1
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
2
|
Fathallah S, Abdellatif A, Saadeldin MK. Unleashing nature's potential and limitations: Exploring molecular targeted pathways and safe alternatives for the treatment of multiple sclerosis (Review). MEDICINE INTERNATIONAL 2023; 3:42. [PMID: 37680650 PMCID: PMC10481116 DOI: 10.3892/mi.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Driven by the limitations and obstacles of the available approaches and medications for multiple sclerosis (MS) that still cannot treat the disease, but only aid in accelerating the recovery from its attacks, the use of naturally occurring molecules as a potentially safe and effective treatment for MS is being explored in model organisms. MS is a devastating disease involving the brain and spinal cord, and its symptoms vary widely. Multiple molecular pathways are involved in the pathogenesis of the disease. The present review showcases the recent advancements in harnessing nature's resources to combat MS. By deciphering the molecular pathways involved in the pathogenesis of the disease, a wealth of potential therapeutic agents is uncovered that may revolutionize the treatment of MS. Thus, a new hope can be envisioned in the future, aiming at paving the way toward identifying novel safe alternatives to improve the lives of patients with MS.
Collapse
Affiliation(s)
- Sara Fathallah
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Mona Kamal Saadeldin
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
3
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
4
|
Altered Phenotype of Circulating Dendritic Cells and Regulatory T Cells from Patients with Acute Myocarditis. J Immunol Res 2022; 2022:8873146. [PMID: 35265721 PMCID: PMC8901353 DOI: 10.1155/2022/8873146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) and regulatory T cells (Tregs) play an essential role in myocarditis. However, a particular DC phenotype in this disease has not been assessed. Herein, we aim to evaluate myeloid (mDCs) and plasmacytoid DC (pDC) phenotype, as well as Treg levels from myocarditis patients and healthy controls. Using multiparametric flow cytometry, we evaluated the levels of myeloid DCs (mDCs), plasmacytoid DCs (pDCs), and Tregs in peripheral blood from myocarditis patients (n = 16) and healthy volunteers (n = 16) and performed correlation analysis with clinical parameters through Sperman test. DCs from myocarditis patients showed a higher expression of costimulatory molecules while a diminished expression of the inhibitory receptors, ILT2 and ILT4. Even more, Treg cells from myocarditis patients displayed higher levels of FOXP3 compared to controls. Clinically, the increased levels of mDCs and their higher expression of costimulatory molecules correlate with a worse myocardial function, higher levels of acute phase reactants, and higher cardiac enzymes. This study shows an activating phenotype of circulating DCs from myocarditis patients. This proinflammatory status may contribute to the pathogenesis and immune deregulation in acute myocarditis.
Collapse
|
5
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wawrzyniak M, Morsy Y, Mladenov R, Tontodonati G, Turgay Y, Herwig S, Back J, Mally M, Faridmoayer A, Scharl M. Fucosylation and Sialylation of Fc-Fragment of anti-Tumour Necrosis Factor Alpha Antibodies do not Influence Their Immunogenicity in Monocyte-Derived Dendritic Cells. J Crohns Colitis 2021; 15:1596-1601. [PMID: 33631789 DOI: 10.1093/ecco-jcc/jjab038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Antibodies targeting tumor necrosis factor-alpha [TNF-alpha] are a mainstay in the treatment of inflammatory bowel disease. However, they fail to demonstrate efficacy in a considerable proportion of patients. On the other hand, glycosylation of antibodies might influence not only their immunogenicity but also their structure and function. We investigated whether specific glycosylation patterns of the Fc-fragment would affect the immunogenicity of anti-TNF-alpha antibody in monocyte-derived dendritic cells. METHODS The effect of a specific Fc-glycosylation pattern on antibody uptake by monocyte-derived dendritic cells [mo-DCs] and how this process shapes the immunologic profile of mo-DCs was investigated. Three N-glycoforms of the anti-TNF-alpha antibody adalimumab, that differed in the content of fucose or sialic acid, were tested: [1] mock treated Humira, abbreviated 'Fuc-G0', where the N-glycan mainly consist of fucose and N-acetylglucosamine [GlcNAc], without sialic acid; [2] 'Fuc-G2S1/G2S2' with fucose and alpha 2,6 linked sialic acid; and [3] 'G2S1/G2S2' with alpha 2,6 linked sialic acid, without fucose. RESULTS Our data demonstrated that neither fucosylation nor sialylation of anti-TNF-Abs [Fuc-G0, FucG2S1/G2S2, G2S1/G2S2] influence their uptake by mo-DCs. Additionally, none of the differentially glycosylated antibodies altered CD80, CD86, CD273, CD274 levels on mo-DCs stimulated in with lipopolysaccharide in the presence of antibodies. Next, we evaluated the levels of cytokines in the supernatant of mo-DCs stimulated with lipopolysaccharide in the presence of Fuc-G0, Fuc-G2S1/G2S2 or G2S1/G2S2-glycosylated anti-TNF antibodies. Only IL-2 and IL-17 levels were downregulated, and IL-5 production was upregulated by uptake of Fuc-G0 antibodies, as compared to control without antibodies. CONCLUSIONS The specific modification in the Fc-glycosylation pattern of anti-TNF-alpha Abs does not affect their immunogenicity under the tested conditions. As this study was limited to mo-DCs, further investigation is required to clarify whether Ab uptake into mo-DCs might change the immunological profile of T- and B-cells, in order to ultimately reduce the formation of anti-drug antibodies and to improve the patient care.
Collapse
Affiliation(s)
- Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Nielsen MB, Ravlo K, Eijken M, Krogstrup NV, Bue Svendsen M, Abdel-Halim C, Steen Petersen M, Birn H, Oltean M, Jespersen B, Møller BK. Dynamics of circulating dendritic cells and cytokines after kidney transplantation-No effect of remote ischaemic conditioning. Clin Exp Immunol 2021; 206:226-236. [PMID: 34473350 DOI: 10.1111/cei.13658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammation resulting from ischaemia/reperfusion injury can cause kidney graft dysfunction, increase the risk of delayed graft function and possibly reduce long-term graft survival. Remote ischaemic conditioning may protect against ischaemia/reperfusion injury and mitigate the immunological response to the graft. We investigated the immunological effects of remote ischaemic conditioning on kidney transplantation from deceased donors in the randomized CONTEXT study. Three circulating dendritic cell (DC) subtypes identified in peripheral blood from kidney transplant recipients [myeloid DCs, plasmacytoid DCs and immunoglobulin-like transcript (ILT)3+ DCs] were measured at baseline, days 1, 3 and 5 and 1 and 3 months after transplantation. We also quantified 21 cytokines at baseline, days 1 and 5 and 3 months after transplantation. Neither DC counts nor cytokine levels differed between patients receiving remote ischaemic conditioning and controls; however, several parameters exhibited dynamic and parallel alterations in the two groups over time, reflecting the immunological response to the kidney transplantation and immunosuppression.
Collapse
Affiliation(s)
- Marie B Nielsen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristian Ravlo
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Nicoline V Krogstrup
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
| | | | - Chadi Abdel-Halim
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Odense University Hospital, Odense, Denmark
| | | | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
9
|
Nagy NA, de Haas AM, Geijtenbeek TBH, van Ree R, Tas SW, van Kooyk Y, de Jong EC. Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Front Immunol 2021; 12:674048. [PMID: 34054859 PMCID: PMC8155586 DOI: 10.3389/fimmu.2021.674048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are paramount in initiating and guiding immunity towards a state of activation or tolerance. This bidirectional capacity of DCs sets them at the center stage for treatment of cancer and autoimmune or allergic conditions. Accordingly, many clinical studies use ex vivo DC vaccination as a strategy to boost anti-tumor immunity or to suppress immunity by including vitamin D3, NF-κB inhibitors or retinoic acid to create tolerogenic DCs. As harvesting DCs from patients and differentiating these cells in vitro is a costly and cumbersome process, in vivo targeting of DCs has huge potential as nanoparticulate platforms equipped with activating or tolerogenic adjuvants can modulate DCs in their natural environment. There is a rapid expansion of the choices of nanoparticles and activation- or tolerance-promoting adjuvants for a therapeutic vaccine platform. In this review we highlight the most recent nanomedical approaches aimed at inducing immune activation or tolerance via targeting DCs, together with novel fundamental insights into the mechanisms inherent to fostering anti-tumor or tolerogenic immunity.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Aram M. de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Bosman-Schluep D, de Pril R, Verbaken B, Legent A, Stallen J, de Jong EC, Janssen RAJ. siRNA-based identification of IBD-related targets in human monocyte-derived dendritic cells. J Immunol Methods 2021; 494:113058. [PMID: 33891922 DOI: 10.1016/j.jim.2021.113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023]
Abstract
Inflammatory bowel disease (IBD) is thought to be caused by an aberrant host response to the commensal enteric flora in genetically susceptible individuals. Dendritic cells (DCs) play a key role in the regulation of this response as they sample gut commensals. In healthy individuals DCs actively contribute to tolerance upon recognition of these resident bacteria, whereas in individuals with IBD, DCs will initiate an inflammatory response. To mimic the disease response in vitro, human monocyte-derived DCs were matured with E. coli causing the cells to produce high levels of the pro-inflammatory cytokine IL-12/IL-23p40 (p40) and low levels of the anti-inflammatory cytokine IL-10. A siRNA-based screening assay was developed and screened to identify potential therapeutic targets that shift this balance towards an immunosuppressive state with lower levels of p40 and higher levels of IL-10. The screening assay was optimized and quality controlled using non-targeting controls and positive control siRNAs targeting IL12B and TLR4 transcripts. In the primary screen, smartpool siRNAs were screened for reduction in p40 expression, induction of IL-10 levels, or increase in IL-10:p40 ratios without affecting cell viability. All potential targets were taken forward into a confirmation screen in a different DC donor in which four individual siRNAs per target were screened. At least two siRNAs per target should have an effect to be considered a valid target. This screen resulted in a concise list of ten genes, of which their role in DC maturation is currently being investigated.
Collapse
Affiliation(s)
| | | | | | | | | | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam UMC, the Netherlands
| | | |
Collapse
|
11
|
Kim EJ, Kim JY, Choi HY, Lee H, Lee J, Kim MS, Kim YS, Huh KH, Kim BS. Systemic Immunomodulatory Effects of Combinatorial Treatment of Thalidomide and Dexamethasone on T Cells and Other Immune Cells. Yonsei Med J 2021; 62:137-148. [PMID: 33527793 PMCID: PMC7859687 DOI: 10.3349/ymj.2021.62.2.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE In organ transplantation, the need for immune modulation rather than immune suppression has been emphasized. In this study, we investigated whether combinatorial treatments of with thalidomide (TM) and dexamethasone (DX) might be new approaches to induce systemic immunomodulation on T cells and other immune cells that regulate the expression of co-inhibitory molecules. MATERIALS AND METHODS Naïve splenic T cells from C57BL/6 mice were sort-purified and cultured in vitro for CD4+ T cell proliferation and regulatory T cell (Treg) conversion in the presence of TM or/and DX. Expression of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1) in proliferated and converted T cells was quantified by flow cytometry. We also quantified in vivo expression of CTLA-4 and PD-1 on splenic CD4+ T cells and other immune cells isolated from TM- or/and DX-treated mice. Mixed lymphocytes reactions (MLR) were performed to evaluate the capacity of immune cells in carrying out immune responses. RESULTS CTLA-4 expressions in effector T cells in vivo and in Tregs in vivo/vitro significantly increased upon TM/DX combinatorial treatment. Corresponding to increased CTLA-4 expression in T cells, the expression of ligand molecules for CTLA-4 significantly increased in splenic dendritic cells in TM/DX-treated groups. In addition, MLR results demonstrated that splenocytes isolated from TM/DX-treated mice significantly suppressed the proliferation of T cells isolated from other strains. CONCLUSION Based on these results, we suggest that TM/DX combinatorial treatments might be efficient immunomodulatory methods for regulating T cell immunity.
Collapse
Affiliation(s)
- Eun Jee Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Joon Ye Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojung Lee
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Juhan Lee
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Myoung Soo Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Seun Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Ha Huh
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Beom Seok Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Carenza C, Franzese S, Calcaterra F, Mavilio D, Della Bella S. Comprehensive Phenotyping of Dendritic Cells in Cancer Patients by Flow Cytometry. Cytometry A 2020; 99:218-230. [PMID: 33098618 DOI: 10.1002/cyto.a.24245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the complex interplay between tumor cells and the immune system. During the elimination phase of cancer immunoediting, immunostimulatory DCs are critical for the control of tumor growth. During the escape phase, regulatory DCs sustain tumor tolerance and contribute to the development of the immunosuppressive tumor microenvironment that characterizes this phase. Moreover, increasing evidence indicates that DCs are also critical for the success of cancer immunotherapy. Hence, there is increasing need to fully characterize DC subsets and their activatory/inhibitory profile in cancer patients. In this review, we describe the role played by different DC subsets in the different phases of cancer immunoediting, the function exerted by different activatory and inhibitory molecules expressed on DC surface, and the cytokines produced by distinct DC subsets, in order to provide an overview on the DC features that may be useful to be assessed when dealing with the flow cytometric characterization of DCs in cancer patients. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
13
|
Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells. Immunobiology 2020; 225:151929. [PMID: 32115260 DOI: 10.1016/j.imbio.2020.151929] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is an environmental sensor and ligand-activated transcription factor that is critically involved in the regulation of inflammatory responses and the induction of tolerance by modulating immune cells. As dendritic cells (DCs) express high AhR levels, they are efficient to induce immunomodulatory effects after being exposed to AhR-activating compounds derived from the environment or diet. To gain new insights into the molecular targets following AhR-activation in human monocyte-derived (mo)DCs, we investigated whether the natural AhR ligand quercetin or the synthetic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates the function of human moDCs regarding their capability to prime naïve T cells or to migrate. As only quercetin, but not TCDD, impaired T cell activation and migration of LPS-matured DCs (LPS-DCs), we analyzed the mode of action of quercetin on moDCs in more detail. Here, we found a specific down-regulation of the immunomodulatory molecule CD83 through the direct binding of the activated AhR to the CD83 promoter. Furthermore, treatment of LPS-DCs with quercetin resulted in a reduced production of the pro-inflammatory cytokine IL-12p70 and in an increased expression of the immunoregulatory molecules disabled adaptor protein (Dab) 2, immunoglobulin-like transcript (ILT)-3, ILT4, ILT5 as well as ectonucleotidases CD39 and CD73, thereby inducing a tolerogenic phenotype in quercetin-treated maturing DCs. Overall, these data demonstrate that quercetin represents a potent immunomodulatory agent to alter human DC phenotype and function, shifting the immune balance from inflammation to resolution.
Collapse
|
14
|
Ritprajak P, Kaewraemruaen C, Hirankarn N. Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells 2019; 8:cells8101291. [PMID: 31640263 PMCID: PMC6830089 DOI: 10.3390/cells8101291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chamraj Kaewraemruaen
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med 2019; 25:1089-1095. [PMID: 31209334 DOI: 10.1038/s41591-019-0469-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/25/2019] [Indexed: 01/04/2023]
Abstract
Asthma prevalence has increased in epidemic proportions with urbanization, but growing up on traditional farms offers protection even today1. The asthma-protective effect of farms appears to be associated with rich home dust microbiota2,3, which could be used to model a health-promoting indoor microbiome. Here we show by modeling differences in house dust microbiota composition between farm and non-farm homes of Finnish birth cohorts4 that in children who grow up in non-farm homes, asthma risk decreases as the similarity of their home bacterial microbiota composition to that of farm homes increases. The protective microbiota had a low abundance of Streptococcaceae relative to outdoor-associated bacterial taxa. The protective effect was independent of richness and total bacterial load and was associated with reduced proinflammatory cytokine responses against bacterial cell wall components ex vivo. We were able to reproduce these findings in a study among rural German children2 and showed that children living in German non-farm homes with an indoor microbiota more similar to Finnish farm homes have decreased asthma risk. The indoor dust microbiota composition appears to be a definable, reproducible predictor of asthma risk and a potential modifiable target for asthma prevention.
Collapse
|
16
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Funes SC, Manrique de Lara A, Altamirano-Lagos MJ, Mackern-Oberti JP, Escobar-Vera J, Kalergis AM. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: Implications for autoimmunity and immunotherapy. Autoimmun Rev 2019; 18:359-368. [PMID: 30738957 DOI: 10.1016/j.autrev.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is responsible for defending the host from a large variety of potential pathogens, while simultaneously avoiding immune reactivity towards self-components. Self-tolerance has to be tightly maintained throughout several central and peripheral processes; immune checkpoints are imperative for regulating the immunity/tolerance balance. Dendritic cells (DCs) are specialized cells that capture antigens, and either activate or inhibit antigen-specific T cells. Therefore, they play a key role at inducing and maintaining immune tolerance. DCs that suppress the immune response have been called tolerogenic dendritic cells (tolDCs). Given their potential as a therapy to prevent transplant rejection and autoimmune damage, several strategies are under development to generate tolDCs, in order to avoid activation and expansion of self-reactive T cells. In this article, we summarize the current knowledge relative to the main features of tolDCs, their mechanisms of action and their therapeutic use for autoimmune diseases. Based on the literature reviewed, autologous antigen-specific tolDCs might constitute a promising strategy to suppress autoreactive T cells and reduce detrimental inflammatory processes.
Collapse
Affiliation(s)
- Samanta C Funes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Amaranta Manrique de Lara
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto de Biotecnología, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - María J Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU, CONICET, Mendoza, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Jorge Escobar-Vera
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Abstract
Over the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS) to minimize immunological response in order to prevent graft rejection. Nevertheless, the lack of specificity of IS leads to an increase in the risk of cancer and infections. At this point, cell therapies have been shown as a novel promising resource to minimize the use of IS in transplantation. The main strength of cell therapy is the opportunity to generate allograft-specific tolerance, promoting in this way long-term allograft survival. Among several other regulatory cell types, tolerogenic monocyte-derived dendritic cells (Tol-MoDCs) appear to be an interesting candidate for cell therapy due to their ability to perform specific antigen presentation and to polarize immune response to immunotolerance. In this review, we describe the characteristics and the mechanisms of action of both human Tol-MoDCs and rodent tolerogenic bone marrow-derived DCs (Tol-BMDCs). Furthermore, studies performed in transplantation models in rodents and non-human primates corroborate the potential of Tol-BMDCs for immunoregulation. In consequence, Tol-MoDCs have been recently evaluated in sundry clinical trials in autoimmune diseases and shown to be safe. In addition to autoimmune diseases clinical trials, Tol-MoDC is currently used in the first phase I/II clinical trials in transplantation. Translation of Tol-MoDCs to clinical application in transplantation will also be discussed in this review.
Collapse
Affiliation(s)
- Eros Marín
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Maria Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
19
|
Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity. Front Immunol 2017; 8:1764. [PMID: 29375543 PMCID: PMC5770648 DOI: 10.3389/fimmu.2017.01764] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) are central players in the initiation and control of responses, regulating the balance between tolerance and immunity. Tolerogenic DCs are essential in the maintenance of central and peripheral tolerance by induction of clonal T cell deletion and T cell anergy, inhibition of memory and effector T cell responses, and generation and activation of regulatory T cells. Therefore, tolerogenic DCs are promising candidates for specific cellular therapy of allergic and autoimmune diseases and for treatment of transplant rejection. Studies performed in rodents have demonstrated the efficacy and feasibility of tolerogenic DCs for tolerance induction in various inflammatory diseases. In the last years, numerous protocols for the generation of human monocyte-derived tolerogenic DCs have been established and some first phase I trials have been conducted in patients suffering from autoimmune disorders, demonstrating the safety and efficiency of this cell-based immunotherapy. This review gives an overview about methods and protocols for the generation of human tolerogenic DCs and their mechanisms of tolerance induction with the focus on interleukin-10-modulated DCs. In addition, we will discuss the prerequisites for optimal clinical grade tolerogenic DC subsets and results of clinical trials with tolerogenic DCs in autoimmune diseases.
Collapse
Affiliation(s)
- Matthias P Domogalla
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Patricia V Rostan
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Verena K Raker
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Genetic Adjuvantation of a Cell-Based Therapeutic Vaccine for Amelioration of Chagasic Cardiomyopathy. Infect Immun 2017; 85:IAI.00127-17. [PMID: 28674032 DOI: 10.1128/iai.00127-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a leading cause of heart disease ("chagasic cardiomyopathy") in Latin America, disproportionately affecting people in resource-poor areas. The efficacy of currently approved pharmaceutical treatments is limited mainly to acute infection, and there are no effective treatments for the chronic phase of the disease. Preclinical models of Chagas disease have demonstrated that antigen-specific CD8+ gamma interferon (IFN-γ)-positive T-cell responses are essential for reducing parasite burdens, increasing survival, and decreasing cardiac pathology in both the acute and chronic phases of Chagas disease. In the present study, we developed a genetically adjuvanted, dendritic cell-based immunotherapeutic for acute Chagas disease in an attempt to delay or prevent the cardiac complications that eventually result from chronic T. cruzi infection. Dendritic cells transduced with the adjuvant, an adenoviral vector encoding a dominant negative isoform of Src homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1) along with the T. cruzi Tc24 antigen and trans-sialidase antigen 1 (TSA1), induced significant numbers of antigen-specific CD8+ IFN-γ-positive cells following injection into BALB/c mice. A vaccine platform transduced with the adenoviral vector and loaded in tandem with the recombinant protein reduced parasite burdens by 76% to >99% in comparison to a variety of different controls and significantly reduced cardiac pathology in a BALB/c mouse model of live Chagas disease. Although no statistical differences in overall survival rates among cohorts were observed, the data suggest that immunotherapeutic strategies for the treatment of acute Chagas disease are feasible and that this approach may warrant further study.
Collapse
|
21
|
Rosborough BR, Hackstein H, Turnquist HR. A window into immunosuppressant immunoregulation: recipient conversion to rapamycin increases potentially tolerogenic immune cells. Kidney Int 2014; 85:743-5. [PMID: 24682122 DOI: 10.1038/ki.2013.420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mechanistic target of rapamycin inhibitors (mTORi) have a complex immunoregulatory profile in both animal models and transplant patients. Studies suggest that mTORi act as tolerance-supporting and regulatory T cell (Treg)-promoting immunosuppressants. Yet proinflammatory influences on myeloid dendritic cells have been established. Insight is needed into the impact of mTORi on immune cells. Stallone et al. describe a clinical study identifying a potential immunoregulatory pathway involving plasmacytoid dendritic cells and Tregs in renal transplant patients on mTORi.
Collapse
Affiliation(s)
- Brian R Rosborough
- 1] Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA [2] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA [3] Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Holger Hackstein
- 1] Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany [2] University Hospital Giessen and Marburg, Giessen, Germany
| | - Hēth R Turnquist
- 1] Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA [2] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA [3] Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
CD31 is a key coinhibitory receptor in the development of immunogenic dendritic cells. Proc Natl Acad Sci U S A 2014; 111:E1101-10. [PMID: 24616502 DOI: 10.1073/pnas.1314505111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD31 is a transhomophilic tyrosine-based inhibitory motif receptor and is expressed by both dendritic cells (DCs) and T lymphocytes. Previous studies have established that the engagement of CD31 drives immune-inhibitory signaling in T lymphocytes, but the effect exerted by CD31 signaling in DCs remains elusive. Here, we show that CD31 is a key coinhibitory receptor on stimulated DCs, favoring the development of tolerogenic functions and finally resulting in T-cell tolerance. The disruption of CD31 signaling favored the immunogenic maturation and migration of resident DCs to the draining lymph nodes. In contrast, sustaining the CD31/SHP-1 signaling during DC maturation resulted in reduced NF-κB nuclear translocation, expression of costimulatory molecules, and production of immunogenic cytokines (e.g., IL-12, IL-6), whereas the expression of TGF-β and IL-10 were increased. More importantly, CD31-conditioned DCs purified from the draining lymph nodes of ovalbumin-immunized mice favored the generation of antigen-specific regulatory T cells (CD25(+) forkhead box P3(+)) at the expense of effector (IFN-γ(+)) cells upon coculture with naive ovalbumin-specific CD4(+) T lymphocytes ex vivo. Finally, the adoptive transfer of CD31-conditioned myelin oligodendrocyte glycoprotein-loaded DCs carried immune tolerance against the subsequent development of MOG-induced experimental autoimmune encephalomyelitis in vivo. The key coinhibitory role exerted by CD31 on DCs highlighted by the present study may have important implications both in settings where the immunogenic function of DCs is desirable, such as infection and cancer, and in settings where tolerance-driving DCs are preferred, such as autoimmune diseases and transplantation.
Collapse
|
23
|
Zhang Q, Fujino M, Iwasaki S, Hirano H, Cai S, Kitajima Y, Xu J, Li XK. Generation and characterization of regulatory dendritic cells derived from murine induced pluripotent stem cells. Sci Rep 2014; 4:3979. [PMID: 24496181 PMCID: PMC3913921 DOI: 10.1038/srep03979] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Regulatory dendritic cells (DCregs) represent a potential therapeutic tool for assessing a variety of immune overreaction conditions; however, current approaches for generating DCregs for therapeutic purposes are limited. We attempted to generate and characterize DCregs from murine induced pluripotent stem (iPS) cells. The iPS cells co-cultured with OP9 cells displayed mesodermally differentiated flat colonies. GM-CSF drove most of the colonies exhibiting a differentiated morphology. Thereafter, cells became morphologically heterologous under the effects of TGF-β and IL-10. Most of the floating cells developed an irregular shape with areas of protrusion. The generated iPS-DCregs demonstrated high CD11b/c and low CD40, CD80, CD86 and MHC-II expressions with a high antigen uptake ability and poor T-cell stimulatory function. Importantly, iPS-DCregs showed immune responsiveness regulation effects both in vitro and in vivo and the ability to generate regulatory T-cells in vitro. Our result illustrates a feasible approach for generating functional DCregs from murine iPS cells.
Collapse
Affiliation(s)
- Qi Zhang
- 1] Department of Dermatology, Huashan hospital, Fudan University, Shanghai, China [2] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan [2] AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizue Iwasaki
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan [2] Hasumi International Research Foundation, Tokyo, Japan
| | - Songjie Cai
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuya Kitajima
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jinhua Xu
- Department of Dermatology, Huashan hospital, Fudan University, Shanghai, China
| | - Xiao-Kang Li
- 1] Department of Dermatology, Huashan hospital, Fudan University, Shanghai, China [2] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
24
|
Therapeutic strategies based on polymeric microparticles. J Biomed Biotechnol 2012; 2012:672760. [PMID: 22665988 PMCID: PMC3363323 DOI: 10.1155/2012/672760] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/28/2012] [Accepted: 03/13/2012] [Indexed: 01/06/2023] Open
Abstract
The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.
Collapse
|
25
|
Abstract
Immunotherapy with dendritic cells (DCs), which have been manipulated ex vivo to become immunogenic or tolerogenic, has been tested in clinical trials for disease therapy. DCs are sentinels of the immune system, which after exposure to antigenic or inflammatory signals and crosstalk with effector CD4(+) T cells express high levels of costimulatory molecules and cytokines. Upregulation of either costimulatory molecules or cytokines promotes immunologic DCs, whereas their downregulation generates tolerogenic DCs (TDCs), which induce T regulatory cells (Tregs) and a state of tolerance. Immunogenic DCs are used for the therapy of infectious diseases such as HIV-1 and cancer, whereas tolerogenic DCs are used in treating various autoimmune diseases and in transplantation. DC vaccination is still at an early stage, and improvements are mainly needed in quality control of monitoring assays to generate clinical-grade DC products and to assess the effect of DC vaccination in future clinical trials. Here, we review the recent work in DC generation and monitoring approaches for DC-based trials with immunogenic or tolerogenic DCs.
Collapse
|
26
|
Zhang Y, Lu N, Xue Y, Zhang M, Li Y, Si Y, Bian X, Jia Y, Wang Y. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep 2012; 5:910-6. [PMID: 22246571 PMCID: PMC3493079 DOI: 10.3892/mmr.2012.744] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022] Open
Abstract
Immune inhibitory receptors play an important role in organ transplantation, autoimmune diseases and cancers. Immunoglobulin-like transcript (ILT)2 and ILT3 belong to the inhibitory receptors of the ILT family, which have been reported to regulate a broad range of cellular functions involved in the immune response. They contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which are related to immune regulation. Although ILT receptors have been studied in dendritic cells (DCs), T cells, NK cells and other cell types, the expression and clinical significance of ILT2 and ILT3 in gastric cancer have yet to be elucidated. Here, the expression of ILT2 and ILT3 in gastric cancer cell lines and pathologic tissues, as well as their effects on the cytotoxicity of NK92MI against the gastric cancer cell lines MKNI with ILT2lowILT3low and HGC-27 with ILT2highILT3high were detected. The results suggest that ILT2 and ILT3 are expressed with diverse degrees in gastric cancer cells and tissues, and the expression of ILT2 is related with differentiation and size of tumors. Furthermore, the cytotoxic activity of NK92MI against the MKNI cell line was stronger than that against HGC-27. This study indicates that ILT2 and ILT3 play a key role in gastric cancer immune escape, and ILT2 may be a new target in the clinical diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ramachandran IR, Song W, Lapteva N, Seethammagari M, Slawin KM, Spencer DM, Levitt JM. The phosphatase SRC homology region 2 domain-containing phosphatase-1 is an intrinsic central regulator of dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2011; 186:3934-45. [PMID: 21357539 DOI: 10.4049/jimmunol.1001675] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) initiate proinflammatory or regulatory T cell responses, depending on their activation state. Despite extensive knowledge of DC-activating signals, the understanding of DC inhibitory signals is relatively limited. We show that Src homology region 2 domain-containing phosphatase-1 (SHP-1) is an important inhibitor of DC signaling, targeting multiple activation pathways. Downstream of TLR4, SHP-1 showed increased interaction with several proteins including IL-1R-associated kinase-4, and modulated LPS signaling by inhibiting NF-κB, AP-1, ERK, and JNK activity, while enhancing p38 activity. In addition, SHP-1 inhibited prosurvival signaling through AKT activation. Furthermore, SHP-1 inhibited CCR7 protein expression. Inhibiting SHP-1 in DCs enhanced proinflammatory cytokines, IL-6, IL-12, and IL-1β production, promoted survival, and increased DC migration to draining lymph nodes. Administration of SHP-1-inhibited DCs in vivo induced expansion of Ag-specific cytotoxic T cells and inhibited Foxp3(+) regulatory T cell induction, resulting in an enhanced immune response against pre-established mouse melanoma and prostate tumors. Taken together, these data demonstrate that SHP-1 is an intrinsic global regulator of DC function, controlling many facets of T cell-mediated immune responses.
Collapse
Affiliation(s)
- Indu R Ramachandran
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abediankenari S, Ghasemi M, Kim YJ. Human leukocyte antigen-G expression on dendritic cells induced by transforming growth factor-beta1 and CD4+ T cells proliferation. IRANIAN BIOMEDICAL JOURNAL 2011; 15:1-5. [PMID: 21725493 PMCID: PMC3639735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 12/05/2010] [Accepted: 12/18/2010] [Indexed: 05/31/2023]
Abstract
BACKGROUND During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-Beta1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is to evaluate the effect of TGF-Beta1 on the induction of human leukocyte antigen-G (HLA-G) expression on the DC which is derived from monocyte. METHODS In this study, we evaluated the effect of TGF-Beta1 in induction HLA-G expression on the monocyte-derived DC by flowcytometry and then CD4+ T cell proliferative responses in the presence of DC-treated TGF-Beta1 was studied. RESULTS The results of this study showed that DC bearing HLA-G down-regulated activation of CD4+ T cells and production of IL-6 and IL-17 in comparison with control (P<0.05). CONCLUSION It is concluded that TGF-Beta1 has an important regulatory role in CD4+ T cell proliferation by increasing HLA-G on DC and these cells can probably prevent unexpected immune responses in vivo.
Collapse
Affiliation(s)
| | - Maryam Ghasemi
- Dept. of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran;
| | - Young-June Kim
- Dept. of Microbiology and Immunology, Walter Oncology Center, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Xu X, Zou P, Chen L, Jin G, Zhou H. IL-10 enhances promoter activity of ILT4 gene and up-regulates its expression in THP-1 cells. ACTA ACUST UNITED AC 2010; 30:594-8. [PMID: 21063840 DOI: 10.1007/s11596-010-0548-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Indexed: 12/19/2022]
Abstract
This study examined the effect of IL-10 on immunoglobulin-like transcript (ILT4) expression of human monocytic leukemic cell line THP-1, especially the role of the ILT4 promoter activity. ILT4 promoter area was amplified by PCR, and was cloned into the eukaryotic expressing vector pGL3-Basic. The pGL3-ILTP obtained was tested by double endonuclease digestion and sequencing. Then, the recombinant plasmid was transfected into THP-1 cells by using lipofectamine. After culture with IL-10 for 12 h, the mRNA extracted from THP-1 cells was detected by RT-PCR and the protein was detected by FACS. The dual-luciferase reporter assay system was employed to detect the activity of ILT4 promoter with or without IL-10. The results showed that the activity of pGL3-ILTP was significantly increased and was more than ten times that of pGL3-Basic cells. After culture with IL-10 for 12 h, the expression of ILT4 protein and its mean fluorescence intensity (MFI) were increased. Moreover, the mRNA was remarkably higher than that of the control group. Dual-luciferase reporter assay revealed that ILT4 promoter was much more activated after being treated with IL-10. We were led to conclude that pGL3-ILTP containing ILT4 promoter was constructed successfully. The expression of ILT4 could be up-regulated by IL-10 both at the transcriptional and translational level. Furthermore, ILT4 promoter could be much more active after addition of IL-10. This study suggests that IL-10 up-regulates ILT4 expression on monocytes via increasing ILT4 gene promoter activity, which may have implication for inducing transplantation tolerance in clinical practice.
Collapse
Affiliation(s)
- Xiaoli Xu
- Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
30
|
Rossetti M, Gregori S, Roncarolo MG. Granulocyte-colony stimulating factor drives the in vitro differentiation of human dendritic cells that induce anergy in naïve T cells. Eur J Immunol 2010; 40:3097-106. [PMID: 20957751 PMCID: PMC2997328 DOI: 10.1002/eji.201040659] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/29/2010] [Accepted: 08/17/2010] [Indexed: 11/25/2022]
Abstract
G-CSF is a modulator of T-cell and DC functions. Previous reports show that monocytes from G-CSF-treated (post-G) healthy donors differentiate into tolerogenic DC in vitro in the presence of autologous serum, containing high levels of IL-10 and IFN-α, and in turn induce type 1 Treg (Tr1) cells. However, the direct effect of G-CSF on DC differentiation was not investigated. Here, we show that monocytes differentiated in the presence of exogenous G-CSF (G-DC) remain CD14(+) CD1a(-) , but acquire a DC-like morphology, express CD83 and CD86 and low levels of the tolerogenic markers Ig-like transcript (ILT)4 and HLA-G. G-DC spontaneously produce IL-10 and, upon stimulation, low levels of IL-12. G-DC display low stimulatory capacity and induce anergy in naïve T cells, but do not confer suppressive function. Therefore, in vitro differentiation of monocyte-derived DC in the presence of G-CSF can replicate some but not all features of post-G DC. These findings indicate that the tolerogenic properties of G-CSF do not exclusively reside in its direct effect on DC, which in turn induce T-cell anergy, but also in its ability to generate a tolerogenic milieu in vivo, which is necessary for Tr1 cell induction and cannot be replicated in vitro.
Collapse
Affiliation(s)
- Maura Rossetti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Department of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific InstituteMilan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Department of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific InstituteMilan, Italy
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Department of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific InstituteMilan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| |
Collapse
|
31
|
Svajger U, Obermajer N, Jeras M. Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology 2010; 129:525-35. [PMID: 20002210 PMCID: PMC2842499 DOI: 10.1111/j.1365-2567.2009.03205.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenol that acts on multiple molecular targets important for cell differentiation and activation. Dendritic cells (DCs) are a functionally diverse cell type and represent the most potent antigen-presenting cells of the immune system. In this study, we investigated resveratrol-induced effects on DCs during their differentiation and maturation. Our results show that resveratrol induces DC-associated tolerance, particularly when applied during DC differentiation. Costimulatory molecules CD40, CD80 and CD86 were down-regulated, as was the expression of major histocompatibility complex (MHC) class II molecules. Surface expression of inhibitory immunoglobulin-like transcript 3 (ILT3) and ILT4 molecules was induced, while human leucocyte antigen (HLA)-G expression was not affected. Resveratrol-treated DCs lost the ability to produce interleukin (IL)-12p70 after activation, but had an increased ability to produce IL-10. Such DCs were poor stimulators of allogeneic T cells and had lowered ability to induce CD4(+) T-cell migration. Furthermore, treated cells were able to generate allogeneic IL-10-secreting T cells, but were not competent in inducing FoxP3 expression These tolerogenic effects are probably associated with the effect of resveratrol on multiple molecular targets through which it interferes with DC differentiation and nuclear factor (NF)-kappaB translocation. Our data provide new insights into the molecular and functional mechanisms of the tolerogenic effects that resveratrol exerts on DCs.
Collapse
Affiliation(s)
- Urban Svajger
- Blood Transfusion Center of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia.
| | | | | |
Collapse
|
32
|
Poliani PL, Kisand K, Marrella V, Ravanini M, Notarangelo LD, Villa A, Peterson P, Facchetti F. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1104-12. [PMID: 20093495 PMCID: PMC2832133 DOI: 10.2353/ajpath.2010.090956] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2009] [Indexed: 01/24/2023]
Abstract
Autoimmune regulator (AIRE) modulates the expression of tissue-restricted antigens (TSAs) and promotes central tolerance in the thymus. However, few autoreactive T cells escape negative selection and reach the periphery, where peripheral tolerance is required to avoid autoimmunity. Murine lymph nodes (LNs) have been shown to contain "stromal" cells expressing AIRE and TSAs. Here we report the occurrence of AIRE-expressing cells in human peripheral lymphoid tissues, including LNs, tonsils, and gut-associated lymphoid tissue, with the exception of the spleen. Notably, AIRE+ cells are absent in fetal LNs and, in postnatal life, they are more numerous in abdominal than in superficial LNs, thus suggesting that their development in periphery may depend on instructive signals from microenvironment and antigen challenge. Extrathymic AIRE+ cells show a dendritic morphology, consistently express human leukocyte antigen-DR (HLADR) and fascin, and are largely positive for CD11c and S100 and for the dendritic cell-activation markers CD40, CD83, DC-LAMP/CD208, and CCR7. Lymphoid, myelomonocytic, mesenchymal, and epithelial cell lineage markers are negative. The HLADRhigh/AIRE+ cell fraction isolated from mesenteric LNs expressed TSAs (insulin, CYP17A1, and CYP21A2), as well as molecules associated with tolerogenic functions, such as interleukin-10 and indoleamine 2,3-dioxygenase. Data indicate that AIRE+ cells in human peripheral lymphoid tissues correspond to a subset of activated interdigitating dendritic cells expressing TSAs and the tolerogenic molecules indoleamine 2,3-dioxygenase and interleukin-10, suggestive of a potential tolerogenic function.
Collapse
Affiliation(s)
| | - Kai Kisand
- Department of Molecular Pathology, Institute of General and Molecular Pathology, Biomedicum, University of Tartu, Tartu, Estonia, Italy
| | - Veronica Marrella
- Human Genome Department, Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (Milano), and Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Clinico Humanitas, Rozzano (Milano), Italy
| | - Maria Ravanini
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Division of Immunology and The Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Villa
- Human Genome Department, Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (Milano), and Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Clinico Humanitas, Rozzano (Milano), Italy
| | - Pärt Peterson
- Department of Molecular Pathology, Institute of General and Molecular Pathology, Biomedicum, University of Tartu, Tartu, Estonia, Italy
| | - Fabio Facchetti
- Department of Pathology, University of Brescia, Brescia, Italy
| |
Collapse
|
33
|
Abstract
Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing, and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurrence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self- and nonself-antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immunosuppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs.
Collapse
|
34
|
Wu J, Zhang W, Hernandez-Lopez P, Fabelo E, Parikh M, Mulloy LL, Horuzsko A. Isoforms of human leukocyte antigen-G and their inhibitory receptors in human kidney allograft acceptance. Hum Immunol 2009; 70:988-94. [PMID: 19664670 DOI: 10.1016/j.humimm.2009.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Novel therapeutic strategies such as the modulation of dendritic cell and T-cell function have exhibited great potential in clinical transplantation. Human leukocyte antigen (HLA)-G is a molecule that plays a significant role in establishing complex mechanisms to protect semiallogeneic fetuses from rejection by the maternal immune system. The unique characteristics of both cell-surface and soluble isoforms of HLA-G, the formation of disulfide-bonded dimers with the potential to augment inhibitory receptor signaling, and the function of HLA-G as a preferential ligand for the immunoglobulin-like transcript receptors make HLA-G very important in fundamental approaches for the modulation of immune responses to improve allogeneic graft survival in clinical transplantation. Experimental data from several groups as well as our data from experiments involving HLA-G-mediated human tolerogenic dendritic cells in vitro and receptor transgenic mice in vivo indicate that different isoforms of HLA-G have various immunomodulatory effects through the inhibitory receptors. This knowledge is crucial in understanding mechanisms of prolongation of allograft survival. The analyses of HLA-G isoforms and inhibitory receptors in patients with kidney allograft and the relationship among different isoforms of HLA-G, inhibitory receptors, their mediated immunoregulation, and graft acceptance or failure will be discussed here.
Collapse
Affiliation(s)
- Juan Wu
- Center for Molecular Chaperone/Radiobiology and Cancer Virology, Department of Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|