritter A, Han J, Bianconi S, Henrich D, Marzi I, Leppik L, Weber B. The Ambivalent Role of miRNA-21 in Trauma and Acute Organ Injury. Int J Mol Sci 2024; 25:11282. [PMID: 39457065 PMCID: PMC11508407 DOI: 10.3390/ijms252011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Since their initial recognition, miRNAs have been the subject of rising scientific interest. Especially in recent years, miRNAs have been recognized to play an important role in the mediation of various diseases, and further, their potential as biomarkers was recognized. Rising attention has also been given to miRNA-21, which has proven to play an ambivalent role as a biomarker. Responding to the demand for biomarkers in the trauma field, the present review summarizes the contrary roles of miRNA-21 in acute organ damage after trauma with a specific focus on the role of miRNA-21 in traumatic brain injury, spinal cord injury, cardiac damage, lung injury, and bone injury. This review is based on a PubMed literature search including the terms "miRNA-21" and "trauma", "miRNA-21" and "severe injury", and "miRNA-21" and "acute lung respiratory distress syndrome". The present summary makes it clear that miRNA-21 has both beneficial and detrimental effects in various acute organ injuries, which precludes its utility as a biomarker but makes it intriguing for mechanistic investigations in the trauma field.
Collapse
Affiliation(s)
- Aileen Ritter
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60486 Frankfurt am Main, Germany; (J.H.); (S.B.); (D.H.); (I.M.); (L.L.); (B.W.)
| | | | | | | | | | | | | |
Collapse
|
7
|
McBenedict B, Hauwanga WN, Escudeiro G, Petrus D, Onabanjo BB, Johnny C, Omer M, Amaravadhi AR, Felix A, Dang NB, Adolphsson L, Lima Pessôa B. A Review and Bibliometric Analysis of Studies on Advances in Peripheral Nerve Regeneration. Cureus 2024; 16:e69515. [PMID: 39416551 PMCID: PMC11481412 DOI: 10.7759/cureus.69515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Peripheral nerve injuries (PNIs) pose significant clinical challenges due to their complex healing processes and the often incomplete functional recovery. This review and bibliometric analysis aimed to provide a comprehensive overview of advancements in peripheral nerve regeneration research, focusing on trends, influential studies, and emerging areas. By analyzing 2921 publications from the Web of Science Core Collection, key themes such as nerve regeneration, repair, and the critical role of Schwann cells were identified. The study highlights a notable increase in research output since the early 2000s, with China and the United States leading in publication volume and citations. The analysis also underscores the importance of collaborative networks, which are driving innovation in this field. Despite significant progress, the challenge of achieving complete functional recovery from PNIs persists, emphasizing the need for continued research into novel therapeutic strategies. This review synthesizes current knowledge on the mechanisms of nerve regeneration, including the roles of cellular and molecular processes, neurotrophic factors, and emerging therapeutic approaches such as gene therapy and stem cell applications. Additionally, the study revealed the use of nanotechnology, biomaterials, and advanced imaging techniques, which hold promise for improving the outcomes of nerve repair. This bibliometric analysis not only maps the landscape of peripheral nerve regeneration research but also identifies opportunities for future investigation. This study has some limitations, including reliance on the Web of Science Core Collection, which may exclude relevant research from other databases. The analysis is predominantly English-based, potentially overlooking significant non-English studies. Citation trends might be influenced by shifting research priorities and accessibility issues, affecting the visibility of older work. Additionally, geographical disparities and limited collaboration networks may restrict the global applicability and knowledge exchange in this field.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Cardiology, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | - Dulci Petrus
- Family Medicine, Directorate of Special Programs, Ministry of Health and Social Services, Windhoek, NAM
| | - Barakat B Onabanjo
- Research and Development, Montefiore Medical Center, Wakefield Campus, New York City, USA
| | | | - Mohamed Omer
- Internal Medicine, Sulaiman Al Rajhi University, Ar Rass, SAU
| | | | - Asaju Felix
- General Practice, Dorset County Hospital, Dorchester, GBR
| | - Ngoc B Dang
- Nursing, College of Health Sciences, VinUniversity, Hanoi, VNM
| | | | | |
Collapse
|
8
|
Rostami S, Min S, McCann A, Sayers C, Samy R, Collar R, Hsieh TY. The Effectiveness of Facial Neuromuscular Retraining on Patients with Facial Nerve Dysfunction: A Mental Health and Quality of Life Analysis. Facial Plast Surg Aesthet Med 2024; 26:551-557. [PMID: 38635958 DOI: 10.1089/fpsam.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background: Facial muscle dysfunction can have drastic psychosocial effects. Objectives: To evaluate the impacts of customized neuromuscular retraining on mental health, quality of life (QoL), facial muscle function, and synkinesis. Methods: Thirty patients with facial nerve dysfunction completed a course of neuromuscular retraining. Patients' mental health, QoL, facial muscle function, and synkinesis were evaluated using Patient Health Questionnaire (PHQ-9), Facial Clinimetric Evaluation (FaCE) scale, electronic, clinician-graded facial function scale (eFACE), and Synkinesis Assessment Questionnaire (SAQ) at the initial and final visits. Scores were compared before and after treatment. Results: Patients (n = 30) included had a mean age of 59.4 ± 13.4 years (range 32.3-82.8) and were mostly female (22/30, 73.3%). The most common etiology was Iatrogenic facial nerve paralysis (11/20, 36.7%). Most patients had postfacial paralysis synkinesis (15/30, 50%), while 10 had complete flaccid paralysis. The median house-Brackmann score was 2 (range 1-6). The mean duration of facial palsy was 39.5 ± 106.9 (range 1-576 months). The duration of follow-up after the initial treatment session was 5.5 months, including 10 sessions. After neuromuscular retraining median PHQ-9 scores improved from 5 (range 0-25) to 3 (range 0-20) (p = 0.002). Mean FaCE PROM scores increased from 47.7 ± 11.5 to 56.5 ± 8.8 (p = 0.001). The mean eFACE score increased from 55.8 ± 15.1 to 71.7 ± 13.6 (p < 0.001). Median SAQ score was lower at the final visit (34.6 ± 13.4) compared to the initial visit (47.7 ± 17.8; p < 0.001). Conclusion: Customized neuromuscular retraining may improve patient-reported mental health, QoL, and facial muscle function and reduce synkinesis in facial nerve dysfunction.
Collapse
Affiliation(s)
- Sara Rostami
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Susie Min
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Adam McCann
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Colton Sayers
- Outpatient Rehabilitative Services Department, UCHealth, Cincinnati, Ohio, USA
| | - Ravi Samy
- Division of Otolaryngology/Head and Neck Surgery, Institute for Surgical Excellence, Lehigh Valley Health Network, Allentown, Pennsylvania, USA
| | - Ryan Collar
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tsung-Yen Hsieh
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Nguyen BL, Baumfalk DR, Lapierre-Nguyen SS, Zhong R, Doerr V, Montalvo RN, Wei-LaPierre L, Smuder AJ. Effects of exercise and doxorubicin on acute diaphragm neuromuscular transmission failure. Exp Neurol 2024; 378:114818. [PMID: 38782352 DOI: 10.1016/j.expneurol.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide variety of cancers including breast cancer, leukemia and lymphoma. Unfortunately, clinical use of DOX is limited due to adverse off-target effects resulting in fatigue, respiratory muscle weakness and dyspnea. The diaphragm is the primary muscle of inspiration and respiratory insufficiency is likely the result of both muscle weakness and neural impairment. However, the contribution of neuropathology to DOX-induced respiratory muscle dysfunction is unclear. We hypothesized that diaphragm weakness following acute DOX exposure is associated with neurotoxicity and that exercise preconditioning is sufficient to improve diaphragm muscle contractility by maintaining neuromuscular integrity. Adult female Sprague-Dawley rats were randomized into four experimental groups: 1) sedentary-saline, 2) sedentary-DOX, 3) exercise-saline or 4) exercise-DOX. Endurance exercise preconditioning consisted of treadmill running for 1 h/day at 30 m/min for 10 days. Twenty-four hours after the last bout of exercise, animals were treated with DOX (20 mg/kg, I.P.) or saline (equal volume). Our results demonstrate that 48-h following DOX administration diaphragm muscle specific force is reduced in sedentary-DOX rats in response to both phrenic nerve and direct diaphragm stimulation. Importantly, endurance exercise preconditioning in DOX-treated rats attenuated the decrease in diaphragm contractile function, reduced neuromuscular transmission failure and altered phrenic nerve morphology. These changes were associated with an exercise-induced reduction in circulating biomarkers of inflammation, nerve injury and reformation. Therefore, the results are consistent with exercise preconditioning as an effective way of reducing respiratory impairment via preservation of phrenic-diaphragm neuromuscular conduction.
Collapse
Affiliation(s)
- Branden L Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America.
| | - Dryden R Baumfalk
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Stephanie S Lapierre-Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Renjia Zhong
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Vivian Doerr
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ryan N Montalvo
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Lan Wei-LaPierre
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ashley J Smuder
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| |
Collapse
|
10
|
Lysak A, Farnebo S, Geuna S, Dahlin LB. Muscle preservation in proximal nerve injuries: a current update. J Hand Surg Eur Vol 2024; 49:773-782. [PMID: 38819009 DOI: 10.1177/17531934231216646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Optimal recovery of muscle function after proximal nerve injuries remains a complex and challenging problem. After a nerve injury, alterations in the affected muscles lead to atrophy, and later degeneration and replacement by fat-fibrous tissues. At present, several different strategies for the preservation of skeletal muscle have been reported, including various sets of physical exercises, muscle massage, physical methods (e.g. electrical stimulation, magnetic field and laser stimulation, low-intensity pulsed ultrasound), medicines (e.g. nutrients, natural and chemical agents, anti-inflammatory and antioxidants, hormones, enzymes and enzyme inhibitors), regenerative medicine (e.g. growth factors, stem cells and microbiota) and surgical procedures (e.g. supercharge end-to-side neurotization). The present review will focus on methods that aimed to minimize the damage to muscles after denervation based on our present knowledge.
Collapse
Affiliation(s)
- Andrii Lysak
- Institute of Traumatology and Orthopedics of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Lars B Dahlin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
11
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
12
|
Ramesh PA, Sethuraman S, Subramanian A. Multichannel Conduits with Fascicular Complementation: Significance in Long Segmental Peripheral Nerve Injury. ACS Biomater Sci Eng 2024; 10:2001-2021. [PMID: 38487853 DOI: 10.1021/acsbiomaterials.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite the advances in tissue engineering approaches, reconstruction of long segmental peripheral nerve defects remains unsatisfactory. Although autologous grafts with proper fascicular complementation have shown meaningful functional recovery according to the Medical Research Council Classification (MRCC), the lack of donor nerve for such larger defect sizes (>30 mm) has been a serious clinical issue. Further clinical use of hollow nerve conduits is limited to bridging smaller segmental defects of denuded nerve ends (<30 mm). Recently, bioinspired multichannel nerve guidance conduits (NGCs) gained attention as autograft substitutes as they mimic the fascicular connective tissue microarchitecture in promoting aligned axonal outgrowth with desirable innervation for complete sensory and motor function restoration. This review outlines the hierarchical organization of nerve bundles and their significance in the sensory and motor functions of peripheral nerves. This review also emphasizes the major challenges in addressing the longer nerve defects with the role of fascicular arrangement in the multichannel nerve guidance conduits and the need for fascicular matching to accomplish complete functional restoration, especially in treating long segmental nerve defects. Further, currently available fabrication strategies in developing multichannel nerve conduits and their inconsistency in existing preclinical outcomes captured in this review would seed a new process in designing an ideal larger nerve conduit for peripheral nerve repair.
Collapse
Affiliation(s)
- Preethy Amruthavarshini Ramesh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| |
Collapse
|
13
|
Ullah A, Waris A, Shafiq U, Khan NB, Saeed Q, Tassadaq N, Qasim O, Ali HT. ExoMechHand prototype development and testing with EMG signals for hand rehabilitation. Med Eng Phys 2024; 124:104095. [PMID: 38418024 DOI: 10.1016/j.medengphy.2023.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 03/01/2024]
Abstract
Rehabilitation is a major requirement to improve the quality of life and mobility of patients with disabilities. The use of rehabilitative devices without continuous supervision of medical experts is increasing manifold, mainly due to prolonged therapy costs and advancements in robotics. Due to ExoMechHand's inexpensive cost, high robustness, and efficacy for participants with median and ulnar neuropathies, we have recommended it as a rehabilitation tool in this study. ExoMechHand is coupled with three different resistive plates for hand impairment. For efficacy, ten unhealthy subjects with median or ulnar nerve neuropathies are considered. After twenty days of continuous exercise, three subjects showed improvement in their hand grip, range of motion of the wrist, or range of motion of metacarpophalangeal joints. The condition of the hand is assessed by features of surface-electromyography signals. A Machine-learning model based on these features of fifteen subjects is used for staging the condition of the hand. Machine-learning algorithms are trained to indicate the type of resistive plate to be used by the subject without the need for examination by the therapist. The extra-trees classifier came out to be the most effective algorithm with 98% accuracy on test data for indicating the type of resistive plate, followed by random-forest and gradient-boosting with accuracies of 95% and 93%, respectively. Results showed that the staging of hand condition could be analyzed by sEMG signal obtained from the flexor-carpi-ulnaris and flexor-carpi-radialis muscles in subjects with median and ulnar neuropathies.
Collapse
Affiliation(s)
- Ajdar Ullah
- National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Asim Waris
- National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Uzma Shafiq
- National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Niaz B Khan
- National University of Sciences and Technology, Islamabad 44000, Pakistan; Mechanical Engineering Department, College of Engineering, University of Bahrain, Isa Town 32038, Bahrain.
| | - Quratulain Saeed
- College of Physical Therapy, School of Health Sciences, Foundation University, Islamabad 44000, Pakistan
| | - Naureen Tassadaq
- Department of Physical Medicine and Rehabilitation, Fauji Foundation Hospital, Islamabad 44000, Pakistan
| | - Owais Qasim
- Department of electronic engineering, Fatima Jinnah Women University, Rawalpindi 44000, Pakistan
| | - Hafiz T Ali
- Department of Mechanical Engineering, College of Engineering, Taif University, Saudi Arabia
| |
Collapse
|
14
|
Gouveia D, Cardoso A, Carvalho C, Rijo I, Almeida A, Gamboa Ó, Lopes B, Sousa P, Coelho A, Balça MM, Salgado AJ, Alvites R, Varejão ASP, Maurício AC, Ferreira A, Martins Â. The Role of Early Rehabilitation and Functional Electrical Stimulation in Rehabilitation for Cats with Partial Traumatic Brachial Plexus Injury: A Pilot Study on Domestic Cats in Portugal. Animals (Basel) 2024; 14:323. [PMID: 38275783 PMCID: PMC10812540 DOI: 10.3390/ani14020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This prospective observational cohort pilot study included 22 cats diagnosed with partial traumatic brachial plexus injury (PTBPI), aiming to explore responses to an early intensive neurorehabilitation protocol in a clinical setting. This protocol included functional electrical stimulation (FES), locomotor treadmill training and kinesiotherapy exercises, starting at the time with highest probability of nerve repair. The synergetic benefits of this multimodal approach were based on the potential structural and protective role of proteins and the release of neurotrophic factors. Furthermore, FES was parametrized according to the presence or absence of deep pain. Following treatment, 72.6% of the cats achieved ambulation: 9 cats within 15 days, 2 cats within 30 days and 5 cats within 60 days. During the four-year follow-up, there was evidence of improvement in both muscle mass and muscle weakness, in addition to the disappearance of neuropathic pain. Notably, after the 60 days of neurorehabilitation, 3 cats showed improved ambulation after arthrodesis of the carpus. Thus, early rehabilitation, with FES applied in the first weeks after injury and accurate parametrization according to the presence or absence of deep pain, may help in functional recovery and ambulation, reducing the probability of amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - Inês Rijo
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Maria Manuel Balça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| |
Collapse
|
15
|
Gadhave DG, Sugandhi VV, Kokare CR. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Res 2024; 1822:148674. [PMID: 37952871 DOI: 10.1016/j.brainres.2023.148674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune 413130, Maharashtra, India.
| | - Vrashabh V Sugandhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Chandrakant R Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
16
|
Gao H, Liu Y, Guan W, Sun S, Zheng T, Wu L, Li G. Surface topologized ovalbumin scaffolds containing YIGSR peptides for modulating Schwann cell behavior. Int J Biol Macromol 2023; 253:127015. [PMID: 37758111 DOI: 10.1016/j.ijbiomac.2023.127015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Peripheral nerve injuries (PNI) currently have limited therapeutic efficacy, and functional scaffolds have been shown to be effective for treating PNI. Ovalbumin (OVA) is widely used as a natural biomaterial for repairing damaged tissues due to its excellent biocompatibility and the presence of various bioactive components. However, there are few reports on the repair of PNI by ovalbumin. In this study, a novel bionic functionalized topological scaffold based on ovalbumin and grafted with tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide was constructed by micro-molding method and surface-biomodification technology. The scaffolds were subjected to a series of evaluations in terms of morphology, mechanics, hydrophilicity, and biocompatibility, and the related molecular mechanisms were further penetrated. The results showed that the scaffolds prepared in this study had aligned ridge/groove structure, good mechanical properties and biocompatibility, and could be used as carriers to slowly release YIGSR, which effectively promoted the proliferation, migration and elongation of Schwann Cells (SCs), and significantly up-regulated the gene expression related to proliferation, apoptosis, migration and axon regeneration. Therefore, the bionic functional topological scaffold has significant application potential for promoting peripheral nerve regeneration and provides a new therapeutic option for repairing PNI.
Collapse
Affiliation(s)
- Hongxia Gao
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Tiantian Zheng
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Linliang Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Guicai Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
17
|
Ruimonte-Crespo J, Plaza-Manzano G, Díaz-Arribas MJ, Navarro-Santana MJ, López-Marcos JJ, Fabero-Garrido R, Seijas-Fernández T, Valera-Calero JA. Aerobic Exercise and Neuropathic Pain: Insights from Animal Models and Implications for Human Therapy. Biomedicines 2023; 11:3174. [PMID: 38137395 PMCID: PMC10740819 DOI: 10.3390/biomedicines11123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
This narrative review explores the complex relationship between aerobic exercise (AE) and neuropathic pain (NP), particularly focusing on peripheral neuropathies of mechanical origin. Pain, a multifaceted phenomenon, significantly impacts functionality and distress. The International Association for the Study of Pain's definition highlights pain's biopsychosocial nature, emphasizing the importance of patient articulation. Neuropathic pain, arising from various underlying processes, presents unique challenges in diagnosis and treatment. Our methodology involved a comprehensive literature search in the PubMed and SCOPUS databases, focusing on studies relating AE to NP, specifically in peripheral neuropathies caused by mechanical forces. The search yielded 28 articles and 1 book, primarily animal model studies, providing insights into the efficacy of AE in NP management. Results from animal models demonstrate that AE, particularly in forms like no-incline treadmill and swimming, effectively reduces mechanical allodynia and thermal hypersensitivity associated with NP. AE influences neurophysiological mechanisms underlying NP, modulating neurotrophins, cytokines, and glial cell activity. These findings suggest AE's potential in attenuating neurophysiological alterations in NP. However, human model studies are scarce, limiting the direct extrapolation of these findings to human neuropathic conditions. The few available studies indicate AE's potential benefits in peripheral NP, but a lack of specificity in these studies necessitates further research. In conclusion, while animal models show promising results regarding AE's role in mitigating NP symptoms and influencing underlying neurophysiological mechanisms, more human-centric research is required. This review underscores the need for targeted clinical trials to fully understand and harness AE's therapeutic potential in human neuropathic pain, especially of mechanical origin.
Collapse
Affiliation(s)
- Jorge Ruimonte-Crespo
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Gustavo Plaza-Manzano
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María José Díaz-Arribas
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marcos José Navarro-Santana
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - José Javier López-Marcos
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Faculty of Life and Natural Sciences, Nebrija University, 28015 Madrid, Spain
| | - Raúl Fabero-Garrido
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Tamara Seijas-Fernández
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Juan Antonio Valera-Calero
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
18
|
Khan S, Carrasco DI, Isaacson R, English AW. Proportions of four distinct classes of sensory neurons are retained even when axon regeneration is enhanced following peripheral nerve injury. Front Neuroanat 2023; 17:1303888. [PMID: 38020215 PMCID: PMC10657864 DOI: 10.3389/fnana.2023.1303888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Recovery from peripheral nerve injuries is poor because axon regeneration is slow and inefficient. Experimental therapies that increase signaling of neuronal brain-derived neurotrophic factor (BDNF) through its TrkB receptor or through its downstream effectors enhance axon regeneration, increasing the number of motor and sensory neurons whose axons successfully regenerate and reinnervate muscle targets. The goal of this study was to compare the proportions of four different classes of sensory (dorsal root ganglion, DRG) neurons that successfully reinnervate two different muscle targets in control mice and mice treated pharmacologically to enhance axon regeneration. Methods Following sciatic nerve transection and repair, C57BL/6 J mice were treated for 2 weeks, either with R13, a prodrug that releases the small molecule TrkB ligand, 7,8-dihydroxyflavone, with compound 11 (CP11), an inhibitor of asparaginyl endopeptidase (δ-secretase), or with a control vehicle. Four weeks after injury, different fluorescent retrograde tracers were injected into the gastrocnemius and tibialis anterior muscles to mark DRG neurons that had successfully reinnervated these muscles. Using immunofluorescence, retrogradely labeled DRG neurons also expressing markers of four different sensory neuronal classes were counted. Results and discussion Treatments with R13 or CP11 resulted in muscle reinnervation by many more DRG neurons than vehicletreated controls, but neurons expressing proteins associated with the different classes of DRG neurons studied were largely in the same proportions found in intact mice.
Collapse
Affiliation(s)
| | | | | | - Arthur W. English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
19
|
Chen K, Gao T, Yang S, Zhu Y, Lyu F, Jiang J, Xia X, Zheng C. Changes in Self-Esteem in Patients with Hirayama Disease and its Association with Prognosis After Anterior Cervical Fusion Procedures. World Neurosurg 2023; 178:e802-e818. [PMID: 37572833 DOI: 10.1016/j.wneu.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVE To quantify self-esteem in patients with Hirayama disease (HD) and investigate the impact of this psychosocial factor on surgical outcomes in HD. METHODS The Rosenberg Self-Esteem Scale (RSES) was measured in 58 patients with HD before anterior cervical fusion. These patients further underwent motor unit number estimation, handgrip strength, disabilities of the arm, shoulder and hand (DASH), Beck Anxiety Inventory (BAI) and Beck Depression Index (BDI) before and 18 months after operation. Furthermore, the International Physical Activity Questionnaire (IPAQ) was administered to all patients at postoperative 18-month assessments. RESULTS Compared with the general population, patients with HD showed a relatively lower RSES, and RSES was negatively associated with both postoperative DASH (r = -0.431, P < 0.05) and preoperative to postoperative changes (r = -0.295, P < 0.05) and positively associated with IPAQ (r = 0.472, P < 0.05). Similar to the difference in postoperative DASH scores, more patients with low self-esteem felt postoperative aggravated motor dysfunction than those with high/normal self-esteem (P < 0.05). Postoperative BDI exerted a partial mediating effect on the relationship between RSES and DASH scores (B = -0.30, P < 0.05), and postoperative BAI played a partial mediating effect on the relationship between RSES and IPAQ scores (B = 0.30, P < 0.05). CONCLUSIONS The self-esteem of HD patients may be below the population norms. Importantly, relatively low self-esteem in HD patients may cause/worsen postoperative depression and anxiety, thereby resulting in poor self-reported surgical prognosis and an inactive lifestyle after operation. Therefore, perioperative treatment and rehabilitation efforts in HD patients, especially those with low self-esteem, should account for both physiological and psychological symptoms.
Collapse
Affiliation(s)
- Kaiwen Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tian Gao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuo Yang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Physical Medicine and Rehabilitation, Upstate Medical University, State University of New York at Syracuse, Syracuse, New York, USA
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China; Department of Orthopedics, The Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chaojun Zheng
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Koop MA, Sleijser-Koehorst MLS, Hooijmans CR, Tdlohreg PQ, Lutke Schipholt IJ, Scholten-Peeters GGM, Coppieters MW. The potential protective effects of pre-injury exercise on neuroimmune responses following experimentally-induced traumatic neuropathy: a systematic review with meta-analysis. Front Immunol 2023; 14:1215566. [PMID: 37767095 PMCID: PMC10520553 DOI: 10.3389/fimmu.2023.1215566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Pre-clinical evidence shows that neuropathy is associated with complex neuroimmune responses, which in turn are associated with increased intensity and persistence of neuropathic pain. Routine exercise has the potential to mitigate complications of future nerve damage and persistence of pain through neuroimmune regulation. This systematic review aimed to explore the effect of pre-injury exercise on neuroimmune responses, and other physiological and behavioural reactions following peripheral neuropathy in animals. Three electronic databases were searched from inception to July 2022. All controlled animal studies assessing the influence of an active exercise program prior to experimentally-induced traumatic peripheral neuropathy compared to a non-exercise control group on neuroimmune, physiological and behavioural outcomes were selected. The search identified 17,431 records. After screening, 11 articles were included. Meta-analyses showed that pre-injury exercise significantly reduced levels of IL-1β (SMD: -1.06, 95% CI: -1.99 to -0.13, n=40), but not iNOS (SMD: -0.71 95% CI: -1.66 to 0.25, n=82). From 72 comparisons of different neuroimmune outcomes at different anatomical locations, vote counting revealed reductions in 23 pro-inflammatory and increases in 6 anti-inflammatory neuroimmune outcomes. For physiological outcomes, meta-analyses revealed that pre-injury exercise improved one out of six nerve morphometric related outcomes (G-ratio; SMD: 1.95, 95%CI: 0.77 to 3.12, n=20) and one out of two muscle morphometric outcomes (muscle fibre cross-sectional area; SMD: 0.91, 95%CI: 0.27 to 1.54, n=48). For behavioural outcomes, mechanical allodynia was significantly less in the pre-injury exercise group (SMD -1.24, 95%CI: -1.87 to -0.61) whereas no overall effect was seen for sciatic function index. Post hoc subgroup analysis suggests that timing of outcome measurement may influence the effect of pre-injury exercise on mechanical allodynia. Risk of bias was unclear in most studies, as the design and conduct of the included experiments were poorly reported. Preventative exercise may have potential neuroprotective and immunoregulatory effects limiting the sequalae of nerve injury, but more research in this field is urgently needed.
Collapse
Affiliation(s)
- Meghan A. Koop
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Marije L. S. Sleijser-Koehorst
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Carlijn R. Hooijmans
- Meta Research Team, Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul Q. Tdlohreg
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Ivo J. Lutke Schipholt
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam University Medical Centre, Location VUmc, Amsterdam, Netherlands
| | | | - Michel W. Coppieters
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Corrêa DG, Júnior AL, Pacheco FT. Oculomotor nerve trauma: the intensity matters in imaging interpretation. Acta Neurol Belg 2023:10.1007/s13760-023-02347-2. [PMID: 37515702 DOI: 10.1007/s13760-023-02347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Affiliation(s)
- Diogo Goulart Corrêa
- Clínica de Diagnóstico por Imagem (CDPI), Avenida das Américas, 4666, 302A, 303, 307, 325, 326, Barra da Tijuca, Rio de Janeiro, RJ, 2640-102, Brazil.
- Rio de Janeiro State University, Boulevard 28 de Setembro, 77, Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil.
| | | | - Felipe Torres Pacheco
- Department of Neuroradiology, Irmandade da Santa Casa de Misericórdia de São Paulo, Rua Dr. Cesário Mota Júnior, 112, Vila Buarque, São Paulo, SP, 01221-010, Brazil
- Department of Radiology, DASA, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Chandrasekaran S, Bhagat NA, Ramdeo R, Ebrahimi S, Sharma PD, Griffin DG, Stein A, Harkema SJ, Bouton CE. Case study: persistent recovery of hand movement and tactile sensation in peripheral nerve injury using targeted transcutaneous spinal cord stimulation. Front Neurosci 2023; 17:1210544. [PMID: 37529233 PMCID: PMC10390294 DOI: 10.3389/fnins.2023.1210544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Peripheral nerve injury can lead to chronic pain, paralysis, and loss of sensation, severely affecting quality of life. Spinal cord stimulation has been used in the clinic to provide pain relief arising from peripheral nerve injuries, however, its ability to restore function after peripheral nerve injury have not been explored. Neuromodulation of the spinal cord through transcutaneous spinal cord stimulation (tSCS), when paired with activity-based training, has shown promising results towards restoring volitional limb control in people with spinal cord injury. We show, for the first time, the effectiveness of targeted tSCS in restoring strength (407% increase from 1.79 ± 1.24 N to up to 7.3 ± 0.93 N) and significantly increasing hand dexterity in an individual with paralysis due to a peripheral nerve injury (PNI). Furthermore, this is the first study to document a persisting 3-point improvement during clinical assessment of tactile sensation in peripheral injury after receiving 6 weeks of tSCS. Lastly, the motor and sensory gains persisted for several months after stimulation was received, suggesting tSCS may lead to long-lasting benefits, even in PNI. Non-invasive spinal cord stimulation shows tremendous promise as a safe and effective therapeutic approach with broad applications in functional recovery after debilitating injuries.
Collapse
Affiliation(s)
- Santosh Chandrasekaran
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nikunj A. Bhagat
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, United States
| | - Richard Ramdeo
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sadegh Ebrahimi
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Pawan D. Sharma
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Doug G. Griffin
- Northwell Health STARS Rehabilitation, East Meadow, NY, United States
| | - Adam Stein
- Department of Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Chad E. Bouton
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
23
|
Doi A, Oda K, Matsumoto M, Sakoguchi H, Honda M, Ogata Y, Nakano A, Taniguchi M, Fukushima S, Imayoshi K, Nagao K, Toyoda M, Kameyama H, Sonohata M, Shin MC. Whole body vibration accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats. J Exerc Rehabil 2023; 19:149-162. [PMID: 37435594 PMCID: PMC10331141 DOI: 10.12965/jer.2346178.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 07/13/2023] Open
Abstract
This study aimed to investigate the effect of whole body vibration (WBV) on the sensory and motor nerve components with sciatic nerve injury model rats. Surgery was performed on 21 female Wister rats (6-8 weeks) under intraperitoneal anesthesia. The nerve-crush injuries for the left sciatic nerve were inflicted using a Sugita aneurysm clip. The sciatic nerve model rats were randomly divided into two groups (n=9; control group, n=12; WBV group). The rats in the WBV group walked in the cage with a vibratory stimulus (frequency 50 Hz, 20 min/day, 5 times/wk), while those in the control group walked in the cage without any vibratory stimulus. We used heat stimulation-induced sensory threshold and lumbar magnetic stimulation-induced motor-evoked potentials (MEPs) to measure the sensory and motor nerve components, respectively. Further, morphological measurements, bilateral hind-limb dimension, bilateral gastrocnemius dimension, and weight were evaluated. Consequently, there were no significant differences in the sensory threshold at the injury side between the control and WBV groups. However, at 4 and 6 weeks postoperatively, MEPs latencies in the WBV group were significantly shorter than those in the control group. Furthermore, both sides of the hind-limb dimension at 6 weeks postoperatively, the left side of the gastrocnemius dimension, and both sides of the gastrocnemius weight significantly increased. In conclusion, WBV especially accelerates the functional recovery of motor nerve components in sciatic nerve-crush injury model rats.
Collapse
Affiliation(s)
- Atsushi Doi
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
- Division of Health Sciences, Graduate School of Health Sciences, Kumamoto Health Science University, Kumamoto,
Japan
| | - Kyoka Oda
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Masaki Matsumoto
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Honoka Sakoguchi
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Mizuki Honda
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Yuma Ogata
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Asuka Nakano
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Misato Taniguchi
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Shunya Fukushima
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Kyogo Imayoshi
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Kanta Nagao
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Masami Toyoda
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Hiroki Kameyama
- Department of Medical Technology, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
| | - Motoki Sonohata
- Department of Orthopaedic Surgery, Saga Central Hospital, Saga,
Japan
| | - Min-Chul Shin
- Department of Rehabilitation, Faculty of Health, Kumamoto Health Science University, Kumamoto,
Japan
- Division of Health Sciences, Graduate School of Health Sciences, Kumamoto Health Science University, Kumamoto,
Japan
| |
Collapse
|
24
|
Stocco E, Barbon S, Emmi A, Tiengo C, Macchi V, De Caro R, Porzionato A. Bridging Gaps in Peripheral Nerves: From Current Strategies to Future Perspectives in Conduit Design. Int J Mol Sci 2023; 24:ijms24119170. [PMID: 37298122 DOI: 10.3390/ijms24119170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In peripheral nerve injuries (PNI) with substance loss, where tensionless end-to-end suture is not achievable, the positioning of a graft is required. Available options include autografts (e.g., sural nerve, medial and lateral antebrachial cutaneous nerves, superficial branch of the radial nerve), allografts (Avance®; human origin), and hollow nerve conduits. There are eleven commercial hollow conduits approved for clinical, and they consist of devices made of a non-biodegradable synthetic polymer (polyvinyl alcohol), biodegradable synthetic polymers (poly(DL-lactide-ε-caprolactone); polyglycolic acid), and biodegradable natural polymers (collagen type I with/without glycosaminoglycan; chitosan; porcine small intestinal submucosa); different resorption times are available for resorbable guides, ranging from three months to four years. Unfortunately, anatomical/functional nerve regeneration requirements are not satisfied by any of the possible alternatives; to date, focusing on wall and/or inner lumen organization/functionalization seems to be the most promising strategy for next-generation device fabrication. Porous or grooved walls as well as multichannel lumens and luminal fillers are the most intriguing options, eventually also including the addition of cells (Schwann cells, bone marrow-derived, and adipose tissue derived stem cells) to support nerve regeneration. This review aims to describe common alternatives for severe PNI recovery with a highlight of future conduits.
Collapse
Affiliation(s)
- Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, Via Giustiniani, 2, 35128 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, 35030 Padova, Italy
| | - Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, 35030 Padova, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Cesare Tiengo
- Plastic Surgery Unit, Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| |
Collapse
|
25
|
Sonohata M, Doi A, Uchihashi K, Hashimoto A, Kii S, Inoue T, Mawatari M. Short-Term Collagen Nerve Wrapping Facilitates Motor and Sensory Recovery from Nerve Degeneration in a Sciatic Nerve Injury Rat Model. J Pain Res 2023; 16:1683-1695. [PMID: 37234570 PMCID: PMC10208243 DOI: 10.2147/jpr.s401126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Purpose This study used a sciatic nerve injury rat model to investigate the short-term effects of a polyglycolic acid (PGA)-collagen tube for nerve injury in continuity. Materials and Methods Sixteen female Wistar rats (6-8 weeks) were used, and the left sciatic nerve was crushed with a Sugita aneurysm clip. Sciatic nerve model rats were randomly categorized into two groups (n = 8; control group, n = 8; nerve wrapping group). Then, we measured four sensory thresholds, magnetically stimulated the lumbar region to induce motor-evoked potentials (MEPs), and evaluated the sciatic nerve histopathologically. Results In the sensory thresholds, there were significant differences for the main effect in 250 and 2000 Hz stimulation (p = 0.048 and 0.006, respectively). Further, a significant difference was observed with 2000 Hz stimulation at 1 week (p = 0.003). In the heat stimulation, there were significant differences for the main effect in both weeks and groups (p = 0.0002 and 0.0185, respectively). The post-hoc test showed a significant difference between groups only in 2W (p = 0.0283). Three weeks after the surgery, both 2nd and 3rd MEPs waves-related latencies in the nerve wrapping group were significantly shorter than those in the control group (p = 0.0207 and 0.0271, respectively). Histological evaluation of the sciatic nerve revealed considerable differences in the number of axons between the two groups (p = 0.0352). Conclusion The short-term PGA-collagen tube nerve wrapping facilitated motor and sensory recovery from nerve degeneration in the sciatic nerve injury rat model.
Collapse
Affiliation(s)
- Motoki Sonohata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
- Department of Orthopaedic Surgery, Saga Central Hospital, Saga, Japan
| | - Atsushi Doi
- Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
| | - Kazuyoshi Uchihashi
- Department of Surgical Pathology, National Hospital Organization Saga Hospital, Saga, Japan
| | - Akira Hashimoto
- Department of Orthopaedic Surgery, Saga Central Hospital, Saga, Japan
| | - Sakumo Kii
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Yamaguchi, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
26
|
Sleijser-Koehorst MLS, Koop MA, Coppieters MW, Lutke Schipholt IJ, Radisic N, Hooijmans CR, Scholten-Peeters GGM. The effects of aerobic exercise on neuroimmune responses in animals with traumatic peripheral nerve injury: a systematic review with meta-analyses. J Neuroinflammation 2023; 20:104. [PMID: 37138291 PMCID: PMC10155410 DOI: 10.1186/s12974-023-02777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Increasing pre-clinical evidence suggests that aerobic exercise positively modulates neuroimmune responses following traumatic nerve injury. However, meta-analyses on neuroimmune outcomes are currently still lacking. This study aimed to synthesize the pre-clinical literature on the effects of aerobic exercise on neuroimmune responses following peripheral nerve injury. METHODS MEDLINE (via Pubmed), EMBASE and Web of Science were searched. Controlled experimental studies on the effect of aerobic exercise on neuroimmune responses in animals with a traumatically induced peripheral neuropathy were considered. Study selection, risk of bias assessment and data extraction were performed independently by two reviewers. Results were analyzed using random effects models and reported as standardized mean differences. Outcome measures were reported per anatomical location and per class of neuro-immune substance. RESULTS The literature search resulted in 14,590 records. Forty studies were included, reporting 139 comparisons of neuroimmune responses at various anatomical locations. All studies had an unclear risk of bias. Compared to non-exercised animals, meta-analyses showed the following main differences in exercised animals: (1) in the affected nerve, tumor necrosis factor-α (TNF-α) levels were lower (p = 0.003), while insulin-like growth factor-1 (IGF-1) (p < 0.001) and Growth Associated Protein 43 (GAP43) (p = 0.01) levels were higher; (2) At the dorsal root ganglia, brain-derived neurotrophic factor (BDNF)/BDNF mRNA levels (p = 0.004) and nerve growth factor (NGF)/NGF mRNA (p < 0.05) levels were lower; (3) in the spinal cord, BDNF levels (p = 0.006) were lower; at the dorsal horn, microglia (p < 0.001) and astrocyte (p = 0.005) marker levels were lower; at the ventral horn, astrocyte marker levels (p < 0.001) were higher, and several outcomes related to synaptic stripping were favorably altered; (4) brainstem 5-HT2A receptor levels were higher (p = 0.001); (5) in muscles, BDNF levels (p < 0.001) were higher and TNF-α levels lower (p < 0.05); (6) no significant differences were found for systemic neuroimmune responses in blood or serum. CONCLUSION This review revealed widespread positive modulatory effects of aerobic exercise on neuroimmune responses following traumatic peripheral nerve injury. These changes are in line with a beneficial influence on pro-inflammatory processes and increased anti-inflammatory responses. Given the small sample sizes and the unclear risk of bias of the studies, results should be interpreted with caution.
Collapse
Affiliation(s)
- Marije L S Sleijser-Koehorst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| | - Meghan A Koop
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Michel W Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane and Gold Coast, Australia
| | - Ivo J Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam University Medical Centre, Location VUmc, Amsterdam, The Netherlands
| | - Nemanja Radisic
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gwendolyne G M Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Jin MY, Weaver TE, Farris A, Gupta M, Abd-Elsayed A. Neuromodulation for Peripheral Nerve Regeneration: Systematic Review of Mechanisms and In Vivo Highlights. Biomedicines 2023; 11:biomedicines11041145. [PMID: 37189763 DOI: 10.3390/biomedicines11041145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
While denervation can occur with aging, peripheral nerve injuries are debilitating and often leads to a loss of function and neuropathic pain. Although injured peripheral nerves can regenerate and reinnervate their targets, this process is slow and directionless. There is some evidence supporting the use of neuromodulation to enhance the regeneration of peripheral nerves. This systematic review reported on the underlying mechanisms that allow neuromodulation to aid peripheral nerve regeneration and highlighted important in vivo studies that demonstrate its efficacy. Studies were identified from PubMed (inception through September 2022) and the results were synthesized qualitatively. Included studies were required to contain content related to peripheral nerve regeneration and some form of neuromodulation. Studies reporting in vivo highlights were subject to a risk of bias assessment using the Cochrane Risk of Bias tool. The results of 52 studies indicate that neuromodulation enhances natural peripheral nerve regeneration processes, but still requires other interventions (e.g., conduits) to control the direction of reinnervation. Additional human studies are warranted to verify the applicability of animal studies and to determine how neuromodulation can be optimized for the greatest functional restoration.
Collapse
Affiliation(s)
- Max Y Jin
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tristan E Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA
| | - Adam Farris
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA
| | - Mayank Gupta
- Kansas Pain Management & Neuroscience Research Center, Overland Park, KS 66210, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
28
|
Michinaga S, Hishinuma S, Koyama Y. Roles of Astrocytic Endothelin ET B Receptor in Traumatic Brain Injury. Cells 2023; 12:cells12050719. [PMID: 36899860 PMCID: PMC10000579 DOI: 10.3390/cells12050719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
29
|
The Role of Physical Exercise and Rehabilitative Implications in the Process of Nerve Repair in Peripheral Neuropathies: A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13030364. [PMID: 36766469 PMCID: PMC9914426 DOI: 10.3390/diagnostics13030364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The various mechanisms involved in peripheral nerve regeneration, induced by exercise and electrical nerve stimulation, are still unclear. OBJECTIVE The aim of this review was to summarize the influence of physical exercise and/or electrical stimulation on peripheral nerve repair and regeneration and the variation of impact of intervention depending on timing, as well as kind and dosage of the intervention. A literature survey was conducted on PubMed, Scopus, and Web of Science, between February 2021 to July 2021, with an update in September 2022. METHODOLOGY The literature search identified 101,386 articles with the keywords: "peripheral nerve" OR "neuropathy" AND "sprouting" OR "neuroapraxia" OR "axonotmesis" OR "neurotmesis" OR "muscle denervation" OR "denervated muscle" AND "rehabilitation" OR "physical activity" OR "physical exercise" OR "activity" OR "electrical stimulation". A total of 60 publications were included. Eligible studies were focused on evaluating the process of nerve repair (biopsy, electromyographic parameters or biomarker outcomes) after electrical stimulation or physical exercise interventions on humans or animals with peripheral sensory or motor nerve injury. SYNTHESIS This study shows that the literature, especially regarding preclinical research, is mainly in agreement that an early physical program with active exercise and/or electrical stimulation promotes axonal regenerative responses and prevents maladaptive response. This was evaluated by means of changes in electrophysiological recordings of CMAPs for latency amplitude, and the sciatic functional index (SFI). Furthermore, this type of activity can cause an increase in weight and in muscle fiber diameter. Nevertheless, some detrimental effects of exercising and electrical stimulation too early after nerve repair were recorded. CONCLUSION In most preclinical studies, peripheral neuropathy function was associated with improvements after physical exercise and electrical stimulation. For humans, too little research has been conducted on this topic to reach a complete conclusion. This research supports the need for future studies to test the validity of a possible rehabilitation treatment in humans in cases of peripheral neuropathy to help nerve sprouting.
Collapse
|
30
|
Wang J, Lu S, Yuan Y, Huang L, Bian M, Yu J, Zou J, Jiang L, Meng D, Zhang J. Inhibition of Schwann Cell Pyroptosis Promotes Nerve Regeneration in Peripheral Nerve Injury in Rats. Mediators Inflamm 2023; 2023:9721375. [PMID: 37144237 PMCID: PMC10154099 DOI: 10.1155/2023/9721375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Background Peripheral nerve injury (PNI) is one of the most debilitating injuries, but therapies for PNI are still far from satisfactory. Pyroptosis, a recently identified form of cell death, has been demonstrated to participate in different diseases. However, the role of pyroptosis of Schwann cells in PNI remains unclear. Methods We established a rat PNI model, and western blotting, transmission electron microscopy, and immunofluorescence staining were used to confirm pyroptosis of Schwann cells in PNI in vivo. In vitro, pyroptosis of Schwann cells was induced by lipopolysaccharides (LPS)+adenosine triphosphate disodium (ATP). An irreversible inhibitor of pyroptosis, acetyl (Ac)-Tyr-Val-Ala-Asp-chloromethyl ketone (Ac-YVAD-cmk), was used to attenuate Schwann cell pyroptosis. Moreover, the influence of pyroptotic Schwann cells on the function of dorsal root ganglion neurons (DRGns) was analyzed by a coculture system. Finally, the rat PNI model was intraperitoneally treated with Ac-YVAD-cmk to observe the effect of pyroptosis on nerve regeneration and motor function. Results Schwann cell pyroptosis was notably observed in the injured sciatic nerve. LPS+ATP treatment effectively induced Schwann cell pyroptosis, which was largely attenuated by Ac-YVAD-cmk. Additionally, pyroptotic Schwann cells inhibited the function of DRGns by secreting inflammatory factors. A decrease in pyroptosis in Schwann cells promoted regeneration of the sciatic nerve and recovery of motor function in rats. Conclusion Given the role of Schwann cell pyroptosis in PNI progression, inhibition of Schwann cell pyroptosis might be a potential therapeutic strategy for PNI in the future.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya Yuan
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiapeng Zou
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dehua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Rayner MLD, Kellaway SC, Kingston I, Guillemot-Legris O, Gregory H, Healy J, Phillips JB. Exploring the Nerve Regenerative Capacity of Compounds with Differing Affinity for PPARγ In Vitro and In Vivo. Cells 2022; 12:cells12010042. [PMID: 36611836 PMCID: PMC9818498 DOI: 10.3390/cells12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to peripheral nerves can cause debilitating consequences for patients such as lifelong pain and disability. At present, no drug treatments are routinely given in the clinic following a peripheral nerve injury (PNI) to improve regeneration and remyelination of damaged nerves. Appropriately targeted therapeutic agents have the potential to be used at different stages following nerve damage, e.g., to maintain Schwann cell viability, induce and sustain a repair phenotype to support axonal growth, or promote remyelination. The development of therapies to promote nerve regeneration is currently of high interest to researchers, however, translation to the clinic of drug therapies for PNI is still lacking. Studying the effect of PPARγ agonists for treatment of peripheral nerve injures has demonstrated significant benefits. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), has reproducibly demonstrated benefits in vitro and in vivo, suggested to be due to its agonist action on PPARγ. Other NSAIDs have demonstrated differing levels of PPARγ activation based upon their affinity. Therefore, it was of interest to determine whether affinity for PPARγ of selected drugs corresponded to an increase in regeneration. A 3D co-culture in vitro model identified some correlation between these two properties. However, when the drug treatments were screened in vivo, in a crush injury model in a rat sciatic nerve, the same correlation was not apparent. Further differences were observed between capacity to increase axon number and improvement in functional recovery. Despite there not being a clear correlation between affinity and size of effect on regeneration, all selected PPARγ agonists improved regeneration, providing a panel of compounds that could be explored for use in the treatment of PNI.
Collapse
Affiliation(s)
- Melissa L. D. Rayner
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
- Correspondence:
| | - Simon C. Kellaway
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Isabel Kingston
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Owein Guillemot-Legris
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Holly Gregory
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Jess Healy
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - James B. Phillips
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| |
Collapse
|
32
|
Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve 2022; 66:661-670. [PMID: 36070242 DOI: 10.1002/mus.27706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
This article reviews the epidemiology, classification, localization, prognosis, and mechanisms of recovery of traumatic peripheral nerve injuries (PNIs). Electrodiagnostic (EDx) assessments are critical components of treating patients with PNIs. In particular, motor and sensory nerve conduction studies, needle electromyography, and other electrophysiological methods are useful for localizing peripheral nerve injuries, detecting and quantifying the degree of axon loss, and contributing toward treatment decisions as well as prognostication. It is critical that EDx medical consultants are aware of the timing of these changes as well as limitations in interpretations. Mechanisms of recovery may include recovery from conduction block, muscle fiber hypertrophy, distal axonal sprouting, and axon regrowth from the site of injury. Motor recovery generally reaches a plateau at 18 to 24 months postinjury. When patients have complete or severe nerve injuries they should be referred to surgical colleagues early after injury, as outcomes are best when nerve transfers are performed within the first 3 to 6 months after onset.
Collapse
|
33
|
Kong Y, Kuss M, Shi Y, Fang F, Xue W, Shi W, Liu Y, Zhang C, Zhong P, Duan B. Exercise facilitates regeneration after severe nerve transection and further modulates neural plasticity. Brain Behav Immun Health 2022; 26:100556. [PMID: 36405423 PMCID: PMC9673108 DOI: 10.1016/j.bbih.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with severe traumatic peripheral nerve injury (PNI) always suffer from incomplete recovery and poor functional outcome. Physical exercise-based rehabilitation, as a non-invasive interventional strategy, has been widely acknowledged to improve PNI recovery by promoting nerve regeneration and relieving pain. However, effects of exercise on chronic plastic changes following severe traumatic PNIs have been limitedly discussed. In this study, we created a long-gap sciatic nerve transection followed by autograft bridging in rats and tested the therapeutic functions of treadmill running with low intensity and late initiation. We demonstrated that treadmill running effectively facilitated nerve regeneration and prevented muscle atrophy and thus improved sensorimotor functions and walking performance. Furthermore, exercise could reduce inflammation at the injured nerve as well as prevent the overexpression of TRPV1, a pain sensor, in primary afferent sensory neurons. In the central nervous system, we found that PNI induced transcriptive changes at the ipsilateral lumber spinal dorsal horn, and exercise could reverse the differential expression for genes involved in the Notch signaling pathway. In addition, through neural imaging techniques, we found volumetric, microstructural, metabolite, and neuronal activity changes in supraspinal regions of interest (i.e., somatosensory cortex, motor cortex, hippocampus, etc.) after the PNI, some of which could be reversed through treadmill running. In summary, treadmill running with late initiation could promote recovery from long-gap nerve transection, and while it could reverse maladaptive plasticity after the PNI, exercise may also ameliorate comorbidities, such as chronic pain, mental depression, and anxiety in the long term.
Collapse
Affiliation(s)
- Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Fang Fang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Peng Zhong
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
34
|
Figueiredo GSDL, Fernandes M, Atti VN, Valente SG, Roth F, Nakachima LR, dos Santos JBG, Fernandes CH. Use of aerobic treadmill exercises on nerve regeneration after sciatic nerve injury in spontaneously hypertensive rats. Acta Cir Bras 2022; 37:e370804. [PMID: 36327398 PMCID: PMC9633008 DOI: 10.1590/acb370804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Various postoperative protocols have been proposed to improve outcomes and accelerate nerve regeneration. Recently, the use of physical exercise in a post-surgical neurorraphy procedure has shown good results when started early. We experimentally investigated the hypothesis that post-operative exercise speeds up results and improves clinical and morphologic parameters. METHODS Isogenic rats were randomly divided into four groups: 1 SHAM; 2 SHAM submitted to the exercise protocol (EP); 3 Grafting of the sciatic nerve; and 4 Grafting of the sciatic nerve associated with the EP. The EP was based on aerobic activities with a treadmill, with a progressive increase in time and intensity during 6 weeks. The results were evaluated by the sciatic functional index (SFI), morphometric and morphologic analysis of nerve distal to the lesion, and the number of spinal cord motor neurons, positive to the marker Fluoro-Gold (FG), captured retrogradely through neurorraphy. RESULTS Functional analysis (SFI) did not show a statistical difference between the group grafted with (-50.94) and without exercise (-65.79) after 90 days. The motoneurons count (Spinal cord histology) also showed no diference between these groups (834.5 × 833 respectively). Although functionally there is no difference between these groups, morphometric study showed a greater density (53.62) and larger fibers (7.762) in GRAFT group. When comparing both operated groups with both SHAM groups, all values were much lower. CONCLUSIONS The experimental model that this aerobic treadmill exercises protocol did not modify nerve regeneration after sciatic nerve injury and repair with nerve graft.
Collapse
Affiliation(s)
- Gustavo Santiago de Lima Figueiredo
- MD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil.,Corresponding author:
- (55 11) 98386-0432
| | - Marcela Fernandes
- PhD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil
| | - Vinícius Neves Atti
- MD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil
| | - Sandra Gomes Valente
- PhD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil
| | - Felipe Roth
- MD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil
| | - Luis Renato Nakachima
- PhD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil
| | - João Baptista Gomes dos Santos
- PhD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil
| | - Carlos Henrique Fernandes
- PhD. Universidade Federal de São Paulo – Department of Orthopedics and Traumatology – Division of Hand Surgery – Sao Paulo (SP), Brazil
| |
Collapse
|
35
|
Di Palma M, Ambrogini P, Lattanzi D, Brocca L, Bottinelli R, Cuppini R, Pellegrino MA, Sartini S. The impact of different exercise protocols on rat soleus muscle reinnervation and recovery following peripheral nerve lesion and regeneration. Front Physiol 2022; 13:948985. [PMID: 36148308 PMCID: PMC9485563 DOI: 10.3389/fphys.2022.948985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Incomplete functional recovery following traumatic peripheral nerve injury is common, mainly because not all axons successfully regenerate and reinnervate target muscles. Exercise can improve functional outcomes increasing the terminal sprouting during the muscle reinnervation. However, exercise is not a panacea per se. Indeed, the type of exercise adopted dramatically impacts the outcomes of rehabilitation therapy. To gain insight into the therapeutic effects of different exercise regimens on reinnervation following traumatic nerve lesion, we evaluated the impact of different clinically transferable exercise protocols (EPs) on metabolic and functional muscle recovery following nerve crush. Methods: The reinnervation of soleus muscle in adult nerve-crushed rats was studied following 6 days of different patterns (continuous or intermittent) and intensities (slow, mid, and fast) of treadmill running EPs. The effects of EPs on muscle fiber multiple innervation, contractile properties, metabolic adaptations, atrophy, and autophagy were assessed using functional and biochemical approaches. Results: Results showed that an intermittent mid-intensity treadmill EP improves soleus muscle reinnervation, whereas a slow continuous running EP worsens the functional outcome. However, the mid-intensity intermittent EP neither enhanced the critical mediators of exercise-induced metabolic adaptations, namely, PGC-1α, nor improved muscle atrophy. Conversely, the autophagy-related marker LC3 increased exclusively in the mid-intensity intermittent EP group. Conclusion: Our results demonstrated that an EP characterized by a mid-intensity intermittent activity enhances the functional muscle recovery upon a nerve crush, thus representing a promising clinically transferable exercise paradigm to improve recovery in humans following peripheral nerve injuries.
Collapse
Affiliation(s)
- Michael Di Palma
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche School of Medicine, Ancona, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- National Neurological Institute C. Mondino Foundation, Pavia, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Maria A. Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Interdepartmental Centre of Biology and Sport Medicine, University of Pavia, Pavia, Italy
| | - Stefano Sartini
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
- *Correspondence: Stefano Sartini,
| |
Collapse
|
36
|
Arabzadeh E, Reza Rahimi A, Zargani M, Feyz Simorghi Z, Emami S, Sheikhi S, Zaeri Amirani Z, Yousefi P, Sarshin A, Aghaei F, Feizollahi F. Resistance exercise promotes functional test via sciatic nerve regeneration, and muscle atrophy improvement through GAP-43 regulation in animal model of traumatic nerve injuries. Neurosci Lett 2022; 787:136812. [PMID: 35872241 DOI: 10.1016/j.neulet.2022.136812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Resistance training improves muscle strength through a combination of neural plasticity and muscle hypertrophy. This study aimed to evaluate the effects of resistance exercise on sciatic nerve regeneration and histology, growth-associated protein 43 (GAP-43) expressions, and soleus muscle atrophy following traumatic nerve injuries in Wistar rats. In the present study, 40 male Wistar rats were randomly assigned into four groups: healthy control (HC) as a sham group was exposed to the surgical procedures without any sciatic nerve compression, lesioned control (LC), resistance training (RT,non-lesioned), and lesioned rats+RT (LRT) (n=10 in each). The RT group performed a resistance-training program 5 days/week for 4 weeks. Sciatic functional index (SFI) score, beam score and Basso, Beattie, and Bresnahan (BBB) score decreased and the hot plate time increased significantly in the LC group compared to the HC (p<0.05) group. However, the LRT group showed a significant increase in the SFI score (p=0.001) and a significant decrease in hot plate time (p=0.0232) compared to the LC group. The LC group also showed neurological morphological damage and muscle atrophy and a decrease in GAP-43 in nerve tissue. In comparison to the LC group, a significant increase in sciatic nerve caliber, diameter, number of muscle fibers, and the expression of GAP-43 (p<0.05) was observed in the LRT group. Doing resistance training even for four weeks seems to affect sciatic nerve lesions and injuries. It can also repair and regenerate nerve tissue by upregulating GAP-43 expression, improving motor behavioral tests, and controlling muscle atrophy.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Reza Rahimi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Feyz Simorghi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Shaghayegh Emami
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Sahar Sheikhi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Zaeri Amirani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Parisa Yousefi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Fariba Aghaei
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizollahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
37
|
de Moura JA, de Morais J, Barbosa SMN, Ferreira MC, de Sousa Neto IV, Leite HR, Oliveira MX, Gaiad TP, Santos AP. Negative neuromuscular and functional repercussion of forced swimming after axonotmesis. J Exerc Rehabil 2022; 18:179-186. [PMID: 35846236 PMCID: PMC9271644 DOI: 10.12965/jer.2244150.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injuries are cause of sensory disturbances and in functional abilities, and are associated personal and social costs. Strategies that maximize nerve regeneration and functional recovery are necessary, the exercise is an option. This study evaluated the effects of forced swimming exercise on neuromuscular histomorphometry and on functional recovery in a median nerve crush model. Sixteen Wistar rats underwent median nerve crush and were divided into control group (CG) and swimming group (SG). The forced swimming protocol started one week after the injury and was performed for 1 hr a day, 5 days per week, for 2 weeks. The rats swam with an overload of 5% and 10% of body weight in the first and second week, respectively. The functional recovery was assessed in three moments using the grasping test. On day 21, fragments of the median nerve and of the forearm flexors muscles were removed for histomorphometric analysis. The SG had functional recovery impaired (P<0.001) and presented lower myelinated fibers number, fiber and axon minimal diameter, myelin thickness and g-ratio in the proximal e distal segments of the median nerve (P<0.005) and area muscle fiber (P<0.005) than CG. Also, the SG presented a number of capillaries in the proximal segments of the median nerve greater than CG (P<0.005). The exercise protocol used in this study impaired the regeneration of the median nerve and negatively influenced the functional recovery.
Collapse
Affiliation(s)
- Júlia Araújo de Moura
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Jaqueline de Morais
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Samara Maria Neves Barbosa
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Marcílio Coelho Ferreira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | | | - Hércules Ribeiro Leite
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Thaís Peixoto Gaiad
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
- Corresponding author: Ana Paula Santos, Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, CEP 39100-000, Brazil,
| |
Collapse
|
38
|
Zhang S, Huang M, Zhi J, Wu S, Wang Y, Pei F. Research Hotspots and Trends of Peripheral Nerve Injuries Based on Web of Science From 2017 to 2021: A Bibliometric Analysis. Front Neurol 2022; 13:872261. [PMID: 35669875 PMCID: PMC9163812 DOI: 10.3389/fneur.2022.872261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundPeripheral nerve injury (PNI) is very common in clinical practice, which often reduces the quality of life of patients and imposes a serious medical burden on society. However, to date, there have been no bibliometric analyses of the PNI field from 2017 to 2021. This study aimed to provide a comprehensive overview of the current state of research and frontier trends in the field of PNI research from a bibliometric perspective.MethodsArticles and reviews on PNI from 2017 to 2021 were extracted from the Web of Science database. An online bibliometric platform, CiteSpace, and VOSviewer software were used to generate viewable views and perform co-occurrence analysis, co-citation analysis, and burst analysis. The quantitative indicators such as the number of publications, citation frequency, h-index, and impact factor of journals were analyzed by using the functions of “Create Citation Report” and “Journal Citation Reports” in Web of Science Database and Excel software.ResultsA total of 4,993 papers was identified. The number of annual publications in the field remained high, with an average of more than 998 publications per year. The number of citations increased year by year, with a high number of 22,272 citations in 2021. The United States and China had significant influence in the field. Johns Hopkins University, USA had a leading position in this field. JESSEN KR and JOURNAL OF NEUROSCIENCE were the most influential authors and journals in the field, respectively. Meanwhile, we found that hot topics in the field of PNI focused on dorsal root ganglion (DRG) and satellite glial cells (SGCs) for neuropathic pain relief and on combining tissue engineering techniques and controlling the repair Schwann cell phenotype to promote nerve regeneration, which are not only the focus of research now but is also forecast to be of continued focus in the future.ConclusionThis is the first study to conduct a comprehensive bibliometric analysis of publications related to PNI from 2017 to 2021, whose bibliometric results can provide a reliable source for researchers to quickly understand key information in this field and identify potential research frontiers and hot directions.
Collapse
Affiliation(s)
- Shiwen Zhang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Meiling Huang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jincao Zhi
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shanhong Wu
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- *Correspondence: Yan Wang
| | - Fei Pei
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- Fei Pei
| |
Collapse
|
39
|
Musumeci G. Sports Medicine and Movement Sciences. Heliyon 2022; 8:e08996. [PMID: 35252608 PMCID: PMC8891956 DOI: 10.1016/j.heliyon.2022.e08996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123, Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123, Catania, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
40
|
Hsieh YL, Yang NP, Chen SF, Lu YL, Yang CC. Early Intervention of Cold-Water Swimming on Functional Recovery and Spinal Pain Modulation Following Brachial Plexus Avulsion in Rats. Int J Mol Sci 2022; 23:ijms23031178. [PMID: 35163098 PMCID: PMC8835039 DOI: 10.3390/ijms23031178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Brachial plexus avulsion (BPA) causes peripheral nerve injury complications with motor and sensory dysfunction of the upper limb. Growing evidence has shown an active role played by cold-water swimming (CWS) in alleviating peripheral neuropathic pain and functional recovery. This study examined whether CWS could promote functional recovery and pain modulation through the reduction of neuroinflammation and microglial overactivation in dorsal horn neurons at the early-stage of BPA. After BPA surgery was performed on rats, they were assigned to CWS or sham training for 5 min twice a day for two weeks. Functional behavioral responses were tested before and after BPA surgery, and each week during training. Results after the two-week training program showed significant improvements in BPA-induced motor and sensory loss (p < 0.05), lower inflammatory cell infiltration, and vacuole formation in injured nerves among the BPA-CWS group. Moreover, BPA significantly increased the expression of SP and IBA1 in dorsal horn neurons (p < 0.05), whereas CWS prevented their overexpression in the BPA-CWS group. The present findings evidenced beneficial rehabilitative effects of CWS on functional recovery and pain modulation at early-stage BPA. The beneficial effects are partially related to inflammatory suppression and spinal modulation. The synergistic role of CWS combined with other management approaches merits further investigation.
Collapse
Affiliation(s)
- Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan;
- Correspondence: ; Tel.: +886-4-22053366 (ext. 7312)
| | - Nian-Pu Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung 40763, Taiwan; (N.-P.Y.); (S.-F.C.); (C.-C.Y.)
| | - Shih-Fong Chen
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung 40763, Taiwan; (N.-P.Y.); (S.-F.C.); (C.-C.Y.)
| | - Yu-Lin Lu
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan;
| | - Chen-Chia Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung 40763, Taiwan; (N.-P.Y.); (S.-F.C.); (C.-C.Y.)
| |
Collapse
|
41
|
Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, Atayde LM, Luís AL, Varejão ASP, Maurício AC. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci 2022; 23:ijms23020918. [PMID: 35055104 PMCID: PMC8779751 DOI: 10.3390/ijms23020918] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries (PNI) can have several etiologies, such as trauma and iatrogenic interventions, that can lead to the loss of structure and/or function impairment. These changes can cause partial or complete loss of motor and sensory functions, physical disability, and neuropathic pain, which in turn can affect the quality of life. This review aims to revisit the concepts associated with the PNI and the anatomy of the peripheral nerve is detailed to explain the different types of injury. Then, some of the available therapeutic strategies are explained, including surgical methods, pharmacological therapies, and the use of cell-based therapies alone or in combination with biomaterials in the form of tube guides. Nevertheless, even with the various available treatments, it is difficult to achieve a perfect outcome with complete functional recovery. This review aims to enhance the importance of new therapies, especially in severe lesions, to overcome limitations and achieve better outcomes. The urge for new approaches and the understanding of the different methods to evaluate nerve regeneration is fundamental from a One Health perspective. In vitro models followed by in vivo models are very important to be able to translate the achievements to human medicine.
Collapse
Affiliation(s)
- Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Lúcia Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Artur S. P. Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-91-9071286
| |
Collapse
|
42
|
Salvatore MF, Soto I, Kasanga EA, James R, Shifflet MK, Doshier K, Little JT, John J, Alphonso HM, Cunningham JT, Nejtek VA. Establishing Equivalent Aerobic Exercise Parameters Between Early-Stage Parkinson's Disease and Pink1 Knockout Rats. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1897-1915. [PMID: 35754287 PMCID: PMC9535586 DOI: 10.3233/jpd-223157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr ≤1.5) exercising in non-contact boxing training for ≥3 months, ≥3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS After completing aerobic exercise for ∼30 min, PD subjects had increased HR∼35% above baseline (∼63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naïve PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline (∼67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naïve cohort at 5 months old. CONCLUSION These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.
Collapse
Affiliation(s)
- Michael F. Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Isabel Soto
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ella A. Kasanga
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rachael James
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Marla K. Shifflet
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kirby Doshier
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Joel T. Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Joshia John
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - J. Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Vicki A. Nejtek
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|