1
|
Xu Q, Li X, Xu Z, Chen S, Xiong D. Water-accommodated fractions of crude oil and its mixture with chemical dispersant impairs oxidase stress and energy metabolism disorders in Oryzias melastigma embryos. CHEMOSPHERE 2024; 363:142912. [PMID: 39084299 DOI: 10.1016/j.chemosphere.2024.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
In this study, marine medaka (Oryzias melastigma) embryos were exposed to different concentrations of water-accommodated fractions (WAFs) and chemically enhanced water-accommodated fractions (CEWAFs) of Oman crude oil for 14 d by semi-static exposure methods. The effects on growth and development and energy metabolism process were evaluated. Results showed that embryo survival and hatchability were decreased in a dose-dependent manner with an increase in the concentration of petroleum hydrocarbon compounds, whereas the malformation exhibited a dose-dependent increase. Compared to the control, the adenosine triphosphate (ATP) content and Na+-K+-ATPase (NKA) activities of embryos exposed to both WAFs and CEWAFs were reduced, while intracellular reactive oxygen species (ROS) levels and NADH oxidase (NOX) activities were increased. Our study demonstrated that exposure to crude oil dispersed by chemical dispersant affected the growth and development of marine medaka embryos, caused oxidative stress while produced a series of malformations in the body and dysregulation in energy metabolism. In comparison, the toxic effects of chemically dispersed crude oil might be more severe than the oil itself in the equivalent diluted concentration treatment solution. These would provide more valuable and reliable reference data for the use of chemical dispersants in oil spills.
Collapse
Affiliation(s)
- Qiaoyue Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Zhu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Si Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
2
|
Schmidt TL, Endersby-Harshman NM, van Rooyen ARJ, Katusele M, Vinit R, Robinson LJ, Laman M, Karl S, Hoffmann AA. Global, asynchronous partial sweeps at multiple insecticide resistance genes in Aedes mosquitoes. Nat Commun 2024; 15:6251. [PMID: 39048545 PMCID: PMC11269687 DOI: 10.1038/s41467-024-49792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Aedes aegypti (yellow fever mosquito) and Ae. albopictus (Asian tiger mosquito) are globally invasive pests that confer the world's dengue burden. Insecticide-based management has led to the evolution of insecticide resistance in both species, though the genetic architecture and geographical spread of resistance remains incompletely understood. This study investigates partial selective sweeps at resistance genes on two chromosomes and characterises their spread across populations. Sweeps at the voltage-sensitive sodium channel (VSSC) gene on chromosome 3 correspond to one resistance-associated nucleotide substitution in Ae. albopictus and three in Ae. aegypti, including two substitutions at the same nucleotide position (F1534C) that have evolved and spread independently. In Ae. aegypti, we also identify partial sweeps at a second locus on chromosome 2. This locus contains 15 glutathione S-transferase (GST) epsilon class genes with significant copy number variation among populations and where three distinct genetic backgrounds have spread across the Indo-Pacific region, the Americas, and Australia. Local geographical patterns and linkage networks indicate VSSC and GST backgrounds probably spread at different times and interact locally with different genes to produce resistance phenotypes. These findings highlight the rapid global spread of resistance and are evidence for the critical importance of GST genes in resistance evolution.
Collapse
Affiliation(s)
- Thomas L Schmidt
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia.
| | | | | | - Michelle Katusele
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Rebecca Vinit
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Leanne J Robinson
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Moses Laman
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
- Burnet Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
4
|
Du J, Yin H, Li J, Zhang W, Ding G, Zhou D, Sun Y, Shen B. Transcription factor B-H2 regulates CYP9J34 expression conveying deltamethrin resistance in Culex pipiens pallens. PEST MANAGEMENT SCIENCE 2024; 80:1991-2000. [PMID: 38092527 DOI: 10.1002/ps.7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Mosquitoes are vectors of various diseases, posing significant health threats worldwide. Chemical pesticides, particularly pyrethroids like deltamethrin, are commonly used for mosquito control, but the emergence of resistant mosquito populations has become a concern. In the deltamethrin-resistant (DR) strain of Culex pipiens pallens, the highly expressed cytochrome P450 9 J34 (CYP9J34) gene is believed to play a role in resistance, yet the underlying mechanism remains unclear. RESULTS Quantitative polymerase chain reaction with reverse transcription (qRT-PCR) analysis revealed that the expression of CYP9J34 was 14.6-fold higher in DR strains than in deltamethrin-susceptible (DS) strains. The recombinant production of CYP9J34 protein of Cx. pipiens pallens showed that the protein could directly metabolize deltamethrin, yielding the major metabolite 4'-OH deltamethrin. Through dual luciferase reporter assays and RNA interference, the transcription factor homeobox protein B-H2-like (B-H2) was identified to modulate the expression of the CYP9J34 gene, contributing to mosquito resistance to deltamethrin. CONCLUSIONS Our findings demonstrate that the CYP9J34 protein could directly degrade deltamethrin, and the transcription factor B-H2 could regulate CYP9J34 expression, influencing the resistance of mosquitoes to deltamethrin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Wenxing Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Guangshuo Ding
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Sahoo BR, Ramamoorthy A. Direct interaction between the transmembrane helices stabilize cytochrome P450 2B4 and cytochrome b5 redox complex. Biophys Chem 2023; 301:107092. [PMID: 37586236 PMCID: PMC10838600 DOI: 10.1016/j.bpc.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The catalytic activity of cytochrome P450 2B4 (CYP2B4) is moderated by its cognate redox partner cytochrome b5 (Cyt-b5). The endoplasmic reticulum (ER) membrane and intermolecular transmembrane (TM) interaction between CYP2B4 and Cyt-b5 regulate the substrate catalysis and the reaction rate. This emphasizes the significance of elucidating the molecular basis of CYP2B4 and Cyt-b5 complexation in a membrane environment to better understand the enzymatic activity of CYP2B4. Our previous solid-state NMR studies revealed the membrane topology of the transmembrane domains of these proteins in the free and complex forms. Here, we show the cross-angle complex formation by the single-pass TM domains of CYP2B4 and Cyt-b5, which is mainly driven by several salt-bridges (E2-R128, R21-D104 and K25-D104), using a multi-microsecond molecular dynamic simulation. Additionally, the leucine-zipper residues (L8, L12, L15, L18 and L19 from CYP2B4) and π-stacking between H23 and F20 residues of CYP2B4 and W110 of Cyt-b5 are identified to stabilize the TM-TM complex in the ER membrane. The simulated tilts of the helices in the free and in the complex are in excellent agreement with solid-state NMR results. The TM-TM packing influences a higher order structural stability when compared to the complex formed by the truncated soluble domains of these two proteins. MM/PBSA based binding free energy estimates nearly 100-fold higher binding affinity (ΔG = -2810.68 ± 696.44 kJ/mol) between the soluble domains of the full-length CYP2B4 and Cyt-b5 when embedded in lipid membrane as compared to the TM-domain-truncated soluble domains (ΔG = -27.406 ± 10.32 kJ/mol). The high-resolution full-length CYP2B4-Cyt-b5 complex structure and its dynamics in a native ER membrane environment reported here could aid in the development of approaches to effectively modulate the drug-metabolism activity of CYP2B4.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
6
|
Shi M, Guo Y, Wu YY, Dai PL, Dai SJ, Diao QY, Gao J. Acute and chronic effects of sublethal neonicotinoid thiacloprid to Asian honey bee (Apis cerana cerana). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105483. [PMID: 37532314 DOI: 10.1016/j.pestbp.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023]
Abstract
Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yi Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shao-Jun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Qing-Yun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
7
|
Gomes MP, Dos Santos MP, de Freitas PL, Schafaschek AM, de Barros EN, Kitamura RSA, Paulete V, Navarro-Silva MA. The aquatic macrophyte Salvinia molesta mitigates herbicides (glyphosate and aminomethylphosphonic acid) effects to aquatic invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12348-12361. [PMID: 36109480 DOI: 10.1007/s11356-022-23012-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the individual and combined effects of different environmentally representative concentrations of glyphosate (0, 25, 50, 75, and 100 µg l-1) and aminomethylphosphonic acid (AMPA; 0, 12.5, 25, 37.5, and 50 µg l-1) on the physiology of Aedes aegypti larvae, as well as the capacity of the aquatic macrophyte Salvinia molesta to attenuate those compounds' toxicological effects. Larvae of Ae. aegypti (between the third and fourth larval stages) were exposed for 48 h to glyphosate and/or AMPA in the presence or absence of S. molesta. Glyphosate and AMPA induced sublethal responses in Ae. aegypti larvae during acute exposures. Plants removed up to 49% of the glyphosate and 25% of AMPA from the water, resulting in the exposure of larvae to lower concentration of those compounds in relation to media without plants. As a result, lesser effects of glyphosate and/or AMPA were observed on larval acetylcholinesterase, P450 reductase, superoxide dismutase, mitochondrial electron transport chain enzymes, respiration rates, and lipid peroxidation. In addition to evidence of deleterious effects by media contamination with glyphosate and AMPA on aquatic invertebrates, our results attest to the ability of S. molesta plants to mitigate the toxicological impacts of those contaminants.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Parana, 81531-980, Brazil.
| | - Mariana Perez Dos Santos
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| | - Patricia Lawane de Freitas
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Parana, 81531-980, Brazil
| | - Ana Marta Schafaschek
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| | - Emily Nentwing de Barros
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Parana, 81531-980, Brazil
| | - Volnei Paulete
- Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal Do Paraná, Rua dos Funcionários, 1540, Cabral, Curitiba, Parana, 80035-050, Brazil
| | - Mario Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Parana, 81531-980, Curitiba, Brazil
| |
Collapse
|
8
|
Wang L, Fontaine A, Gaborit P, Guidez A, Issaly J, Girod R, Kazanji M, Rousset D, Vignuzzi M, Epelboin Y, Dusfour I. Interactions between vector competence to chikungunya virus and resistance to deltamethrin in Aedes aegypti laboratory lines? MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:486-495. [PMID: 35762523 DOI: 10.1111/mve.12593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.
Collapse
Affiliation(s)
- Lanjiao Wang
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Albin Fontaine
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU-Méditerranée Infection, Marseille, cedex 5, France
| | - Pascal Gaborit
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Amandine Guidez
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Jean Issaly
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Romain Girod
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | | | - Dominique Rousset
- Laboratoire de Virologie, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Marco Vignuzzi
- Unité des Populations Virales et Pathogénèse, Institut Pasteur, Paris cedex 15, France
| | - Yanouk Epelboin
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Isabelle Dusfour
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| |
Collapse
|
9
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
10
|
Gong Y, Li T, Li Q, Liu S, Liu N. The Central Role of Multiple P450 Genes and Their Co-factor CPR in the Development of Permethrin Resistance in the Mosquito Culex quinquefasciatus. Front Physiol 2022; 12:802584. [PMID: 35095564 PMCID: PMC8792746 DOI: 10.3389/fphys.2021.802584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes’ increasing resistance to insecticides is becoming a major threat for control efforts worldwide. Multiple P450 genes that are up-regulated in permethrin resistant strains of Culex quinquefasciatus have been linked to the development of resistance. In the current study, we characterized the function of six P450 genes, CYP6P14, CYP6BZ2, CYP9J33, CYP9J34, CYP9J40, and CYP9J45, that are overexpressed in the permethrin resistant Culex mosquitoes and showed their capability in metabolism of permethrin. These six P450 genes can convert 3-phenoxybenzoic alcohol (PBCHO) to a less toxic product, 3-phenoxybenzoic acid (PBCOOH), indicating that these P450s play an important role in permethrin degradation pathways. Although we know multiple P450 genes are over-expressed in permethrin resistant Culex mosquitoes, it remains to be seen whether cytochrome P450-reductase (CPR) gene that are co-overexpressed with P450 genes in permethrin resistant mosquitoes do indeed serve as a resistance mechanism. An in-depth investigation of the expression of CPR gene in resistant mosquitoes was conducted in permethrin resistant mosquitoes. The finding of CPR gene overexpression in permethrin resistant mosquitoes suggested the importance of co-overexpression of multiple P450 genes with their obligatory electron donor CPR in the complex detoxification system, boosting the metabolism of permethrin and hence the development of permethrin resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Qi Li
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Shikai Liu
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- *Correspondence: Nannan Liu,
| |
Collapse
|
11
|
Shi Y, Jiang Q, Yang Y, Feyereisen R, Wu Y. Pyrethroid metabolism by eleven Helicoverpa armigera P450s from the CYP6B and CYP9A subfamilies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103597. [PMID: 34089822 DOI: 10.1016/j.ibmb.2021.103597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 05/21/2023]
Abstract
Lepidopteran P450s of the CYP6B and CYP9A subfamilies are thought to play important roles in host plant adaptation and insecticide resistance. An increasing number of paralogs and orthologs with high levels of sequence identity have been found in these subfamilies by mining recent genome projects. However, the biochemical function of most of them remains unknown. A better understanding of the evolution of P450 genes and of the catalytic competence of the enzymes they encode is needed to facilitate studies of host plant use and insecticide resistance. Here, we focused on the full complement of CYP6B (4 genes) and CYP9A (7 genes) in the generalist herbivore, Helicoverpa armigera. These P450s were heterologously expressed in Sf9 cells and compared functionally. In vitro assays showed that all CYP6B and CYP9A P450s can metabolize esfenvalerate efficiently, except for the evolutionarily divergent CYP6B43. A new 2'-hydroxy-metabolite of esfenvalerate was identified and found to be the main metabolite produced by CYP9A12. All tested P450s showed only low induction responses to esfenvalerate. To put these results from H. armigera P450s in perspective, 158 complete CYP6B and 100 complete CYP9A genes from 34 ditrysian species were manually curated. The CYP9A subfamily was more widespread than the CYP6B subfamily and the latter showed dramatic gains and losses, with ten species lacking CYP6B genes. Two adjacent CYP6B loci were found on chromosome 21, with different fates during the evolution of Lepidoptera. The diversity and functional redundancy of CYP6B and CYP9A genes challenge resistance management and pest control strategies as many P450s are available to insects to cope with chemical stresses they encounter.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qianqian Jiang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yihua Yang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Yidong Wu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Fotoukkiaii SM, Wybouw N, Kurlovs AH, Tsakireli D, Pergantis SA, Clark RM, Vontas J, Van Leeuwen T. High-resolution genetic mapping reveals cis-regulatory and copy number variation in loci associated with cytochrome P450-mediated detoxification in a generalist arthropod pest. PLoS Genet 2021; 17:e1009422. [PMID: 34153029 PMCID: PMC8248744 DOI: 10.1371/journal.pgen.1009422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/01/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Chemical control strategies are driving the evolution of pesticide resistance in pest populations. Understanding the genetic mechanisms of these evolutionary processes is of crucial importance to develop sustainable resistance management strategies. The acaricide pyflubumide is one of the most recently developed mitochondrial complex II inhibitors with a new mode of action that specifically targets spider mite pests. In this study, we characterize the molecular basis of pyflubumide resistance in a highly resistant population of the spider mite Tetranychus urticae. Classical genetic crosses indicated that pyflubumide resistance was incompletely recessive and controlled by more than one gene. To identify resistance loci, we crossed the resistant population to a highly susceptible T. urticae inbred strain and propagated resulting populations with and without pyflubumide exposure for multiple generations in an experimental evolution set-up. High-resolution genetic mapping by a bulked segregant analysis approach led to the identification of three quantitative trait loci (QTL) linked to pyflubumide resistance. Two QTLs were found on the first chromosome and centered on the cytochrome P450 CYP392A16 and a cluster of CYP392E6-8 genes. Comparative transcriptomics revealed a consistent overexpression of CYP392A16 and CYP392E8 in the experimental populations that were selected for pyflubumide resistance. We further corroborated the involvement of CYP392A16 in resistance by in vitro functional expression and metabolism studies. Collectively, these experiments uncovered that CYP392A16 N-demethylates the toxic carboxamide form of pyflubumide to a non-toxic compound. A third QTL coincided with cytochrome P450 reductase (CPR), a vital component of cytochrome P450 metabolism. We show here that the resistant population harbors three gene copies of CPR and that this copy number variation is associated with higher mRNA abundance. Together, we provide evidence for detoxification of pyflubumide by cytochrome P450s that is likely synergized by gene amplification of CPR. Our understanding of the causal genetic variants that drive the evolution of quantitative traits, such as polygenic pesticide resistance, remains very limited. Here, we followed a high-resolution genetic mapping approach to localize the genetic variants that cause pyflubumide resistance in the two-spotted spider mite Tetranychus urticae. Three well-supported QTL were uncovered and pointed towards a major role for cytochrome P450-mediated detoxification. Cis-regulatory variation for cytochrome P450s was observed, and in vitro cytochrome P450 experiments showed that pyflubumide was metabolized into a non-toxic derivate. A third QTL centered on cytochrome P450 reductase (CPR), which is required for cytochrome P450 activity, and is amplified in pyflubumide resistant populations. Our results indicate that pyflubumide resistance is mediated by cytochrome P450 detoxification that is enhanced by gene amplification at the CPR locus.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Fotoukkiaii
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andre H. Kurlovs
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Dimitra Tsakireli
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | - Richard M. Clark
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
13
|
Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors 2021; 14:315. [PMID: 34112220 PMCID: PMC8194039 DOI: 10.1186/s13071-021-04785-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries. ![]()
Collapse
Affiliation(s)
- Soon Jian Gan
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Yong Qi Leong
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Siew Tung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia. .,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Joon Wah Mak
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rohani Binti Ahmad
- Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Epelboin Y, Wang L, Giai Gianetto Q, Choumet V, Gaborit P, Issaly J, Guidez A, Douché T, Chaze T, Matondo M, Dusfour I. CYP450 core involvement in multiple resistance strains of Aedes aegypti from French Guiana highlighted by proteomics, molecular and biochemical studies. PLoS One 2021; 16:e0243992. [PMID: 33428654 PMCID: PMC7799788 DOI: 10.1371/journal.pone.0243992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Insecticide resistance is a worldwide threat for vector control around the world, and Aedes aegypti, the main vector of several arboviruses, is a particular concern. To better understand the mechanisms of resistance, four isofemale strains originally from French Guiana were isolated and analysed using combined approaches. The activity of detoxification enzymes involved in insecticide resistance was assayed, and mutations located at positions 1016 and 1534 of the sodium voltage-gated channel gene, which have been associated with pyrethroid resistance in Aedes aegypti populations in Latin America, were monitored. Resistance to other insecticide families (organophosphates and carbamates) was evaluated. A large-scale proteomic analysis was performed to identify proteins involved in insecticide resistance. Our results revealed a metabolic resistance and resistance associated with a mutation of the sodium voltage-gated channel gene at position 1016. Metabolic resistance was mediated through an increase of esterase activity in most strains but also through the shifts in the abundance of several cytochrome P450 (CYP450s). Overall, resistance to deltamethrin was linked in the isofemale strains to resistance to other class of insecticides, suggesting that cross- and multiple resistance occur through selection of mechanisms of metabolic resistance. These results give some insights into resistance to deltamethrin and into multiple resistance phenomena in populations of Ae. aegypti.
Collapse
Affiliation(s)
- Yanouk Epelboin
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Lanjiao Wang
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics HUB, Computational Biology Department, USR CNRS 3756, Institut Pasteur, Paris, France
| | - Valérie Choumet
- Environment and Infectious risks Unit, Institut Pasteur, Paris, France
| | - Pascal Gaborit
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Jean Issaly
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Amandine Guidez
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Thibaut Douché
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Isabelle Dusfour
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Global Health department, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Zhu YC, Caren J, Reddy GVP, Li W, Yao J. Effect of age on insecticide susceptibility and enzymatic activities of three detoxification enzymes and one invertase in honey bee workers (Apis mellifera). Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108844. [PMID: 32777468 DOI: 10.1016/j.cbpc.2020.108844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023]
Abstract
Honey bee is an economically important insect for honey production and pollination. Frequent exposure to toxic pesticides is one of the major risk factors causing the pollinator population decline. However, age effects of honey bees on pesticide susceptibility have been largely ignored and many researchers use bees of unknown age for assessing the risk of pesticides. Honey bee workers are known to go through physiological and behavioral changes in order to differentiate different phenotypes to perform specific duties over their natural lifetime of 6 weeks or longer. In this study, we provide multi-parameter evidences of unignorable age effects of honey bee workers and suggest using a standard bee age to produce reliable and comparable data when assessing variable and realistic situations of in-hive and field exposures to pesticides. Using honey bee workers aged 4- to 42-days old, we examined susceptibility of the bees to five different insecticides from five different classes and measured enzymatic activities of three major detoxification enzymes and an invertase involved in honey production. Results showed gradual increase of natural mortality and decrease of soluble protein content in bees over the age span from 4 days to 42 days. Significant increases of mortality after separate treatments of five different insecticides confirmed drastic age effects of bees over the assessed age span. As they aged, honey bees also showed a gradual increase of cytochrome P450 oxidase activity while still maintaining constant levels of two other detoxification enzymes (esterase and glutathione S-transferase) and an invertase responsible for honey production.
Collapse
Affiliation(s)
- Yu Cheng Zhu
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA.
| | - Joel Caren
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| | - Gadi V P Reddy
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| | - Wenhong Li
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA; Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Jianxiu Yao
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA; Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Gentry KA, Anantharamaiah GM, Ramamoorthy A. Probing protein-protein and protein-substrate interactions in the dynamic membrane-associated ternary complex of cytochromes P450, b 5, and reductase. Chem Commun (Camb) 2019; 55:13422-13425. [PMID: 31638629 PMCID: PMC6879317 DOI: 10.1039/c9cc05904k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (cytP450) interacts with two redox partners, cytP450 reductase and cytochrome-b5, to metabolize substrates. Using NMR, we reveal changes in the dynamic interplay when all three proteins are incorporated into lipid nanodiscs in the absence and presence of substrates.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
17
|
Snoeck S, Kurlovs AH, Bajda S, Feyereisen R, Greenhalgh R, Villacis-Perez E, Kosterlitz O, Dermauw W, Clark RM, Van Leeuwen T. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:19-33. [PMID: 31022513 DOI: 10.1016/j.ibmb.2019.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Andre H Kurlovs
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Sabina Bajda
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Copenhagen, Denmark.
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Ernesto Villacis-Perez
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| | - Olivia Kosterlitz
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA; Present address: Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA, 98195, USA.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Richard M Clark
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA; Center for Cell and Genome Science, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Harrop TW, Denecke S, Yang YT, Chan J, Daborn PJ, Perry T, Batterham P. Evidence for activation of nitenpyram by a mitochondrial cytochrome P450 in Drosophila melanogaster. PEST MANAGEMENT SCIENCE 2018; 74:1616-1622. [PMID: 29316188 DOI: 10.1002/ps.4852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/31/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Nitenpyram is a member of the economically important neonicotinoid class of insecticides. The in vivo metabolism of nitenpyram is not well characterised, but cytochrome P450 activity is the major mechanism of resistance to neonicotinoids identified in insect pests, and P450s metabolise other neonicotinoids including imidacloprid. RESULTS Here, we used the GAL4-UAS targeted expression system to direct RNA interference (RNAi) against the cytochrome P450 redox partners to interrupt P450 functions in specific tissues in Drosophila melanogaster. RNAi of the mitochondrial redox partner defective in the avoidance of repellents (dare) in the digestive tissues reduced nitenpyram mortality, suggesting an activation step in the metabolism of nitenpyram carried out by a mitochondrial P450. RNAi of the mitochondrial cytochrome P450 Cyp12a5, which is expressed in the digestive tissues, resulted in the same phenotype, and transgenic overexpression of Cyp12a5 increased nitenpyram sensitivity. CONCLUSION These results suggest that in vivo metabolism of nitenpyram by the mitochondrial P450 CYP12A5 results in the formation of a product with higher toxicity than the parent compound. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas Wr Harrop
- Department of Biochemistry, The Laboratory for Evolution and Development, The University of Otago, Dunedin 9054, Aotearoa-New Zealand
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Shane Denecke
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Ying Ting Yang
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Janice Chan
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Phillip J Daborn
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Trent Perry
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Philip Batterham
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Shi Y, Wang H, Liu Z, Wu S, Yang Y, Feyereisen R, Heckel DG, Wu Y. Phylogenetic and functional characterization of ten P450 genes from the CYP6AE subfamily of Helicoverpa armigera involved in xenobiotic metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:79-91. [PMID: 29258871 DOI: 10.1016/j.ibmb.2017.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
The cotton bollworm, Helicoverpa armigera, is a generalist herbivore widely distributed over the world and is a major lepidopteran pest on cotton. Studies, especially from Asia, show that it relies on cytochrome P450 monooxygenases with broad substrate specificities to protect itself from pesticides. The number of P450s may have expanded in the processes of coping with the wide diversity of phytochemicals that the insect encounters among its numerous host plants. In order to examine the metabolic capabilities of these P450s, we focused here on all ten P450s of the Helicoverpa armigera CYP6AE subfamily, which can be easily induced by plant toxins and pyrethroids. These P450s, along with cytochrome P450 reductase, were heterologously expressed in insect cells and compared functionally. In vitro metabolism showed that all CYP6AE subfamily members can convert esfenvalerate to 4'-hydroxyesfenvalerate efficiently except CYP6AE20. In contrast, none of the recombinant CYP6AE enzymes could metabolise gossypol under our experimental conditions. Epoxidation capabilities were observed in the CYP6AE subfamily, aldrin can be converted to dieldrin at rates up to 0.45 ± 0.04 pmol/min/pmol P450. Seven P450s in this subfamily can metabolise imidacloprid, but with lower efficiency than Bemisia tabaci CYP6CM1vQ. CYP6AE20 had virtually no metabolic competence to these four compounds but could metabolise several model fluorogenic substrates. These results showed the broad substrate spectrum of H. armigera CYP6AE P450s and suggest a limited role of gossypol upon the evolution of H. armigera CYP6AE genes.
Collapse
Affiliation(s)
- Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huidong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhi Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Denmark.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Zhang X, Wang J, Liu J, Li Y, Liu X, Wu H, Ma E, Zhang J. Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, Locusta migratoria. CHEMOSPHERE 2017; 188:517-524. [PMID: 28910726 DOI: 10.1016/j.chemosphere.2017.08.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND NADPH-cytochrome P450 reductase (CPR) plays important roles in cytochrome P450-mediated metabolism of endogenous and exogenous compounds, and participates in cytochrome P450-related detoxification of insecticides. However, the CPR from Locusta migratoria has not been well characterized and its function is still undescribed. RESULTS The full-length of CPR gene from Locusta migratoria (LmCPR) was cloned by RT-PCR based on transcriptome information. The membrane anchor region, and 3 conserved domains (FMN binding domain, connecting domain, FAD/NADPH binding domain) were analyzed by bioinformatics analysis. Phylogenetic analysis showed that LmCPR was grouped in the Orthoptera branch and was more closely related to the CPRs from hemimetabolous insects. The LmCPR gene was ubiquitously expressed at all developmental stages and was the most abundant in the fourth-instar nymphs and the lowest in the egg stage. Tissue-specific expression analysis showed that LmCPR was higher expressed in ovary, hindgut, and integument. The CPR activity was relatively higher in Malpighian tubules and integument. Silencing of LmCPR obviously reduced the enzymatic activity of LmCPR, and enhanced the susceptibility of Locusta migratoria to carbaryl. CONCLUSION These results suggest that LmCPR contributes to the susceptibility of L. migratoria to carbaryl and could be considered as a novel target for pest control.
Collapse
Affiliation(s)
- Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Junxiu Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jiao Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yahong Li
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
21
|
Traylor MJ, Baek JM, Richards KE, Fusetto R, Huang W, Josh P, Chen Z, Bollapragada P, O'Hair RAJ, Batterham P, Gillam EMJ. Recombinant expression and characterization of Lucilia cuprina CYP6G3: Activity and binding properties toward multiple pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:14-22. [PMID: 28918158 DOI: 10.1016/j.ibmb.2017.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
The Australian sheep blowfly, Lucilia cuprina, is a primary cause of sheep flystrike and a major agricultural pest. Cytochrome P450 enzymes have been implicated in the resistance of L. cuprina to several classes of insecticides. In particular, CYP6G3 is a L. cuprina homologue of Drosophila melanogaster CYP6G1, a P450 known to confer multi-pesticide resistance. To investigate the basis of resistance, a bicistronic Escherichia coli expression system was developed to co-express active L. cuprina CYP6G3 and house fly (Musca domestica) P450 reductase. Recombinant CYP6G3 showed activity towards the high-throughput screening substrates, 7-ethoxycoumarin and p-nitroanisole, but not towards p-nitrophenol, coumarin, 7-benzyloxyresorufin, or seven different luciferin derivatives (P450-Glo™ substrates). The addition of house fly cytochrome b5 enhanced the kcat for p-nitroanisole dealkylation approximately two fold (17.8 ± 0.5 vs 9.6 ± 0.2 min-1) with little effect on KM (13 ± 1 vs 10 ± 1 μM). Inhibition studies and difference spectroscopy revealed that the organochlorine compounds, DDT and endosulfan, and the organophosphate pesticides, malathion and chlorfenvinphos, bind to the active site of CYP6G3. All four pesticides showed type I binding spectra with spectral dissociation constants in the micromolar range suggesting that they may be substrates of CYP6G3. While no significant inhibition was seen with the organophosphate, diazinon, or the neonicotinoid, imidacloprid, diazinon showed weak binding in spectral assays, with a Kd value of 23 ± 3 μM CYP6G3 metabolised diazinon to the diazoxon and hydroxydiazinon metabolites and imidacloprid to the 5-hydroxy and olefin metabolites, consistent with a proposed role of CYP6G enzymes in metabolism of phosphorothioate and neonicotinoid insecticides in other species.
Collapse
Affiliation(s)
- Matthew J Traylor
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Jong-Min Baek
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Katelyn E Richards
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Roberto Fusetto
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - W Huang
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Peter Josh
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Zhenzhong Chen
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Padma Bollapragada
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Richard A J O'Hair
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Philip Batterham
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
22
|
Bhatt MR, Khatri Y, Rodgers RJ, Martin LL. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J Steroid Biochem Mol Biol 2017; 170:2-18. [PMID: 26976652 DOI: 10.1016/j.jsbmb.2016.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved.
Collapse
Affiliation(s)
- Megh Raj Bhatt
- Everest Biotech Pvt. Ltd., Khumaltar, Lalitpur, P.O. Box 21608, Kathmandu 44600, Nepal
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Raymond J Rodgers
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
23
|
Vimercati S, Büchi M, Zielinski J, Peduto N, Mevissen M. Testosterone metabolism of equine single CYPs of the 3A subfamily compared to the human CYP3A4. Toxicol In Vitro 2017; 41:83-91. [DOI: 10.1016/j.tiv.2017.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
|
24
|
The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci Rep 2017; 7:587. [PMID: 28373679 PMCID: PMC5428437 DOI: 10.1038/s41598-017-00486-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 monooxygenases play a critical role in insecticide resistance by allowing resistant insects to metabolize insecticides. Previous studies revealed that two P450 genes, CYP9M10 and CYP6AA7, are not only up-regulated but also induced in resistant Culex mosquitoes. In this study, CYP9M10 and CYP6AA7 were separately co-expressed with cytochrome P450 reductase (CPR) in insect Spodoptera frugiperda (Sf9) cells using a baculovirus-mediated expression system and the enzymatic activity and metabolic ability of CYP9M10/CPR and CYP6AA7/CPR to permethrin and its metabolites, including 3-phenoxybenzoic alcohol (PBOH) and 3-phenoxybenzaldehyde (PBCHO), characterized. PBOH and PBCHO, both of which are toxic to Culex mosquito larvae, can be further metabolized by CYP9M10/CPR and CYP6AA7/CPR, with the ultimate metabolite identified here as PBCOOH, which is considerably less toxic to mosquito larvae. A cell-based MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cytotoxicity assay revealed that Sf9 cells expressing CYP9M10/CPR or CYP6AA7/CPR increased the cell line's tolerance to permethrin, PBOH, and PBCHO. This study confirms the important role played by CYP9M10 and CYP6AA7 in the detoxification of permethrin and its metabolites PBOH and PBCHO.
Collapse
|
25
|
du Rand EE, Human H, Smit S, Beukes M, Apostolides Z, Nicolson SW, Pirk CWW. Proteomic and metabolomic analysis reveals rapid and extensive nicotine detoxification ability in honey bee larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:41-51. [PMID: 28161469 DOI: 10.1016/j.ibmb.2017.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Despite potential links between pesticides and bee declines, toxicology information on honey bee larvae (Apis mellifera) is scarce and detoxification mechanisms in this development stage are virtually unknown. Larvae are exposed to natural and synthetic toxins present in pollen and nectar through consumption of brood food. Due to the characteristic intensive brood care displayed by honey bees, which includes progressive feeding throughout larval development, it is generally assumed that larvae rely on adults to detoxify for them and exhibit a diminished detoxification ability. We found the opposite. We examined the proteomic and metabolomic responses of in vitro reared larvae fed nicotine (an alkaloid found in nectar and pollen) to understand how larvae cope on a metabolic level with dietary toxins. Larvae were able to effectively detoxify nicotine through an inducible detoxification mechanism. A coordinated stress response complemented the detoxification processes, and we detected significant enrichment of proteins functioning in energy and carbohydrate metabolism, as well as in development pathways, suggesting that nicotine may promote larval growth. Further exploration of the metabolic fate of nicotine using targeted mass spectrometry analysis demonstrated that, as in adult bees, formation of 4-hydroxy-4-(3-pyridyl) butanoic acid, the result of 2'C-oxidation of nicotine, is quantitatively the most significant pathway of nicotine metabolism. We provide conclusive evidence that larvae are capable of effectively catabolising a dietary toxin, suggesting that increased larval sensitivity to specific toxins is not due to diminished detoxification abilities. These findings broaden the current understanding of detoxification biochemistry at different organizational levels in the colony, bringing us closer to understanding the capacity of the colony as a superorganism to tolerate and resist toxic compounds, including pesticides, in the environment.
Collapse
Affiliation(s)
- Esther E du Rand
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Hannelie Human
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Salome Smit
- Proteomics Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Mervyn Beukes
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Zeno Apostolides
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
26
|
Zhao C, Feng X, Tang T, Qiu L. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev100. [PMID: 26320261 PMCID: PMC4672210 DOI: 10.1093/jisesa/iev100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/03/2015] [Indexed: 05/27/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system.
Collapse
Affiliation(s)
- Chunqing Zhao
- College of Science, China Agricultural University, Beijing, China College of Plant Protection, Nanjing Agricultural University, Nanjing, China *These authors contributed equally to this work
| | - Xiaoyun Feng
- College of Science, China Agricultural University, Beijing, China *These authors contributed equally to this work
| | - Tao Tang
- College of Science, China Agricultural University, Beijing, China Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Rand EED, Smit S, Beukes M, Apostolides Z, Pirk CWW, Nicolson SW. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep 2015; 5:11779. [PMID: 26134631 PMCID: PMC4488760 DOI: 10.1038/srep11779] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 01/10/2023] Open
Abstract
Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.
Collapse
Affiliation(s)
- Esther E du Rand
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.,Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Salome Smit
- Proteomics Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Mervyn Beukes
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| |
Collapse
|
28
|
Emmerstorfer A, Wimmer-Teubenbacher M, Wriessnegger T, Leitner E, Müller M, Kaluzna I, Schürmann M, Mink D, Zellnig G, Schwab H, Pichler H. Over-expression ofICE2stabilizes cytochrome P450 reductase inSaccharomyces cerevisiaeandPichia pastoris. Biotechnol J 2015; 10:623-35. [DOI: 10.1002/biot.201400780] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/17/2014] [Accepted: 01/09/2015] [Indexed: 01/15/2023]
|
29
|
Otali D, Novak RJ, Wan W, Bu S, Moellering DR, De Luca M. Increased production of mitochondrial reactive oxygen species and reduced adult life span in an insecticide-resistant strain of Anopheles gambiae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:323-33. [PMID: 24555527 PMCID: PMC4008687 DOI: 10.1017/s0007485314000091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Control of the malaria vector An. gambiae is still largely obtained through chemical intervention using pyrethroids, such as permethrin. However, strains of An. gambiae that are resistant to the toxic effects of pyrethroids have become widespread in several endemic areas over the last decade. The objective of this study was to assess differences in five life-history traits (larval developmental time and the body weight, fecundity, hatch rate, and longevity of adult females) and energy metabolism between a strain of An. gambiae that is resistant to permethrin (RSP), due to knockdown resistance and enhanced metabolic detoxification, and a permethrin susceptible strain reared under laboratory conditions. We also quantified the expression levels of five antioxidant enzyme genes: GSTe3, CAT, GPXH1, SOD1, and SOD2. We found that the RSP strain had a longer developmental time than the susceptible strain. Additionally, RSP adult females had higher wet body weight and increased water and glycogen levels. Compared to permethrin susceptible females, RSP females displayed reduced metabolic rate and mitochondrial coupling efficiency and higher mitochondrial ROS production. Furthermore, despite higher levels of GSTe3 and CAT transcripts, RSP females had a shorter adult life span than susceptible females. Collectively, these results suggest that permethrin resistance alleles might affect energy metabolism, oxidative stress, and adult survival of An. gambiae. However, because the strains used in this study differ in their genetic backgrounds, the results need to be interpreted with caution and replicated in other strains to have significant implications for malaria transmission and vector control.
Collapse
Affiliation(s)
- Dennis Otali
- Department of Biology, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-1170, USA
- Corresponding Author: Dennis Otali, Department of Biology, University of Alabama at Birmingham, Campbell Hall 464, 1720 2 Ave S, Birmingham AL 35294-1170, Phone: (+1) 205-975-6205, Fax: (+1) 205-975-7128,
| | - Robert J. Novak
- William C Gorgas Center for Geographic Medicine, Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294-2170, USA
- Department of Global Health, University of South Florida, 13201 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Wen Wan
- Department of Biostatistics, Virginia Commonwealth University Medical Center, P.O. Box 980032, Richmond, VA 23298-0032, USA
| | - Su Bu
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-3360, USA
| | - Douglas R. Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-3360, USA
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-3360, USA
| |
Collapse
|
30
|
Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Junior JLDSGV, Da Silva ML, Araujo RN, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo ACA, Tanaka AS, Balczun C, Oliveira JHM, Gonçalves RLS, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GRC, Oliveira PL. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 2014; 8:e2594. [PMID: 24416461 PMCID: PMC3886914 DOI: 10.1371/journal.pntd.0002594] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fernando A. Genta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Logullo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael D. Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Medeiros
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo Koerich
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Walter R. Terra
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André C. Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M. Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C. Leite
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle M. P. Diniz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Lídio da S. G. V. Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Manuela L. Da Silva
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sébastien Brosson
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | - Didier Salmon
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina Bousbata
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Polycarpo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel J. Vionette-Amaral
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Fampa
- Instituto de Biologia, DBA, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Ana Claudia A. Melo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aparecida S. Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Bochum, Germany
| | - José Henrique M. Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata L. S. Gonçalves
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Rolando Rivera-Pomar
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | - Elói S. Garcia
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória R. C. Braz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Keeling CI, Henderson H, Li M, Dullat HK, Ohnishi T, Bohlmann J. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1142-1151. [PMID: 24139909 DOI: 10.1016/j.ibmb.2013.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a significant pest of western North American pine forests. This beetle responds to pheromones and host volatiles in order to mass attack and thus overcome the terpenoid chemical defences of its host. The ability of MPB antennae to rapidly process odorants is necessary to avoid odorant receptor saturation and thus the enzymes responsible for odorant clearance are an important aspect of host colonization. An antenna-specific cytochrome P450, DponCYP345E2, is the most highly expressed transcript in adult MPB antenna. In in vitro assays with recombinant enzyme, DponCYP345E2 used several pine host monoterpenes as substrates, including (+)-(3)-carene, (+)-β-pinene, (-)-β-pinene, (+)-limonene, (-)-limonene, (-)-camphene, (+)-α-pinene, (-)-α-pinene, and terpinolene. The substrates were epoxidized or hydroxylated, depending upon the substrate. To complement DponCYP345E2, we also functionally characterized the NADPH-dependent cytochrome P450 reductase and the cytochrome b5 from MPB. DponCYP345E2 is the first cytochrome P450 to be functionally characterized in insect olfaction and in MPB.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4.
| | | | | | | | | | | |
Collapse
|
32
|
The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem J 2013; 455:75-85. [PMID: 23844938 PMCID: PMC3778711 DOI: 10.1042/bj20130577] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.
Collapse
|
33
|
Liu S, Liang QM, Huang YJ, Yuan X, Zhou WW, Qiao F, Cheng J, Gurr GM, Zhu ZR. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Comp Biochem Physiol B Biochem Mol Biol 2013; 166:225-31. [DOI: 10.1016/j.cbpb.2013.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
|
34
|
Cheesman MJ, Traylor MJ, Hilton ME, Richards KE, Taylor MC, Daborn PJ, Russell RJ, Gillam EMJ, Oakeshott JG. Soluble and membrane-bound Drosophila melanogaster CYP6G1 expressed in Escherichia coli: purification, activity, and binding properties toward multiple pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:455-465. [PMID: 23470655 DOI: 10.1016/j.ibmb.2013.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
Cytochrome P450 CYP6G1 has been implicated in the resistance of Drosophila melanogaster to numerous pesticides. While in vivo and in vitro studies have provided insight to the diverse functions of this enzyme, direct studies on the isolated CYP6G1 enzyme have not been possible due to the need for a source of recombinant enzyme. In the current study, the Cyp6g1 gene was isolated from D. melanogaster and re-engineered for heterologous expression in Escherichia coli. Approximately 460 nmol L⁻¹ of P450 holoenzyme were obtained in 500 mL cultures. The recombinant enzyme was located predominantly within the bacterial cytosol. A two-step purification protocol using Ni-chelate affinity chromatography followed by removal of detergent on a hydroxyapatite column produced essentially homogenous enzyme from both soluble and membrane fractions. Recombinant CYP6G1 exhibited p-nitroanisole O-dealkylation activity but was not active against eleven other typical P450 marker substrates. Substrate-induced binding spectra and IC₅₀ values for inhibition of p-nitroanisole O-dealkylation were obtained for a wide selection of pesticides, namely DDT, imidacloprid, chlorfenvinphos, malathion, endosulfan, dieldrin, dicyclanil, lufenuron and carbaryl, supporting previous in vivo and in vitro studies on Drosophila that have suggested that the enzyme is involved in multi-pesticide resistance in insects.
Collapse
Affiliation(s)
- Matthew J Cheesman
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Telang A, Rechel JA, Brandt JR, Donnell DM. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:283-94. [PMID: 23238126 PMCID: PMC3596486 DOI: 10.1016/j.jinsphys.2012.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 05/09/2023]
Abstract
Analysis of the reproductive physiology of anautogenous mosquitoes at the molecular level is complicated by the simultaneity of ovarian maturation and the digestion of a blood meal. In contrast to anautogenous mosquitoes, autogenous female mosquitoes can acquire greater nutrient stores as larvae and exhibit higher ovarian production of ecdysteroids at adult eclosion. These features essentially replace the role of a blood meal in provisioning the first batch of eggs and initiating egg development. To gain insight into the process of ovary maturation we first performed a transcript analysis of the obligatory autogenous mosquito Georgecraigius atropalpus (formerly Ochlerotatus atropalpus). We identified ESTs using suppressive subtractive hybridization (SSH) of transcripts from ovaries at critical times during oogenesis in the absence of blood digestion. Preliminary expression studies of genes such as apolipophorin III (APO) and oxysterol binding protein (OSBP) suggested these genes might be cued to female nutritional status. We then applied our findings to the medically important anautogenous mosquito Aedes aegypti. RNAi-based analyses of these genes in Ae. aegypti revealed a reduction in APO transcripts leads to reduced lipid levels in carcass and ovaries and that OSBP may play a role in overall lipid and sterol homeostasis. In addition to expanding our understanding of mosquito ovarian development, the continued use of a comparative approach between autogenous and anautogenous species may provide novel intervention points for the regulation of mosquito egg production.
Collapse
Affiliation(s)
- Aparna Telang
- Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| | | | | | | |
Collapse
|
36
|
Tang T, Zhao C, Feng X, Liu X, Qiu L. Knockdown of several components of cytochrome P450 enzyme systems by RNA interference enhances the susceptibility of Helicoverpa armigera to fenvalerate. PEST MANAGEMENT SCIENCE 2012; 68:1501-11. [PMID: 22689565 DOI: 10.1002/ps.3336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/15/2012] [Accepted: 04/04/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND The function of cytochrome P450 proteins (P450s) in the metabolism of a variety of compounds by oxidation and reduction is well elucidated, but its interactions with other electron transfer components in the pyrethroid resistance of insect pests have been a mystery for a long time. In previous studies the authors cloned and characterised CYP6B7 and cytochrome b(5) (Cyt-b(5)) in the fenvalerate-resistant HDFR strain of cotton bollworm (Helicoverpa armigera Hübner) and showed that CYP6B7 mRNA was overexpressed and important for resistance to fenvalerate. In the present study, the functional interactions of CYP6B7, NADPH-dependent cytochrome P450 reductase (CPR) and Cyt-b(5) were assessed using RNA interference (RNAi) strategies and monitoring for fenvalerate resistance levels. RESULTS RT-qPCR analyses indicated that the expression levels of CYP6B7, CPR and Cyt-b(5) mRNA were decreased drastically in the midgut of fourth-instar larvae of the H. armigera HDFR strain after corresponding double-stranded RNA (dsRNA) injection, compared with that of the control. The knockdown of CYP6B7, CPR and Cyt-b(5) transcripts was time course dependent during a 12-48 h period after dsRNA injection. At the earlier time points analysed, significant suppression of CYP6B7 mRNA levels was observed in larvae injected with dsCYP6B7-313 as compared with controls, and further suppression was observed in larvae injected with dsCYP6B7-313, dsCPR-403 and dsCyt-b(5) . The injection of dsCYP6B7-313 together with dsCPR-403 and dsCyt-b(5) increased larval susceptibility of the HDFR strain to fenvalerate. CONCLUSION The results demonstrated that silencing of CYP6B7 alone or CYP6B7 together with CPR and/or Cyt-b(5) increased the susceptibility of H. armigera to fenvalerate, suggesting that CYP6B7, CPR and Cyt-b(5) collaboratively participated in enhanced metabolism of fenvalerate and played an important role in the resistance of H. armigera to fenvalerate.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, College of Science, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
37
|
An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 2012; 109:14858-63. [PMID: 22927409 DOI: 10.1073/pnas.1208650109] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Insects use hydrocarbons as cuticular waterproofing agents and as contact pheromones. Although their biosynthesis from fatty acyl precursors is well established, the last step of hydrocarbon biosynthesis from long-chain fatty aldehydes has remained mysterious. We show here that insects use a P450 enzyme of the CYP4G family to oxidatively produce hydrocarbons from aldehydes. Oenocyte-directed RNAi knock-down of Drosophila CYP4G1 or NADPH-cytochrome P450 reductase results in flies deficient in cuticular hydrocarbons, highly susceptible to desiccation, and with reduced viability upon adult emergence. The heterologously expressed enzyme converts C(18)-trideuterated octadecanal to C(17)-trideuterated heptadecane, showing that the insect enzyme is an oxidative decarbonylase that catalyzes the cleavage of long-chain aldehydes to hydrocarbons with the release of carbon dioxide. This process is unlike cyanobacteria that use a nonheme diiron decarbonylase to make alkanes from aldehydes with the release of formate. The unique and highly conserved insect CYP4G enzymes are a key evolutionary innovation that allowed their colonization of land.
Collapse
|
38
|
Miyo T. Population model of fluctuations in organophosphate resistance of Drosophila melanogaster: Roles of a mutated acetylcholinesterase and a cytochrome P450. RUSS J ECOL+ 2011. [DOI: 10.1134/s1067413611060178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Insect cytochromes P450: Topology of structural elements predicted to govern catalytic versatility. J Inorg Biochem 2011; 105:1354-64. [DOI: 10.1016/j.jinorgbio.2011.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 01/30/2023]
|
40
|
Lah L, Podobnik B, Novak M, Korošec B, Berne S, Vogelsang M, Kraševec N, Zupanec N, Stojan J, Bohlmann J, Komel R. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol Microbiol 2011; 81:1374-89. [PMID: 21810122 DOI: 10.1111/j.1365-2958.2011.07772.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cytochromes P450 (CYPs) catalyse diverse reactions and are key enzymes in fungal primary and secondary metabolism, and xenobiotic detoxification. CYP enzymatic properties and substrate specificity determine the reaction outcome. However, CYP-mediated reactions may also be influenced by their redox partners. Filamentous fungi with numerous CYPs often possess multiple microsomal redox partners, cytochrome P450 reductases (CPRs). In the plant pathogenic ascomycete Cochliobolus lunatus we recently identified two CPR paralogues, CPR1 and CPR2. Our objective was to functionally characterize two endogenous fungal cytochrome P450 systems and elucidate the putative physiological roles of CPR1 and CPR2. We reconstituted both CPRs with CYP53A15, or benzoate 4-hydroxylase from C. lunatus, which is crucial in the detoxification of phenolic plant defence compounds. Biochemical characterization using RP-HPLC shows that both redox partners support CYP activity, but with different product specificities. When reconstituted with CPR1, CYP53A15 converts benzoic acid to 4-hydroxybenzoic acid, and 3-methoxybenzoic acid to 3-hydroxybenzoic acid. However, when the redox partner is CPR2, both substrates are converted to 3,4-dihydroxybenzoic acid. Deletion mutants and gene expression in mycelia grown on media with inhibitors indicate that CPR1 is important in primary metabolism, whereas CPR2 plays a role in xenobiotic detoxification.
Collapse
Affiliation(s)
- Ljerka Lah
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O'Neill PM, Lian LY, Müller P, Nikou D, Steven A, Hemingway J, Sutcliffe MJ, Paine MJI. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:492-502. [PMID: 21324359 DOI: 10.1016/j.ibmb.2011.02.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/03/2011] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is a major threat to malaria control programmes. Cytochome P450-mediated detoxification is an important resistance mechanism. CYP6M2 is over-expressed in wild populations of permethrin resistant A. gambiae but its role in detoxification is not clear. CYP6M2 was expressed in Escherichia coli and a structural model was produced to examine its role in pyrethroid metabolism. Both permethrin and deltamethrin were metabolized. Rates were enhanced by A. gambiae cytochrome b(5) with kinetic parameters of K(M)=11±1μM and k(cat)=6.1±0.4 per min for permethrin (1:1 cis-trans) and K(M)=2.0±0.3μM and k(cat)=1.2±0.1 per min for deltamethrin. Mass spectrometry and NMR analysis identified 4'-hydroxy deltamethrin and hydroxymethyl deltamethrin as major and minor deltamethrin metabolites respectively. Secondary breakdown products included cyano(3-hydroxyphenyl)methyl deltamethrate and deltamethric acid. CYP6M2 was most highly transcribed in the midgut and Malpighian tubules of adult A. gambiae, consistent with a role in detoxification. Our data indicates that CYP6M2 plays an important role in metabolic resistance to pyrethroids and thus an important target for the design of new tools to combat malaria.
Collapse
|
42
|
Davydov DR. Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions. Expert Opin Drug Metab Toxicol 2011; 7:543-58. [PMID: 21395496 DOI: 10.1517/17425255.2011.562194] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is increasing evidence of physical interactions (association) among cytochromes P450 in the membranes of the endoplasmic reticulum. Functional consequences of these interactions are often underestimated. AREAS COVERED This article provides a comprehensive overview of available experimental material regarding P450-P450 interactions. Special emphasis is given to the interactions between different P450 species and to the functional consequences of homo- and heterooligomerization. EXPERT OPINION Recent advances provide conclusive evidence for a substantial degree of P450 oligomerization in membranes. Interactions between different P450 species resulting in the formation of mixed oligomers with altered activity and substrate specificity have been demonstrated clearly. There are important indications that oligomerization impedes electron flow to a fraction of the P450 population, which renders some P450 species nonfunctional. Functional consequences of P450-P450 interactions make the integrated properties of the microsomal monooxygenase remarkably different from a simple summation of the properties of the individual P450 species. This complexity compromises the predictive power of the current in vitro models of drug metabolism and warrants an urgent need for development of new model systems that consider the interactions of multiple P450 species.
Collapse
Affiliation(s)
- Dmitri R Davydov
- University of California - San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Kinetics of electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 3A4. Biochem J 2011; 432:485-93. [PMID: 20879989 DOI: 10.1042/bj20100744] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have incorporated CYP3A4 (cytochrome P450 3A4) and CPR (NADPH-cytochrome P450 reductase) into liposomes with a high lipid/protein ratio by an improved method. In the purified proteoliposomes, CYP3A4 binds testosterone with Kd (app)=36±6 μM and Hill coefficient=1.5±0.3, and 75±4% of the CYP3A4 can be reduced by NADPH in the presence of testosterone. Transfer of the first electron from CPR to CYP3A4 was measured by stopped-flow, trapping the reduced CYP3A4 as its Fe(II)-CO complex and measuring the characteristic absorbance change. Rapid electron transfer is observed in the presence of testosterone, with the fast phase, representing 90% of the total absorbance change, having a rate of 14±2 s(-1). Measurements of the first electron transfer were performed at various molar ratios of CPR/CYP3A4 in proteoliposomes; the rate was unaffected, consistent with a model in which first electron transfer takes place within a relatively stable CPR-CYP3A4 complex. Steady-state rates of NADPH oxidation and of 6β-hydroxytestosterone formation were also measured as a function of the molar ratio of CPR/CYP3A4 in the proteoliposomes. These rates increased with increasing CPR/CYP3A4 ratio, showing a hyperbolic dependency indicating a Kd (app) of ~0.4 μM. This suggests that the CPR-CYP3A4 complex can dissociate and reform between the first and second electron transfers.
Collapse
|
44
|
Zhou X, Li M, Sheng C, Qiu X. NADPH-cytochrome P450 oxidoreductase from the chicken (Gallus gallus): sequence characterization, functional expression and kinetic study. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:53-9. [PMID: 20728568 DOI: 10.1016/j.cbpc.2010.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 monooxygenases have been well known to be responsible for the synthesis of endogenous compounds and the metabolism of exogenous compounds in almost all living organisms, which require NADPH-cytochrome P450 oxidoreductase (POR) as an electron donor to function. In this study, a 2031 bp open reading frame of POR gene was cloned from 35-day-old Roman hen liver, encoding an enzyme of 676 amino acids. Sequence analysis showed that chicken POR shares high homology with other vertebrates PORs and possesses the conserved binding domains of FAD, FMN, and NADPH. The genomic sequences of POR genes from chicken and other four vertebrates have highly conserved exon/intron organization structure. By fusion with bacterial signal peptide, chicken POR gene was functionally expressed in E. coli membrane and showed activities in reduction of cytochrome c and oxidation of NADPH. The Km values for cytochrome c and NADPH were 21.9 ± 2.3 μM and 2.4 ± 0.3 μM respectively. A Ping-Pong mechanism was proposed for chicken POR.
Collapse
Affiliation(s)
- Xiaojie Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
45
|
Rivero A, Vézilier J, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 2010; 6:e1001000. [PMID: 20700451 PMCID: PMC2916878 DOI: 10.1371/journal.ppat.1001000] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way-and there may be no simple generality-the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention.
Collapse
Affiliation(s)
- Ana Rivero
- Génétique et Evolution des Maladies Infectieuses (UMR CNRS 2724), Centre de Recherche IRD, Montpellier, France.
| | | | | | | | | |
Collapse
|
46
|
Giraudo M, Unnithan GC, Le Goff G, Feyereisen R. Regulation of cytochrome P450 expression in Drosophila: Genomic insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2010; 97:115-122. [PMID: 20582327 PMCID: PMC2890303 DOI: 10.1016/j.pestbp.2009.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the "phenobarbital-type" induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from "detox" microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action.
Collapse
Affiliation(s)
- Maeva Giraudo
- UMR INRA- CNRS- Université de Nice Sophia Antipolis, 06903 Sophia Antipolis, France
| | | | - Gaëlle Le Goff
- UMR INRA- CNRS- Université de Nice Sophia Antipolis, 06903 Sophia Antipolis, France
| | - René Feyereisen
- UMR INRA- CNRS- Université de Nice Sophia Antipolis, 06903 Sophia Antipolis, France
- corresponding author: (R.Feyereisen)
| |
Collapse
|
47
|
Liu H. Spectral characterization and chiral interactions of plant microsomal cytochrome P450 with metolachlor and herbicide safeners. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:33-9. [PMID: 20390928 DOI: 10.1080/03601230903404317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The content and spectral characteristics of cytochrome P450 (Cyt P450) and cytochrome b(5) (Cyt b(5)) extracted from shoots of etiolated maize and rice seedlings were studied by using ultraviolet (UV) difference spectrophotometry. The results showed that fenclorim, rac-metolachlor and S-metolachlor may induce the same P450 isoenzyme with lambda(max) at 453 nm, while naphthalic anhydride (NA) induced another one with lambda(max) at 447 nm. The microsomal Cyt P450 and Cyt b(5) content of maize seedlings was higher than that of rice, and the Cyt b(5) content was higher than that of Cyt P450. Maize and rice microsomal Cyt P450 and Cyt b(5) were induced at different levels by the four chemicals, with the order as follows: NA > fenclorim > rac-metolachlor > S-metolachlor with p < 0.05. When induced by NA, fenclorim, rac-metolachlor and S-metolachlor, the maize Cyt P450 content was, respectively, 5.63-, 3.30-, 3.02- and 2.48-fold that of the control, the rice Cyt P450 content was 8.54-, 2.20-, 1.91- and 1.33-fold that of the control, the maize Cyt b(5) content was 9.89-, 5.49-, 4.69- and 3.40-fold that of the control, and the rice Cyt b(5) content was 7.76-, 4.56-, 2.60- and 1.82-fold that of the control. An enantio-difference existed when rac- and S-metolachlor combined with plant Cyt P450. The interaction of microsomal Cyt P450 with S-metolachlor is higher than that with rac-metolachlor, which may be one of the reasons why S-metolachlor is superior at killing weeds compared with rac-metolachlor. These results will help to develop an understanding of the tolerance for and selectivity of rac- and S-metolachlor.
Collapse
Affiliation(s)
- Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China.
| |
Collapse
|
48
|
Karunker I, Morou E, Nikou D, Nauen R, Sertchook R, Stevenson BJ, Paine MJI, Morin S, Vontas J. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:697-706. [PMID: 19716416 DOI: 10.1016/j.ibmb.2009.08.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
The neonicotinoid imidacloprid is one of the most important insecticides worldwide. It is used extensively against the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), an insect pest of eminent importance globally, which was also the first pest to develop high levels of resistance against imidacloprid and other neonicotinoids in the field. Recent reports indicated that in both the B and Q biotypes of B. tabaci, the resistant phenotype is associated with over-expression of the cytochrome P450 gene CYP6CM1. In this study, molecular docking and dynamic simulations were used to analyze interactions of imidacloprid with the biotype Q variant of the CYP6CM1 enzyme (CYP6CM1vQ). The binding mode with the lowest energy in the enzyme active site, the key amino acids involved (i.e. Phe-130 and Phe-226), and the putative hydroxylation site (lowest distance to carbon 5 of the imidazolidine ring system of imidacloprid) were predicted. Heterologous expression of the CYP6CM1vQ confirmed the accuracy of our predictions and demonstrated that the enzyme catalyses the hydroxylation of imidacloprid to its less toxic 5-hydroxy form (K(cat) = 3.2 pmol/min/pmol P450, K(m) = 36 microM). The data identify CYP6CM1vQ as a principle target for inhibitor design, aimed at inactivating insecticide-metabolizing P450s in natural insect pest populations.
Collapse
Affiliation(s)
- Iris Karunker
- Department of Entomology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|