1
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Pivokonsky M, Novotna K, Pivokonska L, Cermakova L, Sakalli S, Lacina O. Insight into the fate of bioplastic and similar plant-based material debris in aquatic environments via continuous monitoring of their leachate composition - Release of carbon, metals, and additives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174913. [PMID: 39069190 DOI: 10.1016/j.scitotenv.2024.174913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Currently, the environmental problems associated with plastic production and waste, such as the consequences of worldwide pollution of natural waters with microplastics, have led to the seeking of alternative materials that can at least partially replace conventional petroleum-based plastics. Substitute materials include bioplastics and similar plant-based materials or their composites. However, their fate when disposed of in unintended environments (e.g., water bodies) remains largely unknown, while such information is highly desirable prior to massive expansion of exploiting such materials. This study aims to contribute filling this knowledge gap. Specifically, 19 different types of bioplastic and similar plant-based material debris (corresponding to the size of microplastics) were kept in long-term contact with water to mimic their behaviour as water pollutants, and the leachates were continuously analysed. Eighteen of the 19 investigated materials released significant amounts of dissolved organic carbon-up to 34.0 mg per g of debris after 12 weeks of leaching. Each leachate also contained one or more of the following elements: Al, B, Ba, Ca, Fe, K, Mg, Mn, N, Na, P, Si, Ti, and Zn. Non-targeted analysis aimed at providing more specific insight into the leachate composition tentatively revealed 91 individual chemicals, mostly fatty acids and other carboxylic acids, phthalates, terephthalates, adipates, phenols, amides, alcohols, or organophosphates. Based on the compound characteristics, they might be additives, non-intentionally added substances, as well as their degradation products. In general, the current results imply that bioplastics and similar plant-based materials should be considered complex materials that undergo industrial processing and comprise additives rather than harmless natural matter. Additionally, various compounds can release from the bioplastic and similar plant-based material debris when deposited in water. It might have consequences on the fluxes of carbon, metals and specific organic contaminants, and it resembles some properties of conventional petroleum-based microplastics.
Collapse
Affiliation(s)
- Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 160 00 Prague 6, Czech Republic.
| | - Katerina Novotna
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 160 00 Prague 6, Czech Republic
| | - Lenka Pivokonska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 160 00 Prague 6, Czech Republic
| | - Lenka Cermakova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 160 00 Prague 6, Czech Republic
| | - Sidika Sakalli
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 160 00 Prague 6, Czech Republic
| | - Ondrej Lacina
- Altium International s. r. o., Na Jetelece 69/2, 190 00 Prague 9, Czech Republic
| |
Collapse
|
3
|
Chinfak N, Charoenpong C, Sampanporn A, Wongpa C, Sompongchaiyakul P. Microplastics in commercial bivalves from coastal areas of Thailand and health risk associated with microplastics in ingested bivalves. MARINE POLLUTION BULLETIN 2024; 208:116937. [PMID: 39260146 DOI: 10.1016/j.marpolbul.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) contamination in marine organisms is a significant threat to seafood consumers worldwide. This study is the first to investigate the abundance of MPs in the commercial bivalves from six sites along Thailand's coastline, the daily exposure of bivalve consumers to MPs, and potential associated health risks. The microplastic occurrence varied from 69 % to 93 % in four bivalve species while the average abundance of MPs was 1.87 ± 0.86 items/individual or 0.46 ± 0.43 items/g ww. Benthic bivalves (cockles and clams) contained more MPs than their pelagic counterparts (mussels and oysters). Small blue microfibers (<500 μm) were the most abundant. The most common polymers were natural based polymers (cotton and rayon) and polyethylene terephthalate (PET). The daily microplastic exposure for consumers was 0.52 items/person. Although the risk of microplastic contamination is low, we recommend investigation into the transfer of MPs within the food web, notably as it may pose significant human health concerns.
Collapse
Affiliation(s)
- Narainrit Chinfak
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Atchareeya Sampanporn
- Inter-Department of Environmental Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayaporn Wongpa
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Le VG, Nguyen MK, Ngo HH, Barceló D, Nguyen HL, Um MJ, Nguyen DD. Microplastics in aquaculture environments: Current occurrence, adverse effects, ecological risk, and nature-based mitigation solutions. MARINE POLLUTION BULLETIN 2024; 209:117168. [PMID: 39454401 DOI: 10.1016/j.marpolbul.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Microplastics pose detrimental effects on the environment, aquatic products, and human health. This comprehensive analysis highlights the repercussions of microplastic contamination within aquaculture. Microplastics in aquaculture are primarily from land-based plastic waste, tourism-related disposal, shipping activities, fisheries/aquaculture, and atmospheric deposition. In aquaculture environments, microplastics have the potential to discharge harmful additives, attract pollutants, degrade the aquaculture setting, and induce toxicological effects. These particles pose ecological risks and can impact human health. Assessing the destiny of microplastics in aquaculture ecosystems is crucial to determining the role of aquaculture in contributing to microplastic contamination within the watershed. It particularly emphasizes the ecological consequences for aquaculture species and the subsequent health threats for humans. The review strongly supports strict regulations to control and limit microplastic presence within aquaculture ecosystems. Clear regulations are essential for reducing microplastics in aquaculture, thereby ensuring food safety. A novel nature-based solution is proposed using methods like microplastic biofilters, biodegradation, and wetlands. These innovations can be conducted in aquatic ecosystems to serve as microplastic biofilters, effectively eliminating waterborne microplastics. In the future, however, it is crucial to develop additional emergency treatment measures to avoid the potential negative impacts of microplastics on both aquaculture and human health.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Damià Barceló
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada.
| | - M Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
5
|
Anandavelu I, Karthik R, Robin RS, Hariharan G, Mugilarasan M, Ramesh R, Purvaja R. Morphometric characteristics and spatiotemporal heterogeneity of microplastics on the north-east coast of India. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136180. [PMID: 39427351 DOI: 10.1016/j.jhazmat.2024.136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The study analysed microplastics (MPs) in surface waters along the north-east coast of India and focused on the spatiotemporal distribution and morphometric characteristics of 800 particles for environmental insights. The MPs were consistently present in all water masses, with an average abundance of 0.67 ± 0.66 particles/m3 during the monsoon and 0.12 ± 0.08 particles/m3 post-monsoon. Fragments and fibers were dominant in both seasons, comprising over 83 % and 12 %, respectively. In terms of colours, blue was significantly dominant during the post-monsoon (H, χ2 (5) = 15.38, p < 0.01); however, such variation was absent during the monsoon. Spatially, significant variance in abundance (F4, 34 = 8.542; p < 0.01) and across colours and forms during the monsoon was correlated with land-based inputs from the Hooghly River. FTIR analysis revealed ten polymer types, predominantly polyethylene (44 %). SEM observations indicated that 80 % of particles exhibited polymer ageing from oxidative weathering. The size distribution of MPs varied notably, with a higher proportion of < 0.3 mm (16.7 %) during the monsoon, possibly due to increased particle disintegration. The study noted MPs had low to moderate circularity, with increased irregularity during the monsoon due to heavy precipitation and river flushing. An initial risk assessment of MP pollution in surface waters on the north-east coast revealed a low-risk state. Acrylonitrile butadiene styrene (ABS) was identified as the most hazardous MP polymer. A wide range of toxic trace elements were found in MPs in these waters. The findings from the study deepen our knowledge of MPs and their fate in the pelagic zone, which supports the development of science-based policies that effectively reduce MP pollution.
Collapse
Affiliation(s)
- I Anandavelu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India.
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| |
Collapse
|
6
|
Iurk VB, Ingles M, Correa GS, Silva CR, Staichak G, Pileggi SAV, Christo SW, Domit C, Pileggi M. The potential influence of microplastics on the microbiome and disease susceptibility in sea turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174298. [PMID: 38944299 DOI: 10.1016/j.scitotenv.2024.174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) are particles with sizes of ≤5 mm formed when plastic materials break down. These contaminants are often found in marine environments, making it easy for sea turtles to ingest them and for their microbiome to be exposed. MPs can disrupt microbiome balance, leading to dysbiosis and making organisms more susceptible to diseases. Owing to the significance of these processes, it is crucial to dedicate research to studying the metabolic and genetic analysis of the gut microbiome in sea turtles. The objective of this study was to describe the effects of exposure to MPs on the gut microbiome of sea turtles, based on current knowledge. This review also aimed to explore the potential link between MP exposure and disease susceptibility in these animals. We show that the metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFAs), polyamines, and polysaccharide A, can regulate the expression of host genes. Regulation occurs through various mechanisms, including histone acetylation, DNA methylation, and the modulation of cytokine gene expression. These processes are essential for preserving the integrity of the gut mucosa and enhancing the functionality of immune cells. Exposure to MPs disrupts the gut microbiome and alters gene expression, leading to immune system disturbances in sea turtles. This vulnerability makes turtles more susceptible to opportunistic microorganisms such as chelonid alphaherpesvirus 5 (ChAHV5), which is linked to the development of fibropapillomatosis (FP). Additionally, targeted dietary interventions or the use of live microorganisms such as probiotics can help restore microbial biodiversity and recover lost metabolic pathways. The goal of these interventions is to restore the functionality of the immune system in sea turtles undergoing rehabilitation at specialized centers. The gut microbiome plays a crucial role in sea turtle health, sparking discussions and investigations that can potentially lead to promising treatments for these animals.
Collapse
Affiliation(s)
- Vitória Bonfim Iurk
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil; Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Mariana Ingles
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil
| | - Giovana Sequinel Correa
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Caroline Rosa Silva
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, PR 87020-900, Brazil
| | - Gabriel Staichak
- Instituto de Biociências da Universidade Federal de Mato Grosso, Universidade Federal do Mato Grosso, MT 79070-900, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| | - Susete Wambier Christo
- Laboratório de Zoologia, Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil.
| | - Marcos Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| |
Collapse
|
7
|
Preda OT, Vlasceanu AM, Andreescu CV, Tsatsakis A, Mezhuev Y, Negrei C, Baconi DL. Health Implications of Widespread Micro- and Nanoplastic Exposure: Environmental Prevalence, Mechanisms, and Biological Impact on Humans. TOXICS 2024; 12:730. [PMID: 39453150 PMCID: PMC11511527 DOI: 10.3390/toxics12100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
The increasing awareness of the potential health risks associated with microplastics' (MPs) and nanoplastics' (NPs) presence in the environment has led to a significant rise in research focused on these particles over the past few years. This review focuses on the research on MPs'/NPs' presence and spread, pathways of exposure, toxicological effects on human health and legal framework related to MP/NP challenges. Several research projects have aimed to assess their potential harm to human health, focusing on different systems and organs. After exposure (independent of the pathway), these hazards reach the blood stream and concentrate in different organs. Further, they are responsible for harmful changes, having an immediate effect (pain, inflammation, or hormone imbalance) or lead to a long-term disease (e.g., infertility, chronic obstructive pulmonary disease, or cancer). Toxicological effects have been noticed at high concentrations of MPs, specifically polystyrene, the most widespread typical MP, but only short-term effects have been mostly studied. Significant quantities of consumed MPs have been discovered to have diverse detrimental effects, posing a threat to human welfare. The exact concentrations of microplastics that are inhaled and swallowed and then build up in the human body are still not known. Further investigation is necessary to evaluate the impact of MP/NP contamination at minimal concentrations and for prolonged durations.
Collapse
Affiliation(s)
- Olivia-Teodora Preda
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| | - Ana-Maria Vlasceanu
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| | - Cristina Veronica Andreescu
- Department of Foreign Languages, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania;
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia;
- Laboratory of Heterochain Polymers, A.N. Nesmeyanov Instituite of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119334 Moscow, Russia
| | - Carolina Negrei
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| | - Daniela Luiza Baconi
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| |
Collapse
|
8
|
Zhang S, Li T, Xie H, Song M, Huang S, Guo Z, Hu Z, Zhang J. The crucial factor for microplastics removal in large-scale subsurface-flow constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136023. [PMID: 39383694 DOI: 10.1016/j.jhazmat.2024.136023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Constructed wetlands (CWs) are an effective method for removing microplastics (MPs). Nevertheless, the understanding of the impact of various parameters on MPs removal within CWs remains incomplete. Through field investigations of large-scale CWs and the application of machine learning methods with an interpretable attribution technique (the Shapley Additive Explanation), we investigated the critical factors influencing MPs removal within CWs. The MPs abundance in the influent and the inlet of Z-CW (400.1 ± 20.8 items/L and 699.6 ± 50.6 items/kg) was significantly higher compared to that in M-CW (138.8 ± 20.5 items/L and 166.5 ± 36.8 items/kg), with no significant difference observed in the effluent. The primary characteristic of MPs is their fibrous and transparent appearance. The MPs removal range from 87.9% to 95.5 %, influenced by the types and characteristics of MPs, physical and chemical parameters, biofilms, and different processes. Among these factors, dissolved organic carbon with high humic content, aromaticity, and carboxyl abundance may serve as a crucial factor in MPs removal. The results of this study highlight the significance of physical and chemical parameters for the MPs removal in CWs, providing the necessary theoretical data for the construction of future large-scale engineering applications.
Collapse
Affiliation(s)
- Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Tianshuai Li
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shengxuan Huang
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Zizhang Guo
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
9
|
Yeo JCC, Muiruri JK, Fei X, Wang T, Zhang X, Xiao Y, Thitsartarn W, Tanoto H, He C, Li Z. Innovative biomaterials for food packaging: Unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. BIOMATERIALS ADVANCES 2024; 163:213929. [PMID: 39024863 DOI: 10.1016/j.bioadv.2024.213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Polyhydroxyalkanoate (PHA) biopolyesters show a good balance between sustainability and performance, making them a competitive alternative to conventional plastics for ecofriendly food packaging. With an emphasis on developments over the last decade (2014-2024), this review examines the revolutionary potential of PHAs as a sustainable food packaging material option. It also delves into the current state of commercial development, competitiveness, and the carbon footprint associated with PHA-based products. First, a critical examination of the challenges experienced by PHAs in terms of food packaging requirements is undertaken, followed by an assessment of contemporary strategies addressing permeability, mechanical properties, and processing considerations. The various PHA packaging end-of-life options, including a comprehensive overview of the environmental impact and potential solutions will also be discussed. Finally, conclusions and future perspectives are elucidated with a view of prospecting PHAs as future green materials, with a blend of performance and sustainability of food packaging solutions.
Collapse
Affiliation(s)
- Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Tong Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xikui Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yihang Xiao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Hendrix Tanoto
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chaobin He
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| |
Collapse
|
10
|
Glais M, Falher T, Deniau E, Chassenieux C, Lagarde F. Elaborating more realistic model microplastics by simulating polypropylene's environmental ageing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116769. [PMID: 39079403 DOI: 10.1016/j.ecoenv.2024.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
In this work, we propose a new protocol for producing model microplastics from an industrial polymer and compare it to a conventional method, cryomilling. Polypropylene industrial pellets were chosen due to their widespread production and frequent presence in the environment, making them a notable source of microplastics. Both protocols start with aging under Ultra-Violet light of the pellets but differ in the subsequent mechanical stress applied-strong vs. soft-to break down the photodegraded pellets into microplastics. All generated particles were fully characterized in terms of size, shape, oxidation rate, and stability in aqueous media. Microplastics produced via cryomilling exhibited significant size and oxidation heterogeneity and tended to aggregate in water. Although the new protocol involving soft mechanical stress required a longer preparation time, it simulated more accurately the environmental degradation of raw plastic. This method successfully produced oxidized microplastics with a controlled size distribution centered around 50 µm which remained stable in water without stabilizers.
Collapse
Affiliation(s)
- Margaux Glais
- Institut des Molécules et Matériaux du Mans, IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans Cedex 9 72085, France; CT-IPC Centre Technique Industriel de la Plasturgie et des Composites, Pôle Universitaire de Montfoulon, Damigny 61250, France
| | - Thierry Falher
- Institut des Molécules et Matériaux du Mans, IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans Cedex 9 72085, France; CT-IPC Centre Technique Industriel de la Plasturgie et des Composites, Pôle Universitaire de Montfoulon, Damigny 61250, France
| | - Elise Deniau
- Institut des Molécules et Matériaux du Mans, IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans Cedex 9 72085, France
| | - Christophe Chassenieux
- Institut des Molécules et Matériaux du Mans, IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans Cedex 9 72085, France
| | - Fabienne Lagarde
- Institut des Molécules et Matériaux du Mans, IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans Cedex 9 72085, France.
| |
Collapse
|
11
|
Merino D. Embracing Nature's Clockwork: Crafting Plastics for Degradation in Plant Agricultural Systems. ACS MATERIALS AU 2024; 4:450-458. [PMID: 39280809 PMCID: PMC11393932 DOI: 10.1021/acsmaterialsau.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 09/18/2024]
Abstract
In the 21st century, global agriculture confronts the urgent challenge of increasing food production by 70% by 2050 while simultaneously addressing environmental and health concerns. Plastics, integral to agricultural innovation, present sustainability challenges due to their non-biodegradable nature and contribution to pollution. This perspective examines the transition to bioplastics, emphasizing their bio-based origin and their crucial characteristic of being readily biodegradable in the soil. Key bioplastics such as poly(lactic acid) (PLA), polyhydroxyalkanoates (PHAs), and biomass-derived polymers are discussed, particularly regarding the microplastic generation in soil resulting from their use in specific applications like mulch films, delivery systems, and soil conditioners. Embracing bioplastics signifies a significant step forward in achieving sustainable agriculture and addressing plastic waste. However, it is highlighted that while some bioplastics can be recovered and recycled, special applications where the plastic is in intimate contact with soil pose challenges for recovery. In these cases, that represent more than the 50% of plastics used in agriculture, meticulous design for biodegradation in soil synchronized with agricultural cycles is necessary. This approach ensures minimal environmental impact and promotes a circular approach to plastic use in agriculture.
Collapse
Affiliation(s)
- Danila Merino
- Basque Center for Macromolecular Design and Engineering (POLYMAT), University of the Basque Country (UPV/EHU), Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
12
|
Marcharla E, Vinayagam S, Gnanasekaran L, Soto-Moscoso M, Chen WH, Thanigaivel S, Ganesan S. Microplastics in marine ecosystems: A comprehensive review of biological and ecological implications and its mitigation approach using nanotechnology for the sustainable environment. ENVIRONMENTAL RESEARCH 2024; 256:119181. [PMID: 38768884 DOI: 10.1016/j.envres.2024.119181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Microplastic contamination has rapidly become a serious environmental issue, threatening marine ecosystems and human health. This review aims to not only understand the distribution, impacts, and transfer mechanisms of microplastic contamination but also to explore potential solutions for mitigating its widespread impact. This review encompasses the categorisation, origins, and worldwide prevalence of microplastics and methodically navigates the complicated structure of microplastics. Understanding the sources of minute plastic particles infiltrating water bodies worldwide is critical for successful removal. The presence and accumulation of microplastics has far reaching negative impacts on various marine creatures, eventually extending its implications to human health. Microplastics are known to affect the metabolic activities and the survival of microbial communities, phytoplankton, zooplankton, and fauna present in marine environments. Moreover, these microplastics cause developmental abnormalities, endocrine disruption, and several metabolic disorders in humans. These microplastics accumulates in aquatic environments through trophic transfer mechanisms and biomagnification, thereby disrupting the delicate balance of these ecosystems. The review also addresses the tactics for minimising the widespread impact of microplastics by suggesting practical alternatives. These include increasing public awareness, fostering international cooperation, developing novel cleanup solutions, and encouraging the use of environment-friendly materials. In conclusion, this review examines the sources and prevalence of microplastic contamination in marine environment, its impacts on living organisms and ecosystems. It also proposes various sustainable strategies to mitigate the problem of microplastics pollution. Also, the current challenges associated with the mitigation of these pollutants have been discussed and addressing these challenges require immediate and collective action for restoring the balance in marine ecosystems.
Collapse
Affiliation(s)
- Eswar Marcharla
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602 105, India
| | - Lalitha Gnanasekaran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| | | | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| | - Swamynathan Ganesan
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
13
|
Khan A, Qadeer A, Wajid A, Ullah Q, Rahman SU, Ullah K, Safi SZ, Ticha L, Skalickova S, Chilala P, Bernatova S, Samek O, Horky P. Microplastics in animal nutrition: Occurrence, spread, and hazard in animals. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 17:101258. [DOI: 10.1016/j.jafr.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
14
|
Rabezanahary ANA, Kestemont P, Cornet V, Benali S, Laby P, Randrianarivo RH, Mong YJM, Raquez JM, Missawi O. Unseen riverine risk: Spatio-temporal shifts of microplastic pollution and its bioavailability in freshwater fish within the Ikopa River urban system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:837. [PMID: 39180639 DOI: 10.1007/s10661-024-13010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Growing concern over microplastic pollution, driven by their widespread accumulation in the environment, stresses the need for comprehensive assessments. This study investigates the spatial and temporal distribution of microplastics in the Ikopa River (Antananarivo - Madagascar), which flows through a densely populated area, and examines their correlation with contamination levels in local fish species. By analyzing upstream and downstream stations across wet and dry seasons, only a notable increase in microplastic concentration downstream during the wet season was observed, ranging from 138.6 ± 9.0 to 222.0 ± 24.5 particles m-3, with polyethylene-co-vinyl acetate being the predominant polymer at 62.3 ± 5.13% of the total sampled polymers. This distribution underlines the impact of urban activities on pollution levels. Fish species, gambusia and Nile tilapia, were assessed for microplastic occurrence in gills and gastrointestinal tracts. Higher contamination rates were found in gambusia, enlightening the influence of feeding behaviour and fish habitat on microplastics contamination. Ingestion of microplastics directly from the water column was evident in both species, with the detection of high-density plastics such as polytetrafluoroethylene and polyvinyl chloride suggesting likely sediment contamination. This research highlights the widespread contamination of aquatic environments and its direct impact on local wildlife, pointing to a clear requirement for effective pollution management strategies.
Collapse
Affiliation(s)
- Andry Ny Aina Rabezanahary
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue Bruxelles 61, 5000, Namur, Belgium
- Centre National de Recherches Sur L'Environnement (CNRE), Antananarivo, Madagascar
- Department of Fundamental and Applied Biochemistry, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue Bruxelles 61, 5000, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue Bruxelles 61, 5000, Namur, Belgium
| | - Samira Benali
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), University of Mons, Mons, Belgium
| | - Patrick Laby
- University of Antananarivo, ESSA-Forêts, Higher School of Agronomic Sciences, Antananarivo, Madagascar
| | - Ranjàna Hanitra Randrianarivo
- Department of Fundamental and Applied Biochemistry, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | | | - Jean-Marie Raquez
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), University of Mons, Mons, Belgium
| | - Omayma Missawi
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
15
|
Ghosal S, Bag S, Rao SR, Bhowmik S. Exposure to polyethylene microplastics exacerbate inflammatory bowel disease tightly associated with intestinal gut microflora. RSC Adv 2024; 14:25130-25148. [PMID: 39139248 PMCID: PMC11320195 DOI: 10.1039/d4ra04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Polyethylene microplastics (PE MPs) have sparked widespread concern about their possible health implications because of their abundance, pervasiveness in the environment and in our daily life. Multiple investigations have shown that a high dosage of PE MPs may adversely impact gastrointestinal health. In tandem with the rising prevalence of Inflammatory bowel disease (IBD) in recent decades, global plastic manufacturing has risen to more than 300 million tons per year, resulting in a build-up of plastic by-products such as PE MPs in our surroundings. We have explored current advancements in the effect PE MPs on IBD in this review. Furthermore, we compared and summarized the detrimental roles of PE MPs in gut microbiota of different organisms viz., earthworms, super worm's larvae, yellow mealworms, brine shrimp, spring tails, tilapia, gilt-head bream, crucian carp, zebrafish, juvenile yellow perch, European sea bass, c57BL/6 mice and human. According to this review, PE MPs played a significant role in decreasing the diversity of gut microbiota of above-mentioned species which leads to the development of IBD and causes severe intestinal inflammation. Finally, we pinpoint significant scientific gaps, such as the movement of such hazardous PE MPs and the accompanying microbial ecosystems and propose prospective research directions.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| | - S R Rao
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| |
Collapse
|
16
|
Witczak A, Przedpełska L, Pokorska-Niewiada K, Cybulski J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. TOXICS 2024; 12:571. [PMID: 39195673 PMCID: PMC11359092 DOI: 10.3390/toxics12080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The threat posed by microplastics has become one of the world's most serious problems. Recent reports indicate that the presence of microplastics has been documented not only in coastal areas and beaches, but also in water reservoirs, from which they enter the bodies of aquatic animals and humans. Microplastics can also bioaccumulate contaminants that lead to serious damage to aquatic ecosystems. The lack of comprehensive data makes it challenging to ascertain the potential consequences of acute and chronic exposure, particularly for future generations. It is crucial to acknowledge that there is still a substantial need for rapid and effective techniques to identify microplastic particles for precise evaluation. Additionally, implementing legal regulations, limiting plastic production, and developing biodegradation methods are promising solutions, the implementation of which could limit the spread of toxic microplastics.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland; (L.P.); (K.P.-N.); (J.C.)
| | | | | | | |
Collapse
|
17
|
Giannattasio A, Iuliano V, Oliva G, Giaquinto D, Capacchione C, Cuomo MT, Hasan SW, Choo KH, Korshin GV, Barceló D, Belgiorno V, Grassi A, Naddeo V, Buonerba A. Micro(nano)plastics from synthetic oligomers persisting in Mediterranean seawater: Comprehensive NMR analysis, concerns and origins. ENVIRONMENT INTERNATIONAL 2024; 190:108839. [PMID: 38943925 DOI: 10.1016/j.envint.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The presence in seawater of low-molecular-weight polyethylene (PE) and polydimethylsiloxane (PDMS), synthetic polymers with high chemical resistance, has been demonstrated in this study for the first time by developing a novel methodology for their recovery and quantification from surface seawater. These synthetic polymer debris (SPD) with very low molecular weights and sizes in the nano- and micro-metre range have escaped conventional analytical methods. SPD have been easily recovered from water samples (2 L) through filtration with a nitrocellulose membrane filter with a pore size of 0.45 μm. Dissolving the filter in acetone allowed the isolation of the particulates by centrifugation followed by drying. The isolated SPD were analysed by 1H nuclear magnetic resonance spectroscopy (1H NMR), identifying PE and PDMS. These polymers are thus persisting on seawater because of their low density and the ponderal concentrations were quantified in mg/m3. This method was used in an actual case study in which 120 surface seawater samples were collected during two sampling campaigns in the Mediterranean Sea (from the Gulf of Salerno to the Gulf of Policastro in South Italy). The developed analytical protocol allowed achieving unprecedented simplicity, rapidity and sensitivity. The 1H and 13C NMR structural analysis of the PE debris indicates the presence of oxidised polymer chains with very low molecular weights. Additionally, the origin of those low molecular weight polymers was investigated by analysing influents and effluents from a wastewater treatment plant (WWTP) in Salerno as a hot spot for the release of SPD: the analysis indicates the presence of low molecular weight polymers compatible with wax-PE, widely used for coating applications, food industry, cosmetics and detergents. Moreover, the origin of PDMS debris found in surface seawater can be ascribed to silicone-based antifoamers and emulsifiers.
Collapse
Affiliation(s)
- Alessia Giannattasio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Veronica Iuliano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Domenico Giaquinto
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carmine Capacchione
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Maria Teresa Cuomo
- Department of Economics and Statistics, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120 Almeria, Spain
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Alfonso Grassi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| |
Collapse
|
18
|
Rani-Borges B, Arena MVN, Gomes IN, Lins LHFDC, Cestaro LDSC, Pompêo M, Ando RA, Alves-Dos-Santos I, Toppa RH, Martines MR, Queiroz LG. More than just sweet: current insights into microplastics in honey products and a case study of Melipona quadrifasciata honey. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39072473 DOI: 10.1039/d4em00262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Honey, traditionally known as a pure and natural substance, has become an unexpected reservoir for microplastic contamination. This study consisted of an experimental investigation to assess the occurrence of microplastics in honey produced by Melipona quadrifasciata, a native bee species in Brazil. Our investigation covers eight areas (one sample per area), including built and vegetated areas located in São Paulo city, Brazil, to understand the distribution of microplastics in these environments. Honey samples (10 mL) were collected using a syringe and sent to the laboratory for further analysis. Microplastics extracted from honey samples were characterized under a stereomicroscope to determine their size, color, and morphology. Also, the polymer type was determined by FTIR analysis. All honey samples (100%) showed microplastics. The predominant particles displayed a fiber shape with a size below 299 μm and a transparent color and were primarily composed of polypropylene. Their concentrations ranged from 0.1 to 2.6 particles per mL of honey, raising concerns about their potential impact on bee populations and human consumers. This study underscores the need for further research on the sources and implications of microplastic contamination in Melipona quadrifasciata honey, shedding light on the broader issue of environmental plastic pollution and its impact on pollinators.
Collapse
Affiliation(s)
- Bárbara Rani-Borges
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, 05508-000 São Paulo, Brazil.
| | - Mariana Victorino Nicolosi Arena
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, 05508-090 São Paulo, Brazil
- Department of Environmental Sciences, Center for Studies in Landscape Ecology and Conservation, Federal University of São Carlos, UFSCar, 13565-905 Sorocaba, Brazil
| | - Ingrid Naiara Gomes
- Department of Genetics, Ecology, and Evolution, Center for Ecological Synthesis and Conservation, Federal University of Minas Gerais, UFMG, 31270-901 Belo Horizonte, Brazil
- Graduate Program in Ecology, Conservation, and Wildlife Management, Federal University of Minas Gerais, UFMG, 31270-910 Belo Horizonte, Brazil
| | | | | | - Marcelo Pompêo
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, 05508-090 São Paulo, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, 05508-000 São Paulo, Brazil.
| | - Isabel Alves-Dos-Santos
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, 05508-090 São Paulo, Brazil
| | - Rogério Hartung Toppa
- Department of Environmental Sciences, Center for Studies in Landscape Ecology and Conservation, Federal University of São Carlos, UFSCar, 13565-905 Sorocaba, Brazil
| | - Marcos Roberto Martines
- Department of Geography, Tourism, and Humanities, Federal University of São Carlos, UFSCar, 13565-905 Sorocaba, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, 05508-000 São Paulo, Brazil.
| |
Collapse
|
19
|
Meenakshi, Das S, Verma AK, Kundu V, Kumari A, Mehta DS, Saxena K. Surface enhanced raman spectroscopy based sensitive and onsite detection of microplastics in water utilizing silver nanoparticles and nanodendrites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34403-6. [PMID: 39060892 DOI: 10.1007/s11356-024-34403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Plastics, of the order of microns in size, being not visible to the naked eye, are one of the significant contributors to pollution in the environment. Thus, the detection of micron-sized plastics (microplastics (MPs)) is crucial because of its hazardous toxic effects on our surroundings. In this work, we have proposed a quick and on-site detection of MPs, such as, polyvinyl chloride (PVC), polyvinyl alcohol (PVA) and polystyrene (PS) at ultra trace level using surface-enhanced Raman spectroscopy (SERS). To detect and analyse the spectra, two different nanostructures, such as, spherical shaped Ag nanoparticles (NPs), and shape anisotropic Ag nano-dendrites (NDs) were utilised to acquire the SERS spectra. A comprehensive analysis was further performed to check and investigate the amount of enhancements due to the mentioned nanostructures. We observed the Ag NDs exhibited amplified signal intensity compared to the Ag NPs due to the shape anisotropy leading to the surface charge confinement effect to create highly dense hotspots. However, the spherical shaped polystyrene beads of micron size exhibited better enhancement in Raman signal intensity when mixed with Ag NPs due to increased surface adsorption with the NPs. Therefore, the comparative study emphasizes the ability of using solution-based nanostructure as SERS for the onsite detection of microplastics having diverge size range at low concentration.
Collapse
Affiliation(s)
- Meenakshi
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sathi Das
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashwani Kumar Verma
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vrishty Kundu
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- Amity Institute of Renewable and Alternative Energy, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Anjika Kumari
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Dalip Singh Mehta
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kanchan Saxena
- Amity Institute of Renewable and Alternative Energy, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
20
|
Pradit S, Noppradit P, Sornplang K, Jitkaew P, Jiwarungrueangkul T, Muenhor D. Occurrence and abundance of microplastics in surface water of Songkhla Lagoon. PeerJ 2024; 12:e17822. [PMID: 39076778 PMCID: PMC11285385 DOI: 10.7717/peerj.17822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
Background Microplastic (MP) pollution is now a global critical issue and has been the subject of considerable worry for multiple various types of habitats, notably in lagoons which are coastal areas connected to the ocean. MPs are of concern, particularly because floating MP in surface water can be ingested by a number of marine organisms. There are several lagoons along Southeast Asia's coastline, but Songkhla Lagoon is Thailand's only exit with a rich biodiversity. To date, there has been little research undertaken on MP in this lagoon, so there is a pressing need to learn more about the presence of MP in the lagoon's water. Methods We investigate MPs in the surface water of Songkhla Lagoon, Thailand. Sampling took place at ten stations in the lagoon during the wet season in December 2022 and the dry season in February 2023. Samples were digested with hydrogen peroxide to remove organic matter followed by density separation using saturated sodium chloride. MPs were visually examined under a stereo microscope to describe and determine the shape, size, and color. Polymer type was identified using a micro Fourier transform infrared (FTIR) spectrometer. Moreover, the in-situ of water quality of the surface water was measured using a multi-parameter probe. A Mann-Whitney U test was performed to investigate the variations in MP levels and water quality parameters between the wet and dry seasons. Correlation analysis (Spearman rho) was used to determine the significance of correlations between MP and water quality (p < 0.05). Results MPs were detected at all ten of the sites sampled. The most abundant MPs were small size class (<500 µm, primarily consisting of fibers). Five types of polymers were seen in surface water, including polyethylene terephthalate, rayon, polypropylene, polyester, and poly (ethylene:propylene). Rayon and polyester were the dominant polymers. Additionally, the most dominant color of MPs in the wet and dry season was black and blue, respectively. The mean contents of MPs in the wet and dry season were 0.43 ± 0.18 and 0.34 ± 0.08 items/L, respectively. The Mann-Whitney U test suggested a significant difference between water quality in the wet and dry seasons (p < 0.05). Correlation analysis (Spearman rho) indicated a negative significant difference relationship between the MPs and the values of total dissolved solid (TDS) in the wet season (r = -0.821, p = <0.05), revealing that the large amounts of MPs may possibly be dispersed within surface water bodies with low TDS concentrations. Based on the overall findings, MP pollution in the surface water of the lagoon is not found to be influenced by the seasonal context. Rivers flowing into the lagoon, especially the U-Taphao River, may be a principal pathway contributing to increased MP pollution loading in the lagoon. The results can be used as baseline data to undertake further research work relevant to sources, fates, distribution, and impacts of MPs in other coastal lagoons.
Collapse
Affiliation(s)
- Siriporn Pradit
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Songkhla, Thailand
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Prakrit Noppradit
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Songkhla, Thailand
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Kittiwara Sornplang
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Songkhla, Thailand
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Preyanuch Jitkaew
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Songkhla, Thailand
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Thanakorn Jiwarungrueangkul
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Marine Environment and Geoinformatics Technology Research Unit, Faculty of Technology and Environment, Prince of Songkla University, Phuket, Thailand
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
21
|
Demelash Abera B, Alefe Adimas M. Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon 2024; 10:e33905. [PMID: 39050454 PMCID: PMC11268356 DOI: 10.1016/j.heliyon.2024.e33905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Fish contains high-quality omega-3 fatty acids, protein, vitamins, and minerals and due to this it is termed as an essential component of a balanced diet. But there have been concerns raised about the risks of consuming fish that is contaminated with toxins such as methylmercury, polychlorinated biphenyls (PCBs), dioxins, pesticides, and plastic waste. Consumption of contaminated fish containing these pollutants is raising global mortality and morbidity rates. Scope and approaches The review examines the current research outputs on the health benefits and potential health risks of fish consumption. The review also discusses various approaches to mitigating the health problems caused by fish consumption, highlights the roles of balancing the risks and benefits when consuming fish. Key findings and conclusion Different findings indicated that contaminants cause cancer, kidney failure, adverse neurological effect, cardiovascular diseases, and so on to vulnerable groups such as pregnant, child breast-feeding and children. In conclusion, there is a need to get more tangible evidence about the advantages and disadvantages of fish consumption to safeguard the wellbeing of the society.
Collapse
|
22
|
Sivalingam AM, Pandian A, Rengarajan S, Boopathy N, Selvaraj KRN. A comparative study of in vivo toxicity in zebrafish embryos synthesized CuO nanoparticles characterized from Salacia reticulata. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:311. [PMID: 39001930 DOI: 10.1007/s10653-024-02104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
The Salacia reticulata, a medicinal woody climbing shrub, was utilized for our study, the green synthesis of CuO nanoparticles, which were analyzed through SEM, EDX, FTIR, XRD, and UV‒Vis spectroscopy. This study assessed the toxicity to zebrafish embryos and explored the antibacterial, cytotoxic, antidiabetic, and anti-inflammatory properties of the synthesized nanoparticles. In results, the UV absorption of the CuO NPs showed that the intensity of nanoparticle green colloidal suspension changed from blue to green, which also confirmed that the spectrum of the green CuO NPs changed from colorless to black. in FT-IR and XRD spectral analysis to identify functional groups and determine the particle size of CuO NPs prepared by green and chemical methods. Its showed that CuO NPs (green) had a size of approximately 42.2 nm, while CuO NPs (chemical) had a size of approximately 84 nm. The morphology of these NPs was analyzed using SEM-EDX. Compared with their chemically prepared counterparts, the green-synthesized CuO nanoparticles demonstrated superior dispersion. Additionally, both green and chemical CuO nanoparticles at a concentration of 200 µL/mL caused developmental anomalies and increased mortality in zebrafish embryos and larvae. The green and chemical CuO NPs inhibited α-glucosidase enzyme activity at concentrations between 10 and 50 µL/mL, with IC50 values of 22 µL/mL and 26 µL/mL, respectively. The extract exhibited anti-inflammatory activity, with IC50 values of 274 and 109 µL/mL. The authors concluded that this green nanoparticle method has potential as a more eco-friendly and cost-effective alternative to traditional synthetic methods. NPs are widely used in human contact fields (medicine and agriculture), hence synthesis methods that do not involve toxic substances are becoming increasingly important.
Collapse
Affiliation(s)
- Azhagu Madhavan Sivalingam
- Natural Products and Nano Biotechnology Research Lab, Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Arjun Pandian
- Centre for Applied Research, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Sumathy Rengarajan
- Department of Biotechnology, Valliammal College for Women, Tamil Nadu, E-9; Anna Nagar East, Chennai, 600 102, India
| | - Nisha Boopathy
- Natural Products and Nano Biotechnology Research Lab, Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Karthick Raja Namasivayam Selvaraj
- Centre for Applied Research, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
23
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
24
|
Amal R, Devipriya SP. Severe microplastic pollution risks in urban freshwater system post-landfill fire: A case study from Brahmapuram, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124132. [PMID: 38735464 DOI: 10.1016/j.envpol.2024.124132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
To investigate the escalating issue of microplastic (MP), pollution in urban water bodies, this study focuses on the aftermath of the Brahmapuram landfill fire in Kochi, India, analyzing its impact on MP concentrations in nearby freshwater system. The study conducted sampling sessions at the landfill site immediately before and after the fire. Post-fire, findings demonstrated a substantial increase in MP concentrations in surface waters, with levels rising from an average 25793.33 to 44863.33 particles/m³, featuring a notable presence of larger, predominantly black MPs. Sediment samples showed no significant change in MP count, but there was a significant increase in mass concentration. SEM/EDS analysis revealed changes in surface morphology and elemental composition, suggesting thermal degradation. Risk assessment using the Microplastic Pollution Index (MPI) and Risk Quotient (RQ) methods indicated heightened MP pollution risk in surface water post-fire. Hierarchical cluster analysis revealed the landfill's proximity as a significant factor influencing MP characteristics in the aquatic system. The study highlights the escalated challenge of MP pollution in urban water bodies following environmental disasters like landfill fires, underscoring the urgent need for policy and environmental management strategies.
Collapse
Affiliation(s)
- Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, 682022, India
| | | |
Collapse
|
25
|
Berrios-Henríquez B, Venegas-Toloza M, Reyes-Fuentes M, Zúñiga-Arbalti F, Bustamante L, García-Cancino A, Alarcón-Enos J, Pastene-Navarrete E. Synthesis and Isolation of Phenol- and Thiol-Derived Epicatechin Adducts Prepared from Avocado Peel Procyanidins Using Centrifugal Partition Chromatography and the Evaluation of Their Antimicrobial and Antioxidant Activity. Molecules 2024; 29:2872. [PMID: 38930937 PMCID: PMC11206461 DOI: 10.3390/molecules29122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Barbara Berrios-Henríquez
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Matías Venegas-Toloza
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - María Reyes-Fuentes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile;
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Luis Bustamante
- Department of Instrumental Analysis, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Julio Alarcón-Enos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - Edgar Pastene-Navarrete
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| |
Collapse
|
26
|
Soliz DL, Paniagua González G, Muñoz-Arnanz J, Bravo-Yagüe JC, Fernández Hernando P, Garcinuño Martínez RM. Identification and morphological characterization of different types of plastic microparticles. Heliyon 2024; 10:e30749. [PMID: 38867989 PMCID: PMC11167249 DOI: 10.1016/j.heliyon.2024.e30749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
The knowledge of the polymeric composition of microplastics (MPs) is interesting because offers useful information on the resistance, durability, and degradability of these materials, also allowing progress in the control of this contamination. However, there is currently a lack of reliable standardized methods for the identification, and characterization of the plastic microparticles. This work uses different techniques in a complementary manner for the identification, and characterization of MPs that more frequently are found in the environment. A total of 10 types of plastics were collected (polystyrene (PS), polyethylene terephthalate (PETE), polyethylene (PE), high- and low-density polyethylene (HDPE and LDPE, respectively), polyvinyl chloride (PVC), polypropylene (PP), polytetrafluoroethylene (PTFE), Polyamide (PA, Nylon 6,6) and poly-carbonate (PC)) and their chemical identification were analyzed by reflectance-attenuated infrared (FTIR-ATR). Furthermore, the samples were observed using light microscopy, and scan-ning electron microscopy (SEM). Also, staining with 12 different dyes was performed to improve the identification of microplastics. The results of this study revealed that PETE, PE, HDPE and LDPE, whose SEM images exhibited smoothness and flat uniformity of their surface, were not (or less) susceptible to adsorb staining solutions while PP, PA, PVC, and PTFE, were capable of adsorbing the dye solutions.
Collapse
Affiliation(s)
- Dulce L. Soliz
- Researcher in Training at the International Doctoral School of UNED, in the Doctoral Program in Sciences, Spain
| | - Gema Paniagua González
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG, CSIC), Juan de la Cierva 3, Madrid, 28006, Spain
| | - Juan Carlos Bravo-Yagüe
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Pilar Fernández Hernando
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Rosa María Garcinuño Martínez
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| |
Collapse
|
27
|
Herrera-Vázquez SE, Elizalde-Velázquez GA, Gómez-Oliván LM, Chanona-Pérez JJ, Hernández-Varela JD, Hernández-Díaz M, García-Medina S, Orozco-Hernández JM, Colín-García K. Ecotoxicological evaluation of chitosan biopolymer films particles in adult zebrafish (Danio rerio): A comparative study with polystyrene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172757. [PMID: 38670364 DOI: 10.1016/j.scitotenv.2024.172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
To mitigate the environmental impact of microplastics (MPs), the scientific community has innovated sustainable and biodegradable polymers as viable alternatives to traditional plastics. Chitosan, the deacetylated form of chitin, stands as one of the most thoroughly investigated biopolymers and has garnered significant interest due to its versatile applications in both medical and cosmetic fields. Nevertheless, there is still a knowledge gap regarding the impact that chitosan biopolymer films (CBPF) may generate in aquatic organisms. In light of the foregoing, this study aimed to assess and compare the potential effects of CBPF on the gastrointestinal tract, gills, brain, and liver of Danio rerio against those induced by MPs. The findings revealed that both CBPF and MPs induced changes in the levels of oxidative stress biomarkers across all organs. However, it is essential to note that our star plots illustrate a tendency for CBPF to activate antioxidant enzymes and for MPs to produce oxidative damage. Regarding gene expression, our findings indicate that MPs led to an up-regulation in the expression of genes associated with apoptotic response (p53, casp3, cas9, bax, and bcl2) in all fish organs. Meanwhile, CBPF produced the same effect in genes related to antioxidant response (nrf1 and nrf2). Overall, our histological observations substantiated these effects, revealing the presence of plastic particles and tissue alterations in the gills and gastrointestinal tract of fish subjected to MPs. From these results, it can be concluded that CBPF does not represent a risk to fish after long exposure.
Collapse
Affiliation(s)
- Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Misael Hernández-Díaz
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karla Colín-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
28
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
29
|
Zahid H, Afzal N, Arif MM, Zahid M, Nawab S, Qasim MM, Alvi FN, Nazir S, Perveen I, Abbas N, Saleem Y, Mazhar S, Nawaz S, Faridi TA, Awan HMA, Syed Q, Abidi SHI. Microorganism-mediated biodegradation for effective management and/or removal of micro-plastics from the environment: a comprehensive review. Arch Microbiol 2024; 206:198. [PMID: 38558101 DOI: 10.1007/s00203-024-03904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.
Collapse
Affiliation(s)
- Hassan Zahid
- Department of Public Health, University of Health Sciences, Lahore, Pakistan
| | - Nimra Afzal
- Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Maaz Arif
- Department of Medical Education, University of Health Sciences, Lahore, Pakistan
| | - Mahnoor Zahid
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Samia Nawab
- Government Graduate College (W), Township, Lahore, Pakistan
| | | | | | | | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan.
| | - Naaz Abbas
- Minhaj University Lahore, Lahore, Pakistan
| | - Yasar Saleem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Sania Mazhar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Shaista Nawaz
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | | | | | - Quratulain Syed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| |
Collapse
|
30
|
Frias J, Joyce H, Brozzetti L, Pagter E, Švonja M, Kavangh F, Nash R. Spatial monitoring of microplastics in environmental matrices from Galway Bay, Ireland. MARINE POLLUTION BULLETIN 2024; 200:116153. [PMID: 38354591 DOI: 10.1016/j.marpolbul.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Microplastic concentrations have been reported in a variety of environmental matrices and organisms across the world. Assessments of environmental concentrations are essential to understand trends and ensure decision-making processes that reduce environmental pressure. In this study, a combined sampling approach to surface waters, benthic sediments and biota in Galway Bay, Ireland, was carried out. Average concentrations of microplastics in surface waters were 1.42 ± 0.33 MPs m-3, in biota were 4.46 ± 0.36 MPs ind-1 and in benthic sediments were 5.60 ± 1.54 MPs kg-1. The diversity of polymers, microplastic types and colours were more abundant in surface waters and biota, when compared to benthic sediments. Integrated assessments of microplastics that follow existing monitoring programmes are essential to understand environmental trends. This work contributes to provide valuable information to descriptor 10 of the Marine Strategy Framework Directive in Ireland.
Collapse
Affiliation(s)
- João Frias
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Old Dublin Rd., Galway H91 T8NW, Ireland.
| | - Haleigh Joyce
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Old Dublin Rd., Galway H91 T8NW, Ireland.
| | - Loann Brozzetti
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Old Dublin Rd., Galway H91 T8NW, Ireland.
| | - Elena Pagter
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Old Dublin Rd., Galway H91 T8NW, Ireland; Marine Institute, Fisheries and Ecosystems Advisory, Rinville, Oranmore, Co. Galway H91 R673, Ireland.
| | - Mateja Švonja
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Old Dublin Rd., Galway H91 T8NW, Ireland.
| | - Fiona Kavangh
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Old Dublin Rd., Galway H91 T8NW, Ireland.
| | - Róisín Nash
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Old Dublin Rd., Galway H91 T8NW, Ireland.
| |
Collapse
|
31
|
Song K, Jin W, Yang G, Zhang H, Li P, Huang W, Feng Z. A case study on microplastics pollution characteristics in fouling organisms in typical aquaculture bay, China. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106286. [PMID: 38109802 DOI: 10.1016/j.marenvres.2023.106286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Microplastics (MPs) and fouling organisms are prevalent in oceans worldwide. The study aims to investigate the pollution characteristics of MPs in fouling organisms. The study found significant inter-specific differences in the MPs abundance, while the length of MPs is consistent. The average number of MPs in N. exigua is 0.00 ± 0.00. There is a correlation between MPs abundance and weight in sessile group, while gastropods don't. Direct observation has demonstrated that the radulae of N. radula can envelop MPs. Fiber and blue are the predominant forms and colors of MPs found in fouling organisms. It is noteworthy that all film and fragment MPs observed were of a blue hue and had a size limitation of 500 μm. The characteristics of MPs between sessile organisms are more similar than those between gastropods. This study has improved our understanding of the pollution characteristics of MPs in fouling organisms, specifically gastropods.
Collapse
Affiliation(s)
- Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China; Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, PR China; University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Wei Jin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Haichao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Pingjing Li
- Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, PR China; University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
32
|
Peller JR, Tabor G, Davis C, Iceman C, Nwachukwu O, Doudrick K, Wilson A, Suprenant A, Dabertin D, McCool JP. Distribution and Fate of Polyethylene Microplastics Released by a Portable Toilet Manufacturer into a Freshwater Wetland and Lake. WATER 2024; 16:11. [PMID: 39219624 PMCID: PMC11361013 DOI: 10.3390/w16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A portable toilet manufacturer in northwest Indiana (USA) released polyethylene microplastic (MP) pollution into a protected wetland for at least three years. To assess the loads, movement, and fate of the MPs in the wetland from this point source, water and sediment samples were collected in the fall and spring of 2021-2023. Additional samples, including sediment cores and atmospheric particulates, were collected during the summer of 2023 from select areas of the wetland. The MPs were isolated from the field samples using density separation, filtration, and chemical oxidation. Infrared and Raman spectroscopy analyses identified the MPs as polyethylene, which were quantified visually using a stereomicroscope. The numbers of MPs in 100 mL of the marsh water closest to the source ranged from several hundred to over 400,000, while the open water samples contained few microplastics. Marsh surface sediments were highly contaminated with MPs, up to 18,800 per 30.0 g dry mass (dm), compared to core samples in the lower depths (>15 cm) that contained only smaller MPs (<200 µm), numbering 0-480 per 30.0 g (dm). The wide variations in loads of MP contaminants indicate the influence of numerous factors, such as proximity to the point source pollution, weather conditions, natural matter, and pollution sinks, namely sediment deposition. As proof of concept, we demonstrated a novel remediation method using these real-world samples to effectively agglomerate and remove MPs from contaminated waters.
Collapse
Affiliation(s)
- Julie R. Peller
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Gavin Tabor
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Christina Davis
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Chris Iceman
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Ozioma Nwachukwu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Antigone Wilson
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Alyssa Suprenant
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - David Dabertin
- Dabertin Law Offices, 5246 Hohman Avenue Suite 302, Hammond, IN 46320, USA
| | - Jon-Paul McCool
- Department of Geography and Meteorology, Valparaiso University, 1809 Chapel Drive, Valparaiso, IN 46383, USA
| |
Collapse
|
33
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
34
|
Rozman U, Klun B, Kuljanin A, Skalar T, Kalčíková G. Insights into the shape-dependent effects of polyethylene microplastics on interactions with organisms, environmental aging, and adsorption properties. Sci Rep 2023; 13:22147. [PMID: 38092860 PMCID: PMC10719240 DOI: 10.1038/s41598-023-49175-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
The shape-dependent effects of microplastics have been studied in the context of ingestion but have not been considered in other environmental processes. Therefore, we investigated how the shape of polyethylene microplastics (spheres, fragments, and films) affects interactions with plants, aging, and their adsorption properties. The shape had no effect on the growth rate and chlorophyll content of duckweed Lemna minor, but the fragments strongly adhered to the plant biomass and reduced the root length. The adsorption process of the model organic compound (methylene blue dye) was described by the same kinetic model for all shapes-the experimental data best fit the pseudo-second order model. However, twice as much methylene blue was adsorbed on films as on fragments and spheres. During environmental aging, most biofilm developed on films. The biofilm on spheres contained significantly less photosynthetic microorganisms, but twice as much extracellular polymeric substances (EPS) as on fragments and films. This suggests that the attachment of microorganisms to spherical particles is limited and therefore more intensive production of EPS is required for stable biofilm formation. From the results of this study, it is evident that the shape of microplastics significantly affects not only ecotoxicity but also other environmentally relevant processes.
Collapse
Affiliation(s)
- Ula Rozman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Barbara Klun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Aleksandra Kuljanin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Tina Skalar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Rozman U, Blažič A, Kalčíková G. Phytoremediation: A promising approach to remove microplastics from the aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122690. [PMID: 37797928 DOI: 10.1016/j.envpol.2023.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Due to the increasing amount of microplastics (MPs) in the environment, various technologies for their removal have been investigated. One of the possible technologies are phytoremediation methods, but insufficient understanding of the interactions between MPs and aquatic macrophytes limits their further development. In this context, the aim of this study was to investigate the interactions between polyethylene MPs and the floating aquatic macrophyte Lemna minor in terms of the extent and time frame of MPs adhesion to the plant biomass, the stability of the interactions under water movement and understanding the nature of the adsorption process through the adsorption isotherm models. The results showed that the maximum number of adhered MPs was reached after 24 h. With increased amount of plant biomass the number of adhered MPs increased as well. Slow movement of water had no statistically significant effect on the adhesion of MPs. Among several adsorption models, the Freundlich adsorption isotherm model was the best fit to the experimental data, which assumes weak binding of MPs to plant biomass. Finally, 79% of MPs was removed during 15 cycles of phytoremediation (i.e., the biomass was removed and replaced with new biomass 15 times) and it was calculated that 53 cycles would be needed to remove all MPs from the water phase under test conditions.
Collapse
Affiliation(s)
- Ula Rozman
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Anej Blažič
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
36
|
Ciftcioglu-Gozuacik B, Ulutug FC, Denizli A, Dizge N, Karagunduz A, Keskinler B. Simultaneous production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from recovered volatile fatty acid with treatment of leachate by Pilot-Scale Mechanical Vapor Recompression. BIORESOURCE TECHNOLOGY 2023; 388:129743. [PMID: 37716573 DOI: 10.1016/j.biortech.2023.129743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Serious global problems faced due to many petroleum-based materials in the last century, which is called the plastic age, constitute the main motivation of this research. Considering wastewater treatment from this perspective, both the recovery of organic acids from wastewater and their conversion into bioplastics are extremely important in terms of reducing petroleum dependency. In this study, while the treatment of landfill leachate was provided with biological process integrated into Mechanical Vapor Recompression (MVR), simultaneously PHBV production was carried out with 84.9% recovered VFA as carbon source. The effects of C/N/P ratio and feeding regime on PHBV storage were investigated by Cupriavidus necator. PHBV storage of 96% (g PHBV/g DCW) was maximized by 2-stage feeding and nitrogen restriction. The ratio of 3HV to 3HB of PHBV was 45%. In addition, extracted PHBV was compared with standard PHA in terms of thermal and chemical properties with FTIR, XRD, TGA and DSC analyses.
Collapse
Affiliation(s)
| | - Fatma-Cansu Ulutug
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Aslı Denizli
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Bulent Keskinler
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey.
| |
Collapse
|
37
|
Cai C, Zhu L, Hong B. A review of methods for modeling microplastic transport in the marine environments. MARINE POLLUTION BULLETIN 2023; 193:115136. [PMID: 37329736 DOI: 10.1016/j.marpolbul.2023.115136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Microplastic (MP) pollution is ubiquitous in the oceans and poses serious threats to the marine ecosystems. Nowadays numerical modeling has become one of the widely used tools for monitoring and predicting the transport and fate of MP in marine environments. Despite the growing body of research on numerical modeling of marine MP, the advantages and disadvantages of various modeling methods have not received systematic evaluation in published works. Important aspects such as parameterization schemes for MP behaviors, factors influencing MP transport, and proper configuration in beaching are essential for guiding researchers to choose proper methods in their work. For this purpose, we comprehensively reviewed the current knowledge on factors influencing MP transport, classified modeling approaches according to the governing equations, and summarized up-to-date parameterization schemes for MP behaviors. Critical factors such as vertical velocity, biofouling, degradation, fragmentation, beaching, and washing-off were reviewed in the frame of MP transport processes.
Collapse
Affiliation(s)
- Caiyuan Cai
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China
| | - Liangsheng Zhu
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China
| | - Bo Hong
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|