1
|
Chang JE, Wang T, Kim K, Folstad M, Endres M, Howard M, Kenkre V, Fletcher C, Rajguru S. Maintenance low-dose fixed duration lenalidomide and rituximab following bendamustine and rituximab induction in previously untreated chronic lymphocytic leukemia and small lymphocytic lymphoma. Leuk Lymphoma 2024; 65:1456-1464. [PMID: 38856101 DOI: 10.1080/10428194.2024.2360535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Lenalidomide (LEN) and rituximab (RTX) have independently improved progression-free survival (PFS) in CLL, leading to interest in use of LEN + RTX (R2) following induction chemoimmunotherapy. Patients with previously untreated CLL received bendamustine + RTX (BR) for 6 cycles, then 24 cycles of R2. LEN dosing was 5-10 mg daily; RTX was given odd cycles (12 doses). The primary endpoint is PFS; secondary endpoints are response and overall survival. Thirty-six patients enrolled, median age 64.5 years. Twenty-nine received R2; 12 completed a full course R2 (33.3%), 5 completed R2 with premature discontinuation of LEN. Dose reductions/holds were most often for neutropenia. Complete response was achieved in 33.3%. After median >4 years follow-up, 2-year and 3-year PFS were 86.1% and 69.4%. Five-year overall survival was 92.3%. R2 maintenance may improve PFS after BR induction, and a lower dose of 5 mg/day and ≤1 year of R2 may be most tolerable (NCT00974233).
Collapse
Affiliation(s)
- Julie E Chang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health and the UW Carbone Cancer Center, Madison, WI, USA
| | - Tuo Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Matthew Folstad
- Department of Medicine, University of Wisconsin School of Medicine and Public Health and the UW Carbone Cancer Center, Madison, WI, USA
| | - Mariah Endres
- Carbone Cancer Center, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Mitch Howard
- Carbone Cancer Center, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Vaishalee Kenkre
- Department of Medicine, University of Wisconsin School of Medicine and Public Health and the UW Carbone Cancer Center, Madison, WI, USA
| | - Christopher Fletcher
- Department of Medicine, University of Wisconsin School of Medicine and Public Health and the UW Carbone Cancer Center, Madison, WI, USA
| | - Saurabh Rajguru
- Department of Medicine, University of Wisconsin School of Medicine and Public Health and the UW Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Ostojska M, Nowak E, Twardowska J, Lejman M, Zawitkowska J. CAR-T Cell Therapy in the Treatment of Pediatric Non-Hodgkin Lymphoma. J Pers Med 2023; 13:1595. [PMID: 38003910 PMCID: PMC10672004 DOI: 10.3390/jpm13111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Non-Hodgkin lymphomas (NHL) are a group of cancers that originate in the lymphatic system, especially from progenitor or mature B-cells, T-cells, or natural killer (NK) cells. NHL is the most common hematological malignancy worldwide and also the fourth most frequent type of cancer among pediatric patients. This cancer can occur in children of any age, but it is quite rare under the age of 5 years. In recent decades, available medicines and therapies have significantly improved the prognosis of patients with this cancer. However, some cases of NHL are treatment resistant. For this reason, immunotherapy, as a more targeted and personalized treatment strategy, is becoming increasingly important in the treatment of NHL in pediatric patients. The objective of the following review is to gather the latest available research results, conducted among pediatric and/or adult patients with NHL, regarding one immunotherapy method, i.e., chimeric antigen receptor (CAR) T cell therapy. We focus on assessing the effectiveness of CAR-T cell therapy, which mainly targets B cell markers, CD19, CD20, and CD22, their connections with one another, sequential treatment, or connections with co-stimulatory molecules. In addition, we also evaluate the safety, aftermath (especially neurotoxicities) and limitations of CAR-T cell therapy.
Collapse
Affiliation(s)
- Magdalena Ostojska
- Student’s Scientific Association of the Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland; (M.O.); (E.N.); (J.T.)
| | - Emilia Nowak
- Student’s Scientific Association of the Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland; (M.O.); (E.N.); (J.T.)
| | - Julia Twardowska
- Student’s Scientific Association of the Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland; (M.O.); (E.N.); (J.T.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|
4
|
Lam V, Roleder C, Liu T, Bruss N, Best S, Wang X, Phillips T, Shouse G, Berger AJ, Alinari L, Wang L, Siddiqi T, Pennock ND, Danilov AV. T Cell-intrinsic Immunomodulatory Effects of TAK-981 (Subasumstat), a SUMO-activating Enzyme Inhibitor, in Chronic Lymphocytic Leukemia. Mol Cancer Ther 2023; 22:1040-1051. [PMID: 37420267 PMCID: PMC10525033 DOI: 10.1158/1535-7163.mct-22-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Novel targeted agents used in therapy of lymphoid malignancies are recognized to have complex immune-mediated effects. Sumoylation, a posttranslational modification of target proteins by small ubiquitin-like modifiers (SUMO), regulates a variety of cellular processes indispensable in immune cell activation. Despite this, the role of sumoylation in T-cell biology in context of cancer is not known. TAK-981 (subasumstat) is a small-molecule inhibitor of the SUMO-activating enzyme (SAE) that forms a covalent adduct with an activated SUMO protein. Using T cells derived from patients with chronic lymphocytic leukemia (CLL), we demonstrate that targeting SAE activates type I IFN response. This is accompanied by largely intact T-cell activation in response to T-cell receptor engagement, with increased expression of CD69 and CD38. Furthermore, TAK-981 decreases regulatory T cell (Treg) differentiation and enhances secretion of IFNγ by CD4+ and CD8+ T cells. These findings were recapitulated in mouse models, suggesting an evolutionarily conserved mechanism of T-cell activation regulated by SUMO modification. Relevant to the consideration of TAK-981 as an effective agent for immunotherapy in hematologic malignancies, we demonstrate that the downstream impact of TAK-981 administration is enhancement of the cytotoxic function of CD8+ T cells, thus uncovering immune implications of targeting sumoylation in lymphoid neoplasia.
Collapse
Affiliation(s)
- Vi Lam
- City of Hope National Medical Center, Duarte, CA
| | | | - Tingting Liu
- City of Hope National Medical Center, Duarte, CA
| | - Nur Bruss
- City of Hope National Medical Center, Duarte, CA
| | - Scott Best
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | | | | | | | | | | | - Lili Wang
- City of Hope National Medical Center, Duarte, CA
| | | | - Nathan D. Pennock
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | | |
Collapse
|
5
|
Haggenburg S, Garcia Garrido HM, Kant IMJ, Van der Straaten HM, De Boer F, Kersting S, Issa D, Te Raa D, Visser HPJ, Kater AP, Goorhuis A, De Heer K. Immunogenicity of the 13-Valent Pneumococcal Conjugated Vaccine Followed by the 23-Valent Polysaccharide Vaccine in Chronic Lymphocytic Leukemia. Vaccines (Basel) 2023; 11:1201. [PMID: 37515017 PMCID: PMC10385862 DOI: 10.3390/vaccines11071201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with Chronic Lymphocytic Leukemia (CLL) have a 29- to 36-fold increased risk of invasive pneumococcal disease (IPD) compared to healthy adults. Therefore, most guidelines recommend vaccination with the 13-valent pneumococcal conjugated vaccine (PCV13) followed 2 months later by the 23-valent polysaccharide vaccine (PPSV23). Because both CLL as well as immunosuppressive treatment have been identified as major determinants of immunogenicity, we aimed to assess the vaccination schedule in untreated and treated CLL patients. We quantified pneumococcal IgG concentrations against five serotypes shared across both vaccines, and against four serotypes unique to PPSV23, before and eight weeks after vaccination. In this retrospective cohort study, we included 143 CLL patients, either treated (n = 38) or naive to treatment (n = 105). While antibody concentrations increased significantly after vaccination, the overall serologic response was low (10.5%), defined as a ≥4-fold antibody increase against ≥70% of the measured serotypes, and significantly influenced by treatment status and prior lymphocyte number. The serologic protection rate, defined as an antibody concentration of ≥1.3 µg/mL for ≥70% of serotypes, was 13% in untreated and 3% in treated CLL patients. Future research should focus on vaccine regimens with a higher immunogenic potential, such as multi-dose schedules with higher-valent T cell dependent conjugated vaccines.
Collapse
Affiliation(s)
- Sabine Haggenburg
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hannah M Garcia Garrido
- Department of Infectious Diseases, Center for Tropical Medicine and Travel Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Iris M J Kant
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Fransien De Boer
- Department of Internal Medicine, Ikazia Ziekenhuis, 3083 AN Rotterdam, The Netherlands
| | - Sabina Kersting
- Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, The Netherlands
| | - Djamila Issa
- Department of Internal Medicine, Jeroen Bosch Ziekenhuis, 5223 GZ 's-Hertogenbosch, The Netherlands
| | - Doreen Te Raa
- Department of Internal Medicine, Ziekenhuis Gelderse Vallei, 6716 RP Ede, The Netherlands
| | - Hein P J Visser
- Department of Internal Medicine, Noordwest Ziekenhuisgroep, 1815 JD Alkmaar, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Abraham Goorhuis
- Department of Infectious Diseases, Center for Tropical Medicine and Travel Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Koen De Heer
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Flevoziekenhuis, 1315 RA Almere, The Netherlands
| |
Collapse
|
6
|
Gamal W, Sahakian E, Pinilla-Ibarz J. The role of Th17 cells in chronic lymphocytic leukemia: friend or foe? Blood Adv 2023; 7:2401-2417. [PMID: 36574293 PMCID: PMC10238851 DOI: 10.1182/bloodadvances.2022008985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
T helper 17 (Th17) cells have a prominent role in autoimmune diseases. In contrast, the nature of these cells in cancer is controversial, with either pro- or antitumorigenic activities depending on various cancer settings. Chronic lymphocytic leukemia (CLL), a B-cell malignancy, is characterized by an imbalance in T-cell immune responses that contributes to disease progression and increased mortality. Many clinical reports indicate an increase in Th17 cells and/or interleukin 17 serum cytokine levels in patients with CLL compared with healthy individuals, which correlates with various prognostic markers and significant changes in the tumor microenvironment. The exact mechanisms by which Th17 cells might contribute to CLL progression remain poorly investigated. In this review, we provide an updated presentation of the clinical information related to the significance of Th17 cells in CLL and their interaction with the complex leukemic microenvironment, including various mediators, immune cells, and nonimmune cells. We also address the available data regarding the effects of CLL-targeted therapies on Th17 cells and the potential of using these cells in adoptive cell therapies. Having a sound understanding of the role played by Th17 cells in CLL is crucial for designing novel therapies that can achieve immune homeostasis and maximize clinical benefits.
Collapse
Affiliation(s)
- Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
7
|
Mavi AK, Gaur S, Gaur G, Babita, Kumar N, Kumar U. CAR T-cell therapy: Reprogramming patient's immune cell to treat cancer. Cell Signal 2023; 105:110638. [PMID: 36822565 DOI: 10.1016/j.cellsig.2023.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a game changer in cancer treatment. Although CAR-T cell therapy has achieved significant clinical responses in specific subgroups of B cell leukaemia or lymphoma, various difficulties restrict CAR-T cell therapy's therapeutic effectiveness in solid tumours and haematological malignancies. Severe life-threatening toxicities, poor anti-tumour effectiveness, antigen escape, restricted trafficking, and limited tumour penetration are all barriers to successful CAR-T cell treatment. Furthermore, CAR-T cell interactions with the host and tumour microenvironment have a significant impact on their activity. Furthermore, developing and implementing these therapies necessitates a complicated staff. Innovative methodologies and tactics to engineering more potent CAR-T cells with greater anti-tumour activity and less toxicity are required to address these important difficulties.
Collapse
Affiliation(s)
- Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Sonal Gaur
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan 304022, India
| | - Gauri Gaur
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India
| | - Babita
- Department of Pharmacology, Sharda School of Allied Health Sciences, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Neelesh Kumar
- Department of Aquaculture, College of Fisheries, GB Pant University of Agriculture & Technology, Pantnagar, Udham Singh Nagar, Uttarakhand 263145, India
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
8
|
Kättström M, Uggla B, Tina E, Kimby E, Norén T, Athlin S. Improved plasmablast response after repeated pneumococcal revaccinations following primary immunization with 13-valent pneumococcal conjugate vaccine or 23-valent pneumococcal polysaccharide vaccine in patients with chronic lymphocytic leukemia. Vaccine 2023; 41:3128-3136. [PMID: 37061372 DOI: 10.1016/j.vaccine.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Patients with chronic lymphocytic leukemia (CLL) show an immune dysfunction with increased risk of infections and poor response to vaccination. Streptococcus pneumoniae is a common cause of morbidity and mortality in CLL patients. In a previous randomized clinical trial, we found a superior immune response in CLL patients receiving conjugated pneumococcal vaccine compared to non-conjugated vaccine. The response to revaccination in CLL patients is scarcely studied. In this study, early humoral response to repeated revaccinations with pneumococcal vaccines was evaluated, by determination of B cell subsets and plasmablast dynamics in peripheral blood. METHOD CLL patients (n = 14) and immunocompetent controls (n = 31) were revaccinated with a 13-valent pneumococcal conjugate vaccine (PCV13) after previous primary immunization (3-6 years ago) with PCV13 or a 23-valent pneumococcal polysaccharide vaccine (PPSV23). Eight weeks after the first revaccination, all CLL patients received a second revaccination with PCV13 or PPSV23. B cell subsets including plasmablasts were analyzed in peripheral blood by flow cytometry, before and after the first and the second revaccination. RESULTS None of the CLL patients, but all controls, had detectable plasmablasts at baseline (p < 0.001). After the first revaccination with PCV13, the plasmablast proportions did not increase in CLL patients (p = 0.13), while increases were seen in controls (p < 0.001). However, after a second revaccination with PCV13 or PPSV23, plasmablasts increased compared to baseline also in CLL patients (p < 0.01). If no response was evident after first revaccination, only a second revaccination with PCV13 increased plasmablasts in contrast to PPSV23 revaccination. Patients with hypogammaglobulinemia and ongoing/previous CLL specific treatment responded poorly, also to a second revaccination. CONCLUSION In CLL patients, pneumococcal revaccination induced minor early plasmablast response compared to controls, but the response improved using a strategy of repeated doses with of conjugated T cell dependent pneumococcal vaccine.
Collapse
Affiliation(s)
- Magdalena Kättström
- Section of Hematology, Department of Medicine, Faculty of Medicine and Health, Örebro University, SE 70185 Örebro, Sweden.
| | - Bertil Uggla
- Section of Hematology, Department of Medicine, Faculty of Medicine and Health, Örebro University, SE 70185 Örebro, Sweden
| | - Elisabet Tina
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Eva Kimby
- Unit of Hematology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Torbjörn Norén
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon Athlin
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE 70185 Örebro, Sweden
| |
Collapse
|
9
|
Abbasi S, Totmaj MA, Abbasi M, Hajazimian S, Goleij P, Behroozi J, Shademan B, Isazadeh A, Baradaran B. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med 2023; 12:7844-7858. [PMID: 36583504 PMCID: PMC10134288 DOI: 10.1002/cam4.5551] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/23/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last decade, the emergence of several novel therapeutic approaches has changed the therapeutic perspective of human malignancies. Adoptive immunotherapy through chimeric antigen receptor T cell (CAR-T), which includes the engineering of T cells to recognize tumor-specific membrane antigens and, as a result, death of cancer cells, has created various clinical benefits for the treatment of several human malignancies. In particular, CAR-T-cell-based immunotherapy is known as a critical approach for the treatment of patients with hematological malignancies such as acute lymphoblastic leukemia (ALL), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), Hodgkin lymphoma (HL), and non-Hodgkin's lymphoma (NHL). However, CAR-T-cell therapy of hematological malignancies is associated with various side effects. There are still extensive challenges in association with further progress of this therapeutic approach, from manufacturing and engineering issues to limitations of applications and serious toxicities. Therefore, further studies are required to enhance efficacy and minimize adverse events. In the current review, we summarize the development of CAR-T-cell-based immunotherapy and current clinical antitumor applications to treat hematological malignancies. Furthermore, we will mention the current advantages, disadvantages, challenges, and therapeutic limitations of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Samane Abbasi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Milad Asghari Totmaj
- Department of Clinical Immunology, Faculty of MedicineThe University of ManchesterManchesterUK
| | - Masoumeh Abbasi
- Department of Microbiology, Malekan BranchIslamic Azad UniversityMalekanIran
| | - Saba Hajazimian
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Pouya Goleij
- Department of Genetics, Faculty of BiologySana Institute of Higher EducationSariIran
| | - Javad Behroozi
- Department of Genetics and Biotechnology, School of MedicineAJA University of Medical SciencesTehranIran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Alireza Isazadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
10
|
Yano M, Byrd JC, Muthusamy N. Natural Killer Cells in Chronic Lymphocytic Leukemia: Functional Impairment and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14235787. [PMID: 36497266 PMCID: PMC9739887 DOI: 10.3390/cancers14235787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy approaches have advanced rapidly in recent years. While the greatest therapeutic advances so far have been achieved with T cell therapies such as immune checkpoint blockade and CAR-T, recent advances in NK cell therapy have highlighted the therapeutic potential of these cells. Chronic lymphocytic leukemia (CLL), the most prevalent form of leukemia in Western countries, is a very immunosuppressive disease but still shows significant potential as a target of immunotherapy, including NK-based therapies. In addition to their antileukemia potential, NK cells are important immune effectors in the response to infections, which represent a major clinical concern for CLL patients. Here, we review the interactions between NK cells and CLL, describing functional changes and mechanisms of CLL-induced NK suppression, interactions with current therapeutic options, and the potential for therapeutic benefit using NK cell therapies.
Collapse
Affiliation(s)
- Max Yano
- Medical Science Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: (J.C.B.); (N.M.)
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.C.B.); (N.M.)
| |
Collapse
|
11
|
Klausen U, Grauslund JH, Jørgensen NGD, Ahmad SM, Jonassen M, Weis-Banke SE, Martinenaite E, Pedersen LB, Lisle TL, Gang AO, Enggaard L, Hansen M, Holmström MO, Met Ö, Svane IM, Niemann CU, Pedersen LM, Andersen MH. Anti-PD-L1/PD-L2 therapeutic vaccination in untreated chronic lymphocytic leukemia patients with unmutated IgHV. Front Oncol 2022; 12:1023015. [PMID: 36483037 PMCID: PMC9723164 DOI: 10.3389/fonc.2022.1023015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) patients with unmutated immunoglobulin heavy chain (IgHV) are at risk of early disease progression compared to patients with mutated IgHV. As a preventive strategy, we treated 19 previously untreated CLL patients with unmutated IgHV in a phase 1/2 trial (clinicaltrials.gov, NCT03939234) exploring the efficacy and toxicity of a therapeutic cancer vaccine containing peptides derived from programmed death ligand 1 (PD-L1) and ligand 2 (PD-L2), hoping to restore immunological control of the disease. According to the International Workshop on Chronic lymphocytic Leukemia (iwCLL) response criteria, no patients obtained a response; however, during follow-up, one patient had complete normalization of the peripheral lymphocyte count and remained in biochemical remission after a follow-up time of 15 months. At the end of treatment, one patient had progressed, and 17 patients had stable disease. During follow-up with a median time of 23.5 months since inclusion, seven patients had progressed, and eight patients had stable disease. The median time to first treatment (TTFT) from diagnosis was 90.3 months with a median follow-up time of 50.1 months. This apparent favorable outcome in TTFT needs to be investigated in a randomized setting, as our population may have been biased. More than 80% of patients obtained vaccine-specific immune responses, confirming the immunogenicity of the vaccine. The vaccine was generally well tolerated with only grade I-II adverse events. Although there were some signs of clinical effects, the vaccine seems to be insufficient as monotherapy in CLL, possibly due to a high tumor burden. The efficacy of the vaccine should preferably be tested in combination with novel targeted therapies or as a consolidating treatment.
Collapse
Affiliation(s)
- Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Grønne Dahlager Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Merete Jonassen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Lone Bredo Pedersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisbeth Enggaard
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Differential regulation of CTLA4 expression through BTK-dependent and independent mechanisms in CLL. Blood Adv 2022; 6:5440-5448. [PMID: 35759759 PMCID: PMC9631695 DOI: 10.1182/bloodadvances.2021005571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Ibrutinib suppresses CLL cell CTLA4 expression in vitro and in vivo. CTLA4 expression on CLL is regulated by non-BTKs that differ from T-cell CTLA4 regulation.
Cytotoxic T lymphocyte antigen 4 (CTLA4) is a major immune checkpoint and target for cancer immunotherapy. Although originally discovered and primarily studied on T cells, its role on other cell types has also been recognized in recent years. Here we describe an unexpected interaction between ibrutinib (a targeted inhibitor of Bruton tyrosine kinase [BTK]) and CTLA4 expression on malignant chronic lymphocytic leukemia (CLL) cells. Although BTK itself does play a role in CTLA4 expression in CLL, we demonstrate that ibrutinib’s main suppressive effect on CTLA4 protein expression and trafficking occurs through non-BTK targets influenced by this drug. This suppression is not seen in T cells, indicating a different mechanism of CTLA4 regulation in CLL vs T cells. Appreciating this distinct mechanism and the beneficial non-BTK effects of ibrutinib may contribute to understanding the immune benefits of ibrutinib treatment and lead to therapeutic approaches to improve immune function in patients with CLL by suppressing CTLA4 expression.
Collapse
|
13
|
Smith AL, Eiken AP, Skupa SA, Moore DY, Umeta LT, Smith LM, Lyden ER, D’Angelo CR, Kallam A, Vose JM, Kutateladze TG, El-Gamal D. A Novel Triple-Action Inhibitor Targeting B-Cell Receptor Signaling and BRD4 Demonstrates Preclinical Activity in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:6712. [PMID: 35743155 PMCID: PMC9224275 DOI: 10.3390/ijms23126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) results from intrinsic genetic defects and complex microenvironment stimuli that fuel CLL cell growth through an array of survival signaling pathways. Novel small-molecule agents targeting the B-cell receptor pathway and anti-apoptotic proteins alone or in combination have revolutionized the management of CLL, yet combination therapy carries significant toxicity and CLL remains incurable due to residual disease and relapse. Single-molecule inhibitors that can target multiple disease-driving factors are thus an attractive approach to combat both drug resistance and combination-therapy-related toxicities. We demonstrate that SRX3305, a novel small-molecule BTK/PI3K/BRD4 inhibitor that targets three distinctive facets of CLL biology, attenuates CLL cell proliferation and promotes apoptosis in a dose-dependent fashion. SRX3305 also inhibits the activation-induced proliferation of primary CLL cells in vitro and effectively blocks microenvironment-mediated survival signals, including stromal cell contact. Furthermore, SRX3305 blocks CLL cell migration toward CXCL-12 and CXCL-13, which are major chemokines involved in CLL cell homing and retention in microenvironment niches. Importantly, SRX3305 maintains its anti-tumor effects in ibrutinib-resistant CLL cells. Collectively, this study establishes the preclinical efficacy of SRX3305 in CLL, providing significant rationale for its development as a therapeutic agent for CLL and related disorders.
Collapse
Affiliation(s)
- Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Dalia Y. Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lelisse T. Umeta
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Elizabeth R. Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Christopher R. D’Angelo
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Avyakta Kallam
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Julie M. Vose
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| |
Collapse
|
14
|
Allegra A, Casciaro M, Lo Presti E, Musolino C, Gangemi S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy. Biomolecules 2022; 12:biom12060754. [PMID: 35740879 PMCID: PMC9221132 DOI: 10.3390/biom12060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set of cells that characteristically show prompt responses toward specific antigens. Unconventional T cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific receptors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response. The alteration of unconventional T cells and ILCs in frequency and functionality is correlated with the onset of several autoimmune diseases, allergy, inflammation, and tumor. However, depending on the physio-pathological framework, unconventional T cells may exhibit either protective or pathogenic activity in a range of neoplastic diseases. Nonetheless, experimental models and clinical studies have displayed that some unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic markers. In fact, cell-mediated immune response in tumors has become the focus in immunotherapy against neoplastic disease. This review concentrates on the present knowledge concerning the function of unconventional T cell sets in the antitumor immune response in hematological malignancies, such as acute and chronic leukemia, multiple myeloma, and lymphoproliferative disorders. Moreover, we discuss the possibility that modulating the activity of unconventional T cells could be useful in the treatment of hematological neoplasms, in the prevention of specific conditions (such as graft versus host disease), and in the formulation of an effective anticancer vaccine therapy. The exact knowledge of the role of these cells could represent the prerequisite for the creation of a new form of immunotherapy for hematological neoplasms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Elena Lo Presti
- National Research Council (CNR)—Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
15
|
Siddiqi T, Soumerai JD, Dorritie KA, Stephens DM, Riedell PA, Arnason J, Kipps TJ, Gillenwater HH, Gong L, Yang L, Ogasawara K, Thorpe J, Wierda WG. Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. Blood 2022; 139:1794-1806. [PMID: 34699592 PMCID: PMC10652916 DOI: 10.1182/blood.2021011895] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
Bruton tyrosine kinase inhibitors (BTKi) and venetoclax are currently used to treat newly diagnosed and relapsed/refractory chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). However, most patients eventually develop resistance to these therapies, underscoring the need for effective new therapies. We report results of the phase 1 dose-escalation portion of the multicenter, open-label, phase 1/2 TRANSCEND CLL 004 (NCT03331198) study of lisocabtagene maraleucel (liso-cel), an autologous CD19-directed chimeric antigen receptor (CAR) T-cell therapy, in patients with relapsed/refractory CLL/SLL. Patients with standard- or high-risk features treated with ≥3 or ≥2 prior therapies, respectively, including a BTKi, received liso-cel at 1 of 2 dose levels (50 × 106 or 100 × 106 CAR+ T cells). Primary objectives included safety and determining recommended dose; antitumor activity by 2018 International Workshop on CLL guidelines was exploratory. Minimal residual disease (MRD) was assessed in blood and marrow. Twenty-three of 25 enrolled patients received liso-cel and were evaluable for safety. Patients had a median of 4 (range, 2-11) prior therapies (100% had ibrutinib; 65% had venetoclax) and 83% had high-risk features including mutated TP53 and del(17p). Seventy-four percent of patients had cytokine release syndrome (9% grade 3) and 39% had neurological events (22% grade 3/4). Of 22 efficacy-evaluable patients, 82% and 45% achieved overall and complete responses, respectively. Of 20 MRD-evaluable patients, 75% and 65% achieved undetectable MRD in blood and marrow, respectively. Safety and efficacy were similar between dose levels. The phase 2 portion of the study is ongoing at 100 × 106 CAR+ T cells. This trial was registered at clinicaltrials.gov as NCT03331198.
Collapse
Affiliation(s)
- Tanya Siddiqi
- Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Jacob D. Soumerai
- Department of Medicine, Center for Lymphoma, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Kathleen A. Dorritie
- Division of Hematology-Oncology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
| | - Deborah M. Stephens
- Internal Medicine/Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Peter A. Riedell
- Hematopoietic Cellular Therapy Program, Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Jon Arnason
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Thomas J. Kipps
- Moores Cancer Center, Evelyn and Edwin Tasch Chair in Cancer Research, University of California San Diego, San Diego, CA
| | | | | | - Lin Yang
- Bristol Myers Squibb, Seattle, WA
| | | | | | - William G. Wierda
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:738915. [PMID: 34759921 PMCID: PMC8573331 DOI: 10.3389/fimmu.2021.738915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Secondary immunodeficiency is reported in most patients with hematological malignancies such as chronic lymphocytic leukemia and multiple myeloma. The aim of our review was to evaluate the existing literature data on patients with hematological malignancies, with regard to the effect of immunodeficiency on the outcome, the clinical and therapeutic approach, and on the onset of noninfectious complications, including thrombosis, pleural effusion, and orofacial complications. Immunodeficiency in these patients has an intense impact on their risk of infection, in turn increasing morbidity and mortality even years after treatment completion. However, these patients with increased risk of severe infectious diseases could be treated with adequate vaccination coverage, but the vaccines' administration can be associated with a decreased immune response and an augmented risk of adverse reactions. Probably, immunogenicity of the inactivated is analogous to that of healthy subjects at the moment of vaccination, but it undertakes a gradual weakening over time. However, the dispensation of live attenuated viral vaccines is controversial because of the risk of the activation of vaccine viruses. A particular immunization schedule should be employed according to the clinical and immunological condition of each of these patients to guarantee a constant immune response without any risks to the patients' health.
Collapse
MESH Headings
- Animals
- Humans
- Immunocompromised Host
- Immunogenicity, Vaccine
- Immunologic Deficiency Syndromes/epidemiology
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/therapy
- Incidence
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Multiple Myeloma/epidemiology
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Opportunistic Infections/epidemiology
- Opportunistic Infections/immunology
- Opportunistic Infections/prevention & control
- Risk Factors
- Vaccination
- Vaccine Efficacy
- Vaccines/administration & dosage
- Vaccines/adverse effects
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Mihaila RG. Management of patients with chronic lymphocytic leukemia during the SARS-CoV-2 pandemic. Oncol Lett 2021; 22:636. [PMID: 34295383 PMCID: PMC8273855 DOI: 10.3892/ol.2021.12897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Oncohematological patients are prone to develop infections due to immunosuppression caused by the disease and chemo-immunotherapy. The aim of this review was to outline the details of the management of patients with chronic lymphocytic leukemia (CLL) during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Patients with CLL often exhibit inadequate humoral and cellular immune responses to various infections and vaccinations. Patients under the 'watch and wait' strategy have a lower risk of infections, including with SARS-CoV-2, compared with those undergoing therapeutic interventions, but they still have a higher risk than age-matched controls. Patients with CLL have a high risk of developing severe forms of coronavirus disease-2019 (COVID-19), particularly if they are undergoing chemo-immunotherapy. The total anti-SARS-CoV-2 antibody titer demonstrates a slower increase in patients with CLL infected with the virus, and the antibody levels tend to decrease after reaching a maximum level sooner than in healthy individuals. This leads to a late negativation of the PCR tests and a longer duration of hospitalization. In total, ~1/3 of patients with CLL do not develop a persistent titer of antiviral antibodies, and this is associated with the presence of hypogammaglobulinemia. It appears that patients with CLL have the worst outcomes amongst patients with malignant hemopathies and SARS-CoV-2 infection. Bruton tyrosine kinase inhibitors reduce the hyperinflammatory status of patients with CLL with COVID-19, which is accompanied by decreased levels of serum inflammatory markers, ferritin and D-dimer, and serum levels of pro-inflammatory cytokines, but they increase the risk of infections and impaired humoral immunity. An abrupt discontinuation of these may promote the rapid decompensation of CLL, which may even mimic the clinical manifestations of COVID-I9, including a significant increase in cytokine release. In conclusion, therapeutic decisions must be personalized to each patient with CLL and each at risk patient must be quarantined during the SARS-CoV-2 pandemic to reduce their risk of contraction.
Collapse
Affiliation(s)
- Romeo Gabriel Mihaila
- Department of Hematology, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
- Department of Hematology, Emergency County Clinical Hospital, 550245 Sibiu, Romania
| |
Collapse
|
18
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
19
|
Peters FS, Strefford JC, Eldering E, Kater AP. T-cell dysfunction in chronic lymphocytic leukemia from an epigenetic perspective. Haematologica 2021; 106:1234-1243. [PMID: 33691381 PMCID: PMC8586819 DOI: 10.3324/haematol.2020.267914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular immunotherapeutic approaches such as chimeric antigen receptor (CAR) T-cell therapy in chronic lymphocytic leukemia (CLL) thus far have not met the high expectations. Therefore it is essential to better understand the molecular mechanisms of CLLinduced T-cell dysfunction. Even though a significant number of studies are available on T-cell function and dysfunction in CLL patients, none examine dysfunction at the epigenomic level. In non-malignant T-cell research, epigenomics is widely employed to define the differentiation pathway into T-cell exhaustion. Additionally, metabolic restrictions in the tumor microenvironment that cause T-cell dysfunction are often mediated by epigenetic changes. With this review paper we argue that understanding the epigenetic (dys)regulation in T cells of CLL patients should be leveled to the knowledge we currently have of the neoplastic B cells themselves. This will permit a complete understanding of how these immune cell interactions regulate T- and B-cell function. Here we relate the cellular and phenotypic characteristics of CLL-induced T-cell dysfunction to epigenetic studies of T-cell regulation emerging from chronic viral infection and tumor models. This paper proposes a framework for future studies into the epigenetic regulation of CLL-induced Tcell dysfunction, knowledge that will help to guide improvements in the utility of autologous T-cell based therapies in CLL.
Collapse
Affiliation(s)
- Fleur S Peters
- Experimental Immunology; Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and.
| | - Jonathan C Strefford
- Departments of Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eric Eldering
- Experimental Immunology; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands
| | - Arnon P Kater
- Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and
| |
Collapse
|
20
|
Puzzolo MC, Del Giudice I, Peragine N, Mariglia P, De Propris MS, Cappelli LV, Trentin L, Reda G, Cuneo A, Molica S, Piciocchi A, Arena V, Mauro FR, Guarini A, Foà R. TH2/TH1 Shift Under Ibrutinib Treatment in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:637186. [PMID: 33937038 PMCID: PMC8082026 DOI: 10.3389/fonc.2021.637186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Ibrutinib may revert the T-helper (Th)2 polarization observed in chronic lymphocytic leukemia (CLL) by targeting the IL-2-inducible kinase, that shows a significant homology with the Bruton tyrosine kinase. In the front-line GIMEMA LLC1114 trial (ibrutinib+rituximab for 6 months, followed by ibrutinib maintenance), we investigated the modulation of T-cell cytokine production in 208 peripheral blood paired samples from 71 CLL patients: 71 samples prior to treatment (Day 0, D0) and at day +14 (D14; n=50), at month +8 (M8; 30), +12 (M12; 25), +18 (M18; 22) and +24 (M24; 10) of treatment. We documented a progressive decrease of CD3+CD4+IL-4+ T cells (Th2), that was significant at M8 and at M12 (p=0.019, p=0.002), a relative increase in the CD3+CD4+IFNγ+ T cells (Th1) and a decrease of CD3+CD4+IL-17+ (Th17) cells that was maintained up to M18 (M8 vs D0 p=0.003, M12 vs D0 p=0.003, M18 vs D0 p=0.004) of ibrutinib treatment. The Th2/Th1 ratio significantly decreased already after 14 days of treatment and was maintained thereafter (D14 vs D0 p=0.037, M8 vs D0 p=0.001, M12 vs D0 p=0.005, M18 vs D0 p=0.002). The Th2/Th1 modulation over time was significant only among patients with unmutated IGHV. The Th2/Th1 ratio below a cut-off of 0.088 at M8 was associated with the achievement of a complete response (CR) (p=0.016). Ibrutinib may shape the CLL T-cell profile, limiting Th2 activation and inducing a shift in the Th2/Th1 ratio. The association between the Th2/Th1 ratio decrease and the CR achievement suggests the in vivo generation of a potential host anti-tumor immune activation induced by ibrutinib.
Collapse
Affiliation(s)
- Maria Cristina Puzzolo
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Nadia Peragine
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Paola Mariglia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Luca Vincenzo Cappelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Gianluigi Reda
- Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Science, Azienda Ospedaliero-Universitaria Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Stefano Molica
- Hematology, Azienda Ospedaliera "Pugliese Ciaccio", Presidio Ospedaliero A. Pugliese - Unità Operativa di Ematologia, Catanzaro, Italy
| | | | | | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
21
|
BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13081766. [PMID: 33917094 PMCID: PMC8067870 DOI: 10.3390/cancers13081766] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) represents the most frequent B cell malignancy in Western countries and still remains as an incurable disease. Despite recent advances in targeted therapies including ibrutinib, idelalisib or venetoclax, resistance mechanisms have been described and patients develop a progressive immunosuppression. Since immune checkpoint blockade has demonstrated to reinvigorate T and NK cell-mediated anti-tumor responses, the aim of this work was to elucidate whether this immunosuppression relies, at least in part, in BTLA/HVEM axis in patients with CLL. Our results demonstrate that BTLA and HVEM expression is deeply dysregulated on leukemic and NK cells and correlates with poor outcome. Moreover, soluble BTLA levels correlated with adverse cytogenetics and shorter time to treatment. BTLA blockade restored, at least in part, NK cell-mediated responses in patients with CLL. Altogether, our results provide the rationale to further investigate the role of BTLA/HVEM axis in the pathogenesis of CLL. Abstract Chronic lymphocytic leukemia (CLL) is characterized by progressive immunosuppression and diminished cancer immunosurveillance. Immune checkpoint blockade (ICB)-based therapies, a major breakthrough against cancer, have emerged as a powerful tool to reinvigorate antitumor responses. Herein, we analyzed the role of the novel inhibitory checkpoint BTLA and its ligand, HVEM, in the regulation of leukemic and natural killer (NK) cells in CLL. Flow cytometry analyses showed that BTLA expression is upregulated on leukemic cells and NK cells from patients with CLL, whereas HVEM is downregulated only in leukemic cells, especially in patients with advanced Rai-Binet stage. In silico analysis revealed that increased HVEM, but not BTLA, mRNA expression in leukemic cells correlated with diminished overall survival. Further, soluble BTLA (sBTLA) was found to be increased in the sera of patients with CLL and highly correlated with poor prognostic markers and shorter time to treatment. BTLA blockade with an anti-BTLA monoclonal antibody depleted leukemic cells and boosted NK cell-mediated responses ex vivo by increasing their IFN-γ production, cytotoxic capability, and antibody-dependent cytotoxicity (ADCC). In agreement with an inhibitory role of BTLA in NK cells, surface BTLA expression on NK cells was associated with poor outcome in patients with CLL. Overall, this study is the first to bring to light a role of BTLA/HVEM in the suppression of NK cell-mediated immune responses in CLL and its impact on patient’s prognosis, suggesting that BTLA/HVEM axis may be a potential therapeutic target in this disease.
Collapse
|
22
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
23
|
Goetz L, Yang J, Greene W, Zhu Y. A COVID-19 Patient with Repeatedly Undetectable SARS-CoV-2 Antibodies. J Appl Lab Med 2020; 5:1401-1405. [PMID: 32745181 PMCID: PMC7454661 DOI: 10.1093/jalm/jfaa137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Lianna Goetz
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | - Jianbo Yang
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | - Wallace Greene
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yusheng Zhu
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
24
|
Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med Oncol 2020; 37:100. [PMID: 33047234 PMCID: PMC7549730 DOI: 10.1007/s12032-020-01416-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In the recent years, using genetically modified T cells has been known as a rapid developing therapeutic approach due to the heartwarming results of clinical trials with patients suffering from relapsed or refractory (R/R) hematologic malignancies such as R/R Acute Lymphoblastic Leukemia (R/R ALL). One of these renowned approaches is Chimeric antigen receptors (CARs). CARs are synthetic receptors with the ability to be expressed on the surface of T lymphocytes and are specifically designed to target a tumor-associated antigen (TAA) of interest. CAR-expressing T cells have the capability of proliferating and maintaining their immunological functionality in the recipient body but like any other therapeutic approach, the safety, effectiveness, and specificity enhancement of CAR T cells still lingers in the ambiguity arena. Genetic manipulation methods, expansion protocols, infusion dosage, and conditioning regimens are all among crucial factors which can affect the efficacy of CAR T cell-based cancer therapy. In this article, we discuss the studies that have focused on various aspects that affect the efficacy and persistence of CAR T-cell therapy for ALL treatment and provide a widespread overview regarding the practical approaches capable of elevating the effectiveness and lessening the relative toxicities attributed to it.
Collapse
|
25
|
Yan W, Liu Z, Liu J, Xia Y, Hu K, Yu J. Application of Chimeric Antigen Receptor T Cells in the Treatment of Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4241864. [PMID: 33062678 PMCID: PMC7547336 DOI: 10.1155/2020/4241864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
T cell immune protection plays a pivotal role in the treatment of patients with hematological malignancies. However, T cell exhaustion might lead to the possibility of immune escape of hematological malignancies. Adoptive cell therapy (ACT) with chimeric antigen receptor T (CAR-T) cells can restore the activity of exhausted T cell through reprogramming and is widely used in the treatment of relapsed/refractory (r/r) hematological malignancies. Of note, CD19, CD20, CD30, CD33, CD123, and CD269 as ideal targets have shown extraordinary potential for CAR-T cell therapy and other targets such as CD23 and SLAMF7 have brought promising future for clinical trials. However, CAR-T cells can also produce some adverse events after treatment of hematological malignancies, such as cytokine release syndrome (CRS), neurotoxicity, and on-target/off-tumor toxicity, which may cause systemic immune stress inflammation, destruction of the blood-brain barrier, and even normal tissue damage. In this review, we aim to summarize the composition of CAR-T cell and its application in the treatment of acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), non-Hodgkin's lymphoma (NHL), Hodgkin's lymphoma (HL), multiple myeloma (MM), and acute myeloid leukemia (AML). Moreover, we will review the disadvantages of CAR-T cell therapy and propose several comprehensive recommendations which might guide its development.
Collapse
Affiliation(s)
- Weiqi Yan
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zhuojun Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yuanshi Xia
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Kai Hu
- Department of Hematology, Beijing Boren Hospital, Beijing 100070, China
| | - Jian Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
26
|
Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv 2020; 3:2642-2652. [PMID: 31506282 DOI: 10.1182/bloodadvances.2019000360] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Morbidity and mortality due to immunosuppression remain among the foremost clinical challenges in chronic lymphocytic leukemia (CLL). Although immunosuppression is considered to originate within the lymph node (LN) microenvironment, alterations in T and natural killer (NK) cells have almost exclusively been studied in peripheral blood (PB). Whereas chemoimmunotherapy further deteriorates immune function, novel targeted agents like the B-cell lymphoma 2 inhibitor venetoclax potentially spare nonmalignant lymphocytes; however, the effects of venetoclax on nonleukemic cells have not been explored. We address these unresolved issues using a comprehensive analysis of nonmalignant lymphocytes in paired LN and PB samples from untreated CLL patients, and by analyzing the effects of venetoclax-based treatment regimens on the immune system in PB samples from previously untreated and relapsed/refractory patients. CLL-derived LNs contained twice the amount of suppressive regulatory T cells (Tregs) and CLL supportive follicular T helper (Tfh) cells compared with PB. This was accompanied by a low frequency of cytotoxic lymphocytes. The expression of PD-1 by CD8+ T cells was significantly higher in LN compared with PB. Venetoclax-based treatment led to deep responses in the majority of patients, but also to decreased absolute numbers of B, T, and NK cells. Tfh cell, Treg, and PD-1+ CD8+ T cell numbers were reduced more than fivefold after venetoclax-based therapy, and overproduction of inflammatory cytokines was reduced. Furthermore, we observed restoration of NK cell function. These data support the notion that the immunosuppressive state in CLL is more prominent within the LN. Venetoclax-based regimens reduced the immunosuppressive footprint of CLL, suggesting immune recovery after the elimination of leukemic cells.
Collapse
|
27
|
Wu J, Wang X, Lin L, Li X, Liu S, Zhang W, Luo L, Wan Z, Fang M, Zhao Y, Wang X, Mai H, Yuan X, Wen F, Li C, Liu X. Developing an Unbiased Multiplex PCR System to Enrich the TRB Repertoire Toward Accurate Detection in Leukemia. Front Immunol 2020; 11:1631. [PMID: 32849555 PMCID: PMC7423970 DOI: 10.3389/fimmu.2020.01631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate T cell receptor repertoire profiling has provided novel biological and clinical insights in widespread immunological settings; however, there is a lack of reference materials in the community that can be used to calibrate and optimize the various experimental systems in different laboratories. In this study, we designed and synthesized 611 T cell receptor (TCR) beta chain (TRB) templates and used them as reference materials to optimize the multiplex PCR experimental system to enrich the TRB repertoire. We assessed the stability of the optimized system by repeating the experiments in different batches and by remixing the TRB templates in different ratios. These TRB reference materials could be used as independent positive controls to assess the accuracy of the experimental system, and they can also be used as spike-in materials to calibrate the residual biases of the experimental system. We then used the optimized system to detect the minimal residual disease of T cell acute lymphoblastic leukemia and showed a higher sensitivity compared with flow cytometry. We also interrogated how chemotherapy affected the TCR repertoire of patients with B-cell acute lymphoblastic leukemia. Our result shows that high-avidity T cells, such as those targeting known pathogens, are largely selected during chemotherapy, despite the global immunosuppression. These T cells were stimulated and emerged at the time of induction treatment and further expanded during consolidation treatment, possibly to fight against infections. These data demonstrate that accurate immune repertoire information can improve our understanding of the adaptive immunity in leukemia and lead to better treatment management of the patients.
Collapse
Affiliation(s)
- Jinghua Wu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Sixi Liu
- Hematology and Oncology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, China.,Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Lihua Luo
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | | | - Yi Zhao
- BGI-Shenzhen, Shenzhen, China
| | - Xiaodong Wang
- Hematology and Oncology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Huirong Mai
- Hematology and Oncology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiuli Yuan
- Hematology and Oncology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Hematology and Oncology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Changgang Li
- Hematology and Oncology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China.,Neoimmune, Shenzhen, China
| |
Collapse
|
28
|
Favresse J, Eucher C, Elsen M, Graux C, Goebels P, Laffineur K, Nicolas JB, Dogné JM, Douxfils J. Unexpected kinetics of anti-SARS-CoV-2 total antibodies in two patients with chronic lymphocytic leukemia. Br J Haematol 2020; 190:e187-e189. [PMID: 32557555 PMCID: PMC7323137 DOI: 10.1111/bjh.16954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Julien Favresse
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium.,Department of Pharmacy, Namur Research Institute for LIfes Sciences, University of Namur, Namur, Belgium
| | - Christine Eucher
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - Marc Elsen
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - Carlos Graux
- Department of Hematology, CHU UCL Namur, Yvoir, Belgium
| | - Paul Goebels
- Department of Laboratory Medicine, Saint Nikolaus Hospital, Eupen, Belgium
| | - Kim Laffineur
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | | | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute for LIfes Sciences, University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for LIfes Sciences, University of Namur, Namur, Belgium.,Qualiblood sa, Namur, Belgium
| |
Collapse
|
29
|
IgA levels at diagnosis predict for infections, time to treatment, and survival in chronic lymphocytic leukemia. Blood Adv 2020; 3:2188-2198. [PMID: 31324639 DOI: 10.1182/bloodadvances.2018026591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/01/2019] [Indexed: 01/29/2023] Open
Abstract
To better understand the relationship between baseline immunoglobulin measurements and subsequent clinical outcomes in chronic lymphocytic leukemia (CLL), we performed a retrospective analysis on 660 patients with CLL (72%), monoclonal B-cell lymphocytosis (MBL) (13%), and small lymphocytic lymphoma (SLL) (14%), diagnosed between 2005 and 2014 at CancerCare Manitoba. Of 511 patients who had their first immunoglobulin level determined within 3 months of diagnosis, abnormal (either increased or decreased) immunoglobulin M (IgM), IgG, and IgA values were observed in 58% of patients with CLL, 27% of patients with MBL, and 20% of patients with SLL. Immunoglobulin deviances were similar for MBL and CLL Rai stage 0 and for SLL and Rai stages I and II; for CLL, IgG and IgA abnormalities occurred with increasing frequency with advancing Rai stage. In contrast, the frequency of IgM abnormalities was similar in all patient groups. IgA abnormalities significantly correlated with high β2-microglobulin (B2M) expression, whereas abnormal IgG and IgA levels were associated with the use of IGHV1-69, 3-21, and 3-49 subtypes. Increases in IgG or IgM were commonly associated with the presence of a CLL-type M-band, whereas oligoclonal bands were frequently observed with increased IgA levels. Although abnormal levels of IgG and IgA at diagnosis were independent predictors for future immunoglobulin replacement, only abnormal IgA levels were associated with shorter time to first treatment and overall survival. These findings indicate that both reduced and elevated levels of IgG and IgA at diagnosis are important and independent prognostic markers for infection in CLL, with IgA being more relevant as a marker of disease progression and survival.
Collapse
|
30
|
Anastasopoulou A, DiPippo AJ, Kontoyiannis DP. Non-Aspergillus invasive mould infections in patients treated with ibrutinib. Mycoses 2020; 63:787-793. [PMID: 32458510 DOI: 10.1111/myc.13120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Invasive mould infections (IMIs) are very rare in patients with lymphoid malignancies. However, IMIs, mostly due to Aspergillus species, have been increasingly reported in such patients receiving ibrutinib (IBR). There is paucity of information regarding non-Aspergillus invasive mould infections (NAIMIs) in this setting, OBJECTIVES: To review our recent experience and the published literature on the topic. PATIENTS/METHODS We present a case of invasive sinusitis caused by Fusarium in a patient with refractory chronic lymphocytic leukaemia (CLL) who was treated with IBR and review the 12 published cases of NAIMIs during IBR. RESULTS Nearly all cases of NAIMIs in the setting of IBR use were encountered in patients with CLL. Mixed fungal infections, brain involvement and late-onset infections were common. CONCLUSIONS Although rare, NAIMIs should be considered in patients who receive IBR.
Collapse
Affiliation(s)
- Amalia Anastasopoulou
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas Houston, Houston, TX, USA
| | - Adam J DiPippo
- Division of Pharmacy, MD Anderson Cancer Center, University of Texas Houston, Houston, TX, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas Houston, Houston, TX, USA
| |
Collapse
|
31
|
Best S, Lam V, Liu T, Bruss N, Kittai A, Danilova OV, Murray S, Berger A, Pennock ND, Lind EF, Danilov AV. Immunomodulatory effects of pevonedistat, a NEDD8-activating enzyme inhibitor, in chronic lymphocytic leukemia-derived T cells. Leukemia 2020; 35:156-168. [PMID: 32203139 DOI: 10.1038/s41375-020-0794-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 01/28/2023]
Abstract
Novel targeted agents used in therapy of lymphoid malignancies, such as inhibitors of B-cell receptor-associated kinases, are recognized to have complex immune-mediated effects. NEDD8-activating enzyme (NAE) has been identified as a tractable target in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma. We and others have shown that pevonedistat (TAK-924), a small-molecule inhibitor of NAE, abrogates NF-κB signaling in malignant B cells. However, NF-κB pathway activity is indispensable in immune response, and T-cell function is altered in patients with CLL. Using T cells derived from patients with CLL, we demonstrate that although targeting NAE results in markedly differential expression of NF-κB-regulated genes and downregulation of interleukin (IL)-2 signaling during T-cell activation, T cells evade apoptosis. Meanwhile, NAE inhibition favorably modulates polarization of T cells in vitro, with decreased Treg differentiation and a shift toward TH1 phenotype, accompanied by increased interferon-γ production. These findings were recapitulated in vivo in immunocompetent mouse models. T cells exposed to pevonedistat in washout experiments, informed by its human pharmacokinetic profile, recover NAE activity, and maintain their response to T-cell receptor stimulation and cytotoxic potential. Our data shed light on the potential immune implications of targeting neddylation in CLL and lymphoid malignancies.
Collapse
Affiliation(s)
- Scott Best
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Vi Lam
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tingting Liu
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Nur Bruss
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Adam Kittai
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Olga V Danilova
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | - Nathan D Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Evan F Lind
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Alexey V Danilov
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. .,City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
32
|
Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev 2020; 290:39-59. [PMID: 31355492 DOI: 10.1111/imr.12774] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Abstract
By increasing disease-free survival and offering the potential for long-term cure, chimeric antigen receptor (CAR) T-cell therapy has dramatically expanded therapeutic options among those with high-risk B-cell malignancies. As CAR T-cell utilization evolves however, novel challenges are generated. These include determining how to optimally integrate CAR T cells into standard of care and overcoming mechanisms of resistance to CAR T-cell therapy, such as evolutionary stress induced on cancer cells leading to immunophenotypic changes that allow leukemia to evade this targeted therapy. Compounding these challenges are the limited ability to determine differences between various CAR T-cell constructs, understanding the generalizability of trial outcomes from multiple sites utilizing unique CAR manufacturing strategies, and comparing distinct criteria for toxicity grading while defining optimal management. Additionally, as understanding of CAR behavior in humans has developed, strategies have appropriately evolved to proactively mitigate toxicities. These challenges offer complimentary insights and guide next steps to enhance the efficacy of this novel therapeutic modality. With a focus on B-cell malignancies as the paradigm for effective CAR T-cell therapy, this review describes advances in the field as well as current challenges and future directions.
Collapse
Affiliation(s)
- Elad Jacoby
- Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shilpa A Shahani
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
Optimized Xenograft Protocol for Chronic Lymphocytic Leukemia Results in High Engraftment Efficiency for All CLL Subgroups. Int J Mol Sci 2019; 20:ijms20246277. [PMID: 31842407 PMCID: PMC6940872 DOI: 10.3390/ijms20246277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Preclinical drug development for human chronic lymphocytic leukemia (CLL) requires robust xenograft models recapitulating the entire spectrum of the disease, including all prognostic subgroups. Current CLL xenograft models are hampered by inefficient engraftment of good prognostic CLLs, overgrowth with co-transplanted T cells, and the need for allogeneic humanization or irradiation. Therefore, we aimed to establish an effective and reproducible xenograft protocol which allows engraftment of all CLL subtypes without the need of humanization or irradiation. Unmanipulated NOD.Cg-PrkdcscidIl2rgtm1Sug/JicTac (NOG) mice in contrast to C.Cg-Rag2tm1Fwa-/-Il2rgtm1Sug/JicTac (BRG) mice allowed engraftment of all tested CLL subgroups with 100% success rate, if CLL cells were fresh, injected simultaneously intra-peritoneally and intravenously, and co-transferred with low fractions of autologous T cells (2%–4%). CLL transplanted NOG mice (24 different patients) developed CLL pseudofollicles in the spleen, which increased over 4–6 weeks, and were then limited by the expanding autologous T cells. Ibrutinib treatment studies were performed to validate our model, and recapitulated treatment responses seen in patients. In conclusion, we developed an easy-to-use CLL xenograft protocol which allows reliable engraftment for all CLL subgroups without humanization or irradiation of mice. This protocol can be widely used to study CLL biology and to explore novel drug candidates.
Collapse
|
34
|
Hoo WPY, Siak PY, In LLA. Overview of Current Immunotherapies Targeting Mutated KRAS Cancers. Curr Top Med Chem 2019; 19:2158-2175. [PMID: 31483231 DOI: 10.2174/1568026619666190904163524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
Collapse
Affiliation(s)
- Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
van Bruggen JAC, Martens AWJ, Fraietta JA, Hofland T, Tonino SH, Eldering E, Levin MD, Siska PJ, Endstra S, Rathmell JC, June CH, Porter DL, Melenhorst JJ, Kater AP, van der Windt GJW. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8 + T cells and impede CAR T-cell efficacy. Blood 2019; 134:44-58. [PMID: 31076448 PMCID: PMC7022375 DOI: 10.1182/blood.2018885863] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/20/2019] [Indexed: 01/02/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), acquired T-cell dysfunction impedes development of effective immunotherapeutic strategies, through as-yet unresolved mechanisms. We have previously shown that CD8+ T cells in CLL exhibit impaired activation and reduced glucose uptake after stimulation. CD8+ T cells in CLL patients are chronically exposed to leukemic B cells, which potentially impacts metabolic homeostasis resulting in aberrant metabolic reprogramming upon stimulation. Here, we report that resting CD8+ T cells in CLL have reduced intracellular glucose transporter 1 (GLUT1) reserves, and have an altered mitochondrial metabolic profile as displayed by increased mitochondrial respiration, membrane potential, and levels of reactive oxygen species. This coincided with decreased levels of peroxisome proliferator-activated receptor γ coactivator 1-α, and in line with that, CLL-derived CD8+ T cells showed impaired mitochondrial biogenesis upon stimulation. In search of a therapeutic correlate of these findings, we analyzed mitochondrial biogenesis in CD19-directed chimeric antigen receptor (CAR) CD8+ T cells prior to infusion in CLL patients (who were enrolled in NCT01747486 and NCT01029366 [https://clinicaltrials.gov]). Interestingly, in cases with a subsequent complete response, the infused CD8+ CAR T cells had increased mitochondrial mass compared with nonresponders, which positively correlated with the expansion and persistence of CAR T cells. Our findings demonstrate that GLUT1 reserves and mitochondrial fitness of CD8+ T cells are impaired in CLL. Therefore, boosting mitochondrial biogenesis in CAR T cells might improve the efficacy of CAR T-cell therapy and other emerging cellular immunotherapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Mitochondria/metabolism
- Organelle Biogenesis
- Receptors, Chimeric Antigen
Collapse
Affiliation(s)
- Jaco A C van Bruggen
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Anne W J Martens
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Joseph A Fraietta
- Department of Pathology and Laboratory Medicine
- Department of Microbiology
- Center for Cellular Immunotherapies, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tom Hofland
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; and
| | - Sanne Endstra
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Carl H June
- Department of Pathology and Laboratory Medicine
- Center for Cellular Immunotherapies, and
| | | | - J Joseph Melenhorst
- Department of Pathology and Laboratory Medicine
- Center for Cellular Immunotherapies, and
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
| | - Gerritje J W van der Windt
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
36
|
Targeting IRAK4 disrupts inflammatory pathways and delays tumor development in chronic lymphocytic leukemia. Leukemia 2019; 34:100-114. [PMID: 31197259 PMCID: PMC8075947 DOI: 10.1038/s41375-019-0507-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in Toll-like receptor (TLR) signal transduction and innate immune responses. Recruitment and subsequent activation of IRAK4 upon TLR stimulation is mediated by the myeloid differentiation primary response 88 (MYD88) adaptor protein. Around 3% of chronic lymphocytic leukemia (CLL) patients have activating mutations of MYD88, a driver mutation in this disease. Here, we studied the effects of TLR activation and the pharmacological inhibition of IRAK4 with ND2158, an IRAK4 competitive inhibitor, as a therapeutic approach in CLL. Our in vitro studies demonstrated that ND2158 preferentially killed CLL cells in a dose-dependent manner. We further observed a decrease in NF-κB and STAT3 signaling, cytokine secretion, proliferation and migration of primary CLL cells from MYD88-mutated and -unmutated cases. In the Eµ-TCL1 adoptive transfer mouse model of CLL, ND2158 delayed tumor progression and modulated the activity of myeloid and T cells. Our findings show the importance of TLR signaling in CLL development and suggest IRAK4 as a therapeutic target for this disease.
Collapse
|
37
|
Treating Older Patients with Chronic Lymphocytic Leukemia: A Personalized Approach. Drugs Aging 2019; 36:841-851. [PMID: 31055788 DOI: 10.1007/s40266-019-00678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Median age at diagnosis for patients with chronic lymphocytic leukemia (CLL) is 72 years, and the number of older individuals affected by this condition is predicted to increase in the future as populations age. Contrary to common assumptions, CLL significantly affects the life expectancy of older individuals, frequently presenting at a more advanced stage and with more unfavorable features than in the younger population. Therefore, identifying the optimal treatment for these patients is a priority. Older patients with CLL are usually classified as fit, non-fit, or frail based on performance status and comorbidities, and several assessment tools can be used to make these evaluations. While supportive care is appropriate for frail patients, the remaining patients should be treated when indication criteria are met. Treatment options include chemoimmunotherapy, monoclonal antibody-based approaches (such as the use of rituximab, ofatumumab, or obinutuzumab) and, more recently, small molecules (such as ibrutinib, idelalisib, and venetoclax). The choice of treatment is guided by the patient's performance status and co-morbidities and by the disease characteristics, such as chromosomal and molecular abnormalities, and in patients with recurrent disease also by the type of prior regimen, their tolerability, and duration of response.
Collapse
|
38
|
Ferrer G. Immunoglobulin replacement therapy targeting the BCR in chronic lymphocytic leukemia. EBioMedicine 2018; 36:7-8. [PMID: 30219356 PMCID: PMC6197750 DOI: 10.1016/j.ebiom.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gerardo Ferrer
- Laboratory of Experimental Immunology, Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
39
|
McCoy WH, Otchere E, Musiek AC, Anadkat MJ. Granulomatous dermatitis as a postherpetic isotopic response in immunocompromised patients: A report of 5 cases. JAAD Case Rep 2018; 4:752-760. [PMID: 30246119 PMCID: PMC6141645 DOI: 10.1016/j.jdcr.2018.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Key Words
- AML, acute myelogenous leukemia
- CLL, chronic lymphocytic leukemia
- Chronic lymphocytic leukemia
- GA, granuloma annulare
- GD, granulomatous dermatitis
- HSV, herpes simplex virus
- MM, multiple myeloma
- PHIR, postherpetic isotopic response
- PHIR-GD, postherpetic isotopic response-granulomatous dermatitis
- PHN, postherpetic neuralgia
- SCT, stem cell transplant
- SLE, systemic lupus erythematous
- SS, Sjogren syndrome
- VZV, varicella zoster virus
- Wolf's isotopic response
- granuloma annulare
- granulomatous dermatitis
- immunocompromise
- immunocompromised district
- immunodeficiency
- immunosuppression
- isotopic response
- locus minoris resistentiae
- postherpetic isotopic response
Collapse
Affiliation(s)
- William H. McCoy
- Department of Medicine, Saint Louis, Missouri
- Division of Dermatology, Saint Louis, Missouri
- Washington University School of Medicine, Saint Louis, Missouri
- Correspondence to: William H. McCoy 4th, MD, PhD, Department of Medicine, Division of Dermatology, Washington University, 660 S Euclid, Campus Box 8123, St. Louis, MO 63110.
| | - Elaine Otchere
- Washington University School of Medicine, Saint Louis, Missouri
| | - Amy C. Musiek
- Department of Medicine, Saint Louis, Missouri
- Division of Dermatology, Saint Louis, Missouri
- Washington University School of Medicine, Saint Louis, Missouri
| | - Milan J. Anadkat
- Department of Medicine, Saint Louis, Missouri
- Division of Dermatology, Saint Louis, Missouri
- Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
40
|
Improving CLL Vγ9Vδ2-T-cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood 2018; 132:2260-2272. [PMID: 30213872 DOI: 10.1182/blood-2017-12-822569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
The efficacy of autologous (αβ) T-cell-based treatment strategies in chronic lymphocytic leukemia (CLL) has been modest. The Vγ9Vδ2-T cell subset consists of cytotoxic T lymphocytes with potent antilymphoma activity via a major histocompatibility complex-independent mechanism. We studied whether Vγ9Vδ2-T cells can be exploited as autologous effector lymphocytes in CLL. Healthy control Vγ9Vδ2-T cells were activated by and had potent cytolytic activity against CLL cells. However, CLL-derived Vγ9Vδ2-T cells proved dysfunctional with respect to effector cytokine production and degranulation, despite an increased frequency of the effector-type subset. Consequently, cytotoxicity against malignant B cells was hampered. A comparable dysfunctional phenotype was observed in healthy Vγ9Vδ2-T cells after coculture with CLL cells, indicating a leukemia-induced mechanism. Gene-expression profiling implicated alterations in synapse formation as a conceivable contributor to compromised Vγ9Vδ2-T-cell function in CLL patients. Dysfunction of Vγ9Vδ2-T cells was fully reversible upon activation with autologous monocyte-derived dendritic cells (moDCs). moDC activation resulted in efficient expansion and predominantly yielded Vγ9Vδ2-T cells with a memory phenotype. Furthermore, ibrutinib treatment promoted an antitumor T helper 1 (TH1) phenotype in Vγ9Vδ2-T cells, and we demonstrated binding of ibrutinib to IL-2-inducible kinase (ITK) in Vγ9Vδ2-T cells. Taken together, CLL-mediated dysfunction of autologous Vγ9Vδ2-T cells is fully reversible, resulting in potent cytotoxicity toward CLL cells. Our data support the potential use of Vγ9Vδ2-T cells as effector T cells in CLL immunotherapy and favor further exploration of combining Vγ9Vδ2-T-cell-based therapy with ibrutinib.
Collapse
|
41
|
Chronic lymphocytic leukemia and infection risk in the era of targeted therapies: Linking mechanisms with infections. Blood Rev 2018; 32:387-399. [DOI: 10.1016/j.blre.2018.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 01/07/2023]
|
42
|
Hamieh M, Sadelain M. Insights into Chimeric Antigen Receptor Therapy for Chronic Lymphoblastic Leukemia. Trends Mol Med 2018; 24:729-731. [PMID: 30149852 DOI: 10.1016/j.molmed.2018.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
In a recent study, Fraietta and colleagues identified chimeric antigen receptor (CAR) T cell biomarkers that may predict the success or failure of CAR therapy in patients with refractory chronic lymphoblastic leukemia (CLL). These findings open new prospects for improving T cell product manufacturing and the management of patients with CLL undergoing T cell-based therapies.
Collapse
Affiliation(s)
- Mohamad Hamieh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
43
|
Abruzzo LV, Herling CD, Calin GA, Oakes C, Barron LL, Banks HE, Katju V, Keating MJ, Coombes KR. Trisomy 12 chronic lymphocytic leukemia expresses a unique set of activated and targetable pathways. Haematologica 2018; 103:2069-2078. [PMID: 29976738 PMCID: PMC6269288 DOI: 10.3324/haematol.2018.190132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
Although trisomy 12 (+12) chronic lymphocytic leukemia (CLL) comprises about 20% of cases, relatively little is known about its pathophysiology. These cases often demonstrate atypical morphological and immunophenotypic features, high proliferative rates, unmutated immunoglobulin heavy chain variable region genes, and a high frequency of NOTCH1 mutation. Patients with +12 CLL have an intermediate prognosis, and show higher incidences of thrombocytopenia, Richter transformation, and other secondary cancers. Despite these important differences, relatively few transcriptional profiling studies have focused on identifying dysregulated pathways that characterize +12 CLL, and most have used a hierarchical cytogenetic classification in which cases with more than one recurrent abnormality are categorized according to the abnormality with the poorest prognosis. In this study, we sought to identify protein-coding genes whose expression contributes to the unique pathophysiology of +12 CLL. To exclude the likely confounding effects of multiple cytogenetic abnormalities on gene expression, our +12 patient cohort had +12 as the sole abnormality. We profiled samples obtained from 147 treatment-naïve patients. We compared cases with +12 as the only cytogenetic abnormality to cases with only del(13q), del(11q), or diploid cytogenetics using independent discovery (n=97) and validation (n=50) sets. We demonstrate that CLL cases with +12 as the sole abnormality express a unique set of activated pathways compared to other cytogenetic subtypes. Among these pathways, we identify the NFAT signaling pathway and the immune checkpoint molecule, NT5E (CD73), which may represent new therapeutic targets.
Collapse
Affiliation(s)
- Lynne V Abruzzo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Carmen D Herling
- Department I for Internal Medicine and Center of Integrated Oncology, University of Cologne, Germany
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Oakes
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Lynn L Barron
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haley E Banks
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikram Katju
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Zhao Z, Chen Y, Francisco NM, Zhang Y, Wu M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B 2018; 8:539-551. [PMID: 30109179 PMCID: PMC6090008 DOI: 10.1016/j.apsb.2018.03.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy is a novel adoptive immunotherapy where T lymphocytes are engineered with synthetic receptors known as chimeric antigen receptors (CAR). The CAR-T cell is an effector T cell that recognizes and eliminates specific cancer cells, independent of major histocompatibility complex molecules. The whole procedure of CAR-T cell production is not well understood. The CAR-T cell has been used predominantly in the treatment of hematological malignancies, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, lymphoma, and multiple myeloma. Solid tumors including melanoma, breast cancer and sarcoma offer great promise in CAR-T cell research and development. CD19 CAR-T cell is most commonly used, and other targets, including CD20, CD30, CD38 and CD138 are being studied. Although this novel therapy is promising, there are several disadvantages. In this review we discuss the applications of CAR-T cells in different hematological malignancies, and pave a way for future improvement on the effectiveness and persistence of these adoptive cell therapies.
Collapse
Affiliation(s)
- Zijun Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
45
|
A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era. Blood 2018; 132:521-532. [PMID: 29743179 DOI: 10.1182/blood-2018-02-830992] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022] Open
Abstract
The Bruton tyrosine kinase inhibitor ibrutinib induces high rates of clinical response in chronic lymphocytic leukemia (CLL). However, there remains a need for adjunct treatments to deepen response and to overcome drug resistance. Blinatumomab, a CD19/CD3 bispecific antibody (bsAb) designed in the BiTE (bispecific T-cell engager) format, is approved by the US Food and Drug Administration for the treatment of relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Because of its short half-life of 2.1 hours, blinatumomab requires continuous intravenous dosing for efficacy. We developed a novel CD19/CD3 bsAb in the single-chain Fv-Fc format (CD19/CD3-scFv-Fc) with a half-life of ∼5 days. In in vitro experiments, both CD19/CD3-scFv-Fc and blinatumomab induced >90% killing of CLL cells from treatment-naïve patients. Antileukemic activity was associated with increased autologous CD8 and CD4 T-cell proliferation, activation, and granzyme B expression. In the NOD/SCID/IL2Rγnull patient-derived xenograft mouse model, once-weekly treatment with CD19/CD3-scFv-Fc eliminated >98% of treatment-naïve CLL cells in blood and spleen. By contrast, blinatumomab failed to induce a response, even when administered daily. We next explored the activity of CD19/CD3-scFv-Fc in the context of ibrutinib treatment and ibrutinib resistance. CD19/CD3-scFv-Fc induced more rapid killing of CLL cells from ibrutinib-treated patients than those from treatment-naïve patients. CD19/CD3-scFv-Fc also demonstrated potent activity against CLL cells from patients with acquired ibrutinib-resistance harboring BTK and/or PLCG2 mutations in vitro and in vivo using patient-derived xenograft models. Taken together, these data support investigation of CD19/CD3 bsAb's and other T cell-recruiting bsAb's as immunotherapies for CLL, especially in combination with ibrutinib or as rescue therapy in ibrutinib-resistant disease.
Collapse
|
46
|
Ozer HG, El-Gamal D, Powell B, Hing ZA, Blachly JS, Harrington B, Mitchell S, Grieselhuber NR, Williams K, Lai TH, Alinari L, Baiocchi RA, Brinton L, Baskin E, Cannon M, Beaver L, Goettl VM, Lucas DM, Woyach JA, Sampath D, Lehman AM, Yu L, Zhang J, Ma Y, Zhang Y, Spevak W, Shi S, Severson P, Shellooe R, Carias H, Tsang G, Dong K, Ewing T, Marimuthu A, Tantoy C, Walters J, Sanftner L, Rezaei H, Nespi M, Matusow B, Habets G, Ibrahim P, Zhang C, Mathé EA, Bollag G, Byrd JC, Lapalombella R. BRD4 Profiling Identifies Critical Chronic Lymphocytic Leukemia Oncogenic Circuits and Reveals Sensitivity to PLX51107, a Novel Structurally Distinct BET Inhibitor. Cancer Discov 2018; 8:458-477. [PMID: 29386193 PMCID: PMC5882533 DOI: 10.1158/2159-8290.cd-17-0902] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/12/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Isoxazoles/pharmacology
- Isoxazoles/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Mice
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Dalia El-Gamal
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Zachary A Hing
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Bonnie Harrington
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Shaneice Mitchell
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Katie Williams
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Tzung-Huei Lai
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lapo Alinari
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Robert A Baiocchi
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lindsey Brinton
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Elizabeth Baskin
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Cannon
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Larry Beaver
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Virginia M Goettl
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - David M Lucas
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jennifer A Woyach
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Deepa Sampath
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | | | - Yan Ma
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | - Ken Dong
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | - Ewy A Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | | | - John C Byrd
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| | - Rosa Lapalombella
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
47
|
Qiu L, Zhou Y, Yu Q, Zheng S, Wang Z, Huang Q. Elevated levels of follicular T helper cells and their association with therapeutic effects in patients with chronic lymphocytic leukaemia. Immunol Lett 2018. [PMID: 29526569 DOI: 10.1016/j.imlet.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is characterized by an abnormal expansion of mature B cells with variable progression. Follicular T helper (Tfh) cells help B cells differentiate into plasma cells or long-lived memory B cells in germinal centres (GCs). However, the role of Tfh cells in CLL is poorly understand, and whether it plays a critical role in disease progression in vivo is lacking. In this study, we investigate the dynamic change of circulating Tfh cells in peripheral blood from patients with CLL during the treatment periods to evaluate their utility to predict disease progression. Our findings revealed the expansion of circulating CD4+CXCR5+, CD4+ICOS+, CD4+PD-1+ and CD4+CXCR5+ICOS+PD-1+ (Tfh) cells but lower serum IL-21 levels and CD4+ T cell polarization not only to Tfh2 subtypes but also to Tfh17 subtypes in patients with CLL at pretreatment compared to patients with monoclonal B cell lymphocytosis (MBL) and healthy individuals, especially in those with advanced stage, which indicate these Tfh cells could be employed as a novel indicator for disease progression. Moreover, we observed significant correlations of Tfh17 and immunoglobulin heavy chain variable region (IGHV) mutation. Importantly, significantly decreased CD4+ICOS+, CD4+PD-1+ and Tfh cells were found after effective treatments, whereas a significantly high CD4+ICOS+, CD4+PD-1+ and Tfh cells were still found in those with progressive disease after treatments, suggesting that circulating CD4+ICOS+, CD4+PD-1+, Tfh cells could predict therapeutic effects.
Collapse
Affiliation(s)
- Liannv Qiu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310004, China.
| | - Yonglie Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310004, China
| | - Qinhua Yu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310004, China
| | - Sujie Zheng
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310004, China
| | - Zhenni Wang
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310004, China
| | - Qiang Huang
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310004, China
| |
Collapse
|
48
|
CAR T Cell Therapy in Acute Lymphoblastic Leukemia and Potential for Chronic Lymphocytic Leukemia. Curr Treat Options Oncol 2017; 17:28. [PMID: 27098534 DOI: 10.1007/s11864-016-0406-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) represents a powerful targeted immunotherapy that has shown great promise in some of the most refractory leukemias. CAR-modified T cells directed against CD19 have led the way, setting a high standard with remission rates as high as 90 % in clinical trials for relapsed/refractory acute lymphoblastic leukemia (ALL). Yet, the first demonstration of efficacy was in another disease, chronic lymphocytic leukemia (CLL), in which CD19-targeted CAR T cells eradicated bulky, highly refractory disease. Despite early encouraging results, clinical trials in CLL have yielded lower response rates, revealing disease-specific differences in response in this form of immunotherapy. Ongoing research focused on identifying and overcoming these limitations, promises to improve response rates. Beyond the induction of remission, the transformative impact of engineered T cell therapy lies in its potential for long-term disease control. With longer follow-up and durable T cell persistence now reported, we are closer to answering the question of whether sustained remissions are possible with CAR T cell monotherapy. As might be expected with a highly effective therapy using a single mechanism of action, escape pathways have emerged. Combinatorial approaches are needed to anticipate and prevent this mode of relapse. Lastly, toxicity management is vital to ensure the safety of this exciting cancer immunotherapy.
Collapse
|
49
|
Villa-Álvarez M, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, López-Soto A, Payer AR, Gonzalez-Garcia E, Huergo-Zapico L, Gonzalez S. Ig-like transcript 2 (ILT2) suppresses T cell function in chronic lymphocytic leukemia. Oncoimmunology 2017; 6:e1353856. [PMID: 29123965 DOI: 10.1080/2162402x.2017.1353856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is associated with a profound dysregulation of the immune system. Loss of T cell function is frequently caused in cancer by sustained signaling of inhibitory receptors. Here, we analyzed the role of the novel inhibitory receptor Ig-like transcript 2 (ILT2) in the pathogenesis of CLL. We observed that ILT2 expression was markedly reduced on leukemic cells, whereas it was increased on CD8 and CD4 T cells from CLL patients, particularly in those patients harboring chromosome 11q deletion, which includes the ATM gene. A deep dysregulation of ILT2 ligands expression in leukemia cells was also observed. ILT2 impaired the activation and proliferation of CD4 and CD8 T cells in CLL patients, but it had no effect in leukemic cells. ILT2 downregulated the production of IL-2 by CD4 T cells of CLL patients and induced the expression of cytokines that promote the survival of leukemic cells, such as IFN-γ, by T cells. Importantly, ILT2 blockade restored the activation, proliferation and cytokine production of T cells. In conclusion, we describe a novel immune inhibitory pathway that is upregulated in CLL and delineate a new potential target to be explored in this disease.
Collapse
Affiliation(s)
- Mónica Villa-Álvarez
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,IUOPA, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (IISPA)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,IUOPA, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (IISPA)
| | - Ana P Gonzalez-Rodriguez
- IUOPA, University of Oviedo, Oviedo, Spain.,Department of Hematology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (IISPA)
| | - Alejandro López-Soto
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,IUOPA, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (IISPA)
| | - Angel R Payer
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (IISPA)
| | - Esther Gonzalez-Garcia
- Department of Hematology, Hospital Universitario de Cabueñes, Gijón, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (IISPA)
| | - Leticia Huergo-Zapico
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,IUOPA, University of Oviedo, Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,IUOPA, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (IISPA)
| |
Collapse
|
50
|
Long M, Beckwith K, Do P, Mundy BL, Gordon A, Lehman AM, Maddocks KJ, Cheney C, Jones JA, Flynn JM, Andritsos LA, Awan F, Fraietta JA, June CH, Maus MV, Woyach JA, Caligiuri MA, Johnson AJ, Muthusamy N, Byrd JC. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Invest 2017; 127:3052-3064. [PMID: 28714866 DOI: 10.1172/jci89756] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ibrutinib has been shown to have immunomodulatory effects by inhibiting Bruton's tyrosine kinase (BTK) and IL-2-inducible T cell kinase (ITK). The relative importance of inhibiting these 2 kinases has not been examined despite its relevance to immune-based therapies. METHODS Peripheral blood mononuclear cells from chronic lymphocytic leukemia (CLL) patients on clinical trials of ibrutinib (BTK/ITK inhibitor; n = 19) or acalabrutinib (selective BTK inhibitor; n = 13) were collected serially. T cell phenotype, immune function, and CLL cell immunosuppressive capacity were evaluated. RESULTS Ibrutinib markedly increased CD4+ and CD8+ T cell numbers in CLL patients. This effect was more prominent in effector/effector memory subsets and was not observed with acalabrutinib. Ex vivo studies demonstrated that this may be due to diminished activation-induced cell death through ITK inhibition. PD-1 and CTLA-4 expression was significantly markedly reduced in T cells by both agents. While the number of Treg cells remained unchanged, the ratio of these to conventional CD4+ T cells was reduced with ibrutinib, but not acalabrutinib. Both agents reduced expression of the immunosuppressive molecules CD200 and BTLA as well as IL-10 production by CLL cells. CONCLUSIONS Ibrutinib treatment increased the in vivo persistence of activated T cells, decreased the Treg/CD4+ T cell ratio, and diminished the immune-suppressive properties of CLL cells through BTK-dependent and -independent mechanisms. These features provide a strong rationale for combination immunotherapy approaches with ibrutinib in CLL and other cancers. TRIAL REGISTRATION ClinicalTrials.gov NCT01589302 and NCT02029443. Samples described here were collected per OSU-0025. FUNDING The National Cancer Institute.
Collapse
Affiliation(s)
- Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kyle Beckwith
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University
| | - Priscilla Do
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University
| | - Bethany L Mundy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Amber Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Amy M Lehman
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Kami J Maddocks
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Carolyn Cheney
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jeffrey A Jones
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Joseph M Flynn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Leslie A Andritsos
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Farrukh Awan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Joseph A Fraietta
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H June
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|