1
|
Jiang W, Yang F, Cai D, Du J, Wu M, Cai X, Chen X, Wang S. Peptidomics & Molecular Simulation-Based Specific Screening of Antifreeze Peptides from Evynnis japonica Scale and the Action Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2634-2644. [PMID: 39804014 DOI: 10.1021/acs.jafc.4c09419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. Evynnis japonica scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.60% of the ice crystals to sizes below 600 μm2. Three antifreeze peptide sequences were purified by using ice-affinity techniques and peptidomics. These sequences demonstrated a 21.75% enhancement in antifreeze activity and an increase of 1 °C in thermal hysteresis activity compared to Ej-AFP. Molecular simulation-elucidated ice-binding surface interacts with ice crystals through hydrogen bonds, while the nonice-binding surface disrupts the orderly arrangement of water molecules. This results in a tightly structured hydration layer around the peptide, increasing the curvature of the ice crystal surface and thereby demonstrating significant antifreeze activity in controlling ice crystal growth.
Collapse
Affiliation(s)
- Wenting Jiang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Fujia Yang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, P.R.China
| | - Dongna Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Jia Du
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Manman Wu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Xixi Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Xu Chen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Shaoyun Wang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| |
Collapse
|
2
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
3
|
Wu S, Zhou X, Xu K, Cheng H. The role of extraction method to collagen substrates in enzymolysis of type I collagenase. Int J Biol Macromol 2024; 283:138086. [PMID: 39603305 DOI: 10.1016/j.ijbiomac.2024.138086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Collagens are ubiquitous biomaterials in animal tissues whose characteristic triple-helical structure can only be hydrolyzed under physiological conditions by a few specific proteases. At present, information on the differences of collagenase hydrolysis behavior to collagen substrate caused by extraction methods is still lacking. Acid-relaxed extracted collagen (ARC) and acetic acid-pepsin extracted collagen (APC) were obtained from bovine hide by acetic acid and acetic acid-pepsin extraction method, respectively. The enzymolysis behavior of type I collagenase on ARC and APC were investigated by means of fluorescence spectra, UV spectra, and determination the release of hydrolysates into the supernatant. The results revealed that APC showed a lower molecular weight, a higher pI (5.59) and denaturation temperature (Td = 66.9 °C) than that of ARC (pI = 4.67, Td = 57.8 °C). Moreover, APC demonstrated greater resistance to type I collagenase than ARC. The cleavage on the non-helical terminal domains by pepsin might play the role in the better thermal stability, the higher pI, and the more collagenase resistance of APC than ARC. The findings of this work should provide new insights into collagenase hydrolysis behavior and facilitate targeted utilization of collagen extracted by various method.
Collapse
Affiliation(s)
- Sijin Wu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China
| | - Xuewei Zhou
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Ke Xu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Haiming Cheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Zhou Y, Liang J, Zhang Y, Zhang H, Chang SKC, Hong H, Luo Y, Tan Y. Silver carp swim bladder collagen derived from deep eutectic solvents: Enhanced solubility against pH and NaCl stresses. Int J Biol Macromol 2024; 281:136315. [PMID: 39370069 DOI: 10.1016/j.ijbiomac.2024.136315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Deep eutectic solvents (DESs) are renowned in chemical and food industries for their eco-friendly extraction efficacy. Silver carp swim bladders, a collagen-rich byproduct of surimi production, are underutilized, resulting in considerable protein waste. Traditionally, collagen extraction has relied on harsh acids, contributing to environmental pollution and producing collagens with limited solubility, thus constraining their applications. This study evaluated DESs compared to conventional acids in extracting collagen, focusing on structural and solubility variations. Notably, urea-based DESs (urea-lactic acid: U-LA, 1:10, w/v) achieved the highest hydroxyproline recovery rates (∼ 94 %), comparable to acetic acid (AA, 1:20, w/v), but with half the solid-liquid ratio. Unlike acid-extracted collagen, which preserved the triple-helical structure, urea-based DESs partially disrupted this configuration by reducing intramolecular hydrogen bonding within collagen. However, these solvents simultaneously increased intermolecular hydrogen bonding. This alteration significantly enhanced collagen's solubility, maintaining over 60 % across a broad pH range (1-10) and various NaCl concentrations (0-6 %, w/v). Furthermore, urea-acetic acid (U-AA) extracted collagen exhibited the highest maximum transition temperature (solid state, Tmax = 101.94 °C) and gel strength (165 g). The findings suggest that urea-based DESs not only enhance collagen recovery rates but also its solubility and gelation properties, broadening its potential applications in cosmetics, food products, and biomaterials.
Collapse
Affiliation(s)
- Yongjie Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiamin Liang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Huijuan Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Ghouri I, Demir M, Khan SA, Mansoor MA, Iqbal M. Unveiling the Potential of Protein-Based Sustainable Antibacterial Materials. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10381-6. [PMID: 39422822 DOI: 10.1007/s12602-024-10381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
The surge in bacterial growth and the escalating resistance against a multitude of antibiotic drugs have burgeoned into an alarming global threat, necessitating urgent and innovative interventions. In response to this peril, scientists have embarked on the development of advanced biocompatible antibacterial materials, aiming to counteract not only bacterial infections but also the pervasive issue of food spoilage resulting from microbial proliferation. Protein-based biopolymers and their meticulously engineered composites are at the forefront of this endeavor. Their potential in combating this severe global concern presents an approach that intersects the domains of biomedicine and environmental science. The present review article delves into the intricate extraction processes employed to derive various proteins from their natural sources, unraveling the complex biochemical pathways that underpin their antibacterial properties. Expanding on the foundational knowledge, the review also provides a comprehensive synthesis of functionalized proteins modified to enhance their antibacterial efficacy, unveiling a realm of possibilities for tailoring solutions to specific biomedical and environmental applications. The present review navigates through their antibacterial applications; from wound dressings to packaging materials with inherent antibacterial properties, the potential applications underscore the versatility and adaptability of these materials. Moreover, this comprehensive review serves as a valuable roadmap, guiding future research endeavors in reshaping the landscape of natural antibacterial materials on a global scale.
Collapse
Affiliation(s)
- Iqra Ghouri
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- Materials Institute, TUBITAK Marmara Research Center, 41470, Gebze, Turkey
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Adil Mansoor
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
6
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
7
|
Wosicka-Frąckowiak H, Poniedziałek K, Woźny S, Kuprianowicz M, Nyga M, Jadach B, Milanowski B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers (Basel) 2024; 16:2668. [PMID: 39339133 PMCID: PMC11435467 DOI: 10.3390/polym16182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Biomaterials have been the subject of extensive research, and their applications in medicine and pharmacy are expanding rapidly. Collagen and its derivatives stand out as valuable biomaterials due to their high biocompatibility, biodegradability, and lack of toxicity and immunogenicity. This review comprehensively examines collagen from various sources, its extraction and processing methods, and its structural and functional properties. Preserving the native state of collagen is crucial for maintaining its beneficial characteristics. The challenges associated with chemically modifying collagen to tailor its properties for specific clinical needs are also addressed. The review discusses various collagen-based biomaterials, including solutions, hydrogels, powders, sponges, scaffolds, and thin films. These materials have broad applications in regenerative medicine, tissue engineering, drug delivery, and wound healing. Additionally, the review highlights current research trends related to collagen and its derivatives. These trends may significantly influence future developments, such as using collagen-based bioinks for 3D bioprinting or exploring new collagen nanoparticle preparation methods and drug delivery systems.
Collapse
Affiliation(s)
- Hanna Wosicka-Frąckowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Kornelia Poniedziałek
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Martyna Nyga
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Bartłomiej Milanowski
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
8
|
Yeo YT, Lim CM, Huaco AIV, Chen WN. Food circular economy and safety considerations in waste management of urban manufacturing side streams. NPJ Sci Food 2024; 8:65. [PMID: 39284821 PMCID: PMC11405405 DOI: 10.1038/s41538-024-00309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
In food circular economy, the utilization of food manufacturing side streams (FMSS) offers significant potential instead of being discarded. However, reincorporating FMSS into the food value chain raises food safety concerns due to potential food hazards. This perspective explores food safety risks associated with circular management of FMSS by using a 'Quad-Modal hazard dynamic' approach with case studies. Future research and advancements in food safety control strategies are also discussed.
Collapse
Affiliation(s)
- Ying Tong Yeo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Cia Min Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Alfonso Isaias Vargas Huaco
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
- Singapore Future Ready Food Safety Hub, 50 Nanyang Avenue, N1, B3C-41, Singapore, 639798, Singapore.
| |
Collapse
|
9
|
Bujda M, Klíma K. Enhancing Guided Bone Regeneration with a Novel Carp Collagen Scaffold: Principles and Applications. J Funct Biomater 2024; 15:150. [PMID: 38921524 PMCID: PMC11205119 DOI: 10.3390/jfb15060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Bone defects resulting from trauma, surgery, and congenital, infectious, or oncological diseases are a functional and aesthetic burden for patients. Bone regeneration is a demanding procedure, involving a spectrum of molecular processes and requiring the use of various scaffolds and substances, often yielding an unsatisfactory result. Recently, the new collagen sponge and its structural derivatives manufactured from European carp (Cyprinus carpio) were introduced and patented. Due to its fish origin, the novel scaffold poses no risk of allergic reactions or transfer of zoonoses and additionally shows superior biocompatibility, mechanical stability, adjustable degradation rate, and porosity. In this review, we focus on the basic principles of bone regeneration and describe the characteristics of an "ideal" bone scaffold focusing on guided bone regeneration. Moreover, we suggest several possible applications of this novel material in bone regeneration processes, thus opening new horizons for further research.
Collapse
Affiliation(s)
- Michele Bujda
- Department of Oral and Maxillofacial Surgery, 1st Faculty of Medicine and General University Hospital in Prague, Charles University, 12108 Prague, Czech Republic
| | | |
Collapse
|
10
|
Oztug M. Bioactive Peptide Profiling in Collagen Hydrolysates: Comparative Analysis Using Targeted and Untargeted Liquid Chromatography-Tandem Mass Spectrometry Quantification. Molecules 2024; 29:2592. [PMID: 38893467 PMCID: PMC11173644 DOI: 10.3390/molecules29112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The investigation of collagen hydrolysates (CHs) is essential due to their widespread use in health, cosmetic, and therapeutic industries, attributing to the presence of bioactive dipeptides (DPs) and tripeptides (TPs). This study developed a novel targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with propyl chloroformate (PCF) derivatization to measure three bioactive peptides-Hydroxyprolyl-glycine (Hyp-Gly), Glycyl-prolyl-hydroxyproline (Gly-Pro-Hyp), and Prolyl-hydroxyproline (Pro-Hyp)-in CHs, with strong correlation coefficients (0.992, 1.000, and 0.995, respectively) and low limits of detection (LODs) of 1.40, 0.14, and 1.16 µM, respectively. Untargeted data-dependent acquisition (DDA) analyses measured peptide size distribution, while amino acid analysis assessed nutritional content. The analysis of ten commercial CHs revealed similar amino acid profiles but varied peptide lengths, indicating diverse hydrolysis conditions. Products with higher proportions of smaller peptides showed elevated levels of the targeted bioactive peptides, suggesting that a smaller peptide size may increase bioactivity. These findings can inform the optimization of CH supplements, providing consumers with detailed peptide content for more informed choices. Data are available via ProteomeXchange with the identifier PXD051699.
Collapse
Affiliation(s)
- Merve Oztug
- TUBITAK National Metrology Institute (TUBITAK UME), Kocaeli 41470, Turkey;
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
11
|
Ahmad K, Meng Y, Fan C, Din ASU, Jia Q, Ashraf A, Zhang Y, Hou H. Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int J Biol Macromol 2024; 266:131034. [PMID: 38518948 DOI: 10.1016/j.ijbiomac.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yuqian Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Qiannan Jia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
12
|
Janssens-Böcker C, Wiesweg K, Doberenz C. Native collagen sheet mask improves skin health and appearance: A comprehensive clinical evaluation. J Cosmet Dermatol 2024; 23:1685-1702. [PMID: 38279521 DOI: 10.1111/jocd.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Collagen, a critical structural protein found abundantly in animal skin and bones, has become increasingly recognized for its potential therapeutic role in skincare. Despite growing interest, the scientific evidence for the efficacy of collagen sheet masks remains limited. The principal objective of our study was to provide insights into the multifaceted role of collagen in skin health, with a specific focus on its application in collagen sheet masks. METHODS The effects of a collagen sheet mask consisting of >92% native bovine collagen were investigated. The soluble protein components of the collagen matrix were analyzed and the influence of soluble collagen components on fibroblast regulation was examined. Scanning Electron Microscope (SEM) analysis was performed for structural analysis and effect on irritated skin. Five different clinical studies were conducted, including a comparison of the diversity of the skin microbiome, the tolerance and local irritating reactions in atopic dermatitis, an evaluation of skin redness after UV radiation, wrinkle reduction, and hydration and skin roughness of the collagen mask in comparison to a pre-soaked cellulose sheet mask. RESULTS The collagen mask contains soluble protein components, including small collagen peptides. The mask showed potential for promoting fibroblast activity. SEM analysis showed a native collagen structure similar to human dermis. The mask maintained the skin microbiome diversity and decreased skin pH levels. It demonstrated good tolerability on both intact and lesional skin and had a significant effect in reducing erythema caused by UV radiation compared to other skincare products. It showed significant improvements in skin hydration and the volume of eye wrinkles and was more effective than pre-soaked cellulose sheet masks. CONCLUSION Collagen sheet masks have the potential to positively impact skin health and appearance by increasing hydration, reducing erythema, minimizing wrinkles, and maintaining a healthy skin microbiome and skin barrier.
Collapse
|
13
|
Zarubin NY, Kharenko EN, Bredikhina OV, Lavrukhina EV, Rysakova KS, Novikov VY, Leonov GE, Vakhrushev IV, Zolotarev KV, Mikhailov AN, Mikhailova MV. An Isotonic Drink Containing Pacific Cod ( Gadus macrocephalus) Processing Waste Collagen Hydrolysate for Bone and Cartilage Health. Mar Drugs 2024; 22:202. [PMID: 38786592 PMCID: PMC11122821 DOI: 10.3390/md22050202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.
Collapse
Affiliation(s)
- Nikita Yu. Zarubin
- Russian Federal Research Institute of Fisheries and Oceanography, 19 Okruzhnoy Proyezd, 105187 Moscow, Russia; (N.Y.Z.); (E.N.K.); (O.V.B.); (E.V.L.); (K.S.R.); (V.Y.N.)
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Str., 183038 Murmansk, Russia
| | - Elena N. Kharenko
- Russian Federal Research Institute of Fisheries and Oceanography, 19 Okruzhnoy Proyezd, 105187 Moscow, Russia; (N.Y.Z.); (E.N.K.); (O.V.B.); (E.V.L.); (K.S.R.); (V.Y.N.)
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Str., 183038 Murmansk, Russia
| | - Olga V. Bredikhina
- Russian Federal Research Institute of Fisheries and Oceanography, 19 Okruzhnoy Proyezd, 105187 Moscow, Russia; (N.Y.Z.); (E.N.K.); (O.V.B.); (E.V.L.); (K.S.R.); (V.Y.N.)
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Str., 183038 Murmansk, Russia
| | - Elizaveta V. Lavrukhina
- Russian Federal Research Institute of Fisheries and Oceanography, 19 Okruzhnoy Proyezd, 105187 Moscow, Russia; (N.Y.Z.); (E.N.K.); (O.V.B.); (E.V.L.); (K.S.R.); (V.Y.N.)
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Str., 183038 Murmansk, Russia
| | - Kira S. Rysakova
- Russian Federal Research Institute of Fisheries and Oceanography, 19 Okruzhnoy Proyezd, 105187 Moscow, Russia; (N.Y.Z.); (E.N.K.); (O.V.B.); (E.V.L.); (K.S.R.); (V.Y.N.)
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Str., 183038 Murmansk, Russia
| | - Vitaly Yu. Novikov
- Russian Federal Research Institute of Fisheries and Oceanography, 19 Okruzhnoy Proyezd, 105187 Moscow, Russia; (N.Y.Z.); (E.N.K.); (O.V.B.); (E.V.L.); (K.S.R.); (V.Y.N.)
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Str., 183038 Murmansk, Russia
| | - Georgy E. Leonov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (G.E.L.); (I.V.V.); (A.N.M.); (M.V.M.)
| | - Igor V. Vakhrushev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (G.E.L.); (I.V.V.); (A.N.M.); (M.V.M.)
| | - Konstantin V. Zolotarev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (G.E.L.); (I.V.V.); (A.N.M.); (M.V.M.)
| | - Anton N. Mikhailov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (G.E.L.); (I.V.V.); (A.N.M.); (M.V.M.)
| | - Marina V. Mikhailova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (G.E.L.); (I.V.V.); (A.N.M.); (M.V.M.)
| |
Collapse
|
14
|
Lan X, Luo M, Li M, Mu L, Li G, Chen G, He Z, Xiao J. Swim bladder-derived biomaterials: structures, compositions, properties, modifications, and biomedical applications. J Nanobiotechnology 2024; 22:186. [PMID: 38632585 PMCID: PMC11022367 DOI: 10.1186/s12951-024-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Animal-derived biomaterials have been extensively employed in clinical practice owing to their compositional and structural similarities with those of human tissues and organs, exhibiting good mechanical properties and biocompatibility, and extensive sources. However, there is an associated risk of infection with pathogenic microorganisms after the implantation of tissues from pigs, cattle, and other mammals in humans. Therefore, researchers have begun to explore the development of non-mammalian regenerative biomaterials. Among these is the swim bladder, a fish-derived biomaterial that is rapidly used in various fields of biomedicine because of its high collagen, elastin, and polysaccharide content. However, relevant reviews on the biomedical applications of swim bladders as effective biomaterials are lacking. Therefore, based on our previous research and in-depth understanding of this field, this review describes the structures and compositions, properties, and modifications of the swim bladder, with their direct (including soft tissue repair, dural repair, cardiovascular repair, and edible and pharmaceutical fish maw) and indirect applications (including extracted collagen peptides with smaller molecular weights, and collagen or gelatin with higher molecular weights used for hydrogels, and biological adhesives or glues) in the field of biomedicine in recent years. This review provides insights into the use of swim bladders as source of biomaterial; hence, it can aid biomedicine scholars by providing directions for advancements in this field.
Collapse
Affiliation(s)
- Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Meiling Li
- Southwest Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
15
|
Bettle G, Bell DP, Bakewell SJ. A Novel Comprehensive Therapeutic Approach to the Challenges of Chronic Wounds: A Brief Review and Clinical Experience Report. Adv Ther 2024; 41:492-508. [PMID: 38104037 PMCID: PMC10838851 DOI: 10.1007/s12325-023-02742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Following the clinical perspective and concept that a healthy body will not develop chronic wounds, the central approach for the treatment described here is based on an understanding of how the body transforms the wound microenvironment from a non-healing to a healing state. As part of a comprehensive treatment regimen that includes OCM™ (complete matrix), wound preparation, and skin protectant formulations, the OCM contains components for complete wound healing by attending to the individual needs required to promote the closure of each unique chronic wound. During application of the comprehensive treatment regimen in independent investigator-led trials, the total wound percentage average reduction over the first 4 weeks of treatment was 60% across multiple wound types; median time to total wound closure was 6.9 weeks. Safety testing of the OCM formulation shows no potential allergenicity, no potential sensitization, and no known product-related adverse events. Clinical trials evaluating the OCM formulation as part of the comprehensive treatment regimen of multiple wound types are underway. Results of clinical trials and real-world experiences will expand current knowledge of the wound-healing potential of this novel product.
Collapse
Affiliation(s)
- Griscom Bettle
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Desmond P Bell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Suzanne J Bakewell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA.
| |
Collapse
|
16
|
Shaik MI, Kadir ANA, Sarbon NM. Physicochemical and thermal properties of pepsin- and acid-soluble collagen isolated from the body wall of sea cucumbers (Stichopus hermanni). J Food Sci 2024; 89:320-329. [PMID: 38051010 DOI: 10.1111/1750-3841.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Asmaa Nuha Abdul Kadir
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
17
|
Amyoony J, Gorman M, Dabas T, Moss R, McSweeney MB. Consumer perception of collagen from different sources: An investigation using hedonic scale and check all that apply. J Food Sci 2023; 88:5236-5247. [PMID: 37921549 DOI: 10.1111/1750-3841.16822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Consumers are adding collagen powder to their diets for its health benefits. However, few studies have investigated consumer perception of collagens produced from different sources. As such, the objective of this study was to evaluate the acceptability and sensory properties of commercially available collagen powders (bovine, marine, and mixed). Two different sensory trials were conducted. First, six different collagen powders were mixed with water and evaluated for their sensory properties and acceptability (n = 98; referred to as collagen-in-water). In the second trial, the collagen powders were mixed into strawberry smoothies and their sensory properties were assessed (n = 92; referred to as collagen-in-smoothie). Both studies used the 9-point hedonic scale and check all that apply to evaluate the collagen powders. The results indicated that the collagens could be grouped based on their source when evaluated in water and in a smoothie. Also, the aroma and taste of the marine collagens impacted their acceptability and were associated with fishy, sour, bitter, and salty attributes. Overall, collagen that was low in flavor was more acceptable to the participants in this study. PRACTICAL APPLICATION: Recently, consumers have begun to purchase collagen powder for its health benefits, specifically its positive effects on skin appearance. Understanding the sensory properties of the different collagens can allow for the ingredients to be incorporated into different food products and help promote consumer purchases. Collagen should be mixed into beverages rather than be consumed in water alone to increase acceptability. Also, marine collagen incorporation into foods should be avoided unless off-aromas and flavors can be masked by other properties.
Collapse
Affiliation(s)
- Jamal Amyoony
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mackenzie Gorman
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Tanvi Dabas
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Rachael Moss
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
18
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
19
|
Cui P, Li M, Shao T, Yu M, Zhao W, Song Y, Ding Y, Liu J. Preparation, structure characterization, and stability analysis of peptide-calcium complex derived from porcine nasal cartilage type II collagen. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6884-6894. [PMID: 37286475 DOI: 10.1002/jsfa.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Porcine nasal cartilage type II collagen-derived peptides (PNCPs) may be complexed with calcium to provide a highly bioavailable, low-cost, and effective calcium food supplement. However, the calcium-binding characteristics of PNCPs have not yet been investigated. In the present study, calcium-binding peptides were derived from porcine nasal cartilage type II collagen and the resulting PNCPs-Ca complex was characterized. RESULTS The study reveals that the calcium-binding capacity of PNCPs is closely related to enzymatic hydrolysis conditions. The highest calcium-binding capacity of PNCPs was observed at a hydrolysis time of 4 h, temperature of 40 °C, enzyme dosage of 1%, and solid-to-liquid ratio of 1:10. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the PNCPs had a pronounced capacity for calcium binding, with the PNCPs-Ca complex exhibiting a clustered structure consisting of aggregated spherical particles. Fourier-transform infrared spectroscopy, fluorescence spectroscopy, X-ray diffraction, dynamic light scattering, amino acid composition, and molecular weight distribution analyses all indicated that the PNCPs and calcium complexed via the carboxyl oxygen and amino nitrogen atoms, leading to the formation of a β-sheet structure during the chelation process. In addition, the stability of the PNCPs-Ca complex was maintained over a range of pH values consistent with those found in the human gastrointestinal tract, facilitating calcium absorption. CONCLUSION These research findings suggest the feasibility of converting by-products from livestock processing into calcium-binding peptides, providing a scientific basis for the development of novel calcium supplements and the potential reduction of resource waste. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Mengyu Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Tianlun Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Mingxiao Yu
- Meitek Technology Company Limited, Qingdao, China
| | - Weixue Zhao
- Meitek Technology Company Limited, Qingdao, China
| | - Yanzhuo Song
- Meitek Technology Company Limited, Qingdao, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
20
|
Wang Y, Song L, Guo C, Ji R. Proteomic Identification and Characterization of Collagen from Bactrian Camel ( Camelus bactrianus) Hoof. Foods 2023; 12:3303. [PMID: 37685234 PMCID: PMC10486769 DOI: 10.3390/foods12173303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the development of camel-derived food and pharmaceutical cosmetics, camel hoof, as a unique by-product of the camel industry, has gradually attracted the attention of scientific researchers in the fields of nutrition, health care, and biomaterial development. In this study, the protein composition and collagen type of Bactrian camel hoof collagen extract (CHC) were analyzed by LC-MS/MS, and the functional properties of CHC were further investigated, including its rheological characteristics, emulsification and emulsion stability, and hygroscopicity and humectancy. Proteomic identification confirmed that CHC had 13 collagen subunits, dominated by type I collagen (α1, α2), with molecular weights mainly in the 100-200 KDa range and a pI of 7.48. An amino acid study of CHC revealed that it carried the standard amino acid profile of type I collagen and was abundant in Gly, Pro, Glu, Ala, and Arg. Additionally, studies using circular dichroism spectroscopy and Fourier transform infrared spectroscopy revealed that CHC contains a collagen-like triple helix structure that is stable and intact. Different concentrations of CHC solutions showed shear-thinning flow behavior. Its tan δ did not differ much with increasing concentration. The CHC has good emulsifying ability and stability, humectancy, and hygroscopicity. This study provides a basis for utilizing and developing Bactrian camel hoof collagen as a functional ingredient.
Collapse
Affiliation(s)
- Yingli Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Le Song
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Chengcheng Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
- Inner Mongolia Institute of Camel Research, Alxa 737300, China
| |
Collapse
|
21
|
Larder CE, Iskandar MM, Kubow S. Collagen Hydrolysates: A Source of Bioactive Peptides Derived from Food Sources for the Treatment of Osteoarthritis. MEDICINES (BASEL, SWITZERLAND) 2023; 10:50. [PMID: 37755240 PMCID: PMC10538231 DOI: 10.3390/medicines10090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 09/28/2023]
Abstract
Osteoarthritis (OA) is the most common joint disorder, with a social and financial burden that is expected to increase in the coming years. Currently, there are no effective medications to treat it. Due to limited treatment options, patients often resort to supplements, such as collagen hydrolysates (CHs). CHs are products with low molecular weight (MW) peptides, often between 3 and 6 kDa, and are a result of industrialized processed collagen. Collagen extraction is often a by-product of the meat industry, with the main source for collagen-based products being bovine, although it can also be obtained from porcine and piscine sources. CHs have demonstrated positive results in clinical trials related to joint health, such as decreased joint pain, increased mobility, and structural joint improvements. The bioactivity of CHs is primarily attributed to their bioactive peptide (BAP) content. However, there are significant knowledge gaps regarding the digestion, bioavailability, and bioactivity of CH-derived BAPs, and how different CH products compare in that regard. The present review discusses CHs and their BAP content as potential treatments for OA.
Collapse
Affiliation(s)
- Christina E. Larder
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
- Corporation Genacol Canada Inc., Blainville, QC J7C 6B4, Canada
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
| | - Stan Kubow
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
| |
Collapse
|
22
|
Rana D, Desai N, Salave S, Karunakaran B, Giri J, Benival D, Gorantla S, Kommineni N. Collagen-Based Hydrogels for the Eye: A Comprehensive Review. Gels 2023; 9:643. [PMID: 37623098 PMCID: PMC10454301 DOI: 10.3390/gels9080643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen-based hydrogels have emerged as a highly promising platform for diverse applications in ophthalmology, spanning from drug delivery systems to biomedical interventions. This review explores the diverse sources of collagen, which give rise to different types of collagen protein. The critical isolation and purification steps are discussed, emphasizing their pivotal role in preparing collagen for biomedical use. To ensure collagen quality and purity, and the suitability of collagen for targeted applications, a comprehensive characterization and quality control are essential, encompassing assessments of its physical, chemical, and biological properties. Also, various cross-linking collagen methods have been examined for providing insight into this crucial process. This comprehensive review delves into every facet of collagen and explores the wide-ranging applications of collagen-based hydrogels, with a particular emphasis on their use in drug delivery systems and their potential in diverse biomedical interventions. By consolidating current knowledge and advancements in the field, this review aims to provide a detailed overview of the utilization of engineered collagen-based hydrogels in ocular therapeutics.
Collapse
Affiliation(s)
- Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Srividya Gorantla
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
| | | |
Collapse
|
23
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
24
|
Ruan Q, Chen W, Lv M, Zhang R, Luo X, Yu E, Pan C, Ma H. Influences of Trypsin Pretreatment on the Structures, Composition, and Functional Characteristics of Skin Gelatin of Tilapia, Grass Carp, and Sea Perch. Mar Drugs 2023; 21:423. [PMID: 37623704 PMCID: PMC10456007 DOI: 10.3390/md21080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Fish skin gelatin is an important functional product in the food, cosmetics, and biomedicine industries, and establishing a green and effective fish skin gelatin extraction method is an effective way to obtain high-quality gelatin and improve its production efficiency. In this study, a trypsin method was used to extract the skin gelatin of sea perch, tilapia, and grass carp, and the microstructures of skin gelatin of these three fish species were analyzed, with such functional characteristics as thermal stability, gel strength, and emulsifying properties measured. The study results show that the skin gelatin of sea perch and tilapia obtained through the trypsin method has a relatively big molecular mass, a dense network structure, and a stable trihelix conformation. In addition, the skin gelatin of these three fish species has a relatively high β-turn content in the secondary structure, good gel strength, and water absorption properties. The compositions of the collagen-associated proteins in the skin gelatins of these three fish species extracted with the trypsin method are significantly different from each other, with positive effects of decorin and biglycan on the stability of the network structure of gelatin and a certain damaging effect of metalloendopeptidase on the network structure of gelatin. The skin gelatin of tilapia has high thermal stability and good emulsifying performance. Therefore, this gelatin type has bright application prospects in such fields as food processing, cosmetics, and drug development. In contrast, the skin gelatin of grass carp has poor functional properties. Therefore, there are significant differences among the structures and functions of skin gelatin extracted from different kinds of fish through the trypsin method. This finding has provided a useful reference for the production of customized fish gelatin according to demand.
Collapse
Affiliation(s)
- Qiufeng Ruan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Q.R.); (W.C.); (M.L.); (X.L.); (E.Y.)
| | - Weijie Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Q.R.); (W.C.); (M.L.); (X.L.); (E.Y.)
| | - Min Lv
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Q.R.); (W.C.); (M.L.); (X.L.); (E.Y.)
| | - Rong Zhang
- Liunan Modern Agricultural Service Center, Liuzhou 545007, China;
| | - Xu Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Q.R.); (W.C.); (M.L.); (X.L.); (E.Y.)
| | - Ermeng Yu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Q.R.); (W.C.); (M.L.); (X.L.); (E.Y.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute of CAFS, Guangzhou 510380, China
| | - Chuanyan Pan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Q.R.); (W.C.); (M.L.); (X.L.); (E.Y.)
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Huawei Ma
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Q.R.); (W.C.); (M.L.); (X.L.); (E.Y.)
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
25
|
Cui P, Shao T, Liu W, Li M, Yu M, Zhao W, Song Y, Ding Y, Liu J. Advanced review on type II collagen and peptide: preparation, functional activities and food industry application. Crit Rev Food Sci Nutr 2023; 64:11302-11319. [PMID: 37459185 DOI: 10.1080/10408398.2023.2236699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Type II collagen is a homologous super-helical structure consisting of three identical α1(II) chains. It is a major component of animal cartilage, and is widely used in the food industry. Type II collagen can be extracted by acids, salts, enzymes, and via auxiliary methods and can be further hydrolyzed chemically and enzymatically to produce collagen peptides. Recent studies have shown that type II collagen and its polypeptides have good self-assembly properties and important biological activities, such as maintaining cartilage tissue integrity, inducing immune tolerance, stimulating chondrocyte growth and redifferentiation, and providing antioxidant benefits. This review focuses specifically on type II collagen and describes its structure, extraction, and purification, as well as the preparation of type II collagen peptides. In particular, the self-assembly properties and functional activities of type II collagen and collagen peptides are reviewed. In addition, recent research advances in the application of type II collagen and collagen peptides in functional foods, food additives, food coating materials, edible films, and carriers for the food industry are presented. This paper provides more detailed and comprehensive information on type II collagen and peptide for their application.
Collapse
Affiliation(s)
- Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tianlun Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Mengyu Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Mingxiao Yu
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Weixue Zhao
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yanzhuo Song
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
26
|
Wang J, Yang G, Li H, Zhang T, Sun D, Peng Lu W, Zhang W, Wang Y, Ma M, Cao X, Zhang B, Guo Y. Preparation and identification of novel antioxidant peptides from camel bone protein. Food Chem 2023; 424:136253. [PMID: 37236074 DOI: 10.1016/j.foodchem.2023.136253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Collagen hydrolysates are a vital source of bioactive peptides. The objective of this study was to prepare camel bone collagen hydrolysates with antioxidant activity, and to identify the peptides responsible for the antioxidant activity. To this end, single-factor and orthogonal tests were performed to explore the optimum preparation conditions. A hydrolysis time of 5 h, enzyme:substrate ratio of 1200 U/g, pH of 7.0, and a material:water ratio of 1:3.0 were adopted. Subsequently, the hydrolysates were purified using a series of chromatography procedures, and three novel peptides, GPPGPPGPPGPPGPPSGGFDF (hydroxylation), PATGDLTDFLK, and GSPGPQGPPGSIGPQ, possessing antioxidant abilities, were identified from the fraction using liquid chromatography-tandem mass spectrometry. The peptide PATGDLTDFLK showed excellent DPPH scavenging activity (39%) and a good cytoprotective effect on H2O2-induced oxidative stress damage in HepG2 cells with a 21.1% increase observed.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Geng Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Tong Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Di Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wei Peng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Weijie Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaofeng Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
27
|
Cavallo A, Al Kayal T, Mero A, Mezzetta A, Pisani A, Foffa I, Vecoli C, Buscemi M, Guazzelli L, Soldani G, Losi P. Marine Collagen-Based Bioink for 3D Bioprinting of a Bilayered Skin Model. Pharmaceutics 2023; 15:pharmaceutics15051331. [PMID: 37242573 DOI: 10.3390/pharmaceutics15051331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Marine organisms (i.e., fish, jellyfish, sponges or seaweeds) represent an abundant and eco-friendly source of collagen. Marine collagen, compared to mammalian collagen, can be easily extracted, is water-soluble, avoids transmissible diseases and owns anti-microbial activities. Recent studies have reported marine collagen as a suitable biomaterial for skin tissue regeneration. The aim of this work was to investigate, for the first time, marine collagen from basa fish skin for the development of a bioink for extrusion 3D bioprinting of a bilayered skin model. The bioinks were obtained by mixing semi-crosslinked alginate with 10 and 20 mg/mL of collagen. The bioinks were characterised by evaluating the printability in terms of homogeneity, spreading ratio, shape fidelity and rheological properties. Morphology, degradation rate, swelling properties and antibacterial activity were also evaluated. The alginate-based bioink containing 20 mg/mL of marine collagen was selected for 3D bioprinting of skin-like constructs with human fibroblasts and keratinocytes. The bioprinted constructs showed a homogeneous distribution of viable and proliferating cells at days 1, 7 and 14 of culture evaluated by qualitative (live/dead) and qualitative (XTT) assays, and histological (H&E) and gene expression analysis. In conclusion, marine collagen can be successfully used to formulate a bioink for 3D bioprinting. In particular, the obtained bioink can be printed in 3D structures and is able to support fibroblasts and keratinocytes viability and proliferation.
Collapse
Affiliation(s)
- Aida Cavallo
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Tamer Al Kayal
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Anissa Pisani
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | - Ilenia Foffa
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | - Cecilia Vecoli
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| | | | | | | | - Paola Losi
- Institute of Clinical Physiology, CNR, 54100 Massa, Italy
| |
Collapse
|
28
|
Tominaga T, Huang J, Wang S, Noguchi M, Tong Y, Asano-Oritani M, Suzuki K. Collagen-Derived Dipeptides and Amino Acids Have Immunomodulatory Effects in M1-Differentiated RAW264.7 Cells and PBMC. Int J Mol Sci 2023; 24:ijms24086925. [PMID: 37108094 PMCID: PMC10138886 DOI: 10.3390/ijms24086925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
A number of food components, such as polyphenols and phytonutrients, have immunomodulatory effects. Collagen has various bioactivities, such as antioxidative effects, the promotion of wound healing, and relieving symptoms of bone/joint disease. Collagen is digested into dipeptides and amino acids in the gastrointestinal tract and subsequently absorbed. However, the difference in immunomodulatory effects between collagen-derived dipeptides and amino acids is unknown. To investigate such differences, we incubated M1 macrophages or peripheral blood mononuclear cells (PBMC) with collagen-derived dipeptides (hydroxyproline-glycine (Hyp-Gly) and proline-hydroxyproline (Pro-Hyp)) and amino acids (proline (Pro), hydroxyproline (Hyp), and glycine (Gly)). We first investigated the dose dependency of Hyp-Gly on cytokine secretion. Hyp-Gly modulates cytokine secretion from M1 macrophages at 100 µM, but not at 10 µM and 1 µM. We then compared immunomodulatory effects between dipeptides and mixtures of amino acids on M1 macrophages and PBMC. There was, however, no difference in cytokine secretion between dipeptides and their respective amino acids. We conclude that collagen-derived dipeptides and amino acids have immunomodulatory effects on M1-differentiated RAW264.7 cells and PBMC and that there is no difference in the immunomodulatory effects between dipeptides and amino acids.
Collapse
Affiliation(s)
- Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | | | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | | | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
29
|
Tampieri A, Kon E, Sandri M, Campodoni E, Dapporto M, Sprio S. Marine-Inspired Approaches as a Smart Tool to Face Osteochondral Regeneration. Mar Drugs 2023; 21:md21040212. [PMID: 37103351 PMCID: PMC10145639 DOI: 10.3390/md21040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The degeneration of osteochondral tissue represents one of the major causes of disability in modern society and it is expected to fuel the demand for new solutions to repair and regenerate the damaged articular joints. In particular, osteoarthritis (OA) is the most common complication in articular diseases and a leading cause of chronic disability affecting a steady increasing number of people. The regeneration of osteochondral (OC) defects is one of the most challenging tasks in orthopedics since this anatomical region is composed of different tissues, characterized by antithetic features and functionalities, in tight connection to work together as a joint. The altered structural and mechanical joint environment impairs the natural tissue metabolism, thus making OC regeneration even more challenging. In this scenario, marine-derived ingredients elicit ever-increased interest for biomedical applications as a result of their outstanding mechanical and multiple biologic properties. The review highlights the possibility to exploit such unique features using a combination of bio-inspired synthesis process and 3D manufacturing technologies, relevant to generate compositionally and structurally graded hybrid constructs reproducing the smart architecture and biomechanical functions of natural OC regions.
Collapse
|
30
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
31
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
32
|
The cryoprotective activity of tilapia skin collagen hydrolysate and the structure elucidation of its antifreeze peptide. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
33
|
Kumar Vate N, Pawel Strachowski P, Undeland I, Abdollahi M. Structural and functional properties of collagen isolated from lumpfish and starfish using isoelectric precipitation vs salting out. Food Chem X 2023; 18:100646. [PMID: 37008722 PMCID: PMC10053375 DOI: 10.1016/j.fochx.2023.100646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The possibility of replacing the very time and resource demanding salting out (SO) method with isoelectric precipitation (IP) during collagen extraction from common starfish and lumpfish was investigated. The effect of IP on yield, structural and functional properties of the collagens was therefore compared with SO. Application of IP resulted in a higher or similar collagen mass yield compared with SO from starfish and lumpfish, respectively. However, the purity of collagens recovered with IP was lower than those recovered with SO. Replacing SO with IP did not affect polypeptide pattern and tropohelical structural integrity of collagen from the two resources as revealed with SDS-PAGE and FTIR analysis. Thermal stability and fibril formation capacity of collagens recovered with IP were also well preserved. Overall, the results showed that the IP can be a promising resource smart alternative for the classic SO precipitation during collagen extraction from marine resources.
Collapse
|
34
|
Ampitiya AGDM, Gonapinuwala ST, Fernando CAN, de Croos MDST. Extraction and characterisation of type I collagen from the skin offcuts generated at the commercial fish processing centres. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:484-493. [PMID: 36712198 PMCID: PMC9873855 DOI: 10.1007/s13197-022-05630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Effective use of underutilised fish processing by-products could open avenues for new industries if they are used to extract high-valued bioactive compounds. Therefore, discarded skin offcuts of three main commercial fish species of Sri Lanka were used to extract collagen with acetic acid and the extracted collagen was evaluated for industrial suitability. The yields of acid-soluble collagens from Yellowfin tuna (Thunnus albacares), Seer fish (Scomberomorus commerson) and Asian sea bass (Lates calcarifer) were 61.26%, 58.21% and 59.31%, respectively on a dry-weight basis. Fourier Transform Infra-Red spectra and X-ray Diffraction spectra confirmed that all collagens were in type I and preserved the native triple-helical structure during extraction. The UV absorption spectra confirmed a high collagen purity in all species. These results confirm that the extracted collagen consists of the characteristics required for collagen-based industries such as food, pharmaceutical, and biomedical. The high availability of skin offcuts from the processing industry and the higher collagen yields revealed in this study confirm the possibility of using discarded skin offcuts of the three fish species as a potential source of type I collagen for industrial purposes.
Collapse
Affiliation(s)
- A. G. D. M. Ampitiya
- Department of Aquaculture and Fisheries, Faculty of Livestock Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, 60170 Gonawila Sri Lanka
| | - S. T. Gonapinuwala
- Department of Aquaculture and Fisheries, Faculty of Livestock Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, 60170 Gonawila Sri Lanka
| | - C. A. N. Fernando
- Department of Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Lional Jayathilake Mawatha, Kuliyapitiya, 60200 Sri Lanka
| | - M. D. S. T. de Croos
- Department of Aquaculture and Fisheries, Faculty of Livestock Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, 60170 Gonawila Sri Lanka
| |
Collapse
|
35
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
36
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
37
|
Gallo N, Terzi A, Sibillano T, Giannini C, Masi A, Sicuro A, Blasi FS, Corallo A, Pennetta A, De Benedetto GE, Montagna F, Maffezzoli A, Sannino A, Salvatore L. Age-Related Properties of Aquaponics-Derived Tilapia Skin ( Oreochromis niloticus): A Structural and Compositional Study. Int J Mol Sci 2023; 24:ijms24031938. [PMID: 36768265 PMCID: PMC9916702 DOI: 10.3390/ijms24031938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age.
Collapse
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Teresa Sibillano
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
- Correspondence:
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sicuro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Federica Stella Blasi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Angelo Corallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | | | - Francesco Montagna
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alfonso Maffezzoli
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Vittorio Veneto, 73036 Muro Leccese, Italy
| |
Collapse
|
38
|
Alves AL, Carvalho AC, Machado I, Diogo GS, Fernandes EM, Castro VIB, Pires RA, Vázquez JA, Pérez-Martín RI, Alaminos M, Reis RL, Silva TH. Cell-Laden Marine Gelatin Methacryloyl Hydrogels Enriched with Ascorbic Acid for Corneal Stroma Regeneration. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010062. [PMID: 36671634 PMCID: PMC9854711 DOI: 10.3390/bioengineering10010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Corneal pathologies from infectious or noninfectious origin have a significant impact on the daily lives of millions of people worldwide. Despite the risk of organ rejection or infection, corneal transplantation is currently the only effective treatment. Finding safe and innovative strategies is the main goal of tissue-engineering-based approaches. In this study, the potential of gelatin methacryloyl (GelMA) hydrogels produced from marine-derived gelatin and loaded with ascorbic acid (as an enhancer of the biological activity of cells) was evaluated for corneal stromal applications. Marine GelMA was synthesized with a methacrylation degree of 75%, enabling effective photocrosslinking, and hydrogels with or without ascorbic acid were produced, encompassing human keratocytes. All the produced formulations exhibited excellent optical and swelling properties with easy handling as well as structural stability and adequate degradation rates that may allow proper extracellular matrix remodeling by corneal stromal cells. Formulations loaded with 0.5 mg/mL of ascorbic acid enhanced the biological performance of keratocytes and induced collagen production. These results suggest that, in addition to marine-derived gelatin being suitable for the synthesis of GelMA, the hydrogels produced are promising biomaterials for corneal regeneration applications.
Collapse
Affiliation(s)
- Ana L. Alves
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana C. Carvalho
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Inês Machado
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Vânia I. B. Castro
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ricardo A. Pires
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - José A. Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Spain
| | - Ricardo I. Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Spain
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria (ibs.GRANADA), E18016 Granada, Spain
| | - Rui L. Reis
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
39
|
Zhang Z, Yang Y, Huang X, Jin Z, Jiao A. Stabilization of a collagen peptide-cranberry juice by three functional polysaccharides with different charge characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Xiao L, Lv J, Liang Y, Zhang H, Zheng J, Lin F, Wen X. Structural, physicochemical properties and function of swim bladder collagen in promoting fibroblasts viability and collagen synthesis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Montero M, Acosta ÓG, Bonilla AI. Membrane fractionation of gelatins extracted from skin of yellowfin tuna ( Thunnus albacares): effect on molecular sizes and gelling properties of fractions. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Manuel Montero
- National Center of Food Science and Technology, University Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San Jose, Costa Rica
| | - Óscar G. Acosta
- National Center of Food Science and Technology, University Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San Jose, Costa Rica
| | - Ana I. Bonilla
- National Center of Food Science and Technology, University Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San Jose, Costa Rica
| |
Collapse
|
42
|
Vate NK, Undeland I, Abdollahi M. Resource efficient collagen extraction from common starfish with the aid of high shear mechanical homogenization and ultrasound. Food Chem 2022; 393:133426. [PMID: 35751213 DOI: 10.1016/j.foodchem.2022.133426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
Processes currently used for collagen extraction are complicated requiring a great deal of time and chemicals. Here, high shear mechanical homogenization (HSMH) and ultrasound (US) were integrated in the pretreatment step of collagen extraction from common starfish to reduce chemical use and time consumption. Effects of the assistant technologies on yield, structural integrity and functionality of collagen were also investigated. HSMH reduced the deproteinization time from 6 h to 5 min and its required amount of alkali 4 times, compared with classic methods. HSMH + US reduced the demineralization time from 24 h to 12 h and improved its efficiency in extraction of minerals. Collagen extraction with HSMH and HSMH + US resulted in similar yield as the classic method and did not affect triple helical structural integrity, polypeptide pattern, thermal stability or fibril-formation capacity of the collagens. Altogether, HSMH and US can effectively improve resource efficiency during collagen extraction without imposing negative effect on collagen quality.
Collapse
Affiliation(s)
- Naveen Kumar Vate
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
43
|
Isolation and structural characterization of antioxidant peptides from horse bone marrow protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Shen Z, Zhang Q, Li L, Li D, Takagi Y, Zhang X. Properties of Grass Carp ( Ctenopharyngodon idella) Collagen and Gel for Application in Biomaterials. Gels 2022; 8:699. [PMID: 36354607 PMCID: PMC9689431 DOI: 10.3390/gels8110699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2023] Open
Abstract
The biochemical properties of collagens and gels from grass carp (Ctenopharyngodon idella) were studied to explore the feasibility of their application in biomaterials. The yields of skin collagen (SC) and swim bladder collagen (SBC) extracted from grass carp were 10.41 ± 0.67% and 6.11 ± 0.12% on a wet basis, respectively. Both collagens were characterized as type I collagen. Denaturation temperatures of SC and SBC were 37.41 ± 0.02 °C and 39.82 ± 0.06 °C, respectively. SC and SBC had high fibril formation ability in vitro, and higher values of salinity (NaCl, 0-280 mM) and pH (6-8) in formation solution were found to result in faster self-assembly of SC and SBC fibrils as well as thicker fibrils. Further tests of SC gels with regular morphology revealed that their texture properties and water content were affected by pH and NaCl concentration. The hardness, springiness, and cohesiveness of SC gels increased and the chewiness and water content decreased as pH increased from 7 to 8 and NaCl concentration increased from 140 to 280 mM. These properties suggest that collagens from grass carp may be useful in biomaterial applications in the future.
Collapse
Affiliation(s)
- Zhiyuan Shen
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhang
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Xi Zhang
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
46
|
Nurgozhina Z, Shansharova D, Umirzakova G, Maliktayeva P, Yakiyayeva M. The influence of grain mixtures on the quality and nutritional value of bread. POTRAVINARSTVO 2022. [DOI: 10.5219/1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The desire to survive in a competitive environment mobilizes managers to make unconventional decisions to increase their product range, quality, and safety. This study aims t to create a technology of bread with increased nutritional value using bioactivated cereal mixtures and develop new bread recipes. The experiment used bioactivated wheat and maize grains, flax, rye flour, 1st-graduate wheat flour, spontaneous fermentation starter, salt, and water. Vegetable components such as dried crushed hawthorn berries, jaggery, and barberry were also used. Standard, generally accepted chemical and organoleptic methods of examining raw materials, semi-finished and finished products were used. It was found that the best physical and chemical indices were possessed by testing the bread prepared with the addition of a 20% grain mixture. All experimental analyses improved several parameters compared to the control sample. The nutritional value of obtained products was increased from 0.5 to 3 times. According to the obtained results, it is possible to conclude the relevance of this topic is getting a new range of bread products with increased nutritional value.
Collapse
|
47
|
He L, Han L, Wang Y, Yu Q. Appropriate ultrasonic treatment improves the production of antioxidant peptides by modifying gelatin extracted from yak skin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Long He
- College of Food Science and Engineering Gansu Agricultural University Lanzhou 730070 China
| | - Ling Han
- College of Food Science and Engineering Gansu Agricultural University Lanzhou 730070 China
| | - Yanru Wang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou 730070 China
| | - Qunli Yu
- College of Food Science and Engineering Gansu Agricultural University Lanzhou 730070 China
| |
Collapse
|
48
|
Collagen Extraction from Animal Skin. BIOLOGY 2022; 11:biology11060905. [PMID: 35741426 PMCID: PMC9219788 DOI: 10.3390/biology11060905] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Collagen is useful in many applications including cosmetics, medicine, yarn production and packaging. Collagen can be recovered from skins of animals raised for meat. Here, we review methods for the extraction and purification of collagen from animal skins. Abstract Collagen is the most abundant structural protein in animals. It is the major component of skin. It finds uses in cosmetics, medicine, yarn production and packaging. This paper reviews the extraction of collagen from hides of most consumed animals for meat with the focus on literature published since 2000. The different pretreatment and extraction techniques that have been investigated for producing collagen from animal skins are reviewed. Pretreatment by enzymatic, acid or alkaline methods have been used. Extraction by chemical hydrolysis, salt solubilization, enzymatic hydrolysis, ultrasound assisted extraction and other methods are described. Post-extraction purification methods are also explained. This compilation will be useful for anyone wishing to use collagen as a resource and wanting to further improve the extraction and purification methods.
Collapse
|
49
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|
50
|
Rong H, Lin F, Ning L, Wu K, Chen B, Zheng J, Limbu SM, Wen X. Cloning, tissue distribution and mRNA expression of type I collagen alpha 1 gene from Chu's croaker (Nibea coibor). Gene 2022; 824:146441. [PMID: 35339641 DOI: 10.1016/j.gene.2022.146441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
The demand for collagen has been increasing over years due to its wide application in food, cosmetics and biomedicine industries. The synthesis of collagen protein in fish depends on instructions provided by collagen, type I, alpha 1 (COL1A1) gene. However, cloning, tissue distribution and mRNA expression of COL1A1 gene in a gel-producing Chu's croaker (Nibea coibor) is currently unknown. This study cloned the cDNA of COL1A1 gene (GenBank accession number: MK641512) from six N. coibor fish. The distribution and mRNA expression pattern of COL1A1 was analyzed in eight tissues of N. coibor. The COL1A1 cDNA had a full length of 6130 bp and contained a 4344 bp open reading frame (ORF) encoding a polypeptide of 1448 amino acids. The homology of N. coibor COL1A1 amino acid had 98% similarity with Larimichthys crocea, indicating conservatism with other members in same family (Sciaenidae). The deduced polypeptide contained the same signal peptides, C-propeptide and N-propeptide domains, and triple helix domains, which are the characteristics of type I collagen in vertebrates. The mRNA of COL1A1 gene was expressed significantly higher in the spine of N. coibor than in all other tissues (P < 0.05), followed by swim bladder, skin and scales. The swim bladder had higher collagen and hydroxyproline contents than other tissues, followed by spine >, scales > and > skin (P < 0.05). Our study successfully cloned the COL1A1 gene from N. coibor for the first time. The COL1A1 gene contained all the features of collagen pro-α1(I) chain proteins, and shared high homology with other marine teleost. COL1A1 gene in N. coibor is highly expressed in spine and swim bladder, consistent with collagen distribution. Our study contributes to better understanding on collagen biosynthesis in N. coibor tissues for various industrial uses.
Collapse
Affiliation(s)
- Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lijun Ning
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Baojia Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jia Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|