1
|
Yang QQ, Li SC, Cui YY, Huang ZH, Cheng LY, Zhang SH, Wu Z, Yu SJ, Pan Q, Ding LL, Lei S, Liu L, Cong L, Ran C. Identification and Functional Characterization of Carboxylesterase Genes Involved in Spirodiclofen Resistance in Panonychus citri (McGregor). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17306-17316. [PMID: 39054269 DOI: 10.1021/acs.jafc.4c04094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Overexpression of carboxyl/cholinesterase (CCE) genes has been reported to be associated with many cases of pesticide resistance in arthropods. However, it has been rarely documented that CCE genes participate in spirodiclofen resistance in Panonychus citri. In previous research, we found that spirodiclofen resistance is related to increased P450 and CCE enzyme activities in P. citri. In this study, we identified two CCE genes, PcCCE3 and PcCCE5, which were significantly upregulated in spirodiclofen-resistant strain and after exposure to spirodiclofen. RNA interference of PcCCE3 and PcCCE5 increased the spirodiclofen susceptibility in P. citri. In vitro metabolism indicated that PcCCE3 and PcCCE5 could interact with spirodiclofen, but metabolites were detected only in the PcCCE3 treatment. Our results indicated that PcCCE3 participates in spirodiclofen resistance through direct metabolism, and PcCCE5 may be involved in the spirodiclofen resistance by passive binding and sequestration, which provides new insights into spirodiclofen resistance in P. citri.
Collapse
Affiliation(s)
- Qi-Qi Yang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yang-Yang Cui
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Ze-Hao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu-Yan Cheng
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
- Chongqing Institute for Food and Drug Control, Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, P. R. China
| | - Shao-Hui Zhang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Zhen Wu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shuang Lei
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| |
Collapse
|
2
|
Poulton BC, Colman F, Anthousi A, Sattelle DB, Lycett GJ. Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito. PLoS Negl Trop Dis 2024; 18:e0011595. [PMID: 38377131 PMCID: PMC10906864 DOI: 10.1371/journal.pntd.0011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/01/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.
Collapse
Affiliation(s)
- Beth C. Poulton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Fraser Colman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amalia Anthousi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David B. Sattelle
- Division of Medicine, University College London, London, United Kingdom
| | - Gareth J. Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
3
|
Kadjo YMAE, Adja AM, Guindo-Coulibaly N, Zoh DD, Traoré DF, Assouho KF, Sadia-Kacou MAC, Kpan MDS, Yapi A, Chandre F. Insecticide Resistance and Metabolic Mechanisms in Aedes aegypti from Two Agrosystems (Vegetable and Cotton Crops) in Côte d'Ivoire. Vector Borne Zoonotic Dis 2023; 23:475-485. [PMID: 37615509 DOI: 10.1089/vbz.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background: The emergence of insecticide resistance in Aedes vectors mosquitoes poses a real challenge for arboviral-borne disease control. In Côte d'Ivoire, data are available on phenotypic resistance and the presence of kdr mutations in Aedes aegypti. Therefore, information on metabolic resistance in Aedes populations is very scarce. Here, we assessed the insecticide resistance status of Ae. aegypti in periurban and rural areas of Côte d'Ivoire, and we investigated the role of detoxification enzymes as possible resistance mechanisms. Materials and Methods: Aedes mosquito eggs were collected between June 2019 to April 2021 in two agricultural sites. Adults of Ae. aegypti were tested using World Health Organization tube assays, with seven insecticides belonging to pyrethroids, organochlorines, carbamates, and organophosphates classes. We determined the knockdown times (KdT50, KdT95) and resistance ratios of pyrethroids in natural populations. The synergist piperonyl butoxide (PBO) was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed-function oxidase levels, nonspecific esterases (NSEs), and glutathione S-transferases. Results: The results showed that Ae. aegypti populations were resistant to five insecticides with mortality of 46% and 89% for 0.75% permethrin, 68% and 92% for 0.05% deltamethrin, 57% and 89% for lambda-cyhalothrin, 41% and 47% for dichlorodiphenyltrichloroethane (DDT), 82% and 91% for chlorpyrifos-methyl in Songon-Agban and Kaforo, respectively. Susceptibility to carbamates was observed in our study sites. After exposure to PBO, the susceptibility of Ae. aegypti to pyrethroids and DDT was partially restored in Songon-Agban. Whereas in Kaforo, none increase of the mortality rates of Ae. aegypti for these four insecticides was observed after exposure to PBO. Increased activity of NSE (α-esterases) was found in Songon-Agban compared with the reference susceptible strain. Conclusion: These findings provide valuable information to support decisions for vector control strategies in Cote d'Ivoire. Also, we highlight the need for the monitoring of insecticide resistance management in Aedes vectors.
Collapse
Affiliation(s)
- Yapo Marie-Ange Edwige Kadjo
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Akré M Adja
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Négnorogo Guindo-Coulibaly
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Dounin Danielle Zoh
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Konan Fabrice Assouho
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | | | | | - Ahoua Yapi
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Fabrice Chandre
- MIVEGEC, UMR IRD-CNRS-Université de Montpellier, Montpellier, France
- Institut de Recherche pour le Développement, Montpellier, France
| |
Collapse
|
4
|
Piedra LA, Rodriguez MM, Lopez I, Ruiz A, Martinez LC, Garcia I, Rey J, Bisset JA. Insecticide Resistance Status of Aedes albopictus (Diptera: Culicidae) Populations from Cuba. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:487-493. [PMID: 36791252 DOI: 10.1093/jme/tjac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 05/13/2023]
Abstract
Aedes albopictus (Skuse, 1894) is one of the major vectors for arboviruses such as dengue, Zika, and chikungunya. Originally from Southeast Asia, this species has spread to Africa, Europe, and the Americas, including Cuba. This spread has been favored by its great adaptability to variable temperatures and to the resistance of its eggs to desiccation. Chemical control of mosquitoes is an essential alternative to stop arbovirus transmission, but insecticide resistance status of the Cuban Ae. albopictus populations is unknown. For this study, Ae. albopictus larvae and adults were collected from two municipalities in Havana, Cuba in 2019. Adult bioassays for deltamethrin, cypermethrin, lambda-cyhalothrin, chlorpyrifos, propoxur, and bendiocarb susceptibility were conducted according to CDC methodology. Larval bioassays for temephos susceptibility were performed following WHO protocols. Resistance profiles for α and β-esterases, glutathione S-transferase (GST), and multifunction oxidases (MFO) pathways were constructed and analyzed. Resistance to temephos and deltamethrin was detected in Mulgoba and Plaza field populations, but resistance to lambda-cyhalothrin was only found in the Plaza colony. Plaza colony exhibited a higher expression level to all four metabolic enzymes and α-esterases and GTS were over-expressed in Mulgoba. The development of insecticide resistance in Cuban Ae. albopictus populations makes it imperative that we develop integrated control strategies to minimize the development of resistance and provide effective vector control that prevents the onset of arbovirus epidemics.
Collapse
Affiliation(s)
- Luis Augusto Piedra
- Vector Control Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | | | - Isabel Lopez
- Institute of Materials Science and Technology, University of Havana, Havana, Cuba
| | - Armando Ruiz
- Vector Control Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | - Liss Claudia Martinez
- Vector Control Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | - Israel Garcia
- Vector Control Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | - Jorge Rey
- Florida Medical Entomology Laboratory, University of Florida/IFAS, USA
| | - Juan Andres Bisset
- Vector Control Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| |
Collapse
|
5
|
Kinareikina A, Silivanova E. Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L. TOXICS 2023; 11:47. [PMID: 36668773 PMCID: PMC9862462 DOI: 10.3390/toxics11010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, the use of pesticides is, as before, the most common way to control arthropod plant pests and the ectoparasites of animals. The sublethal effects of pesticides on insects can appear at different levels, from genetics to populations, and the study of these effects is important for a better understanding of the environmental and evolutionary patterns of pesticidal resistance. The current study aimed to assess the sublethal effects of chlorfenapyr and fipronil on the activities of detoxifying enzymes (carboxylesterase-CarE, acetylcholinesterase-AChE, glutathione-S-transferase-GST, and cytochrome P450 monooxygenase-P450) in adults Musca domestica L. The insects were exposure to insecticides by a no-choice feeding test and the enzyme activities and the AChE kinetic parameters were examined in female and male specimens at 24 h after their exposure. According to Tukey's test, the CarE activity was statistically significantly decreased by 29.63% in the females of M. domestica after an exposure to chlorfenapyr at a concentration of 0.015% when compared to the controls (p ≤ 0.05). An exposure to the sublethal concentration of fipronil (0.001%) was followed by a slightly decrease in the specific activity (33.20%, p ≤ 0.05) and the main kinetic parameters (Vmax, Km) of AChE in females in comparison with the control values. The GST and P450 activities had not significantly changed in M. domestica males and females 24 h after their exposure to chlorfenapyr and fipronil at sublethal concentrations. The results suggest that the males and females of M. domestica displayed biochemically different responses to fipronil, that is a neurotoxin, and chlorfenapyr, that is a decoupler of oxidative phosphorylation. Further research needs to be addressed to the molecular mechanisms underlying the peculiarities of the insect enzyme responses to different insecticides.
Collapse
|
6
|
Yang YL, Li X, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Comparative genomic analysis of carboxylesterase genes in Tenebrio molitor and other four tenebrionids. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21967. [PMID: 36111353 DOI: 10.1002/arch.21967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (COEs) have various functions in wide taxons of organisms. In insects, COEs are important enzymes involved in the hydrolysis of a variety of ester-containing xenobiotics, neural signal transmission, pheromone degradation, and reproductive development. Understanding the diversity of COEs is basic to illustrate their functions. In this study, we identified 53, 105, 37, and 39 COEs from the genomes of Tenebrio molitor, Asbolus verucosus, Hycleus cichorii, and H. phaleratus in the superfamily of Tenebrionidea, respectively. Phylogenetic analysis showed that 234 COEs from these four species and those reported in Tribolium castaneum (63) could be divided into 12 clades and three major classes. The α-esterases significantly expanded in T. molitor, A. verucosus, and T. castaneum compared to dipteran and hymenopteran insects. In T. molitor, most COEs showed tissue and stage-specific but not a sex-biased expression. Our results provide insights into the diversity and evolutionary characteristics of COEs in tenebrionids, and lay a foundation for the functional characterization of COEs in the yellow mealworm.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Science, Lijiang, China
| | - Xun Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
7
|
Toé HK, Zongo S, Guelbeogo MW, Kamgang B, Viana M, Tapsoba M, Sanou A, Traoré A, McCall PJ, Sagnon N. Multiple insecticide resistance and first evidence of V410L kdr mutation in Aedes (Stegomyia) aegypti (Linnaeus) from Burkina Faso. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:309-319. [PMID: 35869781 DOI: 10.1111/mve.12602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/01/2022] [Indexed: 05/02/2023]
Abstract
The response to recent dengue outbreaks in Burkina Faso was insecticide-based, despite poor knowledge of the vector population's susceptibility to the insecticides used. Here, we report on the susceptibility to the main insecticide classes and identify important underlying mechanisms in Aedes aegypti populations in Ouagadougou and Banfora, in 2019 and 2020. Wild Ae. aegypti were tested as adults in WHO bioassays and then screened in real time melting curve qPCR analyses to genotype the F1534C, V1016I, and V410L Aedes kdr mutations. Ae. aegypti showed moderate resistance to 0.1% bendiocarb (80-95% survival post-exposure), 0.8% Malathion (60-100%), 0.21% pirimiphos-methyl (75% - 97%), and high resistance to 0.03% deltamethrin (20-70%). PBO pre-exposure partially restored pyrethroid susceptibility. Genotyping detected high frequency of 1534C allele (0.92) and moderate 1016I (0.1-0.32). The V410L mutation was detected in Burkina Faso for the first time (frequency 0.1-0.36). Mosquitoes surviving 4 h exposure to 0.03% deltamethrin had significantly higher frequencies of the F1534C mutation than dead mosquitoes (0.70 vs. 0.96, p < 0.0001) and mosquitoes surviving 2 - 4 h exposure had a significantly reduced life span. Ae. aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes.
Collapse
Affiliation(s)
- Hyacinthe K Toé
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-ZERBO, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Moussa W Guelbeogo
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Basile Kamgang
- Department of Medical Entomology, Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Madou Tapsoba
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Antoine Sanou
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Alphonse Traoré
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - N'Falé Sagnon
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| |
Collapse
|
8
|
Metabolic Resistance in Permethrin-Resistant Florida Aedes aegypti (Diptera: Culicidae). INSECTS 2021; 12:insects12100866. [PMID: 34680634 PMCID: PMC8540271 DOI: 10.3390/insects12100866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Pyrethroid-oriented vector control programs have increased worldwide to control adult Aedes aegypti mosquitoes and quell Aedes-borne disease epidemics. Due to years of pyrethroid use, resistance to pyrethroids in Ae. aegypti has become a global issue. In Florida, permethrin is the most common pyrethroid adulticide active ingredient used to control mosquito populations. Thus far, all wild Florida Ae. aegypti populations tested against permethrin have been found to be resistant. Metabolic resistance is a major mechanism of resistance in insects in which enzyme-mediated reactions cause the degradation or sequestration of insecticides. We performed assays to investigate the presence of metabolic resistance in 20 Florida Ae. aegypti populations and found that 11 populations (55%) exhibited metabolic resistance due to the action of at least one of three classes of metabolizing enzymes: oxidases, esterases, and glutathione transferases. Additionally, we identified two metabolic enzyme inhibitors: S.S.S-tributyl phosphorotrithioate (DEF; inhibits esterase activity) and diethyl maleate (DM; inhibits glutathione transferase activity), in addition to the commonly used piperonyl butoxide (PBO; inhibits oxidase activity), which were able to increase the efficacy of permethrin against resistant Ae. aegypti populations. Pre-exposure to DEF, PBO, and DM resulted in increased mortality after permethrin exposure in eight (73%), seven (64%), and six (55%) of the Ae. aegypti populations, respectively. Increasing the effectiveness of pyrethroids is important for mosquito control, as it is the primary method used for adult control during mosquito-borne disease outbreaks. Considering that DEF and DM performed similarly to PBO, they may be good candidates for inclusion in formulated pyrethroid products to increase their efficacy against resistant mosquitoes. Abstract Aedes aegypti is the principal mosquito vector for many arthropod-borne viruses (arboviruses) including dengue, chikungunya, and Zika. In the United States, excessive permethrin use has led to a high frequency of resistance in mosquitoes. Insecticide resistance is a significant obstacle in the struggle against vector-borne diseases. To help overcome metabolic resistance, synergists that inhibit specific metabolic enzymes can be added to formulated pyrethroid products. Using modified CDC bottle bioassays, we assessed the effect of three inhibitors (piperonyl butoxide (PBO), which inhibits oxidase activity; S.S.S-tributyl phosphorotrithioate (DEF), which inhibits esterase activity; and diethyl maleate (DM), which inhibits glutathione transferase activity) + permethrin. We performed these against 20 Florida Ae. aegypti populations, all of which were resistant to permethrin. Our data indicated that 11 out of 20 populations (55%) exhibited metabolic resistance. Results revealed 73% of these populations had significant increases in mortality attributed to DEF + permethrin, 64% to PBO + permethrin, and 55% to DM + permethrin compared to permethrin alone. Currently, PBO is the only metabolic enzyme inhibitor added to formulated pyrethroid products used for adult mosquito control. Our results suggest that the DEF and DM inhibitors could also be useful additives in permethrin products, especially against metabolically resistant Ae. aegypti mosquitoes. Moreover, metabolic assays should be conducted to better inform mosquito control programs for designing and implementing integrated vector management strategies.
Collapse
|
9
|
Li R, Zhu B, Shan J, Li L, Liang P, Gao X. Functional analysis of a carboxylesterase gene involved in beta-cypermethrin and phoxim resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:2097-2105. [PMID: 33342080 DOI: 10.1002/ps.6238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carboxylesterases (CarEs) are associated with detoxification of xenobiotics, including insecticides, in organism bodies. Overexpression of CarE genes is considered to have an important role in insecticide resistance in insects, however its involvement in multi-insecticide resistance has rarely been reported. This study aimed to assess the function of a CarE gene (PxαE8) in resistance to five insecticides in Plutella xylostella. RESULTS Relative expression of PxαE8 in three multi-insecticide-resistant Plutella xylostella populations, GD-2017, GD-2019 and HN, was14.8-, 19.5- and 28.0-fold higher than that in the susceptible population. Exposure to lethal concentrations associated with 25% mortality (LC25 ) of beta-cypermethrin, chlorantraniliprole, metaflumizone, phoxim and tebufenozide could induce the specific activity of CarEs and increase the relative expression of PxαE8. By contrast, knockdown of PxαE8 expression dramatically reduced the activity of CarEs and increased the resistance of P. xylostella (GD-2019) larvae to beta-cypermethrin and phoxim by 47.4% and 45.5%, respectively. Further, a transgenic line of Drosophila melanogaster overexpressing PxαE8 was constructed and the bioassay results showed that the tolerance of transgenic Drosophila to beta-cypermethrin and phoxim was 3.93- and 3.98-fold higher than that of the untransgenic line. CONCLUSION These results provide evidence that overexpression of PxαE8 is involved in resistance, at least to beta-cypermethrin and phoxim, in multi-insecticide-resistant P. xylostella populations, which could help in further understanding the molecular mechanisms of multi-insecticide resistance in this pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ran Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Linhong Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Cattel J, Haberkorn C, Laporte F, Gaude T, Cumer T, Renaud J, Sutherland IW, Hertz JC, Bonneville J, Arnaud V, Fustec B, Boyer S, Marcombe S, David J. A genomic amplification affecting a carboxylesterase gene cluster confers organophosphate resistance in the mosquito Aedes aegypti: From genomic characterization to high-throughput field detection. Evol Appl 2021; 14:1009-1022. [PMID: 33897817 PMCID: PMC8061265 DOI: 10.1111/eva.13177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
By altering gene expression and creating paralogs, genomic amplifications represent a key component of short-term adaptive processes. In insects, the use of insecticides can select gene amplifications causing an increased expression of detoxification enzymes, supporting the usefulness of these DNA markers for monitoring the dynamics of resistance alleles in the field. In this context, the present study aims to characterize a genomic amplification event associated with resistance to organophosphate insecticides in the mosquito Aedes aegypti and to develop a molecular assay to monitor the associated resistance alleles in the field. An experimental evolution experiment using a composite population from Laos supported the association between the over-transcription of multiple contiguous carboxylesterase genes on chromosome 2 and resistance to multiple organophosphate insecticides. Combining whole genome sequencing and qPCR on specific genes confirmed the presence of a ~100-Kb amplification spanning at least five carboxylesterase genes at this locus with the co-existence of multiple structural duplication haplotypes. Field data confirmed their circulation in South-East Asia and revealed high copy number polymorphism among and within populations suggesting a trade-off between this resistance mechanism and associated fitness costs. A dual-color multiplex TaqMan assay allowing the rapid detection and copy number quantification of this amplification event in Ae. aegypti was developed and validated on field populations. The routine use of this novel assay will improve the tracking of resistance alleles in this major arbovirus vector.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
- Present address:
Symbiosis Technologies for Insect Control (SymbioTIC)Plateforme de Recherche CyroiSte ClotildeFrance
| | - Chloé Haberkorn
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Fréderic Laporte
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Tristan Cumer
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Ian W. Sutherland
- United States Navy Entomology. Center of ExcellenceNAS JacksonvilleJacksonvilleFLUSA
| | | | - Jean‐Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Victor Arnaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bénédicte Fustec
- Department of MicrobiologyKhon Kaen UniversityKhon KaenThailand
- Institut de Recherche pour le DéveloppementUMR IRD 224‐CNRS 5290‐Université MontpellierMontpellier Cedex 5France
| | - Sébastien Boyer
- Medical and Veterinary EntomologyInstitut Pasteur du CambodgePhnom PenhCambodia
| | - Sébastien Marcombe
- Medical Entomology and Vector‐Borne Disease LaboratoryInstitut Pasteur du LaosVientianeLaos
| | - Jean‐Philippe David
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
11
|
Andrade MA, de Oliveira Torres LR, Silva AS, Barbosa CH, Vilarinho F, Ramos F, de Quirós ARB, Khwaldia K, Sendón R. Industrial multi-fruits juices by-products: total antioxidant capacity and phenolics profile by LC–MS/MS to ascertain their reuse potential. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03571-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Yang F, Schildhauer S, Billeter SA, Hardstone Yoshimizu M, Payne R, Pakingan MJ, Metzger ME, Liebman KA, Hu R, Kramer V, Padgett KA. Insecticide Resistance Status of Aedes aegypti (Diptera: Culicidae) in California by Biochemical Assays. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1176-1183. [PMID: 32159787 PMCID: PMC7334890 DOI: 10.1093/jme/tjaa031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 05/25/2023]
Abstract
Insecticide resistance in Aedes aegypti mosquitoes poses a major threat to public health worldwide. There are two primary biological mechanisms that can lead to insecticide resistance, target site and metabolic resistance, both of which confer resistance to specific classes of insecticides. Due to the limited number of chemical compounds available for mosquito control, it is important to determine current enzymatic profiles among mosquito populations. This study assessed resistance profiles for three metabolic pathways, α-esterases, β-esterases, and mixed-function oxidases (MFOs), as well as insensitivity of the acetylcholinesterase (iAChE) enzyme in the presence of propoxur, among Ae. aegypti from the Central Valley and southern California. All field-collected Ae. aegypti demonstrated elevated MFOs and iAChE activity, indicating potential development of pyrethroid and organophosphate resistance, respectively. Although regional variations were found among α-esterase and β-esterase activity, levels were generally elevated, further suggesting additional mechanisms for developing organophosphate resistance. Furthermore, mosquito samples from southern California exhibited a higher expression level to all three metabolic enzymes and iAChE activity in comparison to mosquitoes from the central region. These results could help guide future mosquito control efforts, directing the effective use of insecticides while limiting the spread of resistance.
Collapse
Affiliation(s)
- Fan Yang
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Samuel Schildhauer
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Sarah A Billeter
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Melissa Hardstone Yoshimizu
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Robert Payne
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Mary Joyce Pakingan
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Marco E Metzger
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Kelly A Liebman
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Renjie Hu
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Vicki Kramer
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Kerry A Padgett
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| |
Collapse
|
13
|
Helvecio E, Romão TP, de Carvalho-Leandro D, de Oliveira IF, Cavalcanti AEHD, Reimer L, de Paiva Cavalcanti M, de Oliveira APS, Paiva PMG, Napoleão TH, Wallau GL, de Melo Neto OP, Melo-Santos MAV, Ayres CFJ. Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104464. [PMID: 32359546 DOI: 10.1016/j.pestbp.2019.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 10/13/2019] [Indexed: 06/11/2023]
Abstract
The glutathione S-transferases (GSTs) are enzymes involved in several distinct biological processes. In insects, the GSTs, especially delta and epsilon classes, play a key role in the metabolism of xenobiotics used to control insect populations. Here, we investigated its potential role in temephos resistance, examining the GSTE2 gene from susceptible (RecL) and resistant (RecR) strains of the mosquito Aedes aegypti, vector for several pathogenic arboviruses. Total GST enzymatic activity and the GSTE2 gene expression profile were evaluated, with the GSTE2 cDNA and genomic loci sequenced from both strains. Recombinant GSTE2 and mutants were produced in a heterologous expression system and assayed for enzyme kinetic parameters. These proteins also had their 3D structure predicted through molecular modeling. Our results showed that RecR has a profile of total GST enzymatic activity higher than RecL, with the expression of the GSTE2 gene in resistant larvae increasing six folds. Four exclusive RecR mutations were observed (L111S, I150V, E178A and A198E), which were absent in the laboratory susceptible strains. The enzymatic activity of the recombinant GSTE2 showed different kinetic parameters, with the GSTE2 RecR showing an enhanced ability to metabolize its substrate. The I150V mutation was shown to induce significant changes in catalytic parameters and a 3D modeling of GSTE2 mapped two of the RecR changes (L111S and I150V) near the enzyme's catalytic pocket, also implying an impact on its catalytic activity. Our results reinforce a potential role for GSTE2 in the metabolic resistance phenotype while contributing to the understanding of the molecular basis for the resistance mechanism.
Collapse
Affiliation(s)
- Elisama Helvecio
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Tatiany Patrícia Romão
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil.
| | | | | | | | - Lisa Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | | | | | - Gabriel Luz Wallau
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil
| | | | | | | |
Collapse
|
14
|
Wei P, Demaeght P, De Schutter K, Grigoraki L, Labropoulou V, Riga M, Vontas J, Nauen R, Dermauw W, Van Leeuwen T. Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCE04) of Tetranychus urticae is associated with high levels of resistance to the keto-enol acaricide spirodiclofen. PEST MANAGEMENT SCIENCE 2020; 76:1142-1153. [PMID: 31583806 DOI: 10.1002/ps.5627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/01/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spirodiclofen is an acaricide that targets lipid biosynthesis by inhibiting acetyl-coenzyme A carboxylase. Spirodiclofen resistance in spider mites has been previously documented and was associated with overexpression of CYP392E10, a cytochrome P450 mono-oxygenase that metabolizes spirodiclofen. However, additional mechanisms have been suggested in several studies and a carboxyl/choline esterase gene, CCE04, was shown to be overexpressed in two genetically different strains, SR-VP and SR-TK, both exhibiting high spirodiclofen resistance levels. RESULTS We identified two different CCE04 alleles in both resistant strains, CCE04SR-VP and CCE04London , with CCE04SR-VP being highly overexpressed. Isoelectric focusing analysis confirmed the overexpression of a single esterase isozyme, while copy number and random fragment length polymorphism analysis revealed that CCE04SR-VP overexpression was more likely due to selection for the CCE04SR-VP allele rather than gene amplification. Both CCE04 alleles were functionally expressed using the Pichia expression system. Functional enzyme assays revealed only limited kinetic differences between CCE04 isoforms for model substrates. In addition, inhibition/competition experiments with spirodiclofen suggested a similar interaction with both enzymes, whereas its active metabolite, spirodiclofen enol, did not inhibit enzyme activity. CONCLUSION Our study suggests that selection with spirodiclofen results in enrichment of a specific allele of CCE04 (CCE04SR-VP ) in two genetically independent strains, which is highly overexpressed. Based on kinetic enzyme data, however, quantitative rather than qualitative differences between CCE04SR-VP and CCE04London seem more likely to be involved in resistance. Our findings are discussed in the light of a possible spirodiclofen resistance mechanism, with sequestration of spirodiclofen by CCE04SR-VP being a likely hypothesis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Demaeght
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Linda Grigoraki
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research, Athens, Greece
| | - Maria Riga
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Heraklion, Greece
| | - John Vontas
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ralf Nauen
- Bayer AG, CropScience Division, R&D, Pest Control, Monheim, Germany
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Cattel J, Faucon F, Le Péron B, Sherpa S, Monchal M, Grillet L, Gaude T, Laporte F, Dusfour I, Reynaud S, David J. Combining genetic crosses and pool targeted DNA-seq for untangling genomic variations associated with resistance to multiple insecticides in the mosquito Aedes aegypti. Evol Appl 2020; 13:303-317. [PMID: 31993078 PMCID: PMC6976963 DOI: 10.1111/eva.12867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
In addition to combating vector-borne diseases, studying the adaptation of mosquitoes to insecticides provides a remarkable example of evolution-in-action driving the selection of complex phenotypes. Actually, most resistant mosquito populations show multi-resistance phenotypes as a consequence of the variety of insecticides employed and of the complexity of selected resistance mechanisms. Such complexity makes the identification of alleles conferring resistance to specific insecticides challenging and prevents the development of molecular assays to track them in the field. Here we showed that combining simple genetic crosses with pool targeted DNA-seq can enhance the specificity of resistance allele's detection while maintaining experimental work and sequencing effort at reasonable levels. A multi-resistant population of the mosquito Aedes aegypti was exposed to three distinct insecticides (deltamethrin, bendiocarb and fenitrothion), and survivors to each insecticide were crossed with a susceptible strain to generate three distinct lines. F2 individuals from each line were then segregated based on their survival to two insecticide doses. Hundreds of genes covering all detoxifying enzymes and insecticide targets together with more than 7,000 intergenic regions equally spread over mosquito genome were sequenced from pools of F0 and F2 individuals unexposed or surviving insecticide. Differential coverage analysis identified 39 detoxification enzymes showing an increased gene copy number in association with resistance. Combining an allele frequency filtering approach with a Bayesian F ST-based genome scan identified multiple genomic regions showing strong selection signatures together with 50 nonsynonymous variations associated with resistance. This study provides a simple and cost-effective approach to improve the specificity of resistance allele's detection in multi-resistant populations while reducing false positives frequently arising when comparing populations showing divergent genetic backgrounds. The identification of novel DNA resistance markers opens new opportunities for improving the tracking of insecticide resistance in the field.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Frédéric Faucon
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bastien Le Péron
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Stéphanie Sherpa
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Marie Monchal
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Lucie Grillet
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Frederic Laporte
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | | | - Stéphane Reynaud
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Jean‐Philippe David
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
16
|
Marcombe S, Fustec B, Cattel J, Chonephetsarath S, Thammavong P, Phommavanh N, David JP, Corbel V, Sutherland IW, Hertz JC, Brey PT. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control. PLoS Negl Trop Dis 2019; 13:e0007852. [PMID: 31830027 PMCID: PMC6932826 DOI: 10.1371/journal.pntd.0007852] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/26/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The yellow fever mosquito Aedes aegypti is the major vector of dengue, yellow fever, Zika, and Chikungunya viruses. Worldwide vector control is largely based on insecticide treatments but, unfortunately, vector control programs are facing operational challenges due to mosquitoes becoming resistant to commonly used insecticides. In Southeast Asia, resistance of Ae. aegypti to chemical insecticides has been documented in several countries but no data regarding insecticide resistance has been reported in Laos. To fill this gap, we assessed the insecticide resistance of 11 Ae. aegypti populations to larvicides and adulticides used in public health operations in the country. We also investigated the underlying molecular mechanisms associated with resistance, including target site mutations and detoxification enzymes putatively involved in metabolic resistance. METHODS AND RESULTS Bioassays on adults and larvae collected in five provinces revealed various levels of resistance to organophosphates (malathion and temephos), organochlorine (DDT) and pyrethroids (permethrin and deltamethrin). Synergist bioassays showed a significant increased susceptibility of mosquitoes to insecticides after exposure to detoxification enzyme inhibitors. Biochemical assays confirmed these results by showing significant elevated activities of cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and carboxylesterases (CCE) in adults. Two kdr mutations, V1016G and F1534C, were detected by qPCR at low and high frequency, respectively, in all populations tested. A significant negative association between the two kdr mutations was detected. No significant association between kdr mutations frequency (for both 1534C and 1016G) and survival rate to DDT or permethrin (P > 0.05) was detected. Gene Copy Number Variations (CNV) were detected for particular detoxification enzymes. At the population level, the presence of CNV affecting the carboxylesterase CCEAE3A and the two cytochrome P450 CYP6BB2 and CYP6P12 were significantly correlated to insecticide resistance. CONCLUSIONS These results suggest that both kdr mutations and metabolic resistance mechanisms are present in Laos but their impact on phenotypic resistance may differ in proportion at the population or individual level. Molecular analyses suggest that CNV affecting CCEAE3A previously associated with temephos resistance is also associated with malathion resistance while CNV affecting CYP6BB2 and CYP6P12 are associated with pyrethroid and possibly DDT resistance. The presence of high levels of insecticide resistance in the main arbovirus vector in Laos is worrying and may have important implications for dengue vector control in the country.
Collapse
Affiliation(s)
- Sébastien Marcombe
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| | - Bénédicte Fustec
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Julien Cattel
- Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS - Université Grenoble-Alpes, Grenoble, France
| | | | - Phoutmany Thammavong
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| | - Nothasin Phommavanh
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS - Université Grenoble-Alpes, Grenoble, France
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | | | | | - Paul T. Brey
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| |
Collapse
|
17
|
Feng K, Yang Y, Wen X, Ou S, Zhang P, Yu Q, Zhang Y, Shen G, Xu Z, Li J, He L. Stability of cyflumetofen resistance in Tetranychus cinnabarinus and its correlation with glutathione-S-transferase gene expression. PEST MANAGEMENT SCIENCE 2019; 75:2802-2809. [PMID: 30809924 DOI: 10.1002/ps.5392] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cyflumetofen is an outstanding acaricide with a novel mode of action. Tetranychus cinnabarinus, an important agricultural pest, is notorious for developing resistance to most classes of acaricides rapidly and results in enormous loss for the economy. Our previous study had pointed out glutathione S-transferase (GSTs) significantly contributed to the cyflumetofen-resistance formation in T. cinnabarinus, but the more specific mechanism needed to be further investigated. RESULTS The unstable resistance was observed in cyflumetofen-resistant strain (CyR)under acaricide-free condition. The activity of GSTs increased along with the development of resistance. The expressions of 13 GST genes were detected in CyR and susceptible strain (SS), of which six genes were overexpressed in CyR and the TcGSTm02 was selected as the representative for functional study. The expression of TcGSTm02 changed along with the resistant level of CyR with the same trend. Recombinant protein of TcGSTm02 with high activity was successfully obtained by E. coli expression system, whose activity could be inhibited by cyflumetofen (IC50 = 0.23 mM). Recombinant TcGSTm02 could effectively decompose cyflumetofen, and catalyze GS- to conjugate with cyflumetofen. CONCLUSION All clues confirmed that GSTs strongly associated with cyflumetofen-resistance and a representative gene, TcGSTm02, showed function on contributing the evolution of cyflumetofen-resistance in T. cinnabarinus. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaiyang Feng
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yuwei Yang
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiang Wen
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shiyuan Ou
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ping Zhang
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qian Yu
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yichao Zhang
- Department of entomology, Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Guangmao Shen
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhifeng Xu
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinhang Li
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin He
- Department of pesticide, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of pesticide, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Su X, Guo Y, Deng J, Xu J, Zhou G, Zhou T, Li Y, Zhong D, Kong L, Wang X, Liu M, Wu K, Yan G, Chen XG. Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: Alarm to the dengue epidemic. PLoS Negl Trop Dis 2019; 13:e0007665. [PMID: 31525199 PMCID: PMC6762209 DOI: 10.1371/journal.pntd.0007665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/26/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Dengue is one of the most serious mosquito-borne infectious diseases in the world. Aedes albopictus is the most invasive mosquito and one of the primary vectors of dengue. Vector control using insecticides is the only viable strategy to prevent dengue virus transmission. In Guangzhou, after the 2014 pandemic, massive insecticides have been implemented. Massive insecticide use may lead to the development of resistance, but few reports are available on the status of insecticide resistance in Guangzhou after 2014. In this study, Ae. albopictus were collected from four districts with varied dengue virus transmission intensity in Guangzhou from 2015 to 2017. Adult Ae. albopictus insecticide susceptibility to deltamethrin (0.03%), permethrin(0.25%), DDT(4%), malathion (0.8%) and bendiocarb (0.1%) was determined by the standard WHO tube test, and larval resistance bioassays were conducted using temephos, Bacillus thuringiensis israelensis (Bti), pyriproxyfen (PPF) and hexaflumuron. Mutations at the voltage-gated sodium channel (VGSC) gene and acetylcholinesterase (AChE) gene were analyzed. The effect of cytochrome P450s on the resistance of Ae. albopictus to deltamethrin was tested using the synergistic agent piperonyl butoxide (PBO). The results showed that Ae. albopictus populations have rapidly developed very high resistances to multiple commonly used insecticides at all study areas except malathion, Bti and hexaflumuron. We found 1534 codon mutations in the VGSC gene that were significantly correlated with the resistance to pyrethroids and DDT, and 11 synonymous mutations were also found in the gene. The resistance to deltamethrin can be significantly reduced by PBO but may generated cross-resistance to PPF. Fast emerging resistance in Ae. albopictus may affect mosquito management and threaten the prevention and control of dengue, similar to the resistance in Anopheles mosquitoes has prevented the elimination of malaria and call for timely and guided insecticide management.
Collapse
Affiliation(s)
- Xinghua Su
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yijia Guo
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jielin Deng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabao Xu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Tengfei Zhou
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiji Li
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Ling Kong
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoming Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min Liu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kun Wu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
- * E-mail: (GY); (XGC)
| | - Xiao-Guang Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- * E-mail: (GY); (XGC)
| |
Collapse
|
19
|
Castillo-Morales RM, Carreño Otero AL, Mendez-Sanchez SC, Da Silva MAN, Stashenko EE, Duque JE. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:29-37. [PMID: 30905844 DOI: 10.1016/j.cbpc.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
The aim of this research study was to understand the mechanism of action of Salvia officinalis (Lamiaceae) essential oil (EO) on Aedes aegypti larvae. We evaluated the effect on DNA damage, acetylcholinesterase (AChE) inhibition and mitochondrial enzymatic alterations. The major components were analyzed in silico using OSIRIS and Molispiration free software. Aedes aegypti DNA was extracted from mosquito larvae between third (L3) and fourth (L4) instars to determine the DNA fragmentation or degradation at S. officinalis EO lethal concentrations (LC10, LC20, LC50, and LC90). DNA integrity was assessed in both LCs in larvae treated for 24 h and in larvae homogenized with EO; we also assessed purified DNA larvae by a densitometric analysis. The AChE inhibition was quantified in protein larvae L3-L4 following Ellman's method and the enzymatic activities related to the mitochondrial respiratory chain of mitochondrial proteins was estimated by spectrophotometry. In silico analysis of 1,8-cineol and of α-thujone, major EO components, showed that they were highly permeable in biological membranes without mutagenic risks. Alterations in the integrity of DNA were observed in larvae exposed and homogenized with S. officinalis EO. The EO induced an AChE inhibition of 37 ± 2.6% to IC50. On the other hand, mitochondrial bioenergetics suggest that EO inhibits electrons entry to the respiratory chain, via Complex II. AChE activity alteration causes mortality of individuals, by blocking the insect cholinergic functions. These results indicate that EO affects the integrity of DNA, the mitochondrial respiration chain and the AChE activity.
Collapse
Affiliation(s)
- Ruth Mariela Castillo-Morales
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Aurora L Carreño Otero
- Laboratorio de Química Orgánica y Biomolecular-LQOBio, Facultad de Ciencias, Escuela de Química, Centro de Investigaciónes en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Stelia Carolina Mendez-Sanchez
- Grupo de Investigación en Bioquímica y Microbiología-GIBIM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Mario Antônio Navarro Da Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Universidade Federal do Paraná, Departamento de Zoología, Pós-graduação em Entomología, PO Box 19020, 81531-980 Curitiba, Paraná, Brazil.
| | - Elena E Stashenko
- Centro de Investigación en Biomoléculas-CIBIMOL, Centro Nacional de Investigación para la Agroindustrialización de Plantas Aromáticas y Medicinales Tropicales - CENIVAM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander Parque Tecnológico y de Investigaciones Guatiguara, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia.
| |
Collapse
|
20
|
Ding BY, Yang L, Peng YY, Chang TY, Ye C, Shang F, Niu J, Wang JJ. RNA-sequencing of a citrus bud-feeder, Podagricomela weisei (Coleoptera: Chrysomelidae), reveals xenobiotic metabolism/core RNAi machinery-associated genes and conserved miRNAs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:339-350. [PMID: 30682656 DOI: 10.1016/j.cbd.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
Abstract
The citrus leaf-mining beetle, Podagricomela weisei Heikertinger, is an important citrus pest that ingests the mesophyll and new shoots. The mechanism underlying the xenobiotic metabolism of P. weisei is not well understood, in part because of a lack of available genomic and transcriptomic data, which has hampered the development of novel pest management approaches [e.g., RNA interference (RNAi)]. In this study, we completed the deep sequencing of the P. weisei transcriptome to identify factors potentially involved in xenobiotic metabolism and the core RNAi machinery. The sequencing of the P. weisei transcriptome generated >27 million clean reads, ultimately yielding 90,410 unigenes with an N50 of 1065 bp. The unigenes were used as queries to search the Nr database, which revealed that 21,847 unigenes were homologous to known genes in various species. Transcripts encoding genes involved in xenobiotic metabolism were identified, including genes encoding cytochrome P450 monooxygenase (P450, 47 unigenes), glutathione S-transferase (GST, 12 unigenes), esterase (EST, 25 unigenes), and the ATP-binding cassette transporter (ABC transporter, 32 unigenes). A parallel sequencing of small RNAs detected 30 conserved miRNAs, with the most abundant being Pwe-miR-1-3p, with an expression level reaching 517,996 reads in the prepared library, followed by Pwe-miR-8-3p (149,402 reads). Genes encoding components of the miRNA, siRNA, and piRNA pathways were also identified, and the results indicated that P. weisei possesses only one of each gene in all three pathways. In summary, this is the first detailed analysis of the transcriptome and small RNAs of P. weisei. The datasets presented herein may form the basis for future molecular characterizations of P. weisei as well as the development of enhanced pest control strategies.
Collapse
Affiliation(s)
- Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Teng-Yu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
21
|
Lebon C, Benlali A, Atyame C, Mavingui P, Tortosa P. Construction of a genetic sexing strain for Aedes albopictus: a promising tool for the development of sterilizing insect control strategies targeting the tiger mosquito. Parasit Vectors 2018; 11:658. [PMID: 30583741 PMCID: PMC6304753 DOI: 10.1186/s13071-018-3212-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Aedes albopictus is an invasive mosquito species of global medical concern as its distribution has recently expanded to Africa, the Americas and Europe. In the absence of prophylaxis protecting human populations from emerging arboviruses transmitted by this mosquito species, the most straightforward control measures rely on the suppression or manipulation of vector natural populations. A number of environmental-friendly methods using mass releases of sterilizing males are currently under development. However, these strategies are still lacking an efficient sexing method required for production of males at an industrial scale. Results We present the first Genetic Sexing Strain (GSS) in Ae. albopictus, hereafter referred as Tikok, obtained by sex linkage of the rdl gene conferring dieldrin resistance. Hatch rate, larval survival and sex ratio were followed during twelve generations. The use of dieldrin at the third larval stage allowed selecting 98 % of males on average. Conclusion A good production rate of Tikok males makes this GSS suitable for any control method based on mass production of Ae. albopictus males. Despite limitations resulting from reduced egg hatch as well as the nature of the used insecticide, the construction of this GSS paves the way for industrial sex separation of Ae. albopictus.
Collapse
Affiliation(s)
- Cyrille Lebon
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Aude Benlali
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France.,Symbiosis Technologies for Insect Control (SymbioTIC). Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Célestine Atyame
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT). CNRS 9192, INSERM 1187, IRD 249. Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France
| | - Patrick Mavingui
- Symbiosis Technologies for Insect Control (SymbioTIC). Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France.,Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT). CNRS 9192, INSERM 1187, IRD 249. Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France.,Université de Lyon, Lyon, France, Université Lyon 1, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France, INRA, UMR1418, Villeurbanne, France
| | - Pablo Tortosa
- Symbiosis Technologies for Insect Control (SymbioTIC). Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France. .,Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT). CNRS 9192, INSERM 1187, IRD 249. Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France.
| |
Collapse
|
22
|
Bharati M, Saha D. Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from Northern Districts of West Bengal, India. Acta Trop 2018; 187:78-86. [PMID: 30026024 DOI: 10.1016/j.actatropica.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Aedes mosquitoes are the major vectors transmitting several arboviral diseases such as dengue, zika and chikungunya worldwide. Northern districts of West Bengal is home to several epidemics vectored by mosquito including dengue infections, proper control of which depends on efficient vector control. However the onset of insecticide resistance has resulted in failure of vector control approaches. This study was carried out to unveil the level of insecticide resistance prevailing among the primary dengue vector in this dengue endemic region of India. It was observed that, field caught populations of Ae. aegypti were moderately to severely resistant to majority of the insecticide classes tested, i.e. Organochlorine (DDT), Organophosphates (temephos, malathion), Synthetic Pyrethroids (deltamethrin, lambdacyhalothrin and permethrin) and carbamate (propoxur). In majority of the populations, metabolic detoxification seemed to play the underlying role behind the development of insecticide resistance. This study seems to be the first report revealing the pattern of insecticide resistance in Ae. aegypti from Northern West Bengal. Efficient disease management in this region can only be achieved through proper insecticide resistance management. This study may help the concerned authorities in the formulation of an effective vector control strategy throughout this region incorporating the knowledge gained through this study.
Collapse
|
23
|
Vani JM, de Carvalho Schweich L, de Oliveira KRW, Auharek SA, Cunha-Laura AL, Antoniolli-Silva ACMB, Nazario CED, Oliveira RJ. Evaluation of the effects of the larvicides temephos on reproductive performance, embryofetal development and DNA integrity of Swiss mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:22-27. [PMID: 29891373 DOI: 10.1016/j.pestbp.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 03/05/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Temephos is considered the gold standard by the Ministry of Health for controlling the larvae of the mosquito Aedes aegypti. The present study evaluated the effects of Temephos larvicide on the reproductive performance, embryo-fetal development and DNA integrity of Swiss mice. This study used 30 pregnant female mice: 10 were controls treated with drinking water at a dosage of 0.1 mL/10 g (body weight - b.w., administered orally - a.o.), and 20 were treated with Temephos at doses of 0.0043 mg/kg and 0.043 mg/kg (b.w., a.o.) during the gestational period. Statistical analysis showed that Temephos did not alter the biometric or reproductive parameters. Comparing the weight of the fetus to the stage of pregnancy demonstrated that the 0.0043 mg/kg dosage increased the size of the fetuses. No external malformations were detected. However, the 0.043 mg/kg dosage induced changes in the sternum, with the main change being the center of the sternum, xiphoid processes and absence of the manubrium. The other skeletal and visceral alterations did not differ from the control group and are considered variants of normality. The analysis of head measurements showed an increase in the anterior/posterior measurements of the glabella, the external occipital protuberance and the biauricular plane. The circumference and area of the head did not present significant differences. The micronucleus test showed only a 0.043 mg/kg increase in 48 h. Thus, it is considered that Temephos has a low teratogenic and genotoxic risk.
Collapse
Affiliation(s)
- Juliana Miron Vani
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta" - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Laynna de Carvalho Schweich
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta" - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Karla Regina Warszawski de Oliveira
- Programa de Pós-graduação em Química - INQUI, Universidade Federal de Mato Grosso do Sul- UFMS, Campo Grande, MS, Brazil; Laboratório de Combustiveis - LABCOM, Instituto de Química - INQUI, Universidade Federal de Mato Grosso do Sul- UFMS, Campo Grande, MS, Brazil
| | - Sarah Alves Auharek
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e do Mucuri - UFVJM, Teófilo Otoni, MG, Brazil
| | - Andréa Luiza Cunha-Laura
- Programa de Mestrado em Farmácia, Instituto de Biociências - INBIO, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Andréia Conceição Millan Brochado Antoniolli-Silva
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta" - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Carlos Eduardo Domingues Nazario
- Programa de Pós-graduação em Química - INQUI, Universidade Federal de Mato Grosso do Sul- UFMS, Campo Grande, MS, Brazil; Laboratório de Combustiveis - LABCOM, Instituto de Química - INQUI, Universidade Federal de Mato Grosso do Sul- UFMS, Campo Grande, MS, Brazil
| | - Rodrigo Juliano Oliveira
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta" - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil; Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas - CCB, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
24
|
Lu K, Wang Y, Chen X, Zhang Z, Li Y, Li W, Zhou Q. Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in Nilaparvata lugens (Stål). Comp Biochem Physiol C Toxicol Pharmacol 2017; 203:12-20. [PMID: 29054582 DOI: 10.1016/j.cbpc.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
The widespread and extensive application of insecticides have promoted the development of resistance in the brown planthopper Nilaparvata lugens (Stål), one of the most important rice pests in Asia. To better understand the underlying molecular mechanisms of metabolic resistance to insecticides, a chlorpyrifos-resistant (CR) strain of N. lugens was selected and its possible resistance mechanism was investigated. Synergistic tests using carboxylesterases (CarEs) inhibitor triphenyl phosphate (TPP) decreased the resistance of N. lugens to chlorpyrifos, and CarE activities could be induced by low concentrations of chlorpyrifos. Subsequently, a gene putatively encoding CarE, namely NlCarE, predominant in the midgut and ovary was isolated and characterized. The expression levels of NlCarE were detected and compared between the CR and a susceptible (SS) strain of N. lugens. Consistent with the increased CarE activity, this gene was overexpressed in the CR strain compared to the SS strain. The transcript levels of NlCarE were up-regulated by chlorpyrifos exposure, showing dose- and time-dependent expression patterns. Furthermore, RNA interference (RNAi)-mediated knockdown of NlCarE followed by insecticide application significantly increased the susceptibility of N. lugens to chlorpyrifos. These results demonstrate that NlCarE plays an important role in chlorpyrifos detoxification and its overexpression may be involved in chlorpyrifos resistance in N. lugens.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhichao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yue Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
25
|
Seixas G, Grigoraki L, Weetman D, Vicente JL, Silva AC, Pinto J, Vontas J, Sousa CA. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal). PLoS Negl Trop Dis 2017; 11:e0005799. [PMID: 28742096 PMCID: PMC5542702 DOI: 10.1371/journal.pntd.0005799] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/03/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. METHODOLOGY/PRINCIPAL FINDINGS WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. CONCLUSIONS/SIGNIFICANCE Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.
Collapse
Affiliation(s)
- Gonçalo Seixas
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Linda Grigoraki
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion, Greece
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - José Luís Vicente
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Clara Silva
- Departamento de Planeamento, Saúde e Administração Geral do Instituto de Administração da Saúde e Assuntos Sociais, IP-RAM, Funchal, Madeira, Portugal
| | - João Pinto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Carla Alexandra Sousa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
26
|
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 2017; 11:e0005625. [PMID: 28727779 PMCID: PMC5518996 DOI: 10.1371/journal.pntd.0005625] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.
Collapse
Affiliation(s)
- Catherine L. Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Ademir J. Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Helios Block, Singapore
| | - Sin Ying Koou
- Environmental Health Institute, National Environment Agency, Helios Block, Singapore
| | - Isabelle Dusfour
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Kamaraju Raghavendra
- Insecticides and Insecticide Resistance Lab, National Institute of Malaria Research (ICMR), Delhi, India
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS), University Grenoble-Alpes (UGA), Grenoble, France
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
27
|
Grigoraki L, Pipini D, Labbé P, Chaskopoulou A, Weill M, Vontas J. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin. PLoS Negl Trop Dis 2017; 11:e0005533. [PMID: 28394886 PMCID: PMC5398709 DOI: 10.1371/journal.pntd.0005533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/20/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. Principal findings Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. Significance The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies. Control of mosquito borne diseases is being seriously challenged by the ongoing development of insecticide resistance. Resistance of Aedes albopictus, a major arbovirus vector, to the organophosphate larvicide temephos was recently associated with the up-regulation, through gene amplification, of two carboxylesterases; CCEae3a and CCEae6a. Here we investigated the worldwide distribution and origin of the amplified esterases, which is of great value for designing and implementing efficient vector control programs. Individuals with amplification of both esterases were found in Greece and Florida (U.S.A), representing a single amplification event that spread between the two countries, highlighting the importance of passive transportation of disease vectors carrying resistance mechanisms, which is mainly facilitated by human activities. In addition, individuals with amplification of the CCEae3a only, but not the CCEae6a, representing a second and independent amplification event were found in Florida. The worldwide haplotypic diversity obtained for CCEae3a is consistent with the highly invasive nature of the Aedes albopictus.
Collapse
Affiliation(s)
- Linda Grigoraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Dimitra Pipini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Pierrick Labbé
- Institut des sciences de l’évolution, CNRS–IRD–Université de Montpellier-EPHE, Montpellier, France
| | | | - Mylene Weill
- Institut des sciences de l’évolution, CNRS–IRD–Université de Montpellier-EPHE, Montpellier, France
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
28
|
Faucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong W, Girod R, Poupardin R, Boyer F, Reynaud S, David JP. In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach. PLoS Negl Trop Dis 2017; 11:e0005526. [PMID: 28379969 PMCID: PMC5393893 DOI: 10.1371/journal.pntd.0005526] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/17/2017] [Accepted: 03/25/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The capacity of Aedes mosquitoes to resist chemical insecticides threatens the control of major arbovirus diseases worldwide. Until alternative control tools are widely deployed, monitoring insecticide resistance levels and identifying resistance mechanisms in field mosquito populations is crucial for implementing appropriate management strategies. Metabolic resistance to pyrethroids is common in Aedes aegypti but the monitoring of the dynamics of resistant alleles is impeded by the lack of robust genomic markers. METHODOLOGY/PRINCIPAL FINDINGS In an attempt to identify the genomic bases of metabolic resistance to deltamethrin, multiple resistant and susceptible populations originating from various continents were compared using both RNA-seq and a targeted DNA-seq approach focused on the upstream regions of detoxification genes. Multiple detoxification enzymes were over transcribed in resistant populations, frequently associated with an increase in their gene copy number. Targeted sequencing identified potential promoter variations associated with their over transcription. Non-synonymous variations affecting detoxification enzymes were also identified in resistant populations. CONCLUSION /SIGNIFICANCE This study not only confirmed the role of gene copy number variations as a frequent cause of the over expression of detoxification enzymes associated with insecticide resistance in Aedes aegypti but also identified novel genomic resistance markers potentially associated with their cis-regulation and modifications of their protein structure conformation. As for gene transcription data, polymorphism patterns were frequently conserved within regions but differed among continents confirming the selection of different resistance factors worldwide. Overall, this study paves the way of the identification of a comprehensive set of genomic markers for monitoring the spatio-temporal dynamics of the variety of insecticide resistance mechanisms in Aedes aegypti.
Collapse
Affiliation(s)
- Frederic Faucon
- Laboratoire d'Ecologie Alpine (LECA), CNRS, UMR 5553, 2233 rue de la piscine Grenoble, France
- Université Grenoble—Alpes, France
- Environmental and Systems Biology (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA), CNRS, UMR 5553, 2233 rue de la piscine Grenoble, France
- Université Grenoble—Alpes, France
- Environmental and Systems Biology (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Isabelle Dusfour
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, 23 avenue Pasteur, Cayenne, France
| | | | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Montpellier, France
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Lat Yao Chatuchak Bangkok, Thailand
| | - Waraporn Juntarajumnong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Lat Yao Chatuchak Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok Thailand (CASAF, NRU-KU, Thailand)
| | - Romain Girod
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, 23 avenue Pasteur, Cayenne, France
| | | | - Frederic Boyer
- Laboratoire d'Ecologie Alpine (LECA), CNRS, UMR 5553, 2233 rue de la piscine Grenoble, France
- Université Grenoble—Alpes, France
- Environmental and Systems Biology (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine (LECA), CNRS, UMR 5553, 2233 rue de la piscine Grenoble, France
- Université Grenoble—Alpes, France
- Environmental and Systems Biology (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), CNRS, UMR 5553, 2233 rue de la piscine Grenoble, France
- Université Grenoble—Alpes, France
- Environmental and Systems Biology (BEeSy), Université Grenoble Alpes, Grenoble, France
| |
Collapse
|