1
|
Elliott AD, Middeldorp ME, McMullen JR, Fatkin D, Thomas L, Gwynne K, Hill AP, Shang C, Hsu MP, Vandenberg JI, Kalman JM, Sanders P. Research Priorities for Atrial Fibrillation in Australia: A Statement From the Australian Cardiovascular Alliance Clinical Arrhythmia Theme. Heart Lung Circ 2024; 33:1523-1532. [PMID: 39244450 DOI: 10.1016/j.hlc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Atrial fibrillation (AF) is highly prevalent in the Australian community, ranking amongst the highest globally. The consequences of AF are significant. Stroke, dementia and heart failure risk are increased substantially, hospitalisations are amongst the highest for all cardiovascular causes, and Australians living with AF suffer from substantial symptoms that impact quality of life. Australian research has made a significant impact at the global level in advancing the care of patients living with AF. However, new strategies are required to reduce the growing incidence of AF and its associated healthcare demand. The Australian Cardiovascular Alliance (ACvA) has led the development of an arrhythmia clinical theme with the objective of tackling major research priorities to achieve a reduction in AF burden across Australia. In this summary, we highlight these research priorities with particular focus on the strengths of Australian research and the strategies needed to move forward in reducing incident AF and improving outcomes for those who live with this chronic condition.
Collapse
Affiliation(s)
- Adrian D Elliott
- Centre for Heart Rhythm Disorders, The University of Adelaide; South Australian Health and Medical Research Institute; and Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Melissa E Middeldorp
- Centre for Heart Rhythm Disorders, The University of Adelaide; South Australian Health and Medical Research Institute; and Royal Adelaide Hospital, Adelaide, SA, Australia; Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Julie R McMullen
- Heart Research Institute, Sydney, NSW, Australia, and Baker Heart and Diabetes Institute, Melbourne, Vic, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia; Cardiology Department, St Vincent's Hospital, Sydney, NSW, Australia
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, Western Sydney Local Health District; Westmead Clinical School, The University of Sydney; and South West Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kylie Gwynne
- Djurali Centre for Aboriginal and Torres Strait Islander Health Research, Heart Research Institute, Sydney, NSW, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Catherine Shang
- Australian Cardiovascular Alliance, Melbourne, Vic, Australia
| | - Meng-Ping Hsu
- Australian Cardiovascular Alliance, Melbourne, Vic, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital; and University of Melbourne, Melbourne, Vic, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, The University of Adelaide; South Australian Health and Medical Research Institute; and Royal Adelaide Hospital, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Fang L, Chen Q, Cheng X, Li X, Zou T, Chen J, Xiang G, Xue Q, Li Y, Zhang J. Calcium-mediated DAD in membrane potentials and triggered activity in atrial myocytes of ETV1 f / fMyHC Cre /+ mice. J Cell Mol Med 2024; 28:e70005. [PMID: 39159135 PMCID: PMC11332596 DOI: 10.1111/jcmm.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 08/21/2024] Open
Abstract
The E-twenty-six variant 1 (ETV1)-dependent transcriptome plays an important role in atrial electrical and structural remodelling and the occurrence of atrial fibrillation (AF), but the underlying mechanism of ETV1 in AF is unclear. In this study, cardiomyocyte-specific ETV1 knockout (ETV1f/fMyHCCre/+, ETV1-CKO) mice were constructed to observe the susceptibility to AF and the underlying mechanism in AF associated with ETV1-CKO mice. AF susceptibility was examined by intraesophageal burst pacing, induction of AF was increased obviously in ETV1-CKO mice than WT mice. Electrophysiology experiments indicated shortened APD50 and APD90, increased incidence of DADs, decreased density of ICa,L in ETV1-CKO mice. There was no difference in VINACT,1/2 and VACT,1/2, but a significantly longer duration of the recovery time after inactivation in the ETV1-CKO mice. The recording of intracellular Ca2+ showed that there was significantly increased in the frequency of calcium spark, Ca2+ transient amplitude, and proportion of SCaEs in ETV1-CKO mice. Reduction of Cav1.2 rather than NCX1 and SERCA2a, increase RyR2, p-RyR2 and CaMKII was reflected in ETV1-CKO group. This study demonstrates that the increase in calcium spark and SCaEs corresponding to Ca2+ transient amplitude may trigger DAD in membrane potential in ETV1-CKO mice, thereby increasing the risk of AF.
Collapse
Affiliation(s)
- Li‐Hua Fang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Qian Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of Critical Care Medicine Division FourFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Xian‐Lu Cheng
- Department of CardiologyNanping First Hospital Affiliated to Fujian Medical UniversityNanpingFujianPeople's Republic of China
| | - Xiao‐Qian Li
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Tian Zou
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Jian‐Quan Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Guo‐Jian Xiang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Qiao Xue
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Yang Li
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Jian‐Cheng Zhang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| |
Collapse
|
3
|
Jiang X, Ly OT, Chen H, Zhang Z, Ibarra BA, Pavel MA, Brown GE, Sridhar A, Tofovic D, Swick A, Marszalek R, Vanoye CG, Navales F, George AL, Khetani SR, Rehman J, Gao Y, Darbar D, Saxena A. Transient titin-dependent ventricular defects during development lead to adult atrial arrhythmia and impaired contractility. iScience 2024; 27:110395. [PMID: 39100923 PMCID: PMC11296057 DOI: 10.1016/j.isci.2024.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Developmental causes of the most common arrhythmia, atrial fibrillation (AF), are poorly defined, with compensation potentially masking arrhythmic risk. Here, we delete 9 amino acids (Δ9) within a conserved domain of the giant protein titin's A-band in zebrafish and human-induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). We find that ttna Δ9/Δ9 zebrafish embryos' cardiac morphology is perturbed and accompanied by reduced functional output, but ventricular function recovers within days. Despite normal ventricular function, ttna Δ9/Δ9 adults exhibit AF and atrial myopathy, which are recapitulated in TTN Δ9/Δ9-hiPSC-aCMs. Additionally, action potential is shortened and slow delayed rectifier potassium current (I Ks) is increased due to aberrant atrial natriuretic peptide (ANP) levels. Strikingly, suppression of I Ks in both models prevents AF and improves atrial contractility. Thus, a small internal deletion in titin causes developmental abnormalities that increase the risk of AF via ion channel remodeling, with implications for patients who harbor disease-causing variants in sarcomeric proteins.
Collapse
Affiliation(s)
- Xinghang Jiang
- Department of Cell, Developmental, and Integrative Biology, UAB Heersink School of Medicine, Birmingham, AL 35233, USA
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Olivia T. Ly
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ziwei Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Beatriz A. Ibarra
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Mahmud A. Pavel
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Grace E. Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Physiology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - David Tofovic
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Medicine, Jesse Brown Veterans Administration, Chicago, IL 60612, USA
| | - Abigail Swick
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Richard Marszalek
- Department of Physiology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Fritz Navales
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Yu Gao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Medicine, Jesse Brown Veterans Administration, Chicago, IL 60612, USA
| | - Ankur Saxena
- Department of Cell, Developmental, and Integrative Biology, UAB Heersink School of Medicine, Birmingham, AL 35233, USA
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
- O'Neal Comprehensive Cancer Center, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Broman MT, Nadadur RD, Perez-Cervantes C, Burnicka-Turek O, Lazarevic S, Gams A, Laforest B, Steimle JD, Iddir S, Wang Z, Smith L, Mazurek SR, Olivey HE, Zhou P, Gadek M, Shen KM, Khan Z, Theisen JW, Yang XH, Ikegami K, Efimov IR, Pu WT, Weber CR, McNally EM, Svensson EC, Moskowitz IP. A Genomic Link From Heart Failure to Atrial Fibrillation Risk: FOG2 Modulates a TBX5/GATA4-Dependent Atrial Gene Regulatory Network. Circulation 2024; 149:1205-1230. [PMID: 38189150 PMCID: PMC11152454 DOI: 10.1161/circulationaha.123.066804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.
Collapse
Affiliation(s)
- Michael T. Broman
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Rangarajan D. Nadadur
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Carlos Perez-Cervantes
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Sonja Lazarevic
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Anna Gams
- Department of Biomedical Engineering, George Washington University
| | - Brigitte Laforest
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Jeffrey D. Steimle
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Sabrina Iddir
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Zhezhen Wang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Linsin Smith
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Stefan R. Mazurek
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Harold E. Olivey
- Department of Biology, Indiana University Northwest, Gary, IN 46408
| | | | - Margaret Gadek
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Kaitlyn M. Shen
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Zoheb Khan
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Joshua W.M. Theisen
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Xinan H. Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Igor R. Efimov
- Department of Biomedical Engineering, George Washington University
| | - William T. Pu
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, 02115
| | | | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, 303 E. Superior, SQ5-516, Chicago, IL 60611
| | | | - Ivan P. Moskowitz
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
5
|
Cofiño-Fabres C, Passier R, Schwach V. Towards Improved Human In Vitro Models for Cardiac Arrhythmia: Disease Mechanisms, Treatment, and Models of Atrial Fibrillation. Biomedicines 2023; 11:2355. [PMID: 37760796 PMCID: PMC10525681 DOI: 10.3390/biomedicines11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart rhythm disorders, arrhythmias, place a huge economic burden on society and have a large impact on the quality of life of a vast number of people. Arrhythmias can have genetic causes but primarily arise from heart tissue remodeling during aging or heart disease. As current therapies do not address the causes of arrhythmias but only manage the symptoms, it is of paramount importance to generate innovative test models and platforms for gaining knowledge about the underlying disease mechanisms which are compatible with drug screening. In this review, we outline the most important features of atrial fibrillation (AFib), the most common cardiac arrhythmia. We will discuss the epidemiology, risk factors, underlying causes, and present therapies of AFib, as well as the shortcomings and opportunities of current models for cardiac arrhythmia, including animal models, in silico and in vitro models utilizing human pluripotent stem cell (hPSC)-derived cardiomyocytes.
Collapse
Affiliation(s)
- Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
| |
Collapse
|
6
|
Kim JS, Lee S, Yee J, Park K, Jang EJ, Chang BC, Gwak HS. Novel Gene Polymorphisms for Stable Warfarin Dose in a Korean Population: Genome-Wide Association Study. Biomedicines 2023; 11:2308. [PMID: 37626805 PMCID: PMC10452379 DOI: 10.3390/biomedicines11082308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Warfarin has a narrow therapeutic window and high intra- and inter-individual variability. Considering that many published papers on genotype-guided dosing are derived from European populations, the aim of this study was to investigate novel genetic variants associated with the variability of stable warfarin dose in the Korean population with cardiac valve replacement, using the GWAS approach. This retrospective cohort study was performed from January 1982 to December 2020 at the Severance Cardiovascular Hospital of Yonsei University College of Medicine. GWAS was performed to identify associations between genotypes and the warfarin maintenance dose, by comparing the allele frequency of genetic variants between individuals. Then, the extent of genetic and non-genetic factors on the dose variability was determined by multivariable regression analysis. The study enrolled 214 participants, and the most robust signal cluster was detected on chromosome 16 around VKORC1. Followed by VKORC1, three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) showed an association with stable warfarin dose requirement in univariate analysis. The algorithm was constructed by using multivariable analysis that includes genetic and non-genetic factors, and it could explain 58.5% of the variations in stable warfarin doses. In this variability, VKORC1 rs9934438 and FRAS1 rs4386623 accounted for 33.0% and 9.9%, respectively. This GWAS analysis identified the fact that three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) were associated with stable warfarin doses. Additional research is necessary to validate the results and establish personalized treatment strategies for the Korean population.
Collapse
Affiliation(s)
- Jung Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Sak Lee
- Department of Thoracic and Cardiovascular Surgery, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jeong Yee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Kyemyung Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea;
| | - Eun Jeong Jang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Byung Chul Chang
- Department of Thoracic and Cardiovascular Surgery, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Thoracic and Cardiovascular Surgery, Bundang CHA Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Hye Sun Gwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| |
Collapse
|
7
|
Kervadec A, Kezos J, Ni H, Yu M, Marchant J, Spiering S, Kannan S, Kwon C, Andersen P, Bodmer R, Grandi E, Ocorr K, Colas AR. Multiplatform modeling of atrial fibrillation identifies phospholamban as a central regulator of cardiac rhythm. Dis Model Mech 2023; 16:dmm049962. [PMID: 37293707 PMCID: PMC10387351 DOI: 10.1242/dmm.049962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Atrial fibrillation (AF) is a common and genetically inheritable form of cardiac arrhythmia; however, it is currently not known how these genetic predispositions contribute to the initiation and/or maintenance of AF-associated phenotypes. One major barrier to progress is the lack of experimental systems to investigate the effects of gene function on rhythm parameters in models with human atrial and whole-organ relevance. Here, we assembled a multi-model platform enabling high-throughput characterization of the effects of gene function on action potential duration and rhythm parameters using human induced pluripotent stem cell-derived atrial-like cardiomyocytes and a Drosophila heart model, and validation of the findings using computational models of human adult atrial myocytes and tissue. As proof of concept, we screened 20 AF-associated genes and identified phospholamban loss of function as a top conserved hit that shortens action potential duration and increases the incidence of arrhythmia phenotypes upon stress. Mechanistically, our study reveals that phospholamban regulates rhythm homeostasis by functionally interacting with L-type Ca2+ channels and NCX. In summary, our study illustrates how a multi-model system approach paves the way for the discovery and molecular delineation of gene regulatory networks controlling atrial rhythm with application to AF.
Collapse
Affiliation(s)
- Anaïs Kervadec
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Haibo Ni
- Department of Pharmacology, UC Davis, Davis, CA 95616, USA
| | - Michael Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Marchant
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sean Spiering
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Suraj Kannan
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Rolf Bodmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre R. Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Rebecchi M, De Ruvo E, Sgueglia M, Lavalle C, Canestrelli S, Politano A, Jacomelli I, Golia P, Crescenzi C, De Luca L, Panuccio M, Fagagnini A, Calò L. Atrial fibrillation and sympatho-vagal imbalance: from the choice of the antiarrhythmic treatment to patients with syncope and ganglionated plexi ablation. Eur Heart J Suppl 2023; 25:C1-C6. [PMID: 37125283 PMCID: PMC10132557 DOI: 10.1093/eurheartjsupp/suad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For several years, the autonomic nervous system has played a central role in the pathophysiological mechanism of atrial fibrillation (AF), so much so that it has been considered one of the cornerstones of Coumel's triangle. The clinical and therapeutic management of AF secondary to sympatho-vagal imbalance represents one of the most important examples of how precision medicine should be applied. Increasing knowledge of this kind of arrhythmias has made it possible to select specific antiarrhythmic drugs and to diversify their use according to vagal or adrenergic AF forms. Ablative strategies, such as cardioneuroablation and non-direct cardiac neuromodulation methods (such as renal denervation and peripheral vagal stimulation), have gradually emerged. In the possibly near future, there will be a development of new acquisitions regarding new pharmacological therapeutic strategies and gene therapy. Finally, finding an AF in patients experiencing syncopal episodes opens a whole chapter regarding interesting, but also complex, diagnostic and therapeutic strategies, ranging from neurally mediated forms to convulsive seizure that could also increase the risk of sudden death.
Collapse
Affiliation(s)
- Marco Rebecchi
- Corresponding author. Tel: +390623188406, Fax: +390623188410, ,
| | - Ermenegildo De Ruvo
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | | | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy
| | - Stefano Canestrelli
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | - Alessandro Politano
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | - Ilaria Jacomelli
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | - Paolo Golia
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | - Cinzia Crescenzi
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | - Lucia De Luca
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | - Marco Panuccio
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | - Alessandro Fagagnini
- Department of Cardiology, Policlinico Casilino, Via Casilina 1049, Rome 00100, Italy
| | | |
Collapse
|
9
|
Calvert P, Tamirisa K, Al-Ahmad A, Lip GYH, Gupta D. Racial and Ethnic Disparities in Stroke Prevention for Atrial Fibrillation. Am J Med 2023; 136:225-233. [PMID: 36495932 DOI: 10.1016/j.amjmed.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022]
Abstract
Racial and ethnic disparities in health care are well documented, although often underappreciated. In the setting of atrial fibrillation, stroke risk and severity may be higher in underrepresented ethnic populations. Additionally, the risk of bleeding is not uniform, and pharmacogenetics play an important role in anticoagulant therapy. In this narrative review, we discuss the complex issues surrounding stroke prevention in underrepresented ethnic groups with atrial fibrillation.
Collapse
Affiliation(s)
- Peter Calvert
- Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom; Liverpool Centre for Cardiovascular Science, University of Liverpool, United Kingdom
| | | | | | - Gregory Y H Lip
- Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom; Liverpool Centre for Cardiovascular Science, University of Liverpool, United Kingdom
| | - Dhiraj Gupta
- Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom; Liverpool Centre for Cardiovascular Science, University of Liverpool, United Kingdom.
| |
Collapse
|
10
|
Taizhanova D, Bazarova N, Kalimbetova A, Gartung T, Bodaubay R, Muratbekova S, Rustembekkyzy Z. Risk Factors for the Development of Atrial Fibrillation in the Kazakh Patients. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND: Atrial fibrillation (AF) is the most common persistent heart rhythm disorder.
AIM: Assessment of clinical predictors of atrial fibrillation in the Kazakh population.
METHODS: An analytical clinical and epidemiological study of 75 patients with AF of Kazakh nationality. Descriptive analysis of medical records was carried out and the results of laboratory and instrumental research methods. Statistical analysis was carried out using the Statistica 6.0 Software package from StatSoft Inc. (USA) and MS Excel.
RESULTS: In the majority of the studied patients (86.7%), atrial fibrillation was associated with hypertension, in 49.3% of patients was diagnosed with coronary artery disease. A permanent form of atrial fibrillation was observed in 63%, in 20% AF manifested itself in the form of paroxysms, in 17% AF was persistent. AF, which arose against the background of CHF, was established in 41.3% of the patients studied by us, while a decrease in LVEF below 40% was observed in 21.3% of the examined patients. In our study, diabetes mellitus was diagnosed as a comorbid pathology in 24% of patients and diabetes mellitus correlated with permanent AF in 66.7%. Thyroid pathology was observed in 9.3% cases. CRHD as a concomitant disease occurred in 12% of cases. In 5.7% of cases, AF was registered as idiopathic (primary) without a history of cardiovascular and concomitant pathology. Smoking as a risk factor was observed in 16%, alcohol consumption, was noted by 8 patients (10.7%). In 40% of cases, patients with AF were obese, 45.3% of the patients were overweight (BMI ≥25).
Collapse
|
11
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
12
|
Fischer MA, Mahajan A, Cabaj M, Kimball TH, Morselli M, Soehalim E, Chapski DJ, Montoya D, Farrell CP, Scovotti J, Bueno CT, Mimila NA, Shemin RJ, Elashoff D, Pellegrini M, Monte E, Vondriska TM. DNA Methylation-Based Prediction of Post-operative Atrial Fibrillation. Front Cardiovasc Med 2022; 9:837725. [PMID: 35620521 PMCID: PMC9127230 DOI: 10.3389/fcvm.2022.837725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
BackgroundAtrial fibrillation (AF) is the most common sustained cardiac arrhythmia and post-operative atrial fibrillation (POAF) is a major healthcare burden, contributing to an increased risk of stroke, kidney failure, heart attack and death. Genetic studies have identified associations with AF, but no molecular diagnostic exists to predict POAF based on pre-operative measurements. Such a tool would be of great value for perioperative planning to improve patient care and reduce healthcare costs. In this pilot study of epigenetic precision medicine in the perioperative period, we carried out bisulfite sequencing to measure DNA methylation status in blood collected from patients prior to cardiac surgery to identify biosignatures of POAF.MethodsWe enrolled 221 patients undergoing cardiac surgery in this prospective observational study. DNA methylation measurements were obtained from blood samples drawn from awake patients prior to surgery. After controlling for clinical and methylation covariates, we analyzed DNA methylation loci in the discovery cohort of 110 patients for association with POAF. We also constructed predictive models for POAF using clinical and DNA methylation data. We subsequently performed targeted analyses of a separate cohort of 101 cardiac surgical patients to measure the methylation status solely of significant methylation loci in the discovery cohort.ResultsA total of 47 patients in the discovery cohort (42.7%) and 43 patients in the validation cohort (42.6%) developed POAF. We identified 12 CpGs that were statistically significant in the discovery cohort after correcting for multiple hypothesis testing. Of these sites, 6 were amenable to targeted bisulfite sequencing and chr16:24640902 was statistically significant in the validation cohort. In addition, the methylation POAF prediction model had an AUC of 0.79 in the validation cohort.ConclusionsWe have identified DNA methylation biomarkers that can predict future occurrence of POAF associated with cardiac surgery. This research demonstrates the use of precision medicine to develop models combining epigenomic and clinical data to predict disease.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Matthew A. Fischer
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maximilian Cabaj
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Todd H. Kimball
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Marco Morselli
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elizabeth Soehalim
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Douglas J. Chapski
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dennis Montoya
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Colin P. Farrell
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jennifer Scovotti
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Claudia T. Bueno
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Naomi A. Mimila
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Richard J. Shemin
- Division of Cardiac Surgery, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Elashoff
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emma Monte
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Thomas M. Vondriska
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Jæger KH, Edwards AG, Giles WR, Tveito A. Arrhythmogenic influence of mutations in a myocyte-based computational model of the pulmonary vein sleeve. Sci Rep 2022; 12:7040. [PMID: 35487957 PMCID: PMC9054808 DOI: 10.1038/s41598-022-11110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.
Collapse
Affiliation(s)
| | | | - Wayne R Giles
- Simula Research Laboratory, Oslo, Norway.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
14
|
Management of atrial fibrillation: two decades of progress - a scientific statement from the European Cardiac Arrhythmia Society. J Interv Card Electrophysiol 2022; 65:287-326. [PMID: 35419669 DOI: 10.1007/s10840-022-01195-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in clinical practice. The aim of this review was to evaluate the progress made in the management of AF over the two last decades. RESULTS Clinical classification of AF is usually based on the presence of symptoms, the duration of AF episodes and their possible recurrence over time, although incidental diagnosis is not uncommon. The majority of patients with AF have associated cardiovascular diseases and more recently the recognition of modifiable risk factors both cardiovascular and non-cardiovascular which should be considered in its management. Among AF-related complications, stroke and transient ischaemic accidents (TIAs) carry considerable morbidity and mortality risk. The use of implantable devices such as pacemakers and defibrillators, wearable garments and subcutaneous cardiac monitors with recording capabilities has enabled to access the burden of "subclinical AF". The recent introduction of non-vitamin K antagonists has led to improve the prevention of stroke and peripheral embolism. Agents capable of reversing non-vitamin K antagonists have also become available in case of clinically relevant major bleeding. Transcatheter closure of left atrial appendage represents an option for patients unable to take oral anticoagulation. When treating patients with AF, clinicians need to select the most suitable strategy, i.e. control of heart rate and/or restoration and maintenance of sinus rhythm. The studies comparing these two strategies have not shown differences in terms of mortality. If an AF episode is poorly tolerated from a haemodynamic standpoint, electrical cardioversion is indicated. Otherwise, restoration of sinus rhythm can be obtained using intravenous pharmacological cardioversion and oral class I or class III antiarrhythmic is used to prevent recurrences. During the last two decades after its introduction in daily practice, catheter ablation has gained considerable escalation in popularity. Progress has also been made in AF associated with heart failure with reduced or preserved ejection fraction. CONCLUSIONS Significant progress has been made within the past 2 decades both in the pharmacological and non-pharmacological managements of this cardiac arrhythmia.
Collapse
|
15
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
Collapse
Affiliation(s)
- Bianca J J M Brundel
- Department of Physiology, Amsterdam University Medical Centers, VU Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Myrthe F Kuipers
- AFIPonline.org, Atrial Fibrillation Innovation Platform, Amsterdam, Netherlands
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
16
|
De Bosscher R, Dausin C, Janssens K, Bogaert J, Elliott A, Ghekiere O, Van De Heyning CM, Sanders P, Kalman J, Fatkin D, Herbots L, Willems R, Heidbuchel H, La Gerche A, Claessen G. Rationale and design of the PROspective ATHletic Heart (Pro@Heart) study: long-term assessment of the determinants of cardiac remodelling and its clinical consequences in endurance athletes. BMJ Open Sport Exerc Med 2022; 8:e001309. [PMID: 35368514 PMCID: PMC8935177 DOI: 10.1136/bmjsem-2022-001309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/25/2022] Open
Abstract
Background Exercise-induced cardiac remodelling (EICR) results from the structural, functional and electrical adaptations to exercise. Despite similar sports participation, EICR varies and some athletes develop phenotypic features that overlap with cardiomyopathies. Training load and genotype may explain some of the variation; however, exercise ‘dose’ has lacked rigorous quantification. Few have investigated the association between EICR and genotype. Objectives (1) To identify the impact of training load and genotype on the variance of EICR in elite endurance athletes and (2) determine how EICR and its determinants are associated with physical performance, health benefits and cardiac pathology. Methods The Pro@Heart study is a multicentre prospective cohort trial. Three hundred elite endurance athletes aged 14–23 years will have comprehensive cardiovascular phenotyping using echocardiography, cardiac MRI, 12-lead ECG, exercise-ECG and 24-hour-Holter monitoring. Genotype will be determined using a custom cardiomyopathy gene panel and high-density single-nucleotide polymorphism arrays. Follow-up will include online tracking of training load. Cardiac phenotyping will be repeated at 2, 5, 10 and 20 years. Results The primary endpoint of the Pro@Heart study is the association of EICR with both training load and genotype. The latter will include rare variants in cardiomyopathy-associated genes and polygenic risk scores for cardiovascular traits. Secondary endpoints are the incidence of atrial and ventricular arrhythmias, physical performance and health benefits and their association with training load and genotype. Conclusion The Pro@Heart study is the first long-term cohort study to assess the impact of training load and genotype on EICR. Trial registration number NCT05164328; ACTRN12618000716268.
Collapse
Affiliation(s)
- Ruben De Bosscher
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Cardiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | | | - Kristel Janssens
- Cardiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jan Bogaert
- Radiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - Adrian Elliott
- Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Centre for Heart Rhythm Disorders, The University of Adelaide, Adelaide, South Australia, Australia
| | - Olivier Ghekiere
- Cardiology, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium.,Cardivacsular Sciences, University Hasselt Biomedical Research Institute Rehabilitation Research Center, Diepenbeek, Belgium
| | - Caroline M Van De Heyning
- Cardiology, University of Antwerp, Antwerpen, Belgium.,Cardiovascular Sciences, University Hospital Antwerp, Edegem, Belgium
| | - Prashanthan Sanders
- Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Centre for Heart Rhythm Disorders, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jonathan Kalman
- Cardiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Diane Fatkin
- Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Lieven Herbots
- Cardiology, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium.,Cardivacsular Sciences, University Hasselt Biomedical Research Institute Rehabilitation Research Center, Diepenbeek, Belgium
| | - Rik Willems
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Cardiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - Hein Heidbuchel
- Cardiology, University Hospital Antwerp, Edegem, Belgium.,Cardiovascular Sciences, University of Antwerp, Antwerpen, Belgium
| | - André La Gerche
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Guido Claessen
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Cardiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
17
|
Pensa AV, Baman JR, Puckelwartz MJ, Wilcox JE. Genetically Based Atrial Fibrillation: Current Considerations for Diagnosis and Management. J Cardiovasc Electrophysiol 2022; 33:1944-1953. [PMID: 35262243 DOI: 10.1111/jce.15446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common atrial arrhythmia and is subcategorized into numerous clinical phenotypes. Given its heterogeneity, investigations into the genetic mechanisms underlying AF have been pursued in recent decades, with predominant analyses focusing on early onset or lone AF. Linkage analyses, genome wide association studies (GWAS), and single gene analyses have led to the identification of rare and common genetic variants associated with AF risk. Significant overlap with genetic variants implicated in dilated cardiomyopathy syndromes, including truncating variants of the sarcomere protein titin, have been identified through these analyses, in addition to other genes associated with cardiac structure and function. Despite this, widespread utilization of genetic testing in AF remains hindered by the unclear impact of genetic risk identification on clinical outcomes and the high prevalence of variants of unknown significance (VUS). However, genetic testing is a reasonable option for patients with early onset AF and in those with significant family history of arrhythmia. While many knowledge gaps remain, emerging data support genotyping to inform selection of AF therapeutics. In this review we highlight the current understanding of the complex genetic basis of AF and explore the overlap of AF with inherited cardiomyopathy syndromes. We propose a set of criteria for clinical genetic testing in AF patients and outline future steps for the integration of genetics into AF care. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anthony V Pensa
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jayson R Baman
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane E Wilcox
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
18
|
Malakootian M, Jalilian M, Kalayinia S, Hosseini Moghadam M, Heidarali M, Haghjoo M. Whole-exome sequencing reveals a rare missense variant in DTNA in an Iranian pedigree with early-onset atrial fibrillation. BMC Cardiovasc Disord 2022; 22:37. [PMID: 35148685 PMCID: PMC8832862 DOI: 10.1186/s12872-022-02485-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is a morbid and heritable irregular cardiac rhythm that affects about 2%–3% of the population. Patients with early-onset AF have a strong genetic association with the disease; nonetheless, the exact underlying mechanisms need clarification. We herein present our evaluation of a 2-generation Iranian pedigree with early-onset AF. Whole-exome sequencing was applied to elucidate the genetic predisposition. Direct DNA sequencing was utilized to confirm and screen the variants in the proband and his available family members. The pathogenicity of the identified nucleotide variations was scrutinized via either segregation analysis in the family or in silico predictive software. The comprehensive variant analysis revealed a missense variant (c.G681C, p.E227D, rs1477078144) in the human α-dystrobrevin gene (DTNA), which is rare in genetic databases. Most in silico analyses have predicted this variant as a disease-causing variant, and the variant is co-segregated with the disease phenotype in the family. Previous studies have demonstrated the association between the DTNA gene and left ventricular noncompaction cardiomyopathy. Taken together, we provide the first evidence of an association between a nucleotide variation in the DTNA gene and early-onset AF in an Iranian family. However, the genetic testing of AF in the Iranian population is still limited. This finding not only further confirms the significant role of genetics in the incidence of early-onset AF but also expands the spectrum of the gene variations that lead to AF. Additionally, it may have further implications for the treatment and prevention of AF.
Collapse
Affiliation(s)
- Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jalilian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Heidarali
- Cardiac Electrophysiology Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr St, Hashemi-Rafsanjani Blvd, Tehran, Iran
| | - Majid Haghjoo
- Cardiac Electrophysiology Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr St, Hashemi-Rafsanjani Blvd, Tehran, Iran.
| |
Collapse
|
19
|
Čarná Z, Osmančík P. The Effect of Obesity, Hypertension, Diabetes Mellitus, Alcohol, and Sleep Apnea on the Risk of Atrial Fibrillation. Physiol Res 2021. [DOI: 10.33549//physiolres.934744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia associated with a two-fold increase in mortality caused by a higher risk of stroke and heart failure. Currently, AF is present in ~ 2 % of the general population, and its incidence and prevalence are increasing. Obesity, hypertension, diabetes mellitus, obstructive sleep apnea, and alcohol consumption increase the risk of AF. Each unit of increase in BMI increases the risk of AF by 3 %, and intensive weight loss is also associated with reduced AF recurrence. Hypertension increases the risk of AF by 50 % in men and by 40 % in women, and explains ≈ 20 % of new AF cases. Patients with obstructive sleep apnea are at four times higher risk of developing AF than subjects without sleep apnea. Higher concentrations of pro-inflammatory cytokines, higher amounts of epicardial adipose tissue, and a higher degree of ventricular diffuse myocardial fibrosis are present in AF patients and patients with the aforementioned metabolic disorders. Several prospective cohort studies and randomized trials have been initiated to show whether weight loss and treatment of other risk factors will be associated with a reduction in AF recurrences.
Collapse
Affiliation(s)
| | - P Osmančík
- Cardiocenter, Charles University Prague, Dept. Of Cardiology, Prague, Czech Republic.
| |
Collapse
|
20
|
Kahr PC, Tao G, Kadow ZA, Hill MC, Zhang M, Li S, Martin JF. A novel transgenic Cre allele to label mouse cardiac conduction system. Dev Biol 2021; 478:163-172. [PMID: 34245725 PMCID: PMC8482537 DOI: 10.1016/j.ydbio.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022]
Abstract
The cardiac conduction system is a network of heterogeneous cell population that initiates and propagates electric excitations in the myocardium. Purkinje fibers, a network of specialized myocardial cells, comprise the distal end of the conduction system in the ventricles. The developmental origins of Purkinje fibers and their roles during cardiac physiology and arrhythmia have been reported. However, it is not clear if they play a role during ischemic injury and heart regeneration. Here we introduce a novel tamoxifen-inducible Cre allele that specifically labels a broad range of components in the cardiac conduction system while excludes other cardiac cell types and vital organs. Using this new allele, we investigated the cellular and molecular response of Purkinje fibers to myocardial injury. In a neonatal mouse myocardial infarction model, we observed significant increase in Purkinje cell number in regenerating myocardium. RNA-Seq analysis using laser-captured Purkinje fibers showed a unique transcriptomic response to myocardial infarction. Our finds suggest a novel role of cardiac Purkinje fibers in heart injury.
Collapse
Affiliation(s)
- Peter C Kahr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ge Tao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Zachary A Kadow
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Glinge C, Lahrouchi N, Jabbari R, Tfelt-Hansen J, Bezzina CR. Genome-wide association studies of cardiac electrical phenotypes. Cardiovasc Res 2021; 116:1620-1634. [PMID: 32428210 PMCID: PMC7341169 DOI: 10.1093/cvr/cvaa144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
The genetic basis of cardiac electrical phenotypes has in the last 25 years been the subject of intense investigation. While in the first years, such efforts were dominated by the study of familial arrhythmia syndromes, in recent years, large consortia of investigators have successfully pursued genome-wide association studies (GWAS) for the identification of single-nucleotide polymorphisms that govern inter-individual variability in electrocardiographic parameters in the general population. We here provide a review of GWAS conducted on cardiac electrical phenotypes in the last 14 years and discuss the implications of these discoveries for our understanding of the genetic basis of disease susceptibility and variability in disease severity. Furthermore, we review functional follow-up studies that have been conducted on GWAS loci associated with cardiac electrical phenotypes and highlight the challenges and opportunities offered by such studies.
Collapse
Affiliation(s)
- Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Reza Jabbari
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Frederik V's Vej, 2100 Copenhagen, Denmark
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Chalazan B, Mol D, Darbar FA, Ornelas-Loredo A, Al-Azzam B, Chen Y, Tofovic D, Sridhar A, Alzahrani Z, Ellinor P, Darbar D. Association of Rare Genetic Variants and Early-Onset Atrial Fibrillation in Ethnic Minority Individuals. JAMA Cardiol 2021; 6:811-819. [PMID: 33950154 DOI: 10.1001/jamacardio.2021.0994] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Although rare variants in cardiac ion channels, transcription factors, and myocardial structural proteins are associated with early-onset atrial fibrillation (AF) in White individuals of European descent, it remains unclear whether genetic variation also contributes to the cause of AF in those of minority ethnicity. Objectives To assess the prevalence of rare and novel pathogenic variants in candidate genes in ethnic minority probands with early-onset AF and determine genotype-phenotype associations. Design, Setting, and Participants In this cohort, family-based study, probands of African and Hispanic descent with early-onset AF (defined as AF occurring in individuals aged ≤66 years) prospectively enrolled in a clinical and genetic biorepository underwent sequencing of 60 candidate genes. Recruitment took place from July 1, 2015, to June 30, 2019. Data were analyzed from February 1 to February 28, 2020. Exposures Rare and novel variants categorized as pathogenic or likely pathogenic. Main Outcomes and Measures The prevalence of rare and novel pathogenic variants in African American and Hispanic/Latinx probands with early-onset AF and genotype-phenotype associations. Results Among 227 probands with early-onset AF, mean (SD) age at onset of AF was 51.0 (9.9) years, 132 probands (58.1%) were men, 148 (65.2%) were African American, and 79 (34.8%) were Hispanic/Latinx. A family history of AF was verified in 24 probands with early-onset AF (10.6%). Sequencing 60 candidate genes identified 53 (23 rare and 30 novel) variants with 16 of the 227 (7.0%) probands harboring likely pathogenic (43.8%) or pathogenic (56.2%) variants, with most loss-of-function variants in TTN, the gene encoding the sarcomeric protein titin (46.7%). In 6 families with more than 2 affected members, variants of unknown significance in sodium channel (SCN10A), potassium channel (KCNE5), sarcomeric proteins (MYH6 and TTN), and atrial natriuretic peptide (NPPA) cosegregated with AF. Conclusions and Relevance In this study, likely pathogenic and pathogenic variants were identified, with most loss-of-function variants in TTN, that increase susceptibility to early-onset AF in African American and Hispanic/Latinx individuals. These findings provide further understanding toward molecular phenotyping of AF and suggest novel mechanism-based therapeutic approaches for this common arrhythmia in ethnic minority groups.
Collapse
Affiliation(s)
| | - Denise Mol
- Department of Medicine, University of Illinois at Chicago
| | | | | | - Bahaa Al-Azzam
- Department of Medicine, University of Illinois at Chicago
| | - Yining Chen
- Department of Medicine, University of Illinois at Chicago
| | - David Tofovic
- Department of Medicine, University of Illinois at Chicago
| | - Arvind Sridhar
- Department of Medicine, University of Illinois at Chicago
| | - Zain Alzahrani
- Department of Medicine, University of Illinois at Chicago
| | - Patrick Ellinor
- Department of Medicine, Massachusetts General Hospital, Harvard University, Boston
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago.,Department of Pharmacology, University of Illinois at Chicago.,Department of Medicine, Jesse Brown VA Medical Center, University of Illinois at Chicago
| |
Collapse
|
23
|
Soto-Pedre E, Siddiqui MK, Maroteau C, Dawed AY, Doney AS, Palmer CNA, Pearson ER, Leese GP. Polymorphism in INSR Locus Modifies Risk of Atrial Fibrillation in Patients on Thyroid Hormone Replacement Therapy. Front Genet 2021; 12:652878. [PMID: 34249083 PMCID: PMC8260687 DOI: 10.3389/fgene.2021.652878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Aims Atrial fibrillation (AF) is a risk for patients receiving thyroid hormone replacement therapy. No published work has focused on pharmacogenetics relevant to thyroid dysfunction and AF risk. We aimed to assess the effect of L-thyroxine on AF risk stratified by a variation in a candidate gene. Methods and Results A retrospective follow-up study was done among European Caucasian patients from the Genetics of Diabetes Audit and Research in Tayside Scotland cohort (Scotland, United Kingdom). Linked data on biochemistry, prescribing, hospital admissions, demographics, and genetic biobank were used to ascertain patients on L-thyroxine and diagnosis of AF. A GWAS-identified insulin receptor-INSR locus (rs4804416) was the candidate gene. Cox survival models and sensitivity analyses by taking competing risk of death into account were used. Replication was performed in additional sample (The Genetics of Scottish Health Research register, GoSHARE), and meta-analyses across the results of the study and replication cohorts were done. We analyzed 962 exposed to L-thyroxine and 5,840 unexposed patients who were rs4804416 genotyped. The rarer G/G genotype was present in 18% of the study population. The total follow-up was up to 20 years, and there was a significant increased AF risk for patients homozygous carriers of the G allele exposed to L-thyroxine (RHR = 2.35, P = 1.6e-02). The adjusted increased risk was highest within the first 3 years of exposure (RHR = 9.10, P = 8.5e-04). Sensitivity analysis yielded similar results. Effects were replicated in GoSHARE (n = 3,190). Conclusion Homozygous G/G genotype at the INSR locus (rs4804416) is associated with an increased risk of AF in patients on L-thyroxine, independent of serum of free thyroxine and thyroid-stimulating hormone serum concentrations.
Collapse
Affiliation(s)
- Enrique Soto-Pedre
- Division of Population Health and Genomics, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Moneeza K Siddiqui
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Cyrielle Maroteau
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Adem Y Dawed
- Division of Population Health and Genomics, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Alex S Doney
- Medicines Monitoring Unit and Hypertension Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Colin N A Palmer
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Graham P Leese
- Division of Population Health and Genomics, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.,Department of Endocrinology and Diabetes, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
24
|
Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts. PLoS Biol 2021; 19:e3001229. [PMID: 34003819 PMCID: PMC8130971 DOI: 10.1371/journal.pbio.3001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
DNA methylation, chromatin accessibility, and gene expression represent different levels information in biological process, but a comprehensive multiomics analysis of the mammalian heart is lacking. Here, we applied nucleosome occupancy and methylome sequencing, which detected DNA methylation and chromatin accessibility simultaneously, as well as RNA-seq, for multiomics analysis of the 4 chambers of adult and fetal human hearts, and adult mouse hearts. Our results showed conserved region-specific patterns in the mammalian heart at transcriptome and DNA methylation level. Adult and fetal human hearts showed distinct features in DNA methylome, chromatin accessibility, and transcriptome. Novel long noncoding RNAs were identified in the human heart, and the gene expression profiles of major cardiovascular diseases associated genes were displayed. Furthermore, cross-species comparisons revealed human-specific and mouse-specific differentially expressed genes between the atria and ventricles. We also reported the relationship among multiomics and found there was a bell-shaped relationship between gene-body methylation and expression in the human heart. In general, our study provided comprehensive spatiotemporal and evolutionary insights into the regulation of gene expression in the heart. Multi-omic analyses of the four chambers of the human and mouse heart, including transcriptome, DNA methylation and chromatin accessibility, reveals characteristic patterns of gene regulation at the level of heart regions.
Collapse
|
25
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
26
|
Kovalchuk T, Yakovleva E, Fetisova S, Vershinina T, Lebedeva V, Lyubimtseva T, Lebedev D, Mitrofanova L, Ryzhkov A, Sokolnikova P, Fomicheva Y, Kozyreva A, Zhuk S, Smolina N, Zlotina A, Pervunina T, Kostareva A, Vasichkina E. Case Reports: Emery-Dreifuss Muscular Dystrophy Presenting as a Heart Rhythm Disorders in Children. Front Cardiovasc Med 2021; 8:668231. [PMID: 34026875 PMCID: PMC8137911 DOI: 10.3389/fcvm.2021.668231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is inherited muscle dystrophy often accompanied by cardiac abnormalities in the form of supraventricular arrhythmias, conduction defects and sinus node dysfunction. Cardiac phenotype typically arises years after skeletal muscle presentation, though, could be severe and life-threatening. The defined clinical manifestation with joint contractures, progressive muscle weakness and atrophy, as well as cardiac symptoms are observed by the third decade of life. Still, clinical course and sequence of muscle and cardiac signs may be variable and depends on the genotype. Cardiac abnormalities in patients with EDMD in pediatric age are not commonly seen. Here we describe five patients with different forms of EDMD (X-linked and autosomal-dominant) caused by the mutations in EMD and LMNA genes, presented with early onset of cardiac abnormalities and no prominent skeletal muscle phenotype. The predominant forms of cardiac pathology were atrial arrhythmias and conduction disturbances that progress over time. The presented cases discussed in the light of therapeutic strategy, including radiofrequency ablation and antiarrhythmic devices implantation, and the importance of thorough neurological and genetic screening in pediatric patients presenting with complex heart rhythm disorders.
Collapse
Affiliation(s)
- Tatiana Kovalchuk
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Elena Yakovleva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Svetlana Fetisova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tatiana Vershinina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Viktoriya Lebedeva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tamara Lyubimtseva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Dmitriy Lebedev
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Lubov Mitrofanova
- Pathology Unit, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anton Ryzhkov
- Radiology Unit, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Polina Sokolnikova
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Yuliya Fomicheva
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Alexandra Kozyreva
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Sergey Zhuk
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Natalia Smolina
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Zlotina
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tatiana Pervunina
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Kostareva
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Elena Vasichkina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
27
|
Precision Medicine Approaches to Cardiac Arrhythmias: JACC Focus Seminar 4/5. J Am Coll Cardiol 2021; 77:2573-2591. [PMID: 34016268 DOI: 10.1016/j.jacc.2021.03.325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
In the initial 3 papers in this Focus Seminar series, the fundamentals and key concepts of precision medicine were reviewed, followed by a focus on precision medicine in the context of vascular disease and cardiomyopathy. For the remaining 2 papers, we focus on precision medicine in the context of arrhythmias. Specifically, in this fourth paper we focus on long QT syndrome, Brugada syndrome, and atrial fibrillation. The final (fifth) paper will deal with catecholaminergic polymorphic ventricular tachycardia. These arrhythmias represent a spectrum of disease ranging from common to relatively rare, with very different genetic and environmental causative factors, and with differing clinical manifestations that range from almost no consequences to lethality in childhood or adolescence if untreated. Accordingly, the emerging precision medicine approaches to these arrhythmias vary significantly, but several common themes include increased use of genetic testing, avoidance of triggers, and personalized risk stratification to guide the use of arrhythmia-specific therapies.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Atrial fibrillation is the most common sustained cardiac arrhythmia. In addition to traditional risk factors, it is increasingly recognized that a genetic component underlies atrial fibrillation development. This review aims to provide an overview of the genetic cause of atrial fibrillation and clinical applications, with a focus on recent developments. RECENT FINDINGS Genome-wide association studies have now identified around 140 genetic loci associated with atrial fibrillation. Studies into the effects of several loci and their tentative gene targets have identified novel pathways associated with atrial fibrillation development. However, further validations of causality are still needed for many implicated genes. Genetic variants at identified loci also help predict individual atrial fibrillation risk and response to different therapies. SUMMARY Continued advances in the field of genetics and molecular biology have led to significant insight into the genetic underpinnings of atrial fibrillation. Potential clinical applications of these studies include the identification of new therapeutic targets and development of genetic risk scores to optimize management of this common cardiac arrhythmia.
Collapse
Affiliation(s)
- Jitae A. Kim
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mihail G. Chelu
- Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| |
Collapse
|
29
|
Rebecchi M, Panattoni G, Edoardo B, de Ruvo E, Sciarra L, Politano A, Sgueglia M, Ricagni C, Verbena S, Crescenzi C, Sangiorgi C, Borrelli A, De Luca L, Scarà A, Grieco D, Jacomelli I, Martino A, Calò L. Atrial fibrillation and autonomic nervous system: A translational approach to guide therapeutic goals. J Arrhythm 2021; 37:320-330. [PMID: 33850573 PMCID: PMC8022002 DOI: 10.1002/joa3.12512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The autonomic nervous system (ANS) is known to play an important role in the genesis and maintenance of atrial fibrillation (AF). Biomolecular and genetic mechanisms, anatomical knowledges with recent diagnostic techniques acquisitions, both invasive and non-invasive, have enabled greater therapeutic goals in patients affected by AF related to ANS imbalance. Catheter ablation of ganglionated plexi (GP) in the left and right atrium has been proposed in varied clinical conditions. Moreover interesting results arise from renal sympathetic denervation and vagal nerve stimulation. Despite all this, in the scenario of ANS modulation translational strategies we necessary must consider the treatment or correction of dynamic factors such as obesity, obstructive sleep apnea, lifestyle, food, and stress. Finally, new antiarrhythmic drugs, gene therapy and "ablatogenomic" could be represent exciting future therapeutic perspectives.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Sciarra
- Department of CardiologyPoliclinico CasilinoRomeItaly
| | | | | | | | - Sara Verbena
- Department of CardiologyPoliclinico CasilinoRomeItaly
| | | | | | | | - Lucia De Luca
- Department of CardiologyPoliclinico CasilinoRomeItaly
| | - Antonio Scarà
- Department of CardiologyPoliclinico CasilinoRomeItaly
| | | | | | | | - Leonardo Calò
- Department of CardiologyPoliclinico CasilinoRomeItaly
| |
Collapse
|
30
|
Ezeani M, Prabhu S. Pathophysiology and therapeutic relevance of PI3K(p110α) protein in atrial fibrillation: A non-interventional molecular therapy strategy. Pharmacol Res 2021; 165:105415. [PMID: 33412279 DOI: 10.1016/j.phrs.2020.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Genetically modified animal studies have revealed specific expression patterns and unequivocal roles of class I PI3K isoenzymes. PI3K(p110α), a catalytic subunit of class I PI3Ks is ubiquitously expressed and is well characterised in the cardiovascular system. Given that genetic inhibition of PI3K(p110α) causes lethal phenotype embryonically, the catalytic subunit is critically important in housekeeping and biological processes. A growing number of studies underpin crucial roles of PI3K(p110α) in cell survival, proliferation, hypertrophy and arrhythmogenesis. While the studies provide great insights, the precise mechanisms involved in PI3K(p110α) hypofunction and atrial fibrillation (AF) are not fully known. AF is a well recognised clinical problem with significant management limitations. In this translational review, we attempted a narration of PI3K(p110α) hypofunction in the molecular basis of AF pathophysiology. We sought to cautiously highlight the relevance of this molecule in the therapeutic approaches for AF management per se (i.e without conditions associate with cell proliferation, like cancer), and in mitigating effects of clinical risk factors in atrial substrate formation leading to AF progression. We also considered PI3K(p110α) in AF gene association, with the aim of identifying mechanistic links between the ever increasingly well-defined genetic loci (regions and genes) and AF. Such mechanisms will aid in identifying new drug targets for arrhythmogenic substrate and AF.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Sandeep Prabhu
- The Alfred, and Baker Heart and Diabetes Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Lipovsky CE, Jimenez J, Guo Q, Li G, Yin T, Hicks SC, Bhatnagar S, Takahashi K, Zhang DM, Brumback BD, Goldsztejn U, Nadadur RD, Perez-Cervantez C, Moskowitz IP, Liu S, Zhang B, Rentschler SL. Chamber-specific transcriptional responses in atrial fibrillation. JCI Insight 2020; 5:135319. [PMID: 32841220 PMCID: PMC7526559 DOI: 10.1172/jci.insight.135319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF. Distinct transcriptional changes occur in human left versus right atrial cardiomyocytes in atrial fibrillation, including Notch pathway activation, which alters electric properties and ploidy in murine models.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | - Qiusha Guo
- Department of Medicine, Cardiovascular Division
| | - Gang Li
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division
| | | | - Somya Bhatnagar
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | | | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Carlos Perez-Cervantez
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | | | - Bo Zhang
- Department of Developmental Biology, and
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Abstract
Andersen-Tawil syndrome (ATS) is a very rare orphan genetic multisystem channelopathy without structural heart disease (with rare exceptions). ATS type 1 is inherited in an autosomal dominant fashion and is caused by mutations in the KCNJ2 gene, which encodes the α subunit of the K+ channel protein Kir2.1 (in ≈ 50-60% of cases). ATS type 2 is in turn linked to a rare mutation in the KCNJ5-GIRK4 gene that encodes the G protein-sensitive-activated inwardly rectifying K+ channel Kir3.4 (15%), which carries the acetylcholine-induced potassium current. About 30% of cases are de novo/sporadic, suggesting that additional as-yet unidentified genes also cause the disorder. A triad of periodic muscle paralysis, repolarization changes in the electrocardiogram, and structural body changes characterize ATS. The typical muscular change is episodic flaccid muscle weakness. Prolongation of the QU/QUc intervals and normal or minimally prolonged QT/QTc intervals with a tendency to ventricular arrhythmias are typical repolarization changes. Bidirectional ventricular tachycardia is the hallmark ventricular arrhythmia, but also premature ventricular contractions, and rarely, polymorphic ventricular tachycardia of torsade de pointes type may be present. Patients with ATS have characteristic physical developmental dysmorphisms that affect the face, skull, limbs, thorax, and stature. Mild learning difficulties and a distinct neurocognitive phenotype (deficits in executive function and abstract reasoning) have been described. About 60% of affected individuals have all features of the major triad. The purpose of this review is to present historical aspects, nomenclature (observations/criticisms), epidemiology, genetics, electrocardiography, arrhythmias, electrophysiological mechanisms, diagnostic criteria/clues of periodic paralysis, prognosis, and management of ATS.
Collapse
|
33
|
Nakajima T, Kawabata-Iwakawa R, Kaneko Y, Hamano SI, Sano R, Tamura S, Hasegawa H, Kobari T, Kominato Y, Nishiyama M, Kurabayashi M. Novel Cardiocerebral Channelopathy Associated with a KCND3 V392I Mutation. Int Heart J 2020; 61:1049-1055. [PMID: 32921676 DOI: 10.1536/ihj.20-203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While a KCND3 V392I mutation uniquely displays a mixed electrophysiological phenotype of Kv4.3, only limited clinical information on the mutation carriers is available. We report two teenage siblings exhibiting both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral phenotypes (epilepsy and intellectual disability), in whom we identified the KCND3 V392I mutation. We propose a link between the KCND3 mutation with a mixed electrophysiological phenotype and cardiocerebral phenotypes, which may be defined as a novel cardiocerebral channelopathy.
Collapse
Affiliation(s)
- Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | | | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| |
Collapse
|
34
|
Baba M, Yoshida K, Naruse Y, Hattori A, Yui Y, Kimata A, Ito Y, Tsumagari Y, Tsuneoka H, Shinoda Y, Harunari T, Hanaki Y, Hasebe H, Misaki M, Abe D, Nogami A, Ieda M, Takeyasu N. Predictors of Recurrence after Catheter Ablation of Paroxysmal Atrial Fibrillation in Different Follow-Up Periods. MEDICINA-LITHUANIA 2020; 56:medicina56090465. [PMID: 32932837 PMCID: PMC7557836 DOI: 10.3390/medicina56090465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 11/24/2022]
Abstract
Background and objectives: Pulmonary vein (PV) reconnection is a major reason for recurrence after catheter ablation of paroxysmal atrial fibrillation (PAF). However, the timing of the recurrence varies between patients, and recurrence >1 year after ablation is not uncommon. We sought to elucidate the characteristics of atrial fibrillation (AF) that recurred in different follow-up periods. Materials and Methods: Study subjects comprised 151 consecutive patients undergoing initial catheter ablation of PAF. Left atrial volume index (LAVi) and atrial/brain natriuretic peptide (ANP/BNP) levels were systematically measured annually over 3 years until AF recurred. Results: Study subjects were classified into four groups: non-recurrence group (n = 84), and short-term- (within 1 year) (n = 30), mid-term- (1–3 years) (n = 26), and long-term-recurrence group (>3 years) (n = 11). The short-term-recurrence group was characterized by a higher prevalence of diabetes mellitus (hazard ratio 2.639 (95% confidence interval, 1.174–5.932), p = 0.019 by the Cox method), frequent AF episodes (≥1/week) before ablation (4.038 (1.545–10.557), p = 0.004), and higher BNP level at baseline (per 10 pg/mL) (1.054 (1.029–1.081), p < 0.0001). The mid-term-recurrence group was associated with higher BNP level (1.163 (1.070–1.265), p = 0.0004), larger LAVi (mL/m2) (1.033 (1.007–1.060), p = 0.013), and longer AF cycle length at baseline (per 10 ms) (1.194 (1.058–1.348), p = 0.004). In the long-term-recurrence group, the ANP and BNP levels were low throughout follow-up, as with those in the non-recurrence group, and AF cycle length was shorter (0.694 (0.522–0.924), p = 0.012) than those in the other recurrence groups. Conclusions: Distinct characteristics of AF were found according to the time to first recurrence after PAF ablation. The presence of secondary factors beyond PV reconnections could be considered as mechanisms for the recurrence of PAF in each follow-up period.
Collapse
Affiliation(s)
- Masako Baba
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Kentaro Yoshida
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
- Correspondence:
| | - Yoshihisa Naruse
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Ai Hattori
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Yoshiaki Yui
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Akira Kimata
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Yoko Ito
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Yasuaki Tsumagari
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Hidekazu Tsuneoka
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Yasutoshi Shinoda
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Tomohiko Harunari
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Yuichi Hanaki
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Hideyuki Hasebe
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Masako Misaki
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Daisuke Abe
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| | - Noriyuki Takeyasu
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Kasama 309-1793, Japan; (M.B.); (Y.N.); (A.H.); (Y.Y.); (A.K.); (Y.I.); (Y.T.); (H.T.); (Y.S.); (T.H.); (Y.H.); (M.M.); (D.A.); (N.T.)
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (H.H.); (A.N.); (M.I.)
| |
Collapse
|
35
|
Xu C, Zhang R, Xia Y, Xiong L, Yang W, Wang P. Annotation of susceptibility SNPs associated with atrial fibrillation. Aging (Albany NY) 2020; 12:16981-16998. [PMID: 32902410 PMCID: PMC7521544 DOI: 10.18632/aging.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) and the candidate gene based association studies have identified a panel of variants associated with atrial fibrillation (AF), however, most of the identified single nucleotide polymorphisms (SNPs) were found located within intergenic or intronic genomic regions, and whether the positive SNPs have a real biological function is unknown, and the real disease causing gene need to be studied. RESULTS The current results of the genetic studies including common variants identified by GWAS (338 index SNPs) and candidate gene based association studies (40 SNPs) were summarized. CONCLUSION Our study suggests the relationship between genetic variants and possible targeted genes, and provides insight into potential genetic pathways underlying AF incidence and development. The results may provide an encyclopedia of AF susceptibility SNPs and shed light on the functional mechanisms of AF variants identified through genetic studies. METHODS We summarized AF susceptibility SNPs identified by GWAS and candidate gene based association studies, and give a comprehensive functional annotation of all these AF susceptibility loci. by genomic annotation, microRNA binding prediction, promoter activity analysis, enhancer activity analysis, transcription factors binding activity prediction, expression quantitative trait loci (eQTL) analysis, long-range transcriptional regulatory function analysis, gene ontology and pathway enrichment analysis.
Collapse
Affiliation(s)
- Chengqi Xu
- College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| |
Collapse
|
36
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
37
|
Jansen HJ, Bohne LJ, Gillis AM, Rose RA. Atrial remodeling and atrial fibrillation in acquired forms of cardiovascular disease. Heart Rhythm O2 2020; 1:147-159. [PMID: 34113869 PMCID: PMC8183954 DOI: 10.1016/j.hroo.2020.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) is prevalent in common conditions and acquired forms of heart disease, including diabetes mellitus (DM), hypertension, cardiac hypertrophy, and heart failure. AF is also prevalent in aging. Although acquired heart disease is common in aging individuals, age is also an independent risk factor for AF. Importantly, not all individuals age at the same rate. Rather, individuals of the same chronological age can vary in health status from fit to frail. Frailty can be quantified using a frailty index, which can be used to assess heterogeneity in individuals of the same chronological age. AF is thought to occur in association with electrical remodeling due to changes in ion channel expression or function as well as structural remodeling due to fibrosis, myocyte hypertrophy, or adiposity. These forms of remodeling can lead to triggered activity and electrical re-entry, which are fundamental mechanisms of AF initiation and maintenance. Nevertheless, the underlying determinants of electrical and structural remodeling are distinct in different conditions and disease states. In this focused review, we consider the factors leading to atrial electrical and structural remodeling in human patients and animal models of acquired cardiovascular disease or associated risk factors. Our goal is to identify similarities and differences in the cellular and molecular bases for atrial electrical and structural remodeling in conditions including DM, hypertension, hypertrophy, heart failure, aging, and frailty.
Collapse
Affiliation(s)
- Hailey J Jansen
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anne M Gillis
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Chung MK, Refaat M, Shen WK, Kutyifa V, Cha YM, Di Biase L, Baranchuk A, Lampert R, Natale A, Fisher J, Lakkireddy DR. Atrial Fibrillation. J Am Coll Cardiol 2020; 75:1689-1713. [DOI: 10.1016/j.jacc.2020.02.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022]
|
39
|
Hoffmann S, Paone C, Sumer SA, Diebold S, Weiss B, Roeth R, Clauss S, Klier I, Kääb S, Schulz A, Wild PS, Ghrib A, Zeller T, Schnabel RB, Just S, Rappold GA. Functional Characterization of Rare Variants in the SHOX2 Gene Identified in Sinus Node Dysfunction and Atrial Fibrillation. Front Genet 2019; 10:648. [PMID: 31354791 PMCID: PMC6637028 DOI: 10.3389/fgene.2019.00648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Sinus node dysfunction (SND) and atrial fibrillation (AF) often coexist; however, the molecular mechanisms linking both conditions remain elusive. Mutations in the homeobox-containing SHOX2 gene have been recently associated with early-onset and familial AF. Shox2 is a key regulator of sinus node development, and its deficiency leads to bradycardia, as demonstrated in animal models. To provide an extended SHOX2 gene analysis in patients with distinct arrhythmias, we investigated SHOX2 as a susceptibility gene for SND and AF by screening 98 SND patients and 450 individuals with AF. The functional relevance of the novel mutations was investigated in vivo and in vitro, together with the previously reported p.H283Q variant. A heterozygous missense mutation (p.P33R) was identified in the SND cohort and four heterozygous variants (p.G77D, p.L129=, p.L130F, p.A293=) in the AF cohort. Overexpression of the pathogenic predicted mutations in zebrafish revealed pericardial edema for p.G77D and the positive control p.H283Q, whereas the p.P33R and p.A293= variants showed no effect. In addition, a dominant-negative effect with reduced heart rates was detected for p.G77D and p.H283Q. In vitro reporter assays demonstrated for both missense variants p.P33R and p.G77D significantly impaired transactivation activity, similar to the described p.H283Q variant. Also, a reduced Bmp4 target gene expression was revealed in zebrafish hearts upon overexpression of the p.P33R mutant. This study associates additional rare variants in the SHOX2 gene implicated in the susceptibility to distinct arrhythmias and allows frequency estimations in the AF cohort (3/990). We also demonstrate for the first time a genetic link between SND and AF involving SHOX2. Moreover, our data highlight the importance of functional investigations of rare variants.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Paone
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Simon A Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sabrina Diebold
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Birgit Weiss
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Clauss
- Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Ina Klier
- Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Adil Ghrib
- Department of General and Interventional Cardiology, University Heart Center Hamburg (UHZ), University Hospital Hamburg/Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg (UHZ), University Hospital Hamburg/Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg (UHZ), University Hospital Hamburg/Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
40
|
|
41
|
Dai W, Laforest B, Tyan L, Shen KM, Nadadur RD, Alvarado FJ, Mazurek SR, Lazarevic S, Gadek M, Wang Y, Li Y, Valdivia HH, Shen L, Broman MT, Moskowitz IP, Weber CR. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. eLife 2019; 8:41814. [PMID: 30896405 PMCID: PMC6428569 DOI: 10.7554/elife.41814] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca2+ homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF. We show that cardiomyocyte action potential (AP) abnormalities in Tbx5-deficient atrial cardiomyocytes are caused by a decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2)-mediated SR calcium uptake which was balanced by enhanced trans-sarcolemmal calcium fluxes (calcium current and sodium/calcium exchanger), providing mechanisms for triggered activity. The AP defects, cardiomyocyte ectopy, and AF caused by TBX5 deficiency were rescued by phospholamban removal, which normalized SERCA function. These results directly link transcriptional control of SERCA2 activity, depressed SR Ca2+ sequestration, enhanced trans-sarcolemmal calcium fluxes, and AF, establishing a mechanism underlying the genetic basis for a Ca2+-dependent pathway for AF risk. The human heart contains four distinct chambers that work together to pump blood around the body. In individuals with a condition called atrial fibrillation, two of the chambers (known as the atria) beat irregularly and are unable to push all the blood they hold into the other two chambers of the heart. This can cause heart failure and increases the likelihood of blood clots, which may lead to stroke and heart attacks. Small molecules called calcium ions play a crucial role in regulating how and when the atria contract by driving electrical activity in heart cells. To contract the atria, a storage compartment within heart cells known as the sarcoplasmic reticulum releases calcium ions into the main compartment of the cells. Calcium ions also enter the cell from the surrounding tissue. As the atria relax, calcium ions are pumped back into the sarcoplasmic reticulum or out of the cell by specific transport proteins. Individuals with mutations in a gene called Tbx5 are more likely to develop atrial fibrillation than other people, but it was not clear how such gene mutations contribute to the disease. Here, Dai, Laforest et al. used mice with a mutation in the Tbx5 gene to study how defects in Tbx5 affect electrical activity in heart cells. The experiments found that the Tbx5 gene was critical for calcium ions to drive normal electrical activity in mouse heart cells. Compared with heart cells from normal mice, the heart cells from the mutant mice had decreased flow of calcium ions into the sarcoplasmic reticulum and increased flow of calcium ions out of the cell. These findings provide a direct link between atrial fibrillation and the flow of calcium ions in heart cells. Together with previous work, these findings indicate that multiple different mechanisms could lead to atrial fibrillation, but that many of these involve changes in the flow of calcium ions. Therefore, personalized medicine, where clinicians uncover the specific mechanisms responsible for atrial fibrillation in individual patients, may play an important role in treating this condition in the future.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, United States
| | - Brigitte Laforest
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Leonid Tyan
- Department of Pathology, University of Chicago, Chicago, United States
| | - Kaitlyn M Shen
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Francisco J Alvarado
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Stefan R Mazurek
- Department of Medicine, University of Chicago, Chicago, United States
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Margaret Gadek
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Yitang Wang
- Department of Pathology, University of Chicago, Chicago, United States
| | - Ye Li
- Department of Pathology, University of Chicago, Chicago, United States
| | - Hector H Valdivia
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Le Shen
- Department of Pathology, University of Chicago, Chicago, United States.,Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, United States
| | - Michael T Broman
- Department of Medicine, University of Chicago, Chicago, United States
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | | |
Collapse
|
42
|
Ahlberg G, Refsgaard L, Lundegaard PR, Andreasen L, Ranthe MF, Linscheid N, Nielsen JB, Melbye M, Haunsø S, Sajadieh A, Camp L, Olesen SP, Rasmussen S, Lundby A, Ellinor PT, Holst AG, Svendsen JH, Olesen MS. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun 2018; 9:4316. [PMID: 30333491 PMCID: PMC6193003 DOI: 10.1038/s41467-018-06618-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
A family history of atrial fibrillation constitutes a substantial risk of developing the disease, however, the pathogenesis of this complex disease is poorly understood. We perform whole-exome sequencing on 24 families with at least three family members diagnosed with atrial fibrillation (AF) and find that titin-truncating variants (TTNtv) are significantly enriched in these patients (P = 1.76 × 10−6). This finding is replicated in an independent cohort of early-onset lone AF patients (n = 399; odds ratio = 36.8; P = 4.13 × 10−6). A CRISPR/Cas9 modified zebrafish carrying a truncating variant of titin is used to investigate TTNtv effect in atrial development. We observe compromised assembly of the sarcomere in both atria and ventricle, longer PR interval, and heterozygous adult zebrafish have a higher degree of fibrosis in the atria, indicating that TTNtv are important risk factors for AF. This aligns with the early onset of the disease and adds an important dimension to the understanding of the molecular predisposition for AF. Common genetic variants in structural proteins contribute to risk of atrial fibrillation (AF). Here, using whole-exome sequencing, the authors identify rare truncating variants in TTN that associate with familial and early-onset AF and show defects in cardiac sarcomere assembly in ttn.2-mutant zebrafish.
Collapse
Affiliation(s)
- Gustav Ahlberg
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Lena Refsgaard
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Laura Andreasen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Mattis F Ranthe
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, 2300 S, Denmark
| | - Nora Linscheid
- Cardiac Proteomics Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Jonas B Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, 2300 S, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Copenhagen, 2400, Denmark
| | - Lu Camp
- The Lundbeck Foundation Centre for Applied Medical Genomics in Personalized Disease Prediction, Prevention and Care, Copenhagen, 2200 N, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Alicia Lundby
- Cardiac Proteomics Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Patrick T Ellinor
- Cardiovascular Research Centre, Massachusetts General Hospital, Boston, 02114, MA, USA.,Program in Population and Medical Genetics, The Broad Institute of Harvard and MIT, Cambridge, 02114, MA, USA
| | - Anders G Holst
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark
| | - Jesper H Svendsen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark. .,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.
| |
Collapse
|
43
|
Alzahrani Z, Ornelas-Loredo A, Darbar SD, Farooqui A, Mol D, Chalazan B, Villagrana NE, McCauley M, Lazar S, Wissner E, Bhan A, Konda S, Darbar D. Association Between Family History and Early-Onset Atrial Fibrillation Across Racial and Ethnic Groups. JAMA Netw Open 2018; 1:e182497. [PMID: 30646169 PMCID: PMC6324458 DOI: 10.1001/jamanetworkopen.2018.2497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/08/2018] [Indexed: 12/19/2022] Open
Abstract
Importance There is a genetic predisposition to early-onset atrial fibrillation (EOAF) in European American individuals. However, the role of family history in the pathogenesis of EOAF in racial and ethnic minorities remains unclear. Objective To determine whether probands with EOAF across racial and ethnic groups have a higher rate of AF in first-degree family members than racially and ethnically matched control patients with non-early-onset AF (non-EOAF). Design, Setting, and Participants In this cohort study, patients prospectively enrolled in a clinical and genetic biorepository were administered baseline questionnaires that included questions about family history of AF. Early-onset AF was defined as AF occurring in probands aged 60 years or younger in the absence of structural heart disease. All other forms were categorized as non-EOAF. Recruitment took place from July 2015 to December 2017. Analysis was performed in January 2018. Main Outcomes and Measures Primary analysis of reported family history of AF in first-degree relatives with sensitivity analysis restricted to those in whom a family history was confirmed by medical record review and electrocardiogram. Results Of 664 patients enrolled (mean [SD] age, 62 [12] years; 407 [61%] male), 267 (40%) were European American; 258 (39%), African American; and 139 (21%), Hispanic/Latino. There was a family history of AF in 36 probands with EOAF (49%) compared with 128 patients with non-EOAF (22%) (difference, 27%; 95% CI, 14%-40%; P < .001). On multivariable analysis, the adjusted odds of a proband with EOAF who was of African descent (odds ratio [OR], 2.69; 95% CI, 1.06-6.91; P < .001) or Hispanic descent (OR, 9.25; 95% CI, 2.37-36.23; P = .002) having a first-degree relative with AF were greater than those of European descent (OR, 2.51; 95% CI, 1.29-4.87; P = .006). Overall, probands with EOAF were more likely to have a first-degree relative with AF compared with patients with non-EOAF (adjusted OR, 3.02; 95% CI, 1.82-4.95; P < .001) across the 3 racial and ethnic groups. Atrial fibrillation in a first-degree family member was confirmed in 32% of probands with EOAF vs 11% of those with non-EOAF (difference, 21%; 95% CI, 11%-33%; P < .001). Furthermore, African American (28% vs 5%; difference, 23%; 95% CI, 4%-43%; P = .001), European American (35% vs 20%; difference, 15%; 95% CI, 1%-30%; P = .03), and Hispanic/Latino (30% vs 5%; difference, 25%; 95% CI, 4%-54%; P = .02) probands with EOAF were more likely to have a first-degree relative with confirmed AF vs racially and ethnically matched control patients with non-EOAF. The positive and negative predictive values for a family history of confirmed AF were both 89%. Conclusions and Relevance Probands of African or Hispanic/Latino descent with EOAF were more likely to have a first-degree relative with AF when compared with European American individuals. These findings support genetic predisposition to EOAF across all 3 races.
Collapse
Affiliation(s)
- Zain Alzahrani
- Department of Medicine, University of Illinois at Chicago
| | | | - Sara D. Darbar
- Department of Medicine, University of Illinois at Chicago
| | | | - Denise Mol
- Department of Medicine, University of Illinois at Chicago
| | | | | | - Mark McCauley
- Department of Medicine, University of Illinois at Chicago
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Sorin Lazar
- Department of Medicine, University of Illinois at Chicago
| | - Erik Wissner
- Department of Medicine, University of Illinois at Chicago
| | - Adarsh Bhan
- Department of Medicine, University of Illinois at Chicago
| | - Sreenivas Konda
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
44
|
Haqqani HM, Chan KH, Gregory AT, Denniss AR. Atrial Fibrillation: State of the Art in 2017 - Shifting Paradigms in Pathogenesis, Diagnosis, Treatment and Prevention. Heart Lung Circ 2018; 26:867-869. [PMID: 28778375 DOI: 10.1016/s1443-9506(17)31276-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Haris M Haqqani
- Heart Rhythm Section Editor, Heart Lung and Circulation; Special Issue Co-editor, Atrial Fibrillation: State of the Art in 2017; Cardiology, The Prince Charles Hospital, Brisbane, Qld, Australia.
| | - Kim H Chan
- Heart Rhythm Section Editor, Heart Lung and Circulation; Special Issue Co-editor, Atrial Fibrillation: State of the Art in 2017; Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - A Robert Denniss
- Editor in Chief, Heart Lung and Circulation; Department of Cardiology, Westmead Hospital, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Blacktown Hospital, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
45
|
Fatkin D. ETV1: A New Player in Atrial Remodeling. Circ Res 2018; 123:515-517. [PMID: 30355145 DOI: 10.1161/circresaha.118.313606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Diane Fatkin
- From the Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (D.F.).,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Australia (D.F.).,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia (D.F.)
| |
Collapse
|
46
|
Ugowe FE, Jackson LR, Thomas KL. Racial and ethnic differences in the prevalence, management, and outcomes in patients with atrial fibrillation: A systematic review. Heart Rhythm 2018; 15:1337-1345. [PMID: 29803022 DOI: 10.1016/j.hrthm.2018.05.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 01/26/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in the United States and is associated with increased morbidity, mortality, and health care expenditures. In this review, our aim was to assess the racial and ethnic differences in the epidemiology, management, and outcomes of patients with AF. A search of relevant studies from January 1, 2007, to December 30, 2017, was conducted in PubMed, EMBASE, and Web of Science and supplemented by manual searches of the bibliographies of retrieved articles. We identified 152 studies of which 64 were subsequently included. We found that underrepresented racial and ethnic groups have a higher prevalence of established risk factors associated with the development of AF but an overall lower incidence and prevalence of AF as compared with non-Hispanic whites. Moreover, racial and ethnic differences exist in detection, awareness, and AF-associated symptoms. Nonwhite populations also experience decreased use of rhythm control modalities and anticoagulation for stroke prevention. Lastly, among those with AF, underrepresented racial and ethnic groups had increased morbidity and mortality relative to white groups. Racial and ethnic differences exist in the prevalence, quality of life, management, and outcomes of individuals with AF; however, the mechanisms for these differences have yet to be fully elucidated. Racial and ethnic differences in AF warrant further analysis to understand the factors contributing to the differences in prevalence and management to ensure the delivery of high quality care that prevents stroke, reduces deaths, and decreases expenses associated with caring for underrepresented populations with AF.
Collapse
Affiliation(s)
| | - Larry R Jackson
- Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Kevin L Thomas
- Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|
47
|
Büttner P, Ueberham L, Shoemaker MB, Roden DM, Dinov B, Hindricks G, Bollmann A, Husser D. Identification of Central Regulators of Calcium Signaling and ECM-Receptor Interaction Genetically Associated With the Progression and Recurrence of Atrial Fibrillation. Front Genet 2018; 9:162. [PMID: 29868113 PMCID: PMC5964985 DOI: 10.3389/fgene.2018.00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/20/2018] [Indexed: 01/04/2023] Open
Abstract
Atrial fibrillation (AF) is a multifactorial disease with a strong genetic background. It is assumed that common and rare genetic variants contribute to the progression and recurrence of AF. The pathophysiological impact of those variants, especially when they are synonymous or non-coding, is often elusive and translation into functional experiments is difficult. In this study, we propose a method to go straight from genetic variants to defined gene targets. We focused on 55 genes from calcium signaling and 26 genes from extra cellular matrix ECM–receptor interaction that we found to be associated with the progression and recurrence of AF. These genes were mapped on protein–protein interaction data from three different databases. Based on the concept that central regulators are highly connected with their neighbors, we identified central hub proteins according to random walk analysis derived scores representing interaction grade. Our approach resulted in the identification of EGFR, RYR2, and PRKCA (calcium signaling) and FN1 and LAMA1 (ECM–receptor interaction) which represent promising targets for further functional characterization or pharmaceutical intervention.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Laura Ueberham
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - M B Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
48
|
Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation. J Mol Med (Berl) 2018; 96:601-610. [DOI: 10.1007/s00109-018-1647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
|
49
|
Fatkin D, Cox CD, Huttner IG, Martinac B. Is There a Role for Genes in Exercise-Induced Atrial Cardiomyopathy? Heart Lung Circ 2018; 27:1093-1098. [PMID: 29706494 DOI: 10.1016/j.hlc.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
In endurance athletes, prolonged high intensity exercise participation can have deleterious effects on the myocardium with subsequent structural and electrical remodelling. In a subset of athletes, there is a predilection for atrial involvement and the risk of atrial fibrillation (AF) is increased. The mechanisms underpinning exercise-induced atrial cardiomyopathy have yet to be fully elucidated and the contribution of an individual's genetic makeup is unknown. Some athletes may have rare genetic variants that are sufficient to cause AF irrespective of exercise exposure. In AF-causing variant carriers, the additional haemodynamic stress of exercise on atrial structure and function might accelerate or increase the severity of disease. Variants in genes that lack known links to AF may indirectly promote an arrhythmogenic substrate by affecting threshold levels for exercise-induced myocardial damage and remodelling responses, or by effects on AF-associated co-morbidities, sinus node function, and autonomic nervous system tone. Given the exquisite stress-sensitivity of the atria, mechanosensitive ion channels could plausibly have a key role in mediating exercise effects on atrial structure and function. Knowing an athlete's profile of genetic variants may be useful for AF risk stratification and have implications for clinical management. Pre-participation genetic testing may influence sports choices and facilitate AF prevention.
Collapse
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Cardiology Department, St. Vincent's Hospital, Sydney, NSW, Australia.
| | - Charles D Cox
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
50
|
Genetic modulation of atrial fibrillation risk in a Hispanic/Latino cohort. PLoS One 2018; 13:e0194480. [PMID: 29624624 PMCID: PMC5889061 DOI: 10.1371/journal.pone.0194480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/05/2018] [Indexed: 01/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac rhythm disorder worldwide but the underlying genetic and molecular mechanisms and the response to therapies is not fully understood. Despite a greater burden of AF risk factors in Hispanics/Latinos the prevalence of AF remains low. Over the last decade, genome-wide association studies have identified numerous AF susceptibility loci in mostly whites of European descent. The goal of this study was to determine if the top 9 single nucleotide polymorphisms (SNPs) associated with AF in patients of European descent also increase susceptibility to AF in Hispanics/Latinos. AF cases were prospectively enrolled in the University of Illinois at Chicago (UIC) AF Registry and control subjects were identified from the UIC Cohort of Patients, Family and Friends. AF cases and controls were genotyped for 9 AF risk SNPs at chromosome 1q21: rs13376333, rs6666258; chr1q24: rs3903239; chr4q25: rs2200733; rs10033464; chr10q22: rs10824026; chr14q23: rs1152591; chr16q22: rs2106261 and rs7193343. The study sample consisted of 713 Hispanic/Latino subjects including 103 AF cases and 610 controls. Among the 8 AF risk SNPs genotyped, only rs10033464 SNP at chromosome (chr) 4q25 (near PITX2) was significantly associated with development of AF after multiple risk factor adjustment and multiple testing (adj. odds ratio [OR] 2.27, 95% confidence interval [CI] 1.31–3.94; P = 3.3 x 10−3). Furthermore, the association remained significant when the analysis was restricted to Hispanics of Mexican descent (adj. OR 2.32, 95% CI 1.35–3.99; P = 0.002. We confirm for the first time the association between a chromosome 4q25 SNP and increased susceptibility to AF in Hispanics/Latinos. While the underlying molecular mechanisms by which the chr4q25 SNP modulates AF risk remains unclear, this study supports a genetic basis for non-familial AF in patients of Hispanic descent.
Collapse
|