1
|
Fichtner A, Nettersheim D, Bremmer F. Pathogenesis and pathobiology of testicular germ cell tumours: a view from a developmental biological perspective with guidelines for pathological diagnostics. Histopathology 2024; 85:701-715. [PMID: 38922953 DOI: 10.1111/his.15249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Testicular germ cell tumours (GCT) are divided into three different subtypes (types I-III) regarding to their developmental origin, histological differences and molecular features. Type I GCT develop from disturbed primordial germ cells and most commonly occur in children and young adolescents, which is why they are referred to as prepubertal GCT. Type II GCT develop from a non-invasive germ cell neoplasia in situ (GCNIS) and show an isochromosome 12p (i12p) or gain of 12p material as a common and characteristic molecular alteration. Type III GCT originate from distorted postpubertal germ cells (e.g. spermatogonia) in adult patients and have changes on chromosome 9 with amplification of the DMRT1 gene. Type I GCT encompass prepubertal-type teratomas and yolk-sac tumours (YST). Type II GCT include seminoma, embryonal carcinoma, choriocarcinoma, postpubertal-type teratoma and postpubertal-type YST. Types I and II GCT both show similar morphology, but are separated from each other by the detection of a GCNIS and an i12p in type II GCT. For type II GCT it is especially important to detect non-seminomatous elements, as these tumours have a worse biological behaviour and need a different treatment to seminomas. In contrast to types I and II GCT, type III tumours are equivalent to spermatocytic tumours and usually occur in elderly men, with few exceptions in young adults. The development of types I and II GCT seems to depend not upon driver mutations, but rather on changes in the epigenetic landscape. Furthermore, different pluripotency associated factors (e.g. OCT3/4, SOX2, SOX17) play a crucial role in GCT development and can be used as immunohistochemical markers allowing to distinguish the different subtypes from each other in morphologically challenging tissue specimens. Especially in metastatic sites, a morphological and immunohistochemical diagnostic algorithm is important to detect small subpopulations of each non-seminomatous GCT subtype, which are associated with a poorer prognosis and need a different treatment. Furthermore, primary extragonadal GCT of the retroperitoneum or mediastinum develop from misguided germ cells during embryonic development, and might be challenging to detect in small tissue biopsies due to their rarity at corresponding sites. This review article summarises the pathobiological and developmental aspects of the three different types of testicular GCT that can be helpful in the histopathological examination of tumour specimens by pathologists.
Collapse
Affiliation(s)
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen, Bonn, Cologne Düsseldorf (CIO ABCD), Lighthouse Project: Germ Cell Tumours, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center, Göttingen, Germany
| |
Collapse
|
2
|
Cotino-Nájera S, García-Villa E, Cruz-Rosales S, Gariglio P, Díaz-Chávez J. The role of Lin28A and Lin28B in cancer beyond Let-7. FEBS Lett 2024. [PMID: 39152528 DOI: 10.1002/1873-3468.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Samantha Cruz-Rosales
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - José Díaz-Chávez
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico
| |
Collapse
|
3
|
Maklad A, Sedeeq M, Wilson R, Heath JA, Gueven N, Azimi I. LIN28 expression and function in medulloblastoma. J Cell Physiol 2023; 238:533-548. [PMID: 36649308 DOI: 10.1002/jcp.30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Current treatment modalities are not completely effective and can lead to severe neurological and cognitive adverse effects. In addition to urgently needing better treatment approaches, new diagnostic and prognostic biomarkers are required to improve the therapy outcomes of MB patients. The RNA-binding proteins, LIN28A and LIN28B, are known to regulate invasive phenotypes in many different cancer types. However, the expression and function of these proteins in MB had not been studied to date. This study identified the expression of LIN28A and LIN28B in MB patient samples and cell lines and assessed the effect of LIN28 inhibition on MB cell growth, metabolism and stemness. LIN28B expression was significantly upregulated in MB tissues compared to normal brain tissues. This upregulation, which was not observed in other brain tumors, was specific for the aggressive MB subgroups and correlated with patient survival and metastasis rates. Functionally, pharmacological inhibition of LIN28 activity concentration-dependently reduced LIN28B expression, as well as the growth of D283 MB cells. While LIN28 inhibition did not affect the levels of intracellular ATP, it reduced the expression of the stemness marker CD133 in D283 cells and the sphere formation of CHLA-01R cells. LIN28B, which is highly expressed in the human cerebellum during the first few months after birth, subsequently decreased with age. The results of this study highlight the potential of LIN28B as a diagnostic and prognostic marker for MB and open the possibility to utilize LIN28 as a pharmacological target to suppress MB cell growth and stemness.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - John A Heath
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Paediatrics, Royal Hobart Hospital, Hobart, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Siegmund SE, Mehra R, Acosta AM. An update on diagnostic tissue-based biomarkers in testicular tumors. Hum Pathol 2023; 133:32-55. [PMID: 35932825 DOI: 10.1016/j.humpath.2022.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
Testicular cancer is rare overall but comprises the most common solid malignancy diagnosed in young men aged ∼20-40 years. Most testicular neoplasms generally fall into 2 broad categories: germ cell tumors (GCTs; ∼95%) and sex cord-stromal tumors (SCSTs ∼5%). Given the relative rarity of these tumors, diagnostic biomarkers are highly relevant for their diagnosis. Over the past several decades, diagnostic biomarkers have improved dramatically through targeted immunohistochemical and molecular characterization. Despite these recent advances, most markers are not perfectly sensitive or entirely specific. Therefore, they need to be used in combination and interpreted in context. In this review, we summarize tissue-based biomarkers relevant to the pathologist, with a focus on practical diagnostic issues that relate to testicular GCT and SCST.
Collapse
Affiliation(s)
- Stephanie E Siegmund
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Rohit Mehra
- Department of Pathology and Michigan Center for Translational Pathology, University of Michigan Hospital and Health Systems, 1500, East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Lin Z, Radaeva M, Cherkasov A, Dong X. Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers (Basel) 2022; 14:4640. [PMID: 36230562 PMCID: PMC9564245 DOI: 10.3390/cancers14194640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumours develop therapy resistance through complex mechanisms, one of which is that cancer stem cell (CSC) populations within the tumours present self-renewable capability and phenotypical plasticity to endure therapy-induced stress conditions and allow tumour progression to the therapy-resistant state. Developing therapeutic strategies to cope with CSCs requires a thorough understanding of the critical drivers and molecular mechanisms underlying the aforementioned processes. One such hub regulator of stemness is Lin28, an RNA-binding protein. Lin28 blocks the synthesis of let-7, a tumour-suppressor microRNA, and acts as a global regulator of cell differentiation and proliferation. Lin28also targets messenger RNAs and regulates protein translation. In this review, we explain the role of the Lin28/let-7 axis in establishing stemness, epithelial-to-mesenchymal transition, and glucose metabolism reprogramming. We also highlight the role of Lin28 in therapy-resistant prostate cancer progression and discuss the emergence of Lin28-targeted therapeutics and screening methods.
Collapse
Affiliation(s)
- Zhuohui Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
6
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
7
|
Guo J, Wang S, Jiang Z, Tang L, Liu Z, Cao J, Hu Z, Chen X, Luo Y, Bo H. Long Non-Coding RNA RFPL3S Functions as a Biomarker of Prognostic and Immunotherapeutic Prediction in Testicular Germ Cell Tumor. Front Immunol 2022; 13:859730. [PMID: 35669771 PMCID: PMC9165694 DOI: 10.3389/fimmu.2022.859730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
The incidence of testicular germ cell tumor (TGCT) is currently on the rise worldwide, of which 15%-30% of patients have occur recurrence and metastasis. However, clinical methods for diagnosing TGCT and judging its prognosis remained inadequate. In this study, we aimed to explore the possibility of testis-specific long-chain non-coding RNA (lncRNA) Ret finger protein-like 3S (RFPL3S) as a biomarker for TGCT diagnosis, prognosis, and treatment response by reviewing the TGCT gene expression data in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The cohort data and DNA methylation data of TGCT in TCGA were downloaded from TGCA, UCSC XENA, and GEO. The bioinformatic tools were used, including GEPIA2, Kaplan-Meier Plotter, LinkedOmics, UCSC XENA, Sangerbox Tools, GSCA, and Tumor Immune Dysfunction and Exclusion. Compared with normal testicular tissues, the RFPL3S expression was significantly reduced in TGCT, and was significantly negatively correlated with the patient’s Tumor, Node, Metastasis stage. Hypermethylation and low copy number of RFPL3S were present in TGCT, and low RFPL3S was associated with short disease-free and progression-free intervals. Silencing RFPL3S significantly enhanced the invasion ability and proliferation ability of TGCT cells as evaluated by Transwell and CCK-8 experiments. Additionally, RFPL3S expression was positively correlated with the infiltration of immune-activating cells such as B cells, CD8+ T cells, cytotoxic T cells, and natural killer cells, and negatively correlated with the infiltration of immunosuppressive cells such as Th17 and Th2. Higher RFPL3S expression was present in patients with immunotherapy benefits. In conclusion, we determined that the testis-specific lncRNA RFPL3S functioned as a tumor suppressor in TGCT and could be used as a prognostic predictor of TGCT, as well as a marker to predict the effect of TGCT immunotherapy.
Collapse
Affiliation(s)
- Jie Guo
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Wang
- Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenzhen Jiang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Le Tang
- Reproductive Medicine Center, Maternal and Child Health Care Hospital of Hunan Province, Changsha, China
| | - Zhizhong Liu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Chen
- Department of Cosmedic, The First People’s Hospital of Changde City, Changde, China
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- *Correspondence: Hao Bo,
| |
Collapse
|
8
|
Fichtner A, Richter A, Filmar S, Kircher S, Rosenwald A, Küffer S, Nettersheim D, Oing C, Marx A, Ströbel P, Bremmer F. Primary mediastinal germ cell tumours: an immunohistochemical and molecular diagnostic approach. Histopathology 2021; 80:381-396. [PMID: 34506648 DOI: 10.1111/his.14560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
AIMS Primary mediastinal germ cell tumours (PMGCTs) are rare mediastinal neoplasms and their diagnosis can be challenging due to small biopsy samples. The aim of this study was to elaborate a diagnostic algorithm using immunohistochemical stainings with focus on novel markers and molecular analysis of isochromosome 12p [i(12p)]. METHODS AND RESULTS Paraffin-embedded tissues of 32 mediastinal tumours were analysed using immunohistochemical stainings for SALL4, LIN28, OCT3/4, D2-40, CD117, SOX17, SOX2, CD30, ß-hCG, GATA3, FOXA2, GPC3, AFP, TdT, NUT and pan-cytokeratin. Quantitative real-time polymerase chain reaction (qPCR) was performed to investigate i(12p) status. Fifteen seminomas, seven teratomas, one yolk sac tumour, one choriocarcinoma and seven mixed PMGCT were diagnosed. Each entity had different immunohistochemical staining patterns which helped to distinguish them: seminoma (OCT3/4, D2-40, CD117, TdT), embryonal carcinoma (OCT3/4, SOX2), yolk sac tumour (FOXA2, GPC3, AFP) and choriocarcinoma (ß-hCG, GATA3). Mature teratomas stained positive for pan-cytokeratin in epithelial components and focally for SALL4, SOX2, GATA3, D2-40 and FOXA2. Furthermore, a NUT carcinoma mimicking a PMGCT was diagnosed showing a strong nuclear SOX2 and speckled nuclear NUT staining. i(12p) was detected in 24 out of 27 PMGCTs [89%]. CONCLUSION A diagnostic algorithm is of great importance for a reliable diagnosis of PMGCTs in the usually small tissue biopsy samples. Therefore, a combination of three to four antibodies to identify the correct histological subtype is usually necessary in addition to morphological features. The i(12p) status serves as an additional option to underline germ cell origin in selected cases.
Collapse
Affiliation(s)
- A Fichtner
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - A Richter
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - S Filmar
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - S Kircher
- University of Würzburg, Institute of Pathology, Josef-Schneider-Straße 2, 97070, Würzburg, Germany
| | - A Rosenwald
- University of Würzburg, Institute of Pathology, Josef-Schneider-Straße 2, 97070, Würzburg, Germany
| | - S Küffer
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - D Nettersheim
- Heinrich-Heine-University, Medical Faculty and University Hospital Düsseldorf, Department of Urology, Urological Research Laboratory, Translational UroOncology, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - C Oing
- University Medical Centre Hamburg-Eppendorf, Department of Oncology, Haematology and Bone Marrow Transplantation with Division of Pneumology & Mildred Scheel Cancer Career Centre HaTriCS4, Martinistrasse 52, 20246, Hamburg, Germany
| | - A Marx
- University Medical Centre Mannheim, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, 68135, Mannheim, Germany
| | - P Ströbel
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - F Bremmer
- University Medical Center Göttingen, Institute of Pathology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
9
|
Lakpour N, Saliminejad K, Ghods R, Reza Sadeghi M, Pilatz A, Khosravi F, Madjd Z. Potential biomarkers for testicular germ cell tumour: Risk assessment, diagnostic, prognostic and monitoring of recurrence. Andrologia 2021; 53:e13998. [PMID: 33534171 DOI: 10.1111/and.13998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is considered a relatively rare malignancy usually occurring in young men between 15 and 35 years of age, and both genetic and environmental factors contribute to its development. The majority of patients are diagnosed in an early-stage of TGCTs with an elevated 5-year survival rate after therapy. However, approximately 25% of patients show an incomplete response to chemotherapy or tumours relapse. The current therapies are accompanied by several adverse effects, including infertility. Aside from classical serum biomarker, many studies reported novel biomarkers for TGCTs, but without proper validation. Cancer cells share many similarities with embryonic stem cells (ESCs), and since ESC genes are not transcribed in most adult tissues, they could be considered ideal candidate targets for cancer-specific diagnosis and treatment. Added to this, several microRNAs (miRNA) including miRNA-371-3p can be further investigated as a molecular biomarker for diagnosis and monitoring of TGCTs. In this review, we will illustrate the findings of recent investigations in novel TGCTs biomarkers applicable for risk assessment, screening, diagnosis, prognosis, prediction and monitoring of the relapse.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Farhad Khosravi
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Nakanishi H, Saito H. Mammalian gene circuits with biomolecule-responsive RNA devices. Curr Opin Chem Biol 2019; 52:16-22. [DOI: 10.1016/j.cbpa.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
|
11
|
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-34 years of age and the most frequent cause of death from solid tumors in this age group. In addition, the incidence of these tumors has significantly increased over the last few decades. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors (NSGCTs). NSGCTs can be further divided into embryonal carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells (PGCs). Many discovered biomarkers including HMGA1, GPR30, Aurora-B, estrogen receptor β, and others have given further advantage to discriminate between histological subgroups and could represent useful molecular therapeutic targets.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to:Dr. Paolo Chieffi, Dipartimento di Psicologia, Università della Campania, Viale Ellittico, 3181100 Caserta, Italy. E-mail:
| |
Collapse
|
12
|
Chieffi P, De Martino M, Esposito F. New Anti-Cancer Strategies in Testicular Germ Cell Tumors. Recent Pat Anticancer Drug Discov 2019; 14:53-59. [DOI: 10.2174/1574892814666190111120023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
Background: The most common solid malignancy of young men aged 20 to 34 years is testicular germ cell tumor. In addition, the incidence of these tumors has significantly increased throughout the last years. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors, which take in yolk sac tumor, embryonal cell carcinoma, choriocarcinoma, and teratoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells. </P><P> Objectives: The study is focused on different molecular mechanisms strongly involved in testicular germ cell line tumors underlying new strategies to treat this human neoplasia.Methods:Bibliographic data from peer-reviewed research, patent and clinical trial literature, and around eighty papers and patents have been included in this review.Results:Our study reveals that several biomarkers are usefully utilized to discriminate among different histotypes. Moreover, we found new patents regarding testicular germ cell tumor treatments such as the expression of claudin 6, monoclonal antibody (Brentuximab Vedotin), immune checkpoint blockade (ICB) with the FDA-approved drugs pembrolizumab and nivolumab or the oncolytic virus Pelareorep, the combination of selective inhibitors of Aurora kinase.Conclusion:Finally, the pathogenesis of testicular germ cell tumor needs to be deeply understood so that it will improve data on stem cells, tumorigenesis and disease tumor management by more selective treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Marco De Martino
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology of the CNR c / o Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery of Naples, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
13
|
Long noncoding RNA PVT1-214 promotes proliferation and invasion of colorectal cancer by stabilizing Lin28 and interacting with miR-128. Oncogene 2018; 38:164-179. [PMID: 30076414 PMCID: PMC6329639 DOI: 10.1038/s41388-018-0432-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are implicated in human cancer, but their mechanisms of action are largely unknown. In this study, we investigated lncRNA alterations that contribute to colorectal cancer (CRC) through microarray expression profiling in CRC patient samples. Here, we report that the CRC-associated lncRNA PVT1-214 is a key regulator of CRC development and progression; patients with high PVT1-214 expression had a shorter survival and poorer prognosis. In vitro and in vivo investigation of the role of PVT1-214 revealed a complex integrated phenotype affecting cell growth, stem-like properties, migration, and invasion. Furthermore, using RNA pull-down and mass spectrometry, we found that Lin28 (also known as Lin28A), a highly conserved RNA-binding protein, is associated with PVT1-214. Strikingly, we found that PVT1-214 not only upregulated Lin28 protein expression in CRC cells by stabilizing Lin28, but also participated in crosstalk with Lin28 mRNA through competition for miR-128 binding, imposing an additional level of post-transcriptional regulation. In addition, we further show that PVT1-214 repressed expression of let-7 family miRNAs, which was abrogated by Lin28 knockdown. Taken together, our findings support a model in which the PVT1-214/Lin28/let-7 axis serves as a critical regulator of CRC pathogenesis, which may simulate a new direction for CRC therapeutic development.
Collapse
|
14
|
Zhao M, Sun L, Lai JZ, Shi H, Mei K, He X, Jin X, Lai J, Cao D. Expression of RNA-binding protein LIN28 in classic gastric hepatoid carcinomas, gastric fetal type gastrointestinal adenocarcinomas, and hepatocellular carcinomas: An immunohistochemical study with comparison to SALL4, alpha-fetoprotein, glypican-3, and Hep Par1. Pathol Res Pract 2018; 214:1707-1712. [PMID: 30196987 DOI: 10.1016/j.prp.2018.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Gastric hepatoid carcinomas (GHCs) include type I (classic) and type II (fetal type gastrointestinal adenocarcinoma). The classic type shows overlapping morphologic features with those of hepatocellular carcinoma (HCC). The aim of this study is to investigate expression of LIN28 in GHCs and explore its utility to distinguish classic GHC from HCC. METHODS We investigated immunohistochemical expression of LIN28 in 93 primary GHCs (47 type I, 46 type II) and 60 HCCs with comparison to SALL4, AFP, glypican-3, Hep Par1, p-CEA and CK7. We also stained LIN28 and SALL4 in 52 conventional gastric adenocarcinomas to assess their specificity in gastric carcinomas. RESULTS Classic GHCs and fetal type gastrointestinal adenocarcinomas showed positive LIN28 in 21/47 (45%) and 10/46 (22%), SALL4 in 41/47 (87%) and 36/46 (78%), AFP in 30/46 (65%) and 33/46 (72%), glypican-3 in 31/41 (76%) and 24/38 (63%), Hep Par1 in 27/41 (66%) and 28/37 (76%), and CK7 in 15/40 (38%) and 25/38 (66%), respectively. p-CEA staining was seen in 19/44 (43%) classic GHCs. Among HCCs, LIN28, SALL4, AFP, glypican-3, Hep Par1, p-CEA and CK7 was seen in 1/60 (2%), 0/60 (0%), 6/30 (20%), 23/30 (77%), 29/30 (97%), 28/30 (93%) and 21/30 (70%) cases, respectively. LIN28 and SALL4 staining was seen in 2/52 (4%) and 14/52 (27%) gastric conventional adenocarcinomas, respectively. The sensitivity and specificity of distinguishing classic GHCs from HCCs was 45% and 98% for LIN28, 87% and 100% for SALL4, 65% and 80% for AFP, 76% and 30% for glypican-3, 66% and 3% for Hep Par1, 43% and 7% for p-CEA, and 38% and 30% for CK7, respectively. Combining LIN28 and SALL4 increased the sensitivity to 96% with 98% specificity to distinguish classic GHCs from HCCs. CONCLUSIONS LIN28 is a very specific marker (98% specificity) for distinguishing classic GHCs from HCCs though it is not as sensitive as SALL4. AFP, glypican-3, Hep Par1 and p-CEA are not useful in distinguishing classic GHCs from HCCs. Combining LIN28 and SALL4 increased the sensitivity to distinguish classic PHCs from HCCs.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital & People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lu Sun
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Jenny Z Lai
- University College, Washington University in Saint Louis, MO, USA
| | - Huaiyin Shi
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Kaiyong Mei
- Department of Pathology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital & People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaolong Jin
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
15
|
Yuan L, Tian J. LIN28B promotes the progression of colon cancer by increasing B-cell lymphoma 2 expression. Biomed Pharmacother 2018; 103:355-361. [PMID: 29669301 DOI: 10.1016/j.biopha.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
RNA-binding protein LIN28B is frequently overexpressed in human colon cancer and is associated with the tumor progression and poor prognosis. The potential molecular mechanisms underlying the role of LIN28B in colon cancer remain unclear. The present study aimed to explore the role of B-cell lymphoma 2 (BCL-2) in promoting colon cancer development associated with LIN28B. The expression pattern of LIN28B in colon cancer tissues and cell lines was detected by RT-PCR, Western blotting analysis, and immunohistochemical staining. A log rank test was carried out to compare the survival times of patients with high/low levels of LIN28B. The effects of LIN28B on cell clonal formation, growth, and apoptosis were detected by clone formation, MTT and flow cytometry assays, respectively. BCL-2 expression and protein stability after LIN28B up-regulation were assessed by Western blotting. The effects of LIN28B and BCL-2 on tumorigenesis were evaluated by an in vivo xenograft assay. The results showed that LIN28B was highly expressed in colon cancer tissues and cell lines, which could promote cell clonal formation and growth and inhibit cell apoptosis. Up-regulation of LIN28B increased BCL-2 expression, enhanced its stability, and reduced its ubiquitination. Overexpression of LIN28B promoted cell tumorigenesis, whereas this effect was repressed by knockdown of BCL-2. This study suggests that overexpression of LIN28B promotes colon cancer development by increasing BCL-2 expression, potentially opening up new avenues for therapeutic approaches to colon cancer treatment.
Collapse
Affiliation(s)
- Leilei Yuan
- Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong, 272000, China
| | - Junhong Tian
- Department of Colorectal and Anal Surgery, Jining No.1 People's Hospital, Jining, Shandong, 272000, China.
| |
Collapse
|
16
|
Lightfoot HL, Miska EA, Balasubramanian S. Identification of small molecule inhibitors of the Lin28-mediated blockage of pre-let-7g processing. Org Biomol Chem 2018; 14:10208-10216. [PMID: 27731469 PMCID: PMC5433426 DOI: 10.1039/c6ob01945e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules enhance Dicer processing of a let-7 miRNA precursor through antagonization of the Lin28–pre-let-7 interaction.
The protein Lin28 and microRNA let-7 play critical roles in mammalian development and human disease. Lin28 inhibits let-7 biogenesis through direct interaction with let-7 precursors (pre-let-7). Accumulating evidence in vitro and in vivo suggests this interaction plays a dominant role in embryonic stem cell self-renewal and tumorigenesis. Thus the Lin28–let-7 interaction might be an attractive drug target, if not for the well-known difficulties in targeting protein–RNA interactions with drugs. The identification and development of suitable probe molecules to further elucidate therapeutic potential, as well as mechanistic details of this pathway will be valuable. We report the development and application of a biophysical high-throughput screening assay for the identification of small molecule inhibitors of the Lin28–pre-let-7 interaction. A library of pharmacologically active small molecules was screened and several small molecule inhibitors were identified and biochemically validated. Of these four validated inhibitors, two compounds successfully restored processing of pre-let-7g in the presence of Lin28, validating the concept. Thus, we have identified examples of small molecule inhibitors of the interaction between Lin28 and pre-let-7. This study provides a proof of concept for small molecule inhibitors that antagonise the effects of Lin28 and enhance processing of let-7 miRNA.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK.
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
17
|
Mixed Gonadal Germ Cell Tumor Composed of a Spermatocytic Tumor-Like Component and Germinoma Arising in Gonadoblastoma in a Phenotypic Woman With a 46, XX Peripheral Karyotype: Report of the First Case. Am J Surg Pathol 2017; 41:1290-1297. [PMID: 28614211 DOI: 10.1097/pas.0000000000000888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a unique case of gonadal mixed germ cell tumor (GCT) composed of a predominantly spermatocytic tumor (ST)-like component and a minor component of germinoma arising in gonadoblastoma in a phenotypic woman with a 46, XX peripheral karotype. The patient was a 24-year-old woman (gravida 2, para 1) found to have a 7 cm pelvic mass during routine obstetric ultrasound examination at 20 weeks gestational age. She underwent a left salpingo-gonadectomy at gestational age 23 and 2/7 weeks. She recovered well and delivered a healthy baby at full term. The resected gonadal tumor measured 7.5 cm and microscopically was composed of 3 morphologically distinct components: gonadoblastoma (1%), germinoma (1%) and a ST-like component (98%). The ST-like component was composed of 3 populations of tumor cells: small cells, intermediate and large sized cells, similar to testicular ST. Scattered binucleated and multinucleated cells were present. Immunohistochemically the ST-like component was positive for pan-GCT markers SALL4 and LIN28 but with weaker staining than the germinoma. It was negative for OCT4 and TCL1. Only rare tumor cells were positive for SOX17. In contrast, the germinoma cells were diffusely and strongly positive for SALL4, LIN28, OCT4, SOX17, and TCL1. CD117 was positive in both the germinoma and ST-like component but with fewer tumor cells positive in the latter. Flurorescence in situ hybridization study demonstrated isochromosome 12p in the germinoma component but not in the gonadoblastoma and ST-like component. This patient did not receive further chemoradiation therapy after the surgery. She has been free of disease for 10 years and 1 month since her surgery. To our knowledge, this is the first case report of a ST-like GCT in a phenotypic female.
Collapse
|
18
|
Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in Cancer. Front Genet 2017; 8:31. [PMID: 28400788 PMCID: PMC5368188 DOI: 10.3389/fgene.2017.00031] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Among all tumor suppressor microRNAs, reduced let-7 expression occurs most frequently in cancer and typically correlates with poor prognosis. Activation of either LIN28A or LIN28B, two highly related RNA binding proteins (RBPs) and proto-oncogenes, is responsible for the global post-transcriptional downregulation of the let-7 microRNA family observed in many cancers. Specifically, LIN28A binds the terminal loop of precursor let-7 and recruits the Terminal Uridylyl Transferase (TUTase) ZCCHC11 that polyuridylates pre-let-7, thereby blocking microRNA biogenesis and tumor suppressor function. For LIN28B, the precise mechanism responsible for let-7 inhibition remains controversial. Functionally, the decrease in let-7 microRNAs leads to overexpression of their oncogenic targets such as MYC, RAS, HMGA2, BLIMP1, among others. Furthermore, mouse models demonstrate that ectopic LIN28 expression is sufficient to drive and/or accelerate tumorigenesis via a let-7 dependent mechanism. In this review, the LIN28/let-7 pathway is discussed, emphasizing its role in tumorigenesis, cancer stem cell biology, metabolomics, metastasis, and resistance to ionizing radiation and several chemotherapies. Also, emerging evidence will be presented suggesting that molecular targeting of this pathway may provide therapeutic benefit in cancer.
Collapse
Affiliation(s)
- Julien Balzeau
- Department of Neurosurgery, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Miriam R Menezes
- Department of Neurosurgery, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Siyu Cao
- Department of Neurosurgery, University of Texas Health Science Center at Houston Houston, TX, USA
| | - John P Hagan
- Department of Neurosurgery, University of Texas Health Science Center at Houston Houston, TX, USA
| |
Collapse
|
19
|
Ma F, Zhou Z, Li N, Zheng L, Wu C, Niu B, Tang F, He X, Li G, Hua J. Lin28a promotes self-renewal and proliferation of dairy goat spermatogonial stem cells (SSCs) through regulation of mTOR and PI3K/AKT. Sci Rep 2016; 6:38805. [PMID: 27941834 PMCID: PMC5150521 DOI: 10.1038/srep38805] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022] Open
Abstract
Lin28a is a conserved RNA-binding protein that plays an important role in development, pluripotency, stemness maintenance, proliferation and self-renewal. Early studies showed that Lin28a serves as a marker of spermatogonial stem cells (SSCs) and promotes the proliferation capacity of mouse SSCs. However, there is little information about Lin28a in livestock SSCs. In this study, we cloned Capra hircus Lin28a CDS and found that it is evolutionarily conserved. Lin28a is widely expressed in different tissues of Capra hircus, but is expressed at a high level in the testis. Lin28a is specifically located in the cytoplasm of Capra hircus spermatogonial stem cells and may also be a marker of dairy goat spermatogonial stem cells. Lin28a promoted proliferation and maintained the self-renewal of GmGSCs-I-SB in vivo and in vitro. Lin28a-overexpressing GmGSCs-I-SB showed an enhanced proliferation rate, which might be due to increased PCNA expression. Moreover, Lin28a maintained the self-renewal of GmGSCs-I-SB by up-regulating the expression of OCT4, SOX2, GFRA1, PLZF and ETV5. Furthermore, we found that Lin28a may activate the AKT, ERK, and mTOR signaling pathways to promote the proliferation and maintain the self-renewal of GmGSCs-I-SB.
Collapse
Affiliation(s)
- Fanglin Ma
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| |
Collapse
|
20
|
Wang T, He Y, Zhu Y, Chen M, Weng M, Yang C, Zhang Y, Ning N, Zhao R, Yang W, Jin Y, Li J, Redpath RJRE, Zhang L, Jin X, Zhong Z, Zhang F, Wei Y, Shen G, Wang D, Liu Y, Wang G, Li X. Comparison of the expression and function of Lin28A and Lin28B in colon cancer. Oncotarget 2016; 7:79605-79616. [PMID: 27793004 PMCID: PMC5346739 DOI: 10.18632/oncotarget.12869] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/14/2016] [Indexed: 12/25/2022] Open
Abstract
Lin28A and Lin28B are highly conserved RNA binding proteins with similar structure and functions. Recent studies demonstrated that both of them act as oncogenes and promote cancer progression. However, few researches compared the expression and functions of both oncogenes in human malignant tumors at same time. Additionally, although the expression and role of Lin28B in colon cancer is frequently reported, the expression and functions of Lin28A in colon cancer are largely unknown. In this study, we have systematically evaluated the expressional pattern, mutation status and correlation of both Lin28A and Lin28B in colon cancer tissues for the first time, and compared the roles of Lin28A and Lin28B in the proliferation, migration, invasion and apoptosis of colon cancer cells in vitro. We have showed that they are co-expressed and have functional similarities, however, the molecular mechanisms underlying their similar functions may not be identical. This study contributes to clarify the similarities and differences of Lin28A and Lin28B in colon cancer progression.
Collapse
Affiliation(s)
- Tianzhen Wang
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Yan He
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- 2 Department of Gastrointestinal Medical Oncology, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Mingwei Chen
- 3 Department of Anatomy, Harbin Medical University, Harbin, China
| | - Mingjiao Weng
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Chao Yang
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Yan Zhang
- 4 Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Ning Ning
- 5 Department of Gastrointestinal Surgery, International Hospital of Pecking University, Beijing, China
| | - Ran Zhao
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Weiwei Yang
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Yinji Jin
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Jing Li
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | | | - Lei Zhang
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiaoming Jin
- 1 Department of Pathology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- 6 Department of Microbiology, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- 6 Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yunwei Wei
- 7 Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guomin Shen
- 8 Department of Medical Genetics, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Dong Wang
- 9 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ying Liu
- 4 Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Guangyu Wang
- 2 Department of Gastrointestinal Medical Oncology, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Xiaobo Li
- 1 Department of Pathology, Harbin Medical University, Harbin, China,10 The Northern Medicine Translational Center, Heilongjiang Province Academy of Medical Science, Harbin, China
| |
Collapse
|
21
|
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci U S A 2016; 113:E5425-33. [PMID: 27582469 DOI: 10.1073/pnas.1604773113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.
Collapse
|
22
|
Feng S, Huang S, Tong Y, Chen Z, Shen D, Wu D, Lai XH, Chen X. RNA-binding protein LIN28 is a sensitive marker of pediatric yolk sac tumors. Pediatr Surg Int 2016; 32:819-25. [PMID: 27357399 DOI: 10.1007/s00383-016-3922-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND RNA-binding protein LIN28 is involved in maintaining the pluripotency of embryonic stem cells. It has been detected in different types of testicular and ovarian germ cell tumors (GCTs), but its status in pediatric YSTs (yolk sac tumors) is still unknown. The aim of this study was to determine the immunohistochemical profile of LIN28 in pediatric YSTs. METHODS AND RESULTS Immunohistochemistry detection of LIN28 was performed in 22 cases of pediatric YSTs and 10 mature teratomas. The percentage of tumor cells stained was scored as 0, 1+ (1-30 % cells), 2+ (31-60 %), 3+ (61-90 %), and 4+ (>90 %). To compare its sensitive and specificity with alpha-fetoprotein (AFP), we also stained AFP in 22 cases of pediatric YSTs and 10 mature teratomas in children. LIN28 staining was high in all 22 pediatric yolk sac tumor (2+ in 1, 3+ in 1, and 4+ in 20), and weak staining of LIN28 was seen in 1 of 10 mature teratomas (1+), 9 of 10 mature teratomas were negative expression. However, the expression of AFP in pediatric YST was lower compared with Lin28 (- in 1, 1+ in 8, 2+ in 12, and 3+ in 1), and weak expression of AFP was seen in 2 of 10 mature teratomas (1+), 8 of 10 mature teratomas were negative. LIN28 had higher intensity expression than AFP in pediatric YSTs (P < 0.001). CONCLUSIONS LIN28 is a sensitive marker for pediatric YSTs and it can be used to distinguish them from mature teratomas. LIN28 is likely to become a new and valuable biomarker for diagnosing of pediatric YST.
Collapse
Affiliation(s)
- Shaoguang Feng
- Department of Pediatric Surgery, Hangzhou Children's Hospital, No. 195 Wenhui Rd, Xiacheng District, Hangzhou, China
| | - Songsong Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulong Tong
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongliang Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Delei Shen
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dazhou Wu
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-He Lai
- Institute of Inflammation and Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
23
|
Chieffi P. An Overview on Predictive Biomarkers of Testicular Germ Cell Tumors. J Cell Physiol 2016; 232:276-280. [DOI: 10.1002/jcp.25482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia; Seconda Università di Napoli; Caserta Italy
| |
Collapse
|
24
|
Carmel-Gross I, Bollag N, Armon L, Urbach A. LIN28: A Stem Cell Factor with a Key Role in Pediatric Tumor Formation. Stem Cells Dev 2016; 25:367-77. [PMID: 26692113 DOI: 10.1089/scd.2015.0322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Differentiation and development are normally unidirectional processes in which progenitor/stem cells differentiate into more mature cells. Transformation of adult cells into cancer cells is accompanied in many cases by dedifferentiation of the adult cell, while differentiation failure of progenitor cells can result in the formation of unique type of cancers called pediatric cancer. LIN28A and its paralog LIN28B are pluripotent genes that are expressed mainly in stem/progenitor cells. Since the first identification of LIN28 in mammals, numerous studies demonstrated the general oncogenic features of these genes. In this review, we emphasize the unique role of LIN28 in pediatric tumor formation. We show, based on comprehensive literature screen and analysis of published microarray data, that LIN28 expression in pediatric tumors is even more common than in adult tumors, and discuss the possibility that in the case of pediatric cancers, LIN28 acts by preventing normal development/differentiation rather than by transformation of mature cells into cancer cells. Overall, this review highlights the role of LIN28 as a bridge point between embryonic development, stem cell biology, and cancer.
Collapse
Affiliation(s)
- Ilana Carmel-Gross
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan, Israel
| | - Naomi Bollag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan, Israel
| |
Collapse
|
25
|
Tatetsu H, Kong NR, Chong G, Amabile G, Tenen DG, Chai L. SALL4, the missing link between stem cells, development and cancer. Gene 2016; 584:111-9. [PMID: 26892498 DOI: 10.1016/j.gene.2016.02.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
Abstract
There is a growing body of evidence supporting that cancer cells share many similarities with embryonic stem cells (ESCs). For example, aggressive cancers and ESCs share a common gene expression signature that includes hundreds of genes. Since ESC genes are not present in most adult tissues, they could be ideal candidate targets for cancer-specific diagnosis and treatment. This is an exciting cancer-targeting model. The major hurdle to test this model is to identify the key factors/pathway(s) within ESCs that are responsible for the cancer phenotype. SALL4 is one of few genes that can establish this link. The first publication of SALL4 is on its mutation in a human inherited disorder with multiple developmental defects. Since then, over 300 papers have been published on various aspects of this gene in stem cells, development, and cancers. This review aims to summarize our current knowledge of SALL4, including a SALL4-based approach to classify and target cancers. Many questions about this important gene still remain unanswered, specifically, on how this gene regulates cell fates at a molecular level. Understanding SALL4's molecular functions will allow development of specific targeted approaches in the future.
Collapse
Affiliation(s)
- Hiro Tatetsu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Nikki R Kong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Gao Chong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine (MD6), #12-01, 14 Medical Drive, 117599, Singapore; Harvard Stem Cell Institute, Center for Life Science Room 437, 3 Blackfan Circle Room 437, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Kloth L, Gottlieb A, Helmke B, Wosniok W, Löning T, Burchardt K, Belge G, Günther K, Bullerdiek J. HMGA2 expression distinguishes between different types of postpubertal testicular germ cell tumour. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2015; 1:239-51. [PMID: 27499908 PMCID: PMC4939894 DOI: 10.1002/cjp2.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
Abstract
The group of postpubertal testicular germ cell tumours encompasses lesions with highly diverse differentiation – seminomas, embryonal carcinomas, yolk sac tumours, teratomas and choriocarcinomas. Heterogeneous differentiation is often present within individual tumours and the correct identification of the components is of clinical relevance. HMGA2 re‐expression has been reported in many tumours, including testicular germ cell tumours. This is the first study investigating HMGA2 expression in a representative group of testicular germ cell tumours with the highly sensitive method of quantitative real‐time PCR as well as with immunohistochemistry. The expression of HMGA2 and HPRT was measured using quantitative real‐time PCR in 59 postpubertal testicular germ cell tumours. Thirty specimens contained only one type of tumour and 29 were mixed neoplasms. With the exception of choriocarcinomas, at least two pure specimens from each subgroup of testicular germ cell tumour were included. In order to validate the quantitative real‐time PCR data and gather information about the localisation of the protein, additional immunohistochemical analysis with an antibody specific for HMGA2 was performed in 23 cases. Expression of HMGA2 in testicular germ cell tumours depended on the histological differentiation. Seminomas and embryonal carcinomas showed no or very little expression, whereas yolk sac tumours strongly expressed HMGA2 at the transcriptome as well as the protein level. In teratomas, the expression varied and in choriocarcinomas the expression was moderate. In part, these results contradict data from previous studies but HMGA2 seems to represent a novel marker to assist pathological subtyping of testicular germ cell tumours. The results indicate a critical role in yolk sac tumours and some forms of teratoma.
Collapse
Affiliation(s)
- Lars Kloth
- Center for Human Genetics University of Bremen Bremen Germany
| | - Andrea Gottlieb
- Center for Human Genetics University of Bremen Bremen Germany
| | - Burkhard Helmke
- Institute for Pathology, Elbe Clinic Stade-Buxtehude Buxtehude Germany
| | - Werner Wosniok
- Institute of Statistics, University of Bremen Bremen Germany
| | - Thomas Löning
- Department of Pathology Albertinen Hospital Hamburg Germany
| | - Käte Burchardt
- Department of Pathology Clinical Centre Bremen-Mitte Bremen Germany
| | - Gazanfer Belge
- Center for Human Genetics University of Bremen Bremen Germany
| | - Kathrin Günther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS GmbH Bremen Germany
| | - Jörn Bullerdiek
- Center for Human GeneticsUniversity of Bremen BremenGermany; Institute for Medical Genetics, University of Rostock, University Medicine RostockGermany
| |
Collapse
|
27
|
Chieffi P, Boscia F. New discovered molecular markers as promising therapeutic targets in germ cell tumors. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1074070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Brieño-Enríquez MA, García-López J, Cárdenas DB, Guibert S, Cleroux E, Děd L, Hourcade JDD, Pěknicová J, Weber M, del Mazo J. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS One 2015; 10:e0124296. [PMID: 25897752 PMCID: PMC4405367 DOI: 10.1371/journal.pone.0124296] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.
Collapse
Affiliation(s)
- Miguel A. Brieño-Enríquez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - David B. Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Sylvain Guibert
- Biotechnology and Cell Signaling, CNRS UMR7242, University of Strasbourg, Strasbourg, France
| | - Elouan Cleroux
- Biotechnology and Cell Signaling, CNRS UMR7242, University of Strasbourg, Strasbourg, France
| | - Lukas Děd
- Institute of Biotechnology AS CR, v. v. i., Prague, Czech Republic
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jana Pěknicová
- Institute of Biotechnology AS CR, v. v. i., Prague, Czech Republic
| | - Michael Weber
- Biotechnology and Cell Signaling, CNRS UMR7242, University of Strasbourg, Strasbourg, France
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Chakraborty P, Buaas FW, Sharma M, Snyder E, de Rooij DG, Braun RE. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 2015; 32:860-73. [PMID: 24715688 DOI: 10.1002/stem.1584] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
One of the hallmarks of highly proliferative adult tissues is the presence of a stem cell population that produces progenitor cells bound for differentiation. Progenitor cells undergo multiple transit amplifying (TA) divisions before initiating terminal differentiation. In the adult male germline, daughter cells arising from the spermatogonial stem cells undergo multiple rounds of TA divisions to produce undifferentiated clones of interconnected 2, 4, 8, and 16 cells, collectively termed A(undifferentiated) (A(undiff)) spermatogonia, before entering a stereotypic differentiation cascade. Although the number of TA divisions markedly affects the tissue output both at steady state and during regeneration, mechanisms regulating the expansion of the TA cell population are poorly understood in mammals. Here, we show that mice with a conditional deletion of Lin28a in the adult male germline, display impaired clonal expansion of the progenitor TA A(undiff) spermatogonia. The in vivo proliferative activity of Au(ndiff) spermatogonial cells as indicated by BrdU incorporation during S-phase was reduced in the absence of LIN28A. Thus, contrary to the role of LIN28A as a key determinant of cell fate signals in multiple stem cell lineages, in the adult male germline it functions as an intrinsic regulator of proliferation in the population of A(undiff) TA spermatogonia. In addition, neither precocious differentiation nor diminished capacity for self-renewal potential as assessed by transplantation was observed, suggesting that neither LIN28A itself nor the pool of Aal progenitor cells substantially contribute to the functional stem cell compartment.
Collapse
|
30
|
Lin F, Liu H. Immunohistochemistry in undifferentiated neoplasm/tumor of uncertain origin. Arch Pathol Lab Med 2015; 138:1583-610. [PMID: 25427040 DOI: 10.5858/arpa.2014-0061-ra] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Immunohistochemistry has become an indispensable ancillary study in the identification and classification of undifferentiated neoplasms/tumors of uncertain origin. The diagnostic accuracy has significantly improved because of the continuous discoveries of tissue-specific biomarkers and the development of effective immunohistochemical panels. OBJECTIVES To identify and classify undifferentiated neoplasms/tumors of uncertain origin by immunohistochemistry. DATA SOURCES Literature review and authors' research data and personal practice experience were used. CONCLUSIONS To better guide therapeutic decisions and predict prognostic outcomes, it is crucial to differentiate the specific lineage of an undifferentiated neoplasm. Application of appropriate immunohistochemical panels enables the accurate classification of most undifferentiated neoplasms. Knowing the utilities and pitfalls of each tissue-specific biomarker is essential for avoiding potential diagnostic errors because an absolutely tissue-specific biomarker is exceptionally rare. We review frequently used tissue-specific biomarkers, provide effective panels, and recommend diagnostic algorithms as a standard approach to undifferentiated neoplasms.
Collapse
Affiliation(s)
- Fan Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | | |
Collapse
|
31
|
Murray MJ, Nicholson JC, Coleman N. Biology of childhood germ cell tumours, focussing on the significance of microRNAs. Andrology 2014; 3:129-39. [PMID: 25303610 PMCID: PMC4409859 DOI: 10.1111/andr.277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023]
Abstract
Genomic and protein-coding transcriptomic data have suggested that germ cell tumours (GCTs) of childhood are biologically distinct from those of adulthood. Global messenger RNA profiles segregate malignant GCTs primarily by histology, but then also by age, with numerous transcripts showing age-related differential expression. Such differences are likely to account for the heterogeneous clinico-pathological behaviour of paediatric and adult malignant GCTs. In contrast, as global microRNA signatures of human tumours reflect their developmental lineage, we hypothesized that microRNA profiles would identify common biological abnormalities in all malignant GCTs owing to their presumed shared origin from primordial germ cells. MicroRNAs are short, non-protein-coding RNAs that regulate gene expression via translational repression and/or mRNA degradation. We showed that all malignant GCTs over-express the miR-371-373 and miR-302/367 clusters, regardless of patient age, histological subtype or anatomical tumour site. Furthermore, bioinformatic approaches and subsequent Gene Ontology analysis revealed that these two over-expressed microRNAs clusters co-ordinately down-regulated genes involved in biologically significant pathways in malignant GCTs. The translational potential of this finding has been demonstrated with the detection of elevated serum levels of miR-371-373 and miR-302/367 microRNAs at the time of malignant GCT diagnosis, with levels falling after treatment. The tumour-suppressor let-7 microRNA family has also been shown to be universally down-regulated in malignant GCTs, because of abundant expression of the regulatory gene LIN28. Low let-7 levels resulted in up-regulation of oncogenes including MYCN, AURKB and LIN28 itself, the latter through a direct feedback mechanism. Targeting LIN28, or restoring let-7 levels, both led to effective inhibition of this pathway. In summary, paediatric malignant GCTs show biological differences from their adult counterparts at a genomic and protein-coding transcriptome level, whereas they both display very similar microRNA expression profiles. These similarities and differences may be exploited for diagnostic and/or therapeutic purposes.
Collapse
Affiliation(s)
- M J Murray
- Department of Pathology, University of Cambridge, Cambridge, UK; Department of Paediatric Haematology and Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
32
|
Nogales FF, Quiñonez E, López-Marín L, Dulcey I, Preda O. A diagnostic immunohistochemical panel for yolk sac (primitive endodermal) tumours based on an immunohistochemical comparison with the human yolk sac. Histopathology 2014; 65:51-9. [PMID: 24444105 DOI: 10.1111/his.12373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
AIMS To establish a diagnostic immunohistochemical panel for various histotypes of yolk sac (primitive endodermal) tumours (YSTs) by comparison with the human yolk sac (HYS) immunophenotype. METHODS AND RESULTS Twenty-five YSTs showing either classical patterns (CPs) of histology (microcystic/reticular, n = 14; polyvesicular, n = 1; and hepatoid, n = 1) or somatic glandular patterns (SGPs; n = 9) were analysed for expression of α-fetoprotein (AFP), glypican-3 (GPC3), villin, hepatocyte paraffin-1 (HepPar-1), CDX2, SALL4 and LIN28. AFP expression was constantly heterogeneous in CPs but tended to be focal/absent in SGPs. GPC3 was diffuse in CPs but heterogeneous (seven cases) or focal/absent (two cases) in SGPs. HepPar-1 expression was focal in all but three cases (diffuse in one CP-hepatoid and two SGPs). CDX2 positivity was focal in CPs but heterogeneous (seven cases) or diffuse (two cases) in SGPs. Villin, SALL4 and LIN28 were diffusely positive in nearly all cases. CONCLUSIONS CPs reproduce the immunophenotype of HYS and early endoderm with variable expression of both AFP and markers of early gut or hepatic differentiation. SGPs with intestinal differentiation often have incomplete immunophenotypes. A differential diagnosis panel, including both markers of pluripotentiality (SALL4 and/or LIN28) and endoderm (AFP, GPC3 and villin), is proposed. It identifies overlapping multidifferentiation of primitive and somatic immunophenotypes, supporting the recently proposed term of primitive endodermal tumours.
Collapse
|
33
|
Qin R, Zhou J, Chen C, Xu T, Yan Y, Ma Y, Zheng Z, Shen Y, Lu Y, Fu D, Chen J. LIN28 is involved in glioma carcinogenesis and predicts outcomes of glioblastoma multiforme patients. PLoS One 2014; 9:e86446. [PMID: 24475120 PMCID: PMC3901701 DOI: 10.1371/journal.pone.0086446] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
LIN28, an evolutionarily conversed RNA binding protein which can bind to the terminal loops of let-7 family microRNA precursors and block their processing to maturation, is highly expressed in several subsets of tumors that carry poor prognoses, such as ovarian carcinoma, hepatocellular carcinoma, colon carcinoma and germ cell carcinoma. However, there has been no study on the expression of LIN28 in glioma tissues or their importance as a prognostic predictor of glioma patients. This study aimed to examine the expression of LIN28 in glioma and correlate the results to patient outcome. We found that LIN28 expression was significantly higher in the group of patients with a poor prognosis compared to patients with a good prognosis by gene microarray. Log-rank analysis showed patients with higher LIN28 expression level in tumor had a shorter progression-free survival and overall survival times compared to those with lower LIN28 expression level. Similar results were also obtained from the tissue microarray analysis. Univariate and multivariate analyses showed high LIN28 expression was an independent prognostic factor for a shorter progression-free survival and overall survival in GBM patients. Furthermore in vitro experiments showed that down-regulation of LIN28 in U251 and U373 cells caused cell cycle arrest in the G1 phase, delayed cell proliferation, increased apoptosis, and resulted in fewer colonies compared to controls. Summarily, our data provides a potential target for cancer therapy as an approach to overcome the poor options currently available for GBM patients.
Collapse
Affiliation(s)
- Rong Qin
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jingxu Zhou
- Department of Neurosurgery, the 101 hospital of PLA, Wuxi, Jiangsu Province, China
| | - Chao Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yushui Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zongli Zheng
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yiping Shen
- Department of Laboratory Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yicheng Lu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Da Fu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JC); (DF)
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JC); (DF)
| |
Collapse
|
34
|
Chieffi P. An overview on new anticancer molecular targets in human testicular germ cell tumors. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-013-0280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Recent advances in molecular and cell biology of testicular germ-cell tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:79-100. [PMID: 25262239 DOI: 10.1016/b978-0-12-800178-3.00003-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Testicular germ-cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and nonseminomas germ-cell tumors (NSGCTs). NSGCTs can be further divided into embryonal, carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the primordial germ cells. Many discovered biomarkers including OCT3/4, SOX2, SOX17, HMGA1, Nek2, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful novel molecular targets for antineoplastic strategies. More insight into the pathogenesis of TGCTs is likely to improve disease management not only to better treatment of these tumors but also to a better understanding of stem cells and oncogenesis.
Collapse
|
36
|
Murray MJ, Saini HK, Siegler CA, Hanning JE, Barker EM, van Dongen S, Ward DM, Raby KL, Groves IJ, Scarpini CG, Pett MR, Thornton CM, Enright AJ, Nicholson JC, Coleman N. LIN28 Expression in malignant germ cell tumors downregulates let-7 and increases oncogene levels. Cancer Res 2013; 73:4872-84. [PMID: 23774216 DOI: 10.1158/0008-5472.can-12-2085] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite their clinicopathologic heterogeneity, malignant germ cell tumors (GCT) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of downregulation of the let-7 family of tumor suppressor microRNAs in malignant GCTs. Microarray results from pediatric and adult samples (n = 45) showed that LIN28, the negative regulator of let-7 biogenesis, was abundant in malignant GCTs, regardless of patient age, tumor site, or histologic subtype. Indeed, a strong negative correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, as the sequence complementary to the 2 to 7 nt common let-7 seed "GAGGUA" was enriched in the 3' untranslated regions of mRNAs upregulated in pediatric and adult malignant GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were upregulated in malignant GCT cells, confirming significant negative correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by quantitative reverse transcription PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67, and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and downregulate MYCN, AURKB, and LIN28, the latter via a double-negative feedback loop. We conclude that the LIN28/let-7 pathway has a critical pathobiologic role in malignant GCTs and therefore offers a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew J Murray
- Department of Pathology, Cambridge University, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
In recent years, the highly conserved Lin28 RNA-binding proteins have emerged as factors that define stemness in several tissue lineages. Lin28 proteins repress let-7 microRNAs and influence mRNA translation, thereby regulating the self-renewal of mammalian embryonic stem cells. Subsequent discoveries revealed that Lin28a and Lin28b are also important in organismal growth and metabolism, tissue development, somatic reprogramming, and cancer. In this review, we discuss the Lin28 pathway and its regulation, outline its roles in stem cells, tissue development, and pathogenesis, and examine the ramifications for re-engineering mammalian physiology.
Collapse
Affiliation(s)
- Ng Shyh-Chang
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA. Harvard Stem Cell Institute, Boston, Massachusetts, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. Manton Center for Orphan Disease Research, Boston, Massachusetts, USA. Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - George Q. Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA. Harvard Stem Cell Institute, Boston, Massachusetts, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. Manton Center for Orphan Disease Research, Boston, Massachusetts, USA. Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Gaytan F, Sangiao-Alvarellos S, Manfredi-Lozano M, García-Galiano D, Ruiz-Pino F, Romero-Ruiz A, León S, Morales C, Cordido F, Pinilla L, Tena-Sempere M. Distinct expression patterns predict differential roles of the miRNA-binding proteins, Lin28 and Lin28b, in the mouse testis: studies during postnatal development and in a model of hypogonadotropic hypogonadism. Endocrinology 2013; 154:1321-36. [PMID: 23337528 DOI: 10.1210/en.2012-1745] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lin28 (also termed Lin28a) and Lin28b are related RNA-binding proteins, involved in the control of microRNA synthesis, especially of the let-7 family, with putative functions in early (embryo) development. However, their roles during postnatal maturation remain ill defined. Despite the general assumption that Lin28 and Lin28b share similar targets and functions, conclusive demonstration of such redundancy is still missing. In addition, recent observations suggest a role of Lin28 proteins in mammalian reproduction, which is yet to be defined. We document herein the patterns of RNA expression and protein distribution of Lin28 and Lin28b in mouse testis during postnatal development and in a model of hypogonadotropic hypogonadism as a result of inactivation of the kisspeptin receptor, Gpr54. Lin28 and Lin28b mRNAs were expressed in mouse testis across postnatal maturation, but their levels disparately varied between neonatal and pubertal periods, with peak Lin28 levels in infantile testes and sustained elevation of Lin28b mRNA in young adult male gonads, where relative levels of let-7a and let-7b miRNAs were significantly suppressed. In addition, Lin28 peptides displayed totally different patterns of cellular distribution in mouse testis: Lin28 was located in undifferentiated and type-A1 spermatogonia, whereas Lin28b was confined to spermatids and interstitial Leydig cells. These profiles were perturbed in Gpr54 null mouse testis, which showed preserved but irregular Lin28 signal and absence of Lin28b peptide, which was rescued by administration of gonadotropins, mainly hCG (as super-agonist of LH). In addition, increased relative levels of Lin28, but not Lin28b, mRNA and of let-7a/let-7b miRNAs were observed in Gpr54 KO mouse testes. Altogether, our data are the first to document the divergent patterns of cellular distribution and mRNA expression of Lin28 and Lin28b in the mouse testis along postnatal maturation and their alteration in a model of congenital hypogonadotropic hypogonadism. Our findings suggest distinct functional roles of these two related, but not overlapping, miRNA-binding proteins in the male gonad.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Gene Expression Regulation, Developmental
- Hypogonadism/congenital
- Hypogonadism/genetics
- Hypogonadism/metabolism
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, Kisspeptin-1
- Reverse Transcriptase Polymerase Chain Reaction
- Spermatogenesis/genetics
- Spermatogenesis/physiology
- Testis/growth & development
- Testis/metabolism
Collapse
Affiliation(s)
- Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferation of hepatoma cells. Oncogene 2013; 33:449-60. [PMID: 23318446 DOI: 10.1038/onc.2012.618] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/02/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus X protein (HBx) plays critical roles in the pathogenesis of hepatocellular carcinoma (HCC). Here, we were interested in knowing whether the oncogene Lin28A and its homolog Lin28B are involved in the hepatocarcinogenesis mediated by HBx. We showed that the expression levels of Lin28A and Lin28B were increased in clinical HCC tissues, HepG2.2.15 cell line and liver tissues of p21-HBx transgenic mice. Interestingly, the expression levels of HBx were positively associated with those of Lin28A/Lin28B in clinical HCC tissues. Moreover, the overexpression of HBx resulted in the upregulation of Lin28A/Lin28B in hepatoma HepG2/H7402 cell lines by transient transfection, suggesting that HBx was able to upregulate Lin28A and Lin28B. Then, we examined the mechanism by which HBx upregulated Lin28A and Lin28B. We identified that the promoter region of Lin28A regulated by HBx was located at nt -235/-66 that contained Sp-1 binding element. Co-immunoprecipitation showed that HBx was able to interact with Sp-1 in HepG2-X cells. Moreover, chromatin immunoprecipitation (ChIP) demonstrated that HBx could bind to the promoter of Lin28A, which failed to work when Sp-1 was silenced. Electrophoretic mobility shift assay (EMSA) further identified that HBx was able to interact with Sp-1 element in Lin28A promoter via transcription factor Sp-1. In addition, we found that c-Myc was involved in the activation of Lin28B mediated by HBx. In function, Lin28A/Lin28B played important roles in HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. In conclusion, HBx activates Lin28A/Lin28B through Sp-1/c-Myc in hepatoma cells. Lin28A/Lin28B serves as key driver genes in HBx-induced hepatocarcinogenesis.
Collapse
|
40
|
Wilbert ML, Huelga SC, Kapeli K, Stark TJ, Liang TY, Chen SX, Yan BY, Nathanson JL, Hutt KR, Lovci MT, Kazan H, Vu AQ, Massirer KB, Morris Q, Hoon S, Yeo GW. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell 2012; 48:195-206. [PMID: 22959275 DOI: 10.1016/j.molcel.2012.08.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 06/18/2012] [Accepted: 08/02/2012] [Indexed: 01/05/2023]
Abstract
LIN28 is a conserved RNA-binding protein implicated in pluripotency, reprogramming, and oncogenesis. It was previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, but here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28-binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions.
Collapse
Affiliation(s)
- Melissa L Wilbert
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ushiku T, Shinozaki-Ushiku A, Maeda D, Morita S, Fukayama M. Distinct expression pattern of claudin-6, a primitive phenotypic tight junction molecule, in germ cell tumours and visceral carcinomas. Histopathology 2012; 61:1043-56. [DOI: 10.1111/j.1365-2559.2012.04314.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol 2012; 22:474-82. [PMID: 22784697 DOI: 10.1016/j.tcb.2012.06.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
Abstract
One of the most ancient and highly conserved microRNAs (miRNAs), the let-7 family, has gained notoriety owing to its regulation of stem cell differentiation and essential role in normal development, as well as its tumor suppressor function. Mechanisms controlling let-7 expression have recently been uncovered, specifically the role of the RNA-binding protein Lin28 - a key developmental regulator - in blocking let-7 biogenesis. This review focuses on our current understanding of the Lin28-mediated control of let-7 maturation and highlights the central role of Lin28 in stem cell biology, development, control of glucose metabolism, and dysregulation in human disease. Manipulating the Lin28 pathway for the precise control of let-7 expression may provide novel therapeutic opportunities for cancer and other diseases.
Collapse
|
43
|
Närvä E, Rahkonen N, Emani MR, Lund R, Pursiheimo JP, Nästi J, Autio R, Rasool O, Denessiouk K, Lähdesmäki H, Rao A, Lahesmaa R. RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 2012; 30:452-60. [PMID: 22162396 DOI: 10.1002/stem.1013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied, the role of cytoplasmic regulators is still poorly characterized. Here, we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11, FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore, we demonstrate that OCT4, SOX2, and NANOG all bind to the promoter of L1TD1. Moreover, L1TD1 is highly expressed in seminomas, and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus, we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness.
Collapse
Affiliation(s)
- Elisa Närvä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Aeckerle N, Eildermann K, Drummer C, Ehmcke J, Schweyer S, Lerchl A, Bergmann M, Kliesch S, Gromoll J, Schlatt S, Behr R. The pluripotency factor LIN28 in monkey and human testes: a marker for spermatogonial stem cells? Mol Hum Reprod 2012; 18:477-88. [PMID: 22689537 PMCID: PMC3457707 DOI: 10.1093/molehr/gas025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mammalian spermatogenesis is maintained by spermatogonial stem cells (SSCs). However, since evidentiary assays and unequivocal markers are still missing in non-human primates (NHPs) and man, the identity of primate SSCs is unknown. In contrast, in mice, germ cell transplantation studies have functionally demonstrated the presence of SSCs. LIN28 is an RNA-binding pluripotent stem cell factor, which is also strongly expressed in undifferentiated mouse spermatogonia. By contrast, two recent reports indicated that LIN28 is completely absent from adult human testes. Here, we analyzed LIN28 expression in marmoset monkey (Callithrix jacchus) and human testes during development and adulthood and compared it with that in mice. In the marmoset, LIN28 was strongly expressed in migratory primordial germ cells and gonocytes. Strikingly, we found a rare LIN28-positive subpopulation of spermatogonia also in adult marmoset testis. This was corroborated by western blotting and quantitative RT–PCR. Importantly, in contrast to previous publications, we found LIN28-positive spermatogonia also in normal adult human and additional adult NHP testes. Some seasonal breeders exhibit a degenerated (involuted) germinal epithelium consisting only of Sertoli cells and SSCs during their non-breeding season. The latter re-initiate spermatogenesis prior to the next breeding-season. Fully involuted testes from a seasonal hamster and NHP (Lemur catta) exhibited numerous LIN28-positive spermatogonia, indicating an SSC identity of the labeled cells. We conclude that LIN28 is differentially expressed in mouse and NHP spermatogonia and might be a marker for a rare SSC population in NHPs and man. Further characterization of the LIN28-positive population is required.
Collapse
Affiliation(s)
- N Aeckerle
- Stem Cell Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li N, Zhong X, Lin X, Guo J, Zou L, Tanyi JL, Shao Z, Liang S, Wang LP, Hwang WT, Katsaros D, Montone K, Zhao X, Zhang L. Lin-28 homologue A (LIN28A) promotes cell cycle progression via regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer. J Biol Chem 2012; 287:17386-17397. [PMID: 22467868 DOI: 10.1074/jbc.m111.321158] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RNA-binding protein LIN28A regulates the translation and stability of a large number of mRNAs as well as the biogenesis of certain miRNAs in embryonic stem cells and developing tissues. Increasing evidence indicates that LIN28A functions as an oncogene promoting cancer cell growth. However, little is known about its molecular mechanism of cell cycle regulation in cancer. Using tissue microarrays, we found that strong LIN28A expression was reactivated in about 10% (7.1-17.1%) of epithelial tumors (six tumor types, n = 369). Both in vitro and in vivo experiments demonstrate that LIN28A promotes cell cycle progression in cancer cells. Genome-wide RNA-IP-chip experiments indicate that LIN28A binds to thousands of mRNAs, including a large group of cell cycle regulatory mRNAs in cancer and embryonic stem cells. Furthermore, the ability of LIN28A to stimulate translation of LIN28A-binding mRNAs, such as CDK2, was validated in vitro and in vivo. Finally, using a combined gene expression microarray and bioinformatics approach, we found that LIN28A also regulates CCND1 and CDC25A expression and that this is mediated by inhibiting the biogenesis of let-7 miRNA. Taken together, these results demonstrate that LIN28A is reactivated in about 10% of epithelial tumors and promotes cell cycle progression by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent).
Collapse
Affiliation(s)
- Ning Li
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Xiaomin Zhong
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Xiaojuan Lin
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Obstetrics and Gynecology, Second West China Hospital of Sichuan University, Chengdu, China
| | - Jinyi Guo
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lian Zou
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Obstetrics and Gynecology, Second West China Hospital of Sichuan University, Chengdu, China
| | - Janos L Tanyi
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhongjun Shao
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Shun Liang
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Li-Ping Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Wei-Ting Hwang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dionyssios Katsaros
- Department of Obstetrics and Gynecology, University of Turin, Turin 10124, Italy
| | - Kathleen Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Second West China Hospital of Sichuan University, Chengdu, China
| | - Lin Zhang
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
46
|
Huang Y. A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:483-94. [PMID: 22467269 DOI: 10.1002/wrna.1112] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lin28 is an evolutionarily conserved RNA-binding protein that plays important roles in development, pluripotency, tumorigenesis, and metabolism. Emerging evidence suggests that the pleiotropic roles of Lin28 in the diverse physiological and pathological processes are mechanistically linked to its ability to modulate not only the biogenesis of miRNAs, particularly the let-7 family miRNAs, but also the translation of mRNAs important for cell growth and metabolism. Let-7 negatively regulates the translation of oncogenes, cell cycle regulators, and metabolic pathway components. Lin28 relieves this repression by blocking the production of mature let-7. Lin28 binds to the terminal loops of let-7 precursors, leading to inhibition of processing and the induction of uridylation and precursor degradation. Lin28 also is a direct translational regulator: it selectively binds to a cohort of mRNAs and stimulates their translation. Recent advances in our understanding of Lin28-mediated mechanisms of posttranscriptional regulation of gene expression reveal important roles of this protein in the fields of development, stem cells, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
47
|
Qiu JL, Huang PZ, You JH, Zou RH, Wang L, Hong J, Li BK, Zhou K, Yuan YF. LIN28 expression and prognostic value in hepatocellular carcinoma patients who meet the Milan criteria and undergo hepatectomy. CHINESE JOURNAL OF CANCER 2012; 31:223-32. [PMID: 22429493 PMCID: PMC3777525 DOI: 10.5732/cjc.011.10426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cell marker LIN28, related closely with SOX2 and OCT4, has been studied as a biomarker for the maintainance of pluripotent cells in several malignancies. Our previous study showed that SOX2 and OCT4 were negative predictors for hepatocellular carcinoma (HCC). However, the predictive value of LIN28 in HCC outcome is still undetermined. We hypothesized that LIN28 may also play a role as a biomarker for HCC. To test this hypothesis, we examined the expression of LIN28 in 129 radically resected HCC tissues using reverse transcription-polymerase chain reaction and analyzed the association of LIN28 expression with clinicopathologic features and prognosis. Our study showed that LIN28 was expressed at a higher frequency in tumor tissues than in non-HCC tissues (45.0% vs. 21.7%, P = 0.020). Moreover, LIN28 expression was significantly increased in cases with large tumor size (P = 0.010). Univariate analysis did not reveal a significant correlation between LIN28 expression and overall survival or recurrence-free survival. For HCC patients who met the Milan criteria, stratified analysis revealed shorter overall survival (P = 0.007) and recurrence-free survival (P < 0.001) in those with detectable LIN28 expression compared to those with no detectable LIN28 expression. Furthermore, multivariate analysis revealed that LIN28 was a negative independent predictor for both overall survival (hazard ratio= 7.093, P = 0.017) and recurrence-free survival (hazard ratio=5.518, P = 0.004) in patients who met the Milan criteria. Taken together, our results suggest that LIN28 identifies low-risk and high-risk subsets of HCC patients meeting the Milan criteria who undergo hepatectomy.
Collapse
Affiliation(s)
- Ji-Liang Qiu
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Childs AJ, Kinnell HL, He J, Anderson RA. LIN28 is selectively expressed by primordial and pre-meiotic germ cells in the human fetal ovary. Stem Cells Dev 2012; 21:2343-9. [PMID: 22296229 DOI: 10.1089/scd.2011.0730] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Germ cell development requires timely transition from primordial germ cell (PGC) self-renewal to meiotic differentiation. This is associated with widespread changes in gene expression, including downregulation of stem cell-associated genes, such as OCT4 and KIT, and upregulation of markers of germ cell differentiation and meiosis, such as VASA, STRA8, and SYCP3. The stem cell-expressed RNA-binding protein Lin28 has recently been demonstrated to be essential for PGC specification in mice, and LIN28 is expressed in human germ cell tumors with phenotypic similarities to human fetal germ cells. We have therefore examined the expression of LIN28 during normal germ cell development in the human fetal ovary, from the PGC stage, through meiosis to the initiation of follicle formation. LIN28 transcript levels were highest when the gonad contained only PGCs, and decreased significantly with increasing gestation, coincident with the onset of germ cell differentiation. Immunohistochemistry revealed LIN28 protein expression to be germ cell-specific at all stages examined. All PGCs expressed LIN28, but at later gestations expression was restricted to a subpopulation of germ cells, which we demonstrate to be primordial and premeiotic germ cells based on immunofluorescent colocalization of LIN28 and OCT4, and absence of overlap with the meiosis marker SYCP3. We also demonstrate the expression of the LIN28 target precursor pri-microRNA transcripts pri-LET7a/f/d and pri-LET-7g in the human fetal ovary, and that expression of these is highest at the PGC stage, mirroring that of LIN28. The spatial and temporal restriction of LIN28 expression and coincident peaks of expression of LIN28 and target pri-microRNAs suggest important roles for this protein in the maintenance of the germline stem cell state and the regulation of microRNA activity in the developing human ovary.
Collapse
Affiliation(s)
- Andrew J Childs
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|