1
|
Liu X, Gao Y, Liu T, Guo H, Qiao J, Su J. Involvement of Inwardly Rectifying Potassium (Kir) Channels in the Toxicity of Flonicamid to Drosophila melanogaster. INSECTS 2025; 16:69. [PMID: 39859650 PMCID: PMC11766345 DOI: 10.3390/insects16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated. It is unclear whether flonicamid directly targets Kir channels or acts on other sites involved in the activation of transient receptor potential vanilloid (TRPV) channels. In this study, we observed that flonicamid is more toxic to flies than its metabolite, flumetnicam. This higher toxicity is difficult to reconcile if nicotinamidase is the active target, as flonicamid does not inhibit nicotinamidase. An alternative explanation is that flonicamid and flumetnicam may have distinct targets or act on multiple targets. Furthermore, reducing the expression of three individual Kir genes in the salivary glands of D. melanogaster significantly decreased the flies' susceptibility to both flonicamid and flumetnicam. The double knockdown of Kir1 with Kir3 or Kir2 with Kir3 further reduced the flies' sensitivity to both compounds. These findings confirm the involvement of Kir channels in mediating the toxic effects of flonicamid on flies. Overall, this study offers new insights into the physiological roles of insect Kir channels and flonicamid toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianya Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (Y.G.); (T.L.); (H.G.); (J.Q.)
| |
Collapse
|
2
|
Zhao J, Yin J, Wang Z, Shen J, Dong M, Yan S. Complicated gene network for regulating feeding behavior: novel efficient target for pest management. PEST MANAGEMENT SCIENCE 2025; 81:10-21. [PMID: 39390706 DOI: 10.1002/ps.8459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Feeding behavior is a fundamental activity for insects, which is essential for their growth, development and reproduction. The regulation of their feeding behavior is a complicated process influenced by a variety of factors, including external stimuli and internal physiological signals. The current review introduces the signaling pathways in brain, gut and fat body involved in insect feeding behavior, and provides a series of target genes for developing RNA pesticides. Additionally, this review summaries the current challenges for the identification and application of functional genes involved in feeding behavior, and finally proposes the future research direction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Zhao
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiaming Yin
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Dong
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Zhu J, Wang X, Mo Y, Wu B, Yi T, Yang Z. Toxicity of Flonicamid to Diaphorina citri (Hemiptera: Liviidae) and Its Identification and Expression of Kir Channel Genes. INSECTS 2024; 15:900. [PMID: 39590499 PMCID: PMC11594753 DOI: 10.3390/insects15110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Flonicamid is a selective insecticide effective against piercing-sucking insects. Although its molecular target has been identified in other species, the specific effects and detailed mechanism of action in Diaphorina citri Kuwayama remain poorly understood. In this study, we determined that the LC50 of flonicamid for D. citri adults was 16.6 mg AI L-1 after 4 days of exposure. To explore the relevant mechanisms, the treatments with acetone and with 20 mg AI L-1 flonicamid for 96 h were collected as samples for RNA-Seq. The analysis of the transcriptomes revealed 345 differentially expressed genes (DEGs) in D. citri adults subjected to different treatments. Among these DEGs, we focused on the inward-rectifying potassium (Kir) channel genes, which have been extensively studied as potential targets of flonicamid. Three Kir subunit genes (Dckir1, Dckir2, Dckir3) in D. citri were successfully cloned and identified. Furthermore, the expression profiles of these DcKirs were investigated using RT-qPCR and showed that their expression significantly increased after D. citri eclosion to adulthood, particularly for DcKir3. The DcKirs were predominantly expressed in gut tissues, with DcKir1 and DcKir2 exhibiting high expression levels in the hindgut and midgut, respectively, while DcKir3 showing high expression in the midgut and Malpighian tubules. This study provides insights into the potential roles of Kir subunits in D. citri and enhances our understanding of the physiological effects of flonicamid in this pest.
Collapse
Affiliation(s)
| | | | | | | | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (X.W.); (Y.M.); (B.W.)
| | - Zhongxia Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (X.W.); (Y.M.); (B.W.)
| |
Collapse
|
4
|
Gul H, Güncan A, Ullah F, Desneux N, Liu X. Intergenerational Sublethal Effects of Flonicamid on Cotton Aphid, Aphis gossypii: An Age-Stage, Two-Sex Life Table Study. INSECTS 2024; 15:529. [PMID: 39057262 PMCID: PMC11277007 DOI: 10.3390/insects15070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Flonicamid is a novel systemic insecticide widely used against aphids. However, the intergenerational sublethal effects of flonicamid on cotton aphid, Aphis gossypii, have not been fully studied. This study aimed to evaluate the sublethal effects of flonicamid on the biological parameters of adult A. gossypii (F0) and its subsequent intergenerational effects on the offspring (F1 generation) through age-stage, two-sex life table analysis. The results of the bioassays indicate that flonicamid exhibits significant toxicity toward adult A. gossypii, as evidenced by an LC50 value of 0.372 mg L-1 after a 48-h exposure period. The longevity, fecundity, and reproductive days of adult cotton aphids (F0) were significantly decreased when treated with the sublethal concentrations of flonicamid. The pre-adult stage exhibited an increase, whereas the adult longevity, total longevity, and fecundity experienced a notable decrease in F1 aphids after the exposure of F0 aphids to sublethal concentrations of flonicamid. Furthermore, the key demographic parameters, including r, λ, R0, and RPd, showed a significant decrease, while the total pre-reproductive period (TPRP) experienced a significant increase in the F1 generation. Collectively, our findings indicate that sublethal concentrations of flonicamid impact the demographic parameters of A. gossypii, resulting in suppression of population growth. This study presents comprehensive information on the overall impact of flonicamid on A. gossypii, which could potentially aid in managing this major pest.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, 52200 Ordu, Turkey;
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Moustafa MAM, Ahmed FS, Alfuhaid NA, El-Said NA, Ibrahim EDS, Awad M. The Synergistic Effect of Lemongrass Essential Oil and Flometoquin, Flonicamid, and Sulfoxaflor on Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae): Insights into Toxicity, Biochemical Impact, and Molecular Docking. INSECTS 2024; 15:302. [PMID: 38786858 PMCID: PMC11122410 DOI: 10.3390/insects15050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
The whitefly, Bemisia tabaci (Genn.), is one of the most dangerous polyphagous pests in the world. Eco-friendly compounds and new chemical insecticides have gained recognition for whitefly control. In this study, the toxicity and biochemical impact of flometoquin, flonicamid, and sulfoxaflor, alone or combined with lemongrass essential oil (EO), against B. tabaci was studied. In addition, a molecular docking study was conducted to assess the binding affinity of the tested compounds to AchE. Based on the LC values, the descending order of the toxicity of the tested compounds to B. tabaci adults was as follows: sulfoxaflor > flonicamid > flometoquin > lemongrass EO. The binary mixtures of each of the tested compounds with lemongrass EO exhibited synergism in all combinations, with observed mortalities ranging from 15.09 to 22.94% higher than expected for an additive effect. Sulfoxaflor and flonicamid, alone or in combination with lemongrass EO, significantly inhibited AchE activity while only flonicamid demonstrated a significant impact on α-esterase, and none of the tested compounds affected cytochrome P450 or GST. However, the specific activity of P450 was significantly inhibited by the lemongrass/sulfoxaflor mixture while α-esterase activity was significantly inhibited by the lemongrass/flometoquin mixture. Moreover, the lemongrass EO and all the tested insecticides exhibited significant binding affinity to AchE with energy scores ranging from -4.69 to -7.06 kcal/mol. The current findings provide a foundation for utilizing combinations of essential oils and insecticides in the integrated pest management (IPM) of B. tabaci.
Collapse
Affiliation(s)
- Moataz A. M. Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (M.A.M.M.); (F.S.A.); (N.A.E.-S.); (E.-D.S.I.)
| | - Fatma S. Ahmed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (M.A.M.M.); (F.S.A.); (N.A.E.-S.); (E.-D.S.I.)
| | - Nawal Abdulaziz Alfuhaid
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nourhan A. El-Said
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (M.A.M.M.); (F.S.A.); (N.A.E.-S.); (E.-D.S.I.)
| | - El-Desoky S. Ibrahim
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (M.A.M.M.); (F.S.A.); (N.A.E.-S.); (E.-D.S.I.)
| | - Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (M.A.M.M.); (F.S.A.); (N.A.E.-S.); (E.-D.S.I.)
| |
Collapse
|
6
|
Huo X, Wang Y, Liu Z, Liu J, Zhu H, Zhou Y, Man Y, Zhou X, Ma H. Electrophysiological and pharmacological properties of the slowpoke channel in the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105824. [PMID: 38582588 DOI: 10.1016/j.pestbp.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
The slowpoke channel responds to the intracellular calcium concentration and the depolarization of the cell membrane. It plays an important role in maintaining the resting potential and regulating the homeostasis of neurons, but it can also regulate circadian rhythm, sperm capacitation, ethanol tolerance, and other physiological processes in insects. This renders it a potentially useful target for the development of pest control strategies. There are relatively few studies on the slowpoke channels in lepidopteran pests, and their pharmacological properties are still unclear. So, in this study, the slowpoke gene of Plutella xylostella (Pxslo) was heterologous expressed in HEK293T cells, and the I-V curve of the slowpoke channel was measured by whole cell patch clamp recordings. Results showed that the slowpoke channel could be activated at -20 mV with 150 μM Ca2+. The subsequent comparison of the electrophysiological characteristics of the alternative splicing site E and G deletions showed that the deletion of the E site enhances the response of the slowpoke channel to depolarization, while the deletion of the G site weakens the response of the slowpoke channel to depolarization. Meanwhile, the nonspecific inhibitors TEA and 4-AP of the Kv channels, and four pesticides were tested and all showed an inhibition effect on the PxSlo channel at 10 or 100 μM, suggesting that these pesticides also target the slowpoke channel. This study enriches our understanding of the slowpoke channel in Lepidopteran insects and can aid in the development of relevant pest management strategies.
Collapse
Affiliation(s)
- Xiaoyi Huo
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yinna Wang
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yilong Man
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Xiaomao Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China.
| |
Collapse
|
7
|
Gul H, Ul Haq I, Ullah F, Khan S, Yaseen A, Shah SH, Tariq K, Güncan A, Desneux N, Liu X. Impact of sublethal concentrations of flonicamid on key demographic parameters and feeding behavior of Schizaphis graminum. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:756-767. [PMID: 37462788 DOI: 10.1007/s10646-023-02682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Flonicamid is a novel systemic insecticide that efficiently controls sap-sucking insect pests. However, the impact of sublethal concentrations of flonicamid on key demographic parameters and the feeding behavior of greenbug, Schizaphis graminum has not yet been studied. In this study, we used the age stage, two-sex life table approach, and electrical penetration graphs (EPGs) to investigate the sublethal effects of flonicamid on the biological traits and feeding behavior of S. graminum. Bioassays showed that flonicamid possesses high toxicity to adult S. graminum with LC50 of 5.111 mg L-1 following 48 h exposure. Sublethal concentrations of flonicamid (LC5 and LC10) significantly decreased the longevity and fecundity of directly exposed parental aphids (F0), while the reproductive days were reduced only at LC10. The pre-adult stage and total pre-reproductive period (TPRP) increased in F1 individuals after exposure of F0 aphids to the sublethal concentrations of flonicamid. Furthermore, the adult longevity, fecundity and key demographic parameters (R0, r, and λ) were significantly reduced in progeny generation (F1). EPG recordings showed that the total duration of phloem sap ingestion and concurrent salivation (E2) decreased substantially in F0 and F1 aphids after exposure to LC5 and LC10 of flonicamid. Taken together, our results showed that the sublethal concentrations of flonicamid affect the demographic parameters and feeding behavior that ultimately suppress the population growth of S. graminum. This study provides in-depth information about the overall effects of flonicamid on S. graminum that might help to manage this key pest.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shanza Khan
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Aqsa Yaseen
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Said Hussain Shah
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Kaleem Tariq
- Department of Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, 52200, Ordu, Turkey.
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000, Nice, France
| | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Spalthoff C, Salgado VL, Balu N, David MD, Hehlert P, Huang H, Jones JE, Kandasamy R, Knudsen GA, Lelito KR, Machamer JB, Nesterov A, Tomalski M, Wahl GD, Wedel BJ, Göpfert MC. The novel pyridazine pyrazolecarboxamide insecticide dimpropyridaz inhibits chordotonal organ function upstream of TRPV channels. PEST MANAGEMENT SCIENCE 2023; 79:1635-1649. [PMID: 36622360 DOI: 10.1002/ps.7352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pyridazine pyrazolecarboxamides (PPCs) are a novel insecticide class discovered and optimized at BASF. Dimpropyridaz is the first PPC to be submitted for registration and controls many aphid species as well as whiteflies and other piercing-sucking insects. RESULTS Dimpropyridaz and other tertiary amide PPCs are proinsecticides that are converted in vivo into secondary amide active forms by N-dealkylation. Active secondary amide metabolites of PPCs potently inhibit the function of insect chordotonal neurons. Unlike Group 9 and 29 insecticides, which hyperactivate chordotonal neurons and increase Ca2+ levels, active metabolites of PPCs silence chordotonal neurons and decrease intracellular Ca2+ levels. Whereas the effects of Group 9 and 29 insecticides require TRPV (Transient Receptor Potential Vanilloid) channels, PPCs act in a TRPV-independent fashion, without compromising cellular responses to Group 9 and 29 insecticides, placing the molecular PPC target upstream of TRPVs. CONCLUSIONS PPCs are a new class of chordotonal organ modulator insecticide for control of piercing-sucking pests. Dimpropyridaz is a PPC proinsecticide that is activated in target insects to secondary amide forms that inhibit the firing of chordotonal organs. The inhibition occurs at a site upstream of TRPVs and is TRPV-independent, providing a novel mode of action for resistance management. © 2023 BASF Corporation. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Christian Spalthoff
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | | | | | | | - Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Gao H, Yuan X, Lin X, Zhang H, Zou J, Liu Z. Reducing Expression of Salivary Protein Genes by Flonicamid Partially Contributed to Its Feeding Inhibition of the Brown Planthopper on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027537 DOI: 10.1021/acs.jafc.3c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flonicamid inhibits the feeding of piercing-sucking pests as a selective systemic insecticide. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious pests on rice. During feeding, it uses its stylet to collect sap by penetrating the phloem, and at the same time, it delivers saliva into the rice plant. Insect salivary proteins play important roles in feeding and interacting with plants. Whether flonicamid affects the expression of salivary protein genes and then inhibits the feeding of BPH is not clear. Here, from 20 functionally characterized salivary proteins, we screened five salivary proteins (NlShp, NlAnnix5, Nl16, Nl32, and NlSP7) whose gene expressions were significantly inhibited by flonicamid. We performed experimental analysis on two of them (Nl16 and Nl32). RNA interference of Nl32 significantly reduced the survival rate of BPH. Electrical penetration graph (EPG) experiments showed that both flonicamid treatment and knockdown of Nl16 and Nl32 genes significantly reduced the feeding activity of N. lugens in the phloem and also reduced the honeydew excretion and fecundity. These results suggested that the inhibition of flonicamid on the feeding behavior in N. lugens might be partially attributed to its effect on the expression of salivary protein genes. This study provides a new insight into the mechanism of action of flonicamid on insect pests.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
10
|
Huo X, Ma H, Zhu H, Liu J, Zhou Y, Zhou X, Liu Z. Identification and pharmacological characterization of the voltage-gated potassium channel Shab in diamondback moth, Plutella xylostella. PEST MANAGEMENT SCIENCE 2023; 79:1251-1260. [PMID: 36418849 DOI: 10.1002/ps.7300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Voltage-gated potassium channel Kv2 is the primarily delayed rectifier in insect nerves and muscles involved in several crucial biological processes, including action potential regulation, photoreceptor performance, and larval locomotor. It is a potential molecular target for developing a novel pesticide for mosquitos. However, there are few studies on the Kv2 channel in agricultural pests. RESULTS The only α-subunit gene of the Kv2 channel in Plutella xylostella (L.), PxShab, was cloned, and its expression profile was analyzed. The relative expression level of PxShab was highest in the pupal stage of both sexes and male adults but lowest in female adults. Meanwhile, PxShab had the highest expression in the head in both larvae and adults. Then, PxShab was stably expressed in the HEK-293 T cell line. Whole cell patch clamp recordings showed an outward current whose current-voltage relationship conformed to a typical delayed-rectifier potassium channel. 20 μM quinidine could effectively inhibit the potassium current, while the channel was insensitive to 4-AP even at 10 mM. Several potential compounds and botanical pesticides were assessed, and carvedilol (IC50 = 0.53 μM) and veratrine (IC50 = 2.22 μM) had a good inhibitory effect on the channel. CONCLUSION This study revealed the pharmacological properties of PxShab and screened out several high potency inhibitors, which laid the foundation for further functional research of PxShab and provides new insight into designing novel insecticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyi Huo
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha, China
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha, China
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha, China
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha, China
| | - Xiaomao Zhou
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha, China
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha, China
| |
Collapse
|
11
|
O'Hara FM, Liu Z, Davis JA, Swale DR. Catalyzing systemic movement of inward rectifier potassium channel inhibitors for antifeedant activity against the cotton aphid, Aphis gossypii (Glover). PEST MANAGEMENT SCIENCE 2023; 79:194-205. [PMID: 36116013 DOI: 10.1002/ps.7188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is a destructive agricultural pest, capable of photosynthate removal and plant virus transmission. Therefore, we aimed to test the antifeedant properties of small-molecule inhibitors of inward rectifier potassium (Kir) channels expressed in insect salivary glands and develop an approach for enabling systemic movement of lipophilic Kir inhibitors. RESULTS Two Kir channel inhibitors, VU041 and VU730, reduced the secretory activity of the aphid salivary glands by 3.3-fold and foliar applications of VU041 and VU730 significantly (P < 0.05) increased the time to first probe, total probe duration, and nearly eliminated phloem salivation and ingestion. Next, we aimed to facilitate systemic movement of VU041 and VU730 through evaluation of a novel natural product based solubilizer containing rubusoside that was isolated from Chinese sweet leaf (Rubus suavissimus) plants. A single lower leaf was treated with Kir inhibitor soluble liquid (KI-SL) and systemic movement throughout the plant was verified via toxicity bioassays and changes to feeding behavior through the electrical penetration graph (EPG) technique. EPG data indicate KI-SL significantly reduced ability to reach E1 (phloem salivation) and E2 (phloem ingestion) waveforms and altered plant probing behavior when compared to the untreated control. High-performance liquid chromatography (HPLC) analysis indicated the presence of VU041 and VU730 in the upper leaf tissue of these plants. Together, these data provide strong support that incorporation of rubusoside with Kir inhibitors enhanced translaminar and translocation movement through the plant tissue. CONCLUSION These data further support hemipteran Kir channels as a target to prevent feeding and induce toxicity. Further, these studies highlight a novel delivery approach for generating plant systemic activity of lipophilic insecticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Flinn M O'Hara
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Zhijun Liu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Jeffrey A Davis
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Qiao X, Zhang X, Zhou Z, Guo L, Wu W, Ma S, Zhang X, Montell C, Huang J. An insecticide target in mechanoreceptor neurons. SCIENCE ADVANCES 2022; 8:eabq3132. [PMID: 36417522 PMCID: PMC9683716 DOI: 10.1126/sciadv.abq3132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/05/2022] [Indexed: 06/15/2023]
Abstract
Hundreds of neurotoxic insecticides are currently in use. However, only a few direct targets have been identified. Here, using Drosophila and the insecticide flonicamid, we identified nicotinamidase (Naam) as a previous unidentified molecular target for an insecticide. Naam is expressed in chordotonal stretch-receptor neurons, and inhibition of Naam by a metabolite of flonicamid, TFNA-AM (4-trifluoromethylnicotinamide), induces accumulation of substrate nicotinamide and greatly inhibits negative geotaxis. Engineered flies harboring a point mutation in the active site show insecticide resistance and defects in gravity sensing. Bees are resistant to flonicamid because of a gene duplication, resulting in the generation of a TFNA-AM-insensitive Naam. Our results, in combination with the absence of genes encoding Naam in vertebrate genomes, suggest that TFNA-AM and potential species-specific Naam inhibitors could be developed as novel insecticides, anthelmintics, and antimicrobials for agriculture and human health.
Collapse
Affiliation(s)
- Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhendong Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhan Ma
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Spalthoff C, Salgado VL, Theis M, Geurten BRH, Göpfert MC. Flonicamid metabolite 4-trifluoromethylnicotinamide is a chordotonal organ modulator insecticide †. PEST MANAGEMENT SCIENCE 2022; 78:4802-4808. [PMID: 35904889 DOI: 10.1002/ps.7101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The selective aphicide flonicamid is known to cause symptoms in aphids that are like those of chordotonal organ TRPV channel modulator insecticides such as pymetrozine, pyrifluquinazon and afidopyropen. Flonicamid is classified by the Insecticide Resistance Action Committee as a chordotonal organ modulator with an undefined target site. However, although it has been shown not to act on TRPV channels, flonicamid's action on chordotonal organs has not been documented in the literature. RESULTS Flonicamid causes locusts to extend their hindlegs, indicating an action on the femoral chordotonal organ. In fruit flies, it abolishes negative gravitaxis behavior by disrupting transduction and mechanical amplification in antennal chordotonal neurons. Although flonicamid itself only weakly affects locust chordotonal organs, its major animal metabolite 4-trifluoromethylnicotinamide (TFNA-AM) potently stimulates both locust and fly chordotonal organs. Like pymetrozine, TFNA-AM rapidly increases Ca2+ in antennal chordotonal neurons in wild-type flies, but not iav1 mutants, yet the effect is nonadditive with the TRPV channel agonist. CONCLUSIONS Flonicamid is a pro-insecticide form of TFNA-AM, a potent chordotonal organ modulator. The functional effects of TFNA-AM on chordotonal organs of locusts and flies are indistinguishable from those of the TRPV agonists pymetrozine, pyrifluquinazon and afidopyropen. Because our previous results indicate that TFNA-AM does not act directly on TRPV channels, we conclude that it acts upstream in a pathway that leads to TRPV channel activation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christian Spalthoff
- Department of Cellular Neurobiology, Schwann-Schleiden Research Centre, Göttingen, Germany
| | - Vincent L Salgado
- BASF Corp, Research Triangle Park, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Mario Theis
- Bayer AG, R&D Pest Control, Monheim, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, Schwann-Schleiden Research Centre, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, Schwann-Schleiden Research Centre, Göttingen, Germany
| |
Collapse
|
14
|
Könemann S, von Wyl M, Vom Berg C. Zebrafish Larvae Rapidly Recover from Locomotor Effects and Neuromuscular Alterations Induced by Cholinergic Insecticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8449-8462. [PMID: 35575681 DOI: 10.1021/acs.est.2c00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to the importance of acetylcholine as a neurotransmitter, many insecticides target the cholinergic system. Across phyla, cholinergic signaling is essential for many neuro-developmental processes including axonal pathfinding and synaptogenesis. Consequently, early-life exposure to such insecticides can disturb these processes, resulting in an impaired nervous system. One test frequently used to assess developmental neurotoxicity is the zebrafish light-dark transition test, which measures larval locomotion as a response to light changes. However, it is only poorly understood which structural alterations cause insecticide-induced locomotion defects and how persistent these alterations are. Therefore, this study aimed to link locomotion defects with effects on neuromuscular structures, including motorneurons, synapses, and muscles, and to investigate the longevity of the effects. The cholinergic insecticides diazinon and dimethoate (organophosphates), methomyl and pirimicarb (carbamates), and imidacloprid and thiacloprid (neonicotinoids) were used to induce hypoactivity. Our analyses revealed that some insecticides did not alter any of the structures assessed, while others affected axon branching (methomyl, imidacloprid) or muscle integrity (methomyl, thiacloprid). The majority of effects, even structural, were reversible within 24 to 72 h. Overall, we find that both neurodevelopmental and non-neurodevelopmental effects of different longevity can account for the reduced locomotion. These findings provide unprecedented insights into the underpinnings of insecticide-induced hypoactivity.
Collapse
Affiliation(s)
- Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- École Polytechnique Fédéral de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Melissa von Wyl
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- University of Zurich, UZH, Rämistrassse 71, 8006 Zurich, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
15
|
Li Z, Soohoo-Hui A, O’Hara FM, Swale DR. ATP-sensitive inward rectifier potassium channels reveal functional linkage between salivary gland function and blood feeding in the mosquito, Aedes aegypti. Commun Biol 2022; 5:278. [PMID: 35347209 PMCID: PMC8960802 DOI: 10.1038/s42003-022-03222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Reducing saliva secretions into the vertebrate host reduces feeding efficacy by most hematophagous arthropods. However, seminal studies suggested saliva is not a prerequisite for blood feeding in Aedes aegypti. To test this paradigm, we manually transected the salivary duct of female A. aegypti and an inability to salivate was correlated to an inability to imbibe blood. These data justified testing the relevance of inwardly rectifying potassium (Kir) channels in the A. aegypti salivary gland as an antifeedant target site. Pharmacological activation of ATP-gated Kir (KATP) channels reduced the secretory activity of the salivary gland by 15-fold that led to near elimination of blood ingestion during feeding. The reduced salivation and feeding success nearly eliminated horizontal transmission and acquisition of Dengue virus-2 (DENV2). These data suggest mosquito salivation is a prerequisite for blood feeding and provide evidence that KATP channels are critical for salivation, feeding, and vector competency. The salivary gland of Aedes aegypti is needed for efficient blood feeding, and disruption of ATP-gated Kir channels prevents salivation and blood feeding in A. aegypti as well as horizontal transmission and acquisition of Dengue virus2.
Collapse
|
16
|
Piermarini PM, Denton JS, Swale DR. The Molecular Physiology and Toxicology of Inward Rectifier Potassium Channels in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:125-142. [PMID: 34606365 DOI: 10.1146/annurev-ento-062121-063338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inward rectifier K+ (Kir) channels have been studied extensively in mammals, where they play critical roles in health and disease. In insects, Kir channels have recently been found to be key regulators of diverse physiological processes in several tissues. The importance of Kir channels in insects has positioned them to serve as emerging targets for the development of insecticides with novel modes of action. In this article, we provide the first comprehensive review of insect Kir channels, highlighting the rapid progress made in understanding their molecular biology, physiological roles, pharmacology, and toxicology. In addition, we highlight key gaps in our knowledge and suggest directions for future research to advance our understanding of Kir channels and their roles in insect physiology. Further knowledge of their functional roles will also facilitate their exploitation as targets for controlling arthropod pests and vectors of economic, medical, and/or veterinary relevance.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Wooster, Ohio 44691, USA;
| | - Jerod S Denton
- Departments of Anesthesiology & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, USA;
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
17
|
Novel inhibitors of the renal inward rectifier potassium channel of the mosquito vector Aedes aegypti. Future Med Chem 2021; 13:2015-2025. [PMID: 34590494 DOI: 10.4155/fmc-2021-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mosquito continues to be the most lethal animal to humans due to the devastating diseases that it carries and transmits. Controlling mosquito-borne diseases relies heavily on vector management using neurotoxic insecticides with limited modes of action. This has led to the emergence of resistance to pyrethroids and other neurotoxic insecticides in mosquitoes, which has reduced the efficacy of chemical control agents. Moreover, many neurotoxic insecticides are not selective for mosquitoes and negatively impact beneficial insects such as honeybees. Developing new mosquitocides with novel mechanisms of action is a clear unmet medical need; this review covers the efforts made toward this end by targeting the renal inward rectifier potassium channel (Kir) of the mosquito.
Collapse
|
18
|
Niu X, Liu H, Xue S, Zhang J, Li W. Solubility and thermodynamic properties of flonicamid in pure and binary solvents in the temperature range of 283.15–323.15 K. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Jiang S, Bloomquist JR. Synergistic effects of potassium channel blockers and pyrethroids: mosquitocidal activity and neuronal mode of action †. PEST MANAGEMENT SCIENCE 2021; 77:3673-3684. [PMID: 33002290 DOI: 10.1002/ps.6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The purpose of this research was to explore the possibility of co-applying pyrethroids (agonists of voltage-sensitive sodium channels) with potassium channel blockers in order to potentiate the neurological effects of pyrethroids on Anopheles gambiae. We hypothesized that the toxicity of pyrethroids caused by persistent sodium currents would be augmented by blockage of outward potassium current flow, which normally repolarizes the membrane potential during a nerve membrane action potential. RESULTS Topical treatments with LD10 s (10% mortality doses) of synergists were given with pyrethroids. 2S-65465 (2S) showed the best synergism of permethrin (8.6-fold) and deltamethrin (7.2-fold), whereas piperonyl butoxide and 4-aminopyridine only showed 2.2- to 3.4-fold synergism with these pyrethroids. In electrophysiological recordings of Periplaneta americana giant axons, 2S (10 μm) and 4-AP (30 μm) caused multiple spikes after a single stimulation. Permethrin at 10 μm showed significant summating depolarization (4.5 ± 1.1 mV) after a train of ten stimuli were applied at 5 Hz, and deltamethrin at 0.03 μm showed significant membrane depolarization of 2.9 ± 0.4 mV without stimuli. 2S at 0.3 μm and 4-AP at 1-3 μm significantly synergized the effects of 3 μm permethrin and 0.01 μm deltamethrin. CONCLUSIONS Co-application of potassium channel blockers 2S and 4-AP with pyrethroids can synergize the mosquitocidal activities on An. gambiae, and these activities are correlated with synergistic effects at the level of the nerve membrane. If deployed in the field, this approach can potentially reduce the amount of chemicals needed for effective control of mosquitoes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyao Jiang
- Entomology and Nematology Department, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jeffrey R Bloomquist
- Entomology and Nematology Department, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Wang J, Ba D, Yang M, Cheng G, Wang L. Regioselective Synthesis of 2,4-Diaryl-6-trifluoromethylated Pyridines through Copper-Catalyzed Cyclization of CF 3-Ynones and Vinyl Azides. J Org Chem 2021; 86:6423-6432. [PMID: 33905254 DOI: 10.1021/acs.joc.1c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel copper-catalyzed cyclization of readily available vinyl azides with CF3-ynones is steadily achieved under mild conditions to furnish the versatile 2,4-diaryl-6-trifluoromethylated pyridine products, which are of great interest in medicinal chemistry. The generation of the vinyl iminophosphorane intermediates from vinyl azides through the Staudinger-Meyer reaction ensures the subsequent 1,4-addition process with CF3-ynones in this transformation.
Collapse
Affiliation(s)
- Jixin Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Da Ba
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Mengqi Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| |
Collapse
|
21
|
Meng X, Wu Z, Yang X, Qian K, Zhang N, Jiang H, Yin X, Guan D, Zheng Y, Wang J. Flonicamid and knockdown of inward rectifier potassium channel gene CsKir2B adversely affect the feeding and development of Chilo suppressalis. PEST MANAGEMENT SCIENCE 2021; 77:2045-2053. [PMID: 33342029 DOI: 10.1002/ps.6232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND The selective insecticide flonicamid shows highly insecticidal activities against piercing-sucking insects and has been widely used for the control of Hemipteran insect pests, whereas its effects on Lepidopteran insect pests remain largely unknown. Recently, inward rectifier potassium (Kir) channel has been verified to be a target of flonicamid, however, functional characterization of Lepidopteran Kir genes is still lacking. RESULTS Flonicamid shows no insecticidal toxicity against Chilo suppressalis larvae. However, the feeding and growth of larvae were reversibly inhibited by flonicamid (50-1200 mg L-1 ). Flonicamid treatment also remarkably reduced and delayed the pupation and eclosion of Chilo suppressalis. Additionally, five distinct Kir channel genes (CsKir1, CsKir2A, CsKir2B, CsKir3A and CsKir3B) were cloned from Chilo suppressalis. Expression profiles analysis revealed that CsKir2A was predominately expressed in the hindgut of larvae, whereas CsKir2B had high expressions in the Malpighian tubules and hindgut. RNA interference (RNAi)-mediated knockdown of CsKir2B significantly reduced the growth and increased the mortalities of larvae, whereas silencing of CsKir2A had no obvious effects on Chilo suppressalis. CONCLUSION Flonicamid exhibits adverse effects on the growth and development of Chilo suppressalis. CsKir2B might be involved in the feeding behavior of Chilo suppressalis. These results provide valuable information on the effects of flonicamid on non-target insects as well as the function of insect Kir channels, and are helpful in developing new insecticide targeting insect Kir channels. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xingcan Yin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Saelao P, Hickner PV, Bendele KG, Pérez de León AA. Phylogenomics of Tick Inward Rectifier Potassium Channels and Their Potential as Targets to Innovate Control Technologies. Front Cell Infect Microbiol 2021; 11:647020. [PMID: 33816352 PMCID: PMC8018274 DOI: 10.3389/fcimb.2021.647020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 02/03/2023] Open
Abstract
This study was conducted to enhance the identification of novel targets to develop acaricides that can be used to advance integrated tick-borne disease management. Drivers for the emergence and re-emergence of tick-borne diseases affecting humans, livestock, and other domestic animals in many parts of the world include the increased abundance and expanded geographic distribution of tick species that vector pathogens. The evolution of resistance to acaricides among some of the most important tick vector species highlights the vulnerability of relying on chemical treatments for tick control to mitigate the health burden of tick-borne diseases. The involvement of inward rectifier potassium (Kir) channels in homeostasis, diuresis, and salivary gland secretion in ticks and other pests identified them as attractive targets to develop novel acaricides. However, few studies exist on the molecular characteristics of Kir channels in ticks. This bioinformatic analysis described Kir channels in 20 species of hard and soft ticks. Summarizing relevant investigations on Kir channel function in invertebrate pests allowed the phylogenomic study of this class of ion channels in ticks. How this information can be adapted to innovate tick control technologies is discussed.
Collapse
Affiliation(s)
- Perot Saelao
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Paul V Hickner
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Kylie G Bendele
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| |
Collapse
|
23
|
Yang T, Deng Z, Wang KH, Li P, Lv Y, Huang D, Shang Y, Su Y, Hu Y. Access to 6-difluoromethylpyridines by ZnBr2-catalyzed cascade michael addition/ annulation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Yang W, Fan Z, Jiang H, Zhao Y, Guo L, Dai Y. Biotransformation of flonicamid and sulfoxaflor by multifunctional bacterium Ensifer meliloti CGMCC 7333. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:122-131. [PMID: 33283619 DOI: 10.1080/03601234.2020.1852854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flonicamid is a novel, selective, systemic pyridinecarboxamide insecticide that effectively controls hemipterous pests. Sulfoxaflor, a sulfoximine insecticide, effectively controls many sap-feeding insect pests. Ensifer meliloti CGMCC 7333 transforms flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Resting cells of E. meliloti CGMCC 7333 (optical density at 600 nm [OD600] = 5) transformed 67.20% of the flonicamid in a 200-mg/L solution within 96 h. E. meliloti CGMCC 7333 transforms sulfoxaflor into N-(methyl(oxido){1-[6-(trifluoromethyl) pyridin-3-yl] ethyl}-k4-sulfanylidene) urea (X11719474). E. meliloti CGMCC 7333 resting cells (OD600 = 5) transformed 89.36% of the sulfoxaflor in a 200 mg/L solution within 96 h. On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg flonicamid, 91.1% of the flonicamid was transformed within 9 d (half-life 2.6 d). On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg sulfoxaflor, 83.9% of the sulfoxaflor was transformed within 9 d (half-life 3.4 d). Recombinant Escherichia coli harboring the E. meliloti CGMCC 7333 nitrile hydratase (NHase)-encoding gene and NHase both showed the ability to transform flonicamid or sulfoxaflor into their corresponding amides, TFNG-AM and X11719474, respectively. These findings may help develop a bioremediation agent for the elimination of flonicamid and sulfoxaflor contamination.
Collapse
Affiliation(s)
- Wenlong Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zhixia Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Huoyong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yunxiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Yang WL, Dai ZL, Cheng X, Fan ZX, Jiang HY, Dai YJ. Biotransformation of insecticide flonicamid by Aminobacter sp. CGMCC 1.17253 via nitrile hydratase catalysed hydration pathway. J Appl Microbiol 2020; 130:1571-1581. [PMID: 33030814 DOI: 10.1111/jam.14880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study evaluates flonicamid biotransformation ability of Aminobacter sp. CGMCC 1.17253 and the enzyme catalytic mechanism involved. METHODS AND RESULTS Flonicamid transformed by resting cells of Aminobacter sp. CGMCC 1.17253 was carried out. Aminobacter sp. CGMCC 1.17253 converts flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Aminobacter sp. CGMCC 1.17253 transforms 31·1% of the flonicamid in a 200 mg l-1 conversion solution in 96 h. Aminobacter sp. CGMCC 1.17253 was inoculated in soil, and 72·1% of flonicamid with a concentration of 0·21 μmol g-1 was transformed in 9 days. The recombinant Escherichia coli expressing Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) and purified NHase were tested for the flonicamid transformation ability, both of them acquired the ability to transform flonicamid into TFNG-AM. CONCLUSIONS Aminobacter sp. CGMCC 1.17253 transforms flonicamid into TFNG-AM via hydration pathway mediated by cobalt-containing NHase. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that bacteria of genus Aminobacter has flonicamid-transforming ability. This study enhances our understanding of flonicamid-degrading mechanism. Aminobacter sp. CGMCC 1.17253 has the potential for bioremediation of flonicamid pollution.
Collapse
Affiliation(s)
- W L Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z L Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - X Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z X Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - H Y Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y J Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Lai X, Xu J, Ma H, Liu Z, Zheng W, Liu J, Zhu H, Zhou Y, Zhou X. Identification and Expression of Inward-Rectifying Potassium Channel Subunits in Plutella xylostella. INSECTS 2020; 11:insects11080461. [PMID: 32707967 PMCID: PMC7469208 DOI: 10.3390/insects11080461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
In insects, inward-rectifying potassium (Kir) channels regulate vital physiological functions, such as feeding behavior, silk secretion, renal excretion, and immune function. Therefore, they offer promising potential as targets for insecticides. Three types of Kir subunits have been identified in Diptera and Hemiptera, but the Kir subunits of Lepidoptera still remain unclear. This study identified five Kir subunit genes (pxkir1, pxkir2, pxkir3A, pxkir3B, and pxkir4) in the transcriptome of Plutella xylostella. Phylogenetic analysis identified pxkir1, pxkir2, pxkir3A, and pxkir3B as orthologous genes of kir1–3 in other insects. Interestingly, pxkir4 may be encoding a new class of Kir subunit in Lepidoptera that has not been reported to date. To identify further Kir channel subunits of P. xylostella, the gene expression profiles of five pxkir genes were studied by quantitative real-time PCR. These pxkir genes are expressed throughout the development of P. xylostella. pxkir1 and pxkir2 were highly expressed in thoraxes and legs, while pxkir3 (3A and 3B) and pxkir4 had high expression levels in the midgut and Malpighian tubules. This study identified the composition and distribution of Kir subunits in P. xylostella for the first time, and provides useful information for the further study of Kir channel subunits in Lepidoptera.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jie Xu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Wei Zheng
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Xiaomao Zhou
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| |
Collapse
|
27
|
Li Z, Guerrero F, Pérez de León AA, Foil LD, Swale DR. Small-Molecule Inhibitors of Inward Rectifier Potassium (Kir) Channels Reduce Bloodmeal Feeding and Have Insecticidal Activity Against the Horn Fly (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1131-1140. [PMID: 32006426 DOI: 10.1093/jme/tjaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Bloodmeal feeding by the horn fly, Haematobia irritans (L.), is associated with reduced milk production and blood loss that ultimately prevents weight gain of calves and yearlings. Thus, blood feeding by H. irritans causes significant economic losses in several continents. As with other arthropods, resistance to the majority of commercialized insecticides reduces the efficacy of current control programs. Thus, innovative technologies and novel biochemical targets for horn fly control are needed. Salivary gland and Malpighian tubule function are critical for H. irritans survivorship as they drive bloodmeal acquisition and maintain ion- and fluid homeostasis during bloodmeal processing, respectively. Experiments were conducted to test the hypothesis that pharmacological modulation of H. irritans inward rectifier potassium (Kir) channels would preclude blood feeding and induce mortality by reducing the secretory activity of the salivary gland while simultaneously inducing Malpighian tubule failure. Experimental results clearly indicate structurally diverse Kir channel modulators reduce the secretory activity of the salivary gland by up to fivefold when compared to control and the reduced saliva secretion was highly correlated to a reduction in bloodmeal acquisition in adult flies. Furthermore, adult feeding on blood treated with Kir channel modulators resulted in significant mortality. In addition to validating the Kir channels of H. irritans as putative insecticide targets, the knowledge gained from this study could be applied to develop novel therapeutic technologies targeting salivary gland or Malpighian tubule function to reduce the economic burden of horn fly ectoparasitism on cattle health and production.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | | | - Adalberto A Pérez de León
- Knipling-Bushland Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service, Kerrville, TX
| | - Lane D Foil
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| |
Collapse
|
28
|
Yang T, Deng Z, Wang KH, Li P, Huang D, Su Y, Hu Y. Synthesis of Polysubstituted Trifluoromethylpyridines from Trifluoromethyl-α,β -ynones. J Org Chem 2019; 85:924-933. [PMID: 31833770 DOI: 10.1021/acs.joc.9b02873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel and efficient method for synthesis of polysubstituted trifluoromethylpyridine derivatives by the Bohlmann-Rahtz heteroannulation reaction is described, which use trifluoromethyl-α,β-ynones as trifluoromethyl building blocks to react with β-enamino esters or β-enamino ketones in the presence of ZnBr2 to form the trifluoromethylpyridine derivatives in good yields. The protocol has the advantages of readily available starting materials, mild reaction conditions, and high atom economy.
Collapse
Affiliation(s)
- Tianyu Yang
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Pengfei Li
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China.,State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
29
|
Li Z, Davis JA, Swale DR. Chemical inhibition of Kir channels reduces salivary secretions and phloem feeding of the cotton aphid, Aphis gossypii (Glover). PEST MANAGEMENT SCIENCE 2019; 75:2725-2734. [PMID: 30785236 DOI: 10.1002/ps.5382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The unique feeding biology of aphids suggests novel insecticide targets are likely to exist outside of the nervous system. We therefore aimed to directly test the hypothesis that pharmacological inhibition of inward rectifier potassium (Kir) channels would result in salivary gland failure and reduced sap ingestion by the cotton aphid, Aphis gossypii. RESULTS The Kir inhibitors VU041 and VU590 reduced the length of the salivary sheath in a concentration dependent manner, indicating that the secretory activity of the salivary gland is reduced by Kir inhibition. Next, we employed the electrical penetration graph (EPG) technique to measure the impact Kir inhibition has to aphid sap feeding and feeding biology. Data show that foliar application of VU041 eliminated the E1 and E2 phases (phloem feeding) in all aphids studied. Contact exposure to VU041 after foliar applications was found to be toxic to A. gossypii at 72 and 96 h post-infestation, indicating mortality is likely a result of starvation and not acute toxicity. Furthermore, VU041 exposure significantly altered the feeding behavior of aphids, which is toxicologically relevant for plant-virus interactions. CONCLUSION These data suggest Kir channels are critical for proper function of aphid salivary glands and the reduced plant feeding justifies future work in developing salivary gland Kir channels as novel mechanism aphicides. Furthermore, products like VU041 would add to a very minor arsenal of compounds that simultaneously reduce vector abundance and alter feeding behavior. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Jeffrey A Davis
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| |
Collapse
|
30
|
Yang WL, Guo LL, Dai ZL, Qin RC, Zhao YX, Dai YJ. Biodegradation of the Insecticide Flonicamid by Alcaligenes faecalis CGMCC 17553 via Hydrolysis and Hydration Pathways Mediated by Nitrilase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10032-10041. [PMID: 31419121 DOI: 10.1021/acs.jafc.9b04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO), a novel selective systemic pyridinecarboxamide insecticide, effectively controls hemipterous pests. However, microbial degradation of flonicamid, along with the enzymatic mechanism, has not been studied. Here, bacterial isolate PG13, which converts flonicamid into 4-(trifluoromethyl)nicotinol glycine (TFNG) and N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM), was isolated and identified as Alcaligenes faecalis CGMCC 17553. The genome of CGMCC 17553 contained five nitrilases but no nitrile hydratase, and recombinant Escherichia coli strains harboring CGMCC 17553 nitrilase gene nitA or nitD acquired the ability to degrade flonicamid. Purified NitA catalyzed flonicamid into both TFNG and TFNG-AM, indicating dual functionality, while NitD could only produce TFNG-AM. Three-dimensional homology modeling revealed that aromatic amino acid residues in the catalytic pocket affected nitrilase activity. These findings further our understanding of the enzymatic mechanism of flonicamid metabolism in the environment and may help develop a potential bioremediation agent for the elimination of flonicamid contamination.
Collapse
Affiliation(s)
- Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Lei-Lei Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Zhi-Ling Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Ruo-Chen Qin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
31
|
Aretz CD, Morwitzer MJ, Sanford AG, Hogan AM, Portillo MV, Kharade SV, Kramer M, McCarthey JB, Trigueros RR, Piermarini PM, Denton JS, Hopkins CR. Discovery and Characterization of 2-Nitro-5-(4-(phenylsulfonyl)piperazin-1-yl)- N-(pyridin-4-ylmethyl)anilines as Novel Inhibitors of the Aedes aegypti Kir1 ( AeKir1) Channel. ACS Infect Dis 2019; 5:917-931. [PMID: 30832472 DOI: 10.1021/acsinfecdis.8b00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mosquito-borne arboviral diseases such as Zika, dengue fever, and chikungunya are transmitted to humans by infected adult female Aedes aegypti mosquitoes and affect a large portion of the world's population. The Kir1 channel in Ae. aegypti ( AeKir1) is an important ion channel in the functioning of mosquito Malpighian (renal) tubules and one that can be manipulated in order to disrupt excretory functions in mosquitoes. We have previously reported the discovery of various scaffolds that are active against the AeKir1 channel. Herein we report the synthesis and biological characterization of a new 2-nitro-5-(4-(phenylsulfonyl) piperazin-1-yl)- N-(pyridin-4-ylmethyl)anilines scaffold as inhibitors of AeKir1. This new scaffold is more potent in vitro compared to the previously reported scaffolds, and the molecules kill mosquito larvae.
Collapse
Affiliation(s)
| | | | | | | | | | - Sujay V. Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James B. McCarthey
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | - Peter M. Piermarini
- Department of Entomology, Ohio State University, Wooster, Ohio 44691, United States
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
32
|
Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum. PLoS Negl Trop Dis 2019; 13:e0007153. [PMID: 30730880 PMCID: PMC6382211 DOI: 10.1371/journal.pntd.0007153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tick feeding causes extreme morbidity and mortality to humans through transmission of pathogens and causes severe economic losses to the agricultural industry by reducing livestock yield. Salivary gland secretions are essential for tick feeding and thus, reducing or preventing saliva secretions into the vertebrate host is likely to reduce feeding and hinder pathogen life cycles. Unfortunately, the membrane physiology of tick salivary glands is underexplored and this gap in knowledge limits the development of novel therapeutics for inducing cessation of tick feeding. Methodology We studied the influence of inward rectifier potassium (Kir) channel subtypes to the functional capacity of the isolated tick salivary gland through the use of a modified Ramsay assay. The secreted saliva was subsequently used for quantification of the elemental composition of the secreted saliva after the glands were exposed to K+ channel modulators as a measure of osmoregulatory capacity. Lastly, changes to blood feeding behavior and mortality were measured with the use of a membrane feeding system. Principal findings In this study, we characterized the fundamental role of Kir channel subtypes in tick salivary gland function and provide evidence that pharmacological inhibition of these ion channels reduces the secretory activity of the Amblyomma americanum salivary gland. The reduced secretory capacity of the salivary gland was directly correlated with a dramatic reduction of blood ingestion during feeding. Further, exposure to small-molecule modulators of Kir channel subtypes induced mortality to ticks that is likely resultant from an altered osmoregulatory capacity. Conclusions Our data contribute to understanding of tick salivary gland function and could guide future campaigns aiming to develop chemical or reverse vaccinology technologies to reduce the worldwide burden of tick feeding and tick-vectored pathogens. Tick feeding results in negative health and economic consequences worldwide and there has been continued interest in the development of products with novel mechanisms of action for control of tick populations. Kir channels have been shown to be a significant ion conductance pathway in arthropods and are critical for proper functioning of multiple biological processes. Previous work on insect Kir channels has focused on their physiological roles in renal system of mosquitoes and the data suggest that these channels represent a viable pathway to induce renal failure that leads to mortality. Based on the functional and cellular similarities of arthropod salivary glands and Malpighian tubules, we hypothesized that Kir channels constitute a critical conductance pathway within arthropod salivary glands and inhibition of this pathway will preclude feeding. Data presented in this study show that pharmacological modulators of Kir channels elicited a significant reduction in the fluid and ion secretory activity of tick salivary glands that resulted in reduced feeding, altered osmoregulation, and lead to mortality. These data could guide the future development of novel acaricides, RNAi, or genetically modified ticks to mitigate health and economic damages resulting from their feeding. Further, these data indicate a conserved function of Kir channels within multiple tissues of taxonomically diverse organisms, such as ticks and humans.
Collapse
|
33
|
Rusconi Trigueros R, Hopkins CR, Denton JS, Piermarini PM. Pharmacological Inhibition of Inward Rectifier Potassium Channels Induces Lethality in Larval Aedes aegypti. INSECTS 2018; 9:E163. [PMID: 30445675 PMCID: PMC6315791 DOI: 10.3390/insects9040163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
The inward rectifier potassium (Kir) channels play key roles in the physiology of mosquitoes and other insects. Our group, among others, previously demonstrated that small molecule inhibitors of Kir channels are promising lead molecules for developing new insecticides to control adult female mosquitoes. However, the potential use of Kir channel inhibitors as larvicidal agents is unknown. Here we tested the hypothesis that pharmacological inhibition of Kir channels in the larvae of Aedes aegypti, the vector of several medically important arboviruses, induces lethality. We demonstrated that adding barium, a non-specific blocker of Kir channels, or VU041, a specific small-molecule inhibitor of mosquito Kir1 channels, to the rearing water (deionized H₂O) of first instar larvae killed them within 48 h. We further showed that the toxic efficacy of VU041 within 24 h was significantly enhanced by increasing the osmolality of the rearing water to 100 mOsm/kg H₂O with NaCl, KCl or mannitol; KCl provided the strongest enhancement compared to NaCl and mannitol. These data suggest: (1) the important role of Kir channels in the acclimation of larvae to elevated ambient osmolality and KCl concentrations; and (2) the disruption of osmoregulation as a potential mechanism of the toxic action of VU041. The present study provides the first evidence that inhibition of Kir channels is lethal to larval mosquitoes and broadens the potential applications of our existing arsenal of small molecule inhibitors of Kir channels, which have previously only been considered for developing adulticides.
Collapse
Affiliation(s)
- Renata Rusconi Trigueros
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| |
Collapse
|
34
|
Piermarini PM, Inocente EA, Acosta N, Hopkins CR, Denton JS, Michel AP. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines: Functional characterization, pharmacology, and toxicology. JOURNAL OF INSECT PHYSIOLOGY 2018; 110:57-65. [PMID: 30196125 PMCID: PMC6173977 DOI: 10.1016/j.jinsphys.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 05/21/2023]
Abstract
Inward rectifier K+ (Kir) channels contribute to a variety of physiological processes in insects and are emerging targets for insecticide development. Previous studies on insect Kir channels have primarily focused on dipteran species (e.g., mosquitoes, fruit flies). Here we identify and functionally characterize Kir channel subunits in a hemipteran insect, the soybean aphid Aphis glycines, which is an economically important insect pest and vector of soybeans. From the transcriptome and genome of Ap. glycines we identified two cDNAs, ApKir1 and ApKir2, encoding Kir subunits that were orthologs of insect Kir1 and Kir2, respectively. Notably, a gene encoding a Kir3 subunit was absent from the transcriptome and genome of Ap. glycines, similar to the pea aphid Acyrthosiphon pisum. Heterologous expression of ApKir1 and ApKir2 in Xenopus laevis oocytes enhanced K+-currents in the plasma membrane; these currents were inhibited by barium and the small molecule VU041. Compared to ApKir2, ApKir1 mediated currents that were larger in magnitude, more sensitive to barium, and less inhibited by small molecule VU041. Moreover, ApKir1 exhibited stronger inward rectification compared to ApKir2. Topical application of VU041 in adult aphids resulted in dose-dependent mortality within 24 h that was more efficacious than flonicamid, an established insecticide also known to inhibit Kir channels. We conclude that despite the apparent loss of Kir3 genes in aphid evolution, Kir channels are important to aphid survival and represent a promising target for the development of new insecticides.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| | - Edna Alfaro Inocente
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Nuris Acosta
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| |
Collapse
|