1
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
2
|
Wehaidy HR, Abdel-Naby MA, Kholif AMM, Elaaser M, Bahgaat WK, Wahab WAA. The catalytic and kinetic characterization of Bacillus subtilis MK775302 milk clotting enzyme: comparison with calf rennet as a coagulant in white soft cheese manufacture. J Genet Eng Biotechnol 2023; 21:61. [PMID: 37195386 DOI: 10.1186/s43141-023-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Calf rennet is considered the traditional source of milk clotting enzyme (MCE). However, increasing cheese consumption with decreasing the calf rennet supply had encouraged the quest for new rennet alternatives. The purpose of this study is to acquire more information about the catalytic and kinetic properties of partially purified Bacillus subtilis MK775302 MCE and to assess the role of enzyme in cheese manufacture. RESULTS B. subtilis MK775302 MCE was partially purified by 50% acetone precipitation with 5.6-fold purification. The optimum temperature and pH of the partially purified MCE were 70 °C and 5.0, respectively. The activation energy was calculated as 47.7 kJ/mol. The calculated Km and Vmax values were 36 mg/ml and 833 U/ml, respectively. The enzyme retained full activity at NaCl concentration of 2%. Compared to the commercial calf rennet, the ultra-filtrated white soft cheese produced from the partially purified B. subtilis MK775302 MCE exhibited higher total acidity, higher volatile fatty acids, and improved sensorial properties. CONCLUSIONS The partially purified MCE obtained in this study is a promising milk coagulant that can replace calf rennet at a commercial scale to produce better-quality cheese with improved texture and flavor.
Collapse
Affiliation(s)
- Hala R Wehaidy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt.
| | - Mohamed A Abdel-Naby
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Adel M M Kholif
- Dairy Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Mostafa Elaaser
- Dairy Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Wafaa K Bahgaat
- Dairy Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Jana A, Kakkar N, Halder SK, Das AJ, Bhaskar T, Ray A, Ghosh D. Efficient valorization of feather waste by Bacillus cereus IIPK35 for concomitant production of antioxidant keratin hydrolysate and milk-clotting metallo-serine keratinase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116380. [PMID: 36208515 DOI: 10.1016/j.jenvman.2022.116380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Keratinase production by Bacillus cereus IIPK35 was investigated under solid-state fermentation (SSF) and the maximum titer of 648.28 U/gds was revealed. Feather hydrolysates obtained from SSF exhibited paramount antioxidant properties in ABTS [2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid], FRAP [Ferric ion reducing antioxidant power], and DPPH [2,2,-Diphenyl-1-picrylhydrazyl] assay. The keratinase was purified up to homogeneity have a molecular weight of 42 kDa, and showed its stability between pH 6.5-10.0 and temperature 35-60 °C with optimum enzyme activity at pH 9.0 and 55 °C. The catalytic indices viz. Km of 9.8 mg/ml and Vmax of 307.7 μmol/min for keratin were determined. Besides keratin, the enzyme displayed broad and proteolytic activity towards other proteinaceous substrates such as casein, skim milk, gelatin, and bovine serum albumin. Pure keratinase activity was stimulated in presence of Ca2+ and Mg2+ ions, while it was strongly inhibited by both iodoacetamide and EDTA, indicating it to be a metallo-serine protease in nature. Circular dichroism study endorses the structural stability of the secondary structure at the said range of pH and temperature. The IIPK35 keratinase is non-cytotoxic in nature, shows remarkable storage stability and is stable in presence of Tween 80, Triton X 100, and sodium sulfite. Furthermore, it showed excellent milk clotting potential (107.6 Soxhlet Unit), suggesting its usefulness as an alternative milk clotting agent in the dairy industry. This study unlocks a new gateway for keratinase investigation in SSF using chicken feathers as substrate and biochemical and biophysical characterization of keratinase for better understanding and implication in industrial applications.
Collapse
Affiliation(s)
- Arijit Jana
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
| | - Nikita Kakkar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, 304022, India.
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Amar Jyoti Das
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| | - Anjan Ray
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| |
Collapse
|
4
|
Immobilization and Biochemical Characterization of Keratinase 2S1 onto Magnetic Cross-Linked Enzyme Aggregates and its Application on the Hydrolysis of Keratin Waste. Catal Letters 2021. [DOI: 10.1007/s10562-021-03833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Application of recombinant hyperthermostable keratinase for degradation of chicken feather waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Cavello I, Bezus B, Cavalitto S. The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities. J Genet Eng Biotechnol 2021; 19:107. [PMID: 34292436 PMCID: PMC8298642 DOI: 10.1186/s43141-021-00207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Argentina's geothermal areas are niches of a rich microbial diversity. In 2020, species of Bacillus cytotoxicus were isolated for the first time from these types of pristine natural areas. Bacillus cytotoxicus strains demonstrated the capability to grow and degrade chicken feathers with the concomitant production of proteases with keratinolytic activity, enzymes that have multitude of industrial applications. The aim of this research was to study the production of the proteolytic enzymes and its characterization. Also, feather protein hydrolysates produced during fermentation were characterized. RESULTS Among the thermotolerant strains isolated from the Domuyo geothermal area (Neuquén province, Argentina), Bacillus cytotoxicus LT-1 and Oll-15 were selected and put through submerged cultures using feather wastes as sole carbon, nitrogen, and energy source in order to obtain proteolytic enzymes and protein hydrolysates. Complete degradation of feathers was achieved after 48 h. Zymograms demonstrated the presence of several proteolytic enzymes with an estimated molecular weight between 50 and > 120 kDa. Optimum pH and temperatures of Bacillus cytotoxicus LT-1 crude extract were 7.0 and 40 °C, meanwhile for Oll-15 were 7.0 and 50 °C. Crude extracts were inhibited by EDTA and 1,10 phenanthroline indicating the presence of metalloproteases. Feather protein hydrolysates showed an interesting antioxidant potential measured through radical-scavenging and Fe3+-reducing activities. CONCLUSION This work represents an initial approach on the study of the biotechnological potential of proteases produced by Bacillus cytotoxicus. The results demonstrated the importance of continuous search for new biocatalysts with new characteristics and enzymes to be able to cope with the demands in the market.
Collapse
Affiliation(s)
- Ivana Cavello
- Centro de Investigación y Desarrollo en Fermentaciones Industriales. Facultad de Ciencias Exactas, Universidad Nacional de la Plata (CINDEFI, CCT La Plata-CONICET, UNLP), Calle 47 y 115, (B1900ASH), La Plata, Argentina.
| | - Brenda Bezus
- Centro de Investigación y Desarrollo en Fermentaciones Industriales. Facultad de Ciencias Exactas, Universidad Nacional de la Plata (CINDEFI, CCT La Plata-CONICET, UNLP), Calle 47 y 115, (B1900ASH), La Plata, Argentina
| | - Sebastián Cavalitto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales. Facultad de Ciencias Exactas, Universidad Nacional de la Plata (CINDEFI, CCT La Plata-CONICET, UNLP), Calle 47 y 115, (B1900ASH), La Plata, Argentina
| |
Collapse
|
7
|
Wan Y, Fan H, Gao L, Li R, Xie M, Wu C, Chen L, Fu G. The Change Mechanism of Structural Characterization and Thermodynamic Properties of Tannase from Aspergillus niger NL112 Under High Temperature. Appl Biochem Biotechnol 2021; 193:2225-2244. [PMID: 33686629 DOI: 10.1007/s12010-021-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Tannase from Aspergillus niger NL112 was purified 5.1-fold with a yield of 50.44% via ultrafiltration, DEAE-Sepharose Fast Flow column chromatography, and Sephadex G-100 column chromatography. The molecular weight of the purified tannase was estimated as 45 kDa. The optimum temperature and pH for its activity were 45 °C and 5.0, respectively. The results of circular dichroism, FT-IR (Fourier transform infrared) spectroscopy, and fluorescence spectra indicated that high temperature could lead to the change of tannase secondary and tertiary structures. Tannase had a greater affinity for tannic acid at 40 °C with a Km value of 2.12 mM and the greatest efficiency hydrolysis (Kcat/Km) at 45 °C. The rate of inactivation (k) increased with the increase of temperature and the half-life (t1/2) gradually decreased. It was found to be 1.0 of the temperature quotient (Q10) value for tannic acid hydrolysis by tannase. The thermodynamic parameters of the interaction system were calculated at various temperatures. The positive enthalpy (ΔH) values and decreasing ΔH values with the increase of temperature indicated that the hydrolysis of tannase was an endothermic process. Our results indicated that elevated temperature could change the tertiary structure of tannase and reduce its thermostability, which caused a gradual decrease of tannase activity with an increase in temperature.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Lin Gao
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - ChouFei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Longyan Chen
- Alentic Microscience Inc., 1344 Summer St, Halifax, NS, B3H 0A8, Canada
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
8
|
Li Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front Microbiol 2021; 12:674345. [PMID: 34248885 PMCID: PMC8260994 DOI: 10.3389/fmicb.2021.674345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinases belong to a class of proteases that are able to degrade keratins into amino acids. Microbial keratinases play important roles in turning keratin-containing wastes into value-added products by participating in the degradation of keratin. Keratin is found in human and animal hard tissues, and its complicated structures make it resistant to degradation by common proteases. Although breaking disulfide bonds are involved in keratin degradation, keratinase is responsible for the cleavage of peptides, making it attractive in pharmaceutical and feather industries. Keratinase can serve as an important tool to convert keratin-rich wastes such as feathers from poultry industry into diverse products applicable to many fields. Despite of some progress made in isolating keratinase-producing microorganisms, structural studies of keratinases, and biochemical characterization of these enzymes, effort is still required to expand the biotechnological application of keratinase in diverse fields by identifying more keratinases, understanding the mechanism of action and constructing more active enzymes through molecular biology and protein engineering. Herein, this review covers structures, applications, biochemistry of microbial keratinases, and strategies to improve its efficiency in keratin degradation.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Akram F, Haq IU, Jabbar Z. Production and characterization of a novel thermo- and detergent stable keratinase from Bacillus sp. NKSP-7 with perceptible applications in leather processing and laundry industries. Int J Biol Macromol 2020; 164:371-383. [PMID: 32682971 DOI: 10.1016/j.ijbiomac.2020.07.146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023]
Abstract
Keratinase has the ability to degrade the recalcitrant keratinous wastes that cannot be degraded by conventional proteases. The present study describes a novel hyperstable keratinolytic enzyme from Bacillus sp. NKSP-7, which has excellent efficiency of keratin-feather biodegradation, washing and dehairing. The production of extracellular keratinase was improved by 3.02-fold through optimization of various parameters. Purified keratinase (25 kDa) showed optimal activity at 65 °C and pH 7.5, and displayed stability over a range of pH (5.5-9.5) and temperature (20-60 °C) for 8 h. No conspicuous effect was perceived with various chemicals and organic solvents, however, the catalytic efficiency was enhanced in the presence of Ca2+, Cd2+, Na+, Mn2+, sodium sulfite, and β-mercaptoethanol. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), suggesting that this keratinase belongs to serine protease family. It displayed prodigious stability and compatibility to salinity and commercial detergents. Enzyme exhibited great substrate specificity but high affinity was observed with keratin-rich substrates. Crude and purified keratinase revealed perceptible potential for destaining of blood-stained fabric (10 min), and dehairing of hide (8 h) without any damage. All these auspicious features make this enzyme a promising candidate for various industrial applications, especially in keratin-waste management, detergent formulations and leather processing.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan
| |
Collapse
|
10
|
Monica P, Kapoor M. Alkali-stable GH11 endo-β-1,4 xylanase (XynB) from Bacillus subtilis strain CAM 21: application in hydrolysis of agro-industrial wastes, fruit/vegetable peels and weeds. Prep Biochem Biotechnol 2020; 51:475-487. [PMID: 33043796 DOI: 10.1080/10826068.2020.1830416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GH11 endo-xylanases, due to their inherent structural and biochemical properties, are the key to efficient bioconversion of lignocellulosic biomass into value-added products. A GH11 endo-xylanase (XynB) from Bacillus subtilis strain CAM 21 was cloned, over-expressed and purified (Mw∼24 kDa) using Ni-NTA affinity chromatography. XynB showed optimum activity at pH 7.0 and 50°C and was stable (>88%) in a broad range of pH (4-11). The apparent Km, Kcat and Kcat/Km of XynB were 2.9 mg/ml, 1961.2/sec, and 675.62 ml/mg/sec, respectively using birchwood xylan as substrate. XynB was a classical endo-xylanase as it hydrolyzed birchwood xylan to xylo-oligosaccharides and not xylose. Kinetic stability of XynB at 45-53°C was between 43-182 min. Secondary structure analysis of XynB using far-UV CD spectroscopy revealed presence of 51.85% β strands and 2.64% α helix and was consistent with the homology modeling studies. XynB hydrolyzed the xylan extracted from agro-industrial wastes and fruit/vegetable peels by releasing up to 670 mg/g of reducing sugars. The xylan extracted from weeds (Ageratum conyzoides, Achyranthes aspera and Tridax procumbens) had characteristic signatures of hemicelluloses and after XynB hydrolysis showed cracks, peeling and release of up to 135.2 mg/g reducing sugars.
Collapse
Affiliation(s)
- P Monica
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, India
| |
Collapse
|
11
|
Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Sustainable production, biochemical and molecular characterization of thermo-and-solvent stable alkaline serine keratinase from novel Bacillus pumilus AR57 for promising poultry solid waste management. Int J Biol Macromol 2020; 163:135-146. [PMID: 32615225 DOI: 10.1016/j.ijbiomac.2020.06.219] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/29/2023]
Abstract
The increasing amount of recalcitrant keratinous wastes generated from the poultry industry poses a serious threat to the environment. Keratinase have gained much attention to convert these wastes into valuable products. Ever since primitive feathers first appeared on dinosaurs, microorganisms have evolved to degrade this most recalcitrant keratin. In this study, we identified a promising keratinolytic bacterial strain for bioconversion of poultry solid wastes. A true keratinolytic bacterium was isolated from the slaughterhouse soil and was identified and designated as Bacillus pumilus AR57 by 16S rRNA sequencing. For enhanced keratinase production and rapid keratin degradation, the media components and substrate concentration were optimized through shake flask culture. White chicken feather (1% w/v) was found to be the good substrate concentration for high keratinase production when supplemented with simple medium ingredients. The biochemical characterization reveals astounding results which makes the B. pumilus AR57 keratinase as a novel and unique protease. Optimum activity of the crude enzyme was exhibited at pH 9 and 45 °C. The crude extracellular keratinase was characterized as thermo-and-solvent (DMSO) stable serine keratinase. Bacillus pumilus AR57 showed complete degradation (100%) of white chicken feather (1% w/v) within 18 h when incubated in modified minimal medium supplemented with DMSO (1% v/v) at 150 rpm at 37 °C. Keratinase from modified minimal medium supplemented with DMSO exhibits a half-life of 4 days. Whereas, keratinase from the modified minimal medium fortified with white chicken feather (1% w/v) was stable for 3 h only. Feather meal produced by B. pumilus AR57 was found to be rich in essential amino acids. Hence, we proposed B. pumilus AR57 as a potential candidate for the future application in eco-friendly bioconversion of poultry waste and the keratinase could play a pivotal role in the detergent industry. While feather meal may serve as an alternative to produce animal feed and biofertilizers.
Collapse
|
13
|
Zhang RX, Gong JS, Su C, Qin J, Li H, Li H, Shi JS, Xu ZH. Recombinant expression and molecular engineering of the keratinase from Brevibacillus parabrevis for dehairing performance. J Biotechnol 2020; 320:57-65. [PMID: 32569793 DOI: 10.1016/j.jbiotec.2020.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Keratinase is capable of distinctive degradation of keratin, which provides an eco-friendly approach for keratin waste management towards sustainable development. In this study, the recombinant keratinase (KERBP) from Brevibacillus parabrevis was successfully expressed in Escherichia coli. The purified KERBP had the specific activity of 6005.3 U/mg. It showed remarkable tolerance to various surfactants and also no collagenolytic activity. However, the moderate thermal stability limited its further application. Thus, protein engineering was further adopted to improve its stability. The variants of T218S, S236C and N181D were constructed by site-directed mutagenesis and combinatorial mutagenesis. Compared with the wild type, the t1/2 at 60 °C for the variants T218S, S236C and N181D were 3.05-, 1.18- and 1-fold increase, respectively. Moreover, the double variants N181D-T218S and N181D-S236C significantly improved thermostability with 5.1 and 2.9 °C increase of T50, and prolonging t1/2 at 60 °C with 4.09 and 1.54-fold, respectively. And the catalytic efficiency of the T218S and N181D-T218S variants was also significantly improved. Furthermore, the keratinase displayed favorable ability to dehair wool from skin within 7 h, which showed potential in leather dehairing. Our work contributes to a further insight into the thermostability of keratinase and offers a promising alternative for industrial leather application.
Collapse
Affiliation(s)
- Rong-Xian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China; School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
14
|
Li Q. Progress in Microbial Degradation of Feather Waste. Front Microbiol 2019; 10:2717. [PMID: 31866957 PMCID: PMC6906142 DOI: 10.3389/fmicb.2019.02717] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Feathers are a major by-product of the poultry industry. They are mainly composed of keratins which have wide applications in different fields. Due to the increasing production of feathers from poultry industries, the untreated feathers could become pollutants because of their resistance to protease degradation. Feathers are rich in amino acids, which makes them a valuable source for fertilizer and animal feeds. Numerous bacteria and fungi exhibited capabilities to degrade chicken feathers by secreting enzymes such as keratinases, and accumulated evidence shows that feather-containing wastes can be converted into value-added products. This review summarizes recent progress in microbial degradation of feathers, structures of keratinases, feather application, and microorganisms that are able to secrete keratinase. In addition, the enzymes critical for keratin degradation and their mechanism of action are discussed. We also proposed the strategy that can be utilized for feather degradation. Based on the accumulated studies, microbial degradation of feathers has great potential to convert them into various products such as biofertilizer and animal feeds.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
Bhari R, Kaur M, Singh RS. Thermostable and halotolerant keratinase fromBacillus aeriusNSMk2 with remarkable dehairing and laundary applications. J Basic Microbiol 2019; 59:555-568. [DOI: 10.1002/jobm.201900001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Ranjeeta Bhari
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| | - Manpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| | - Ram S. Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| |
Collapse
|
16
|
K. V. A. KERATINOLYTIC ENZYMES: PRODUCERS, PHYSICAL AND CHEMICAL PROPERTIES. APPLICATION FOR BIOTECHNOLOGY. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Deniz I, Zihnioglu F, Öncel SS, Hames EE, Vardar-Sukan F. Production, purification and characterization of a proteolytic enzyme from Streptomyces sp. 2M21. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1568415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Irem Deniz
- Bioengineering Department, Engineering Faculty, Manisa Celal Bayar University, Muradiye-Manisa, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir, Turkey
| | - Suphi S. Öncel
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| | - E. Esin Hames
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| | - Fazilet Vardar-Sukan
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| |
Collapse
|
18
|
Hamiche S, Mechri S, Khelouia L, Annane R, El Hattab M, Badis A, Jaouadi B. Purification and biochemical characterization of two keratinases from Bacillus amyloliquefaciens S13 isolated from marine brown alga Zonaria tournefortii with potential keratin-biodegradation and hide-unhairing activities. Int J Biol Macromol 2019; 122:758-769. [DOI: 10.1016/j.ijbiomac.2018.10.174] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
|
19
|
Adelere IA, Lateef A. Degradation of Keratin Biomass by Different Microorganisms. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Shah A, Tyagi S, Bharagava RN, Belhaj D, Kumar A, Saxena G, Saratale GD, Mulla SI. Keratin Production and Its Applications: Current and Future Perspective. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Mutra R, Joseph JE, Panwar D, Kaira GS, Kapoor M. Low molecular weight α-galactosidase from black gram (Vigna mungo): Purification and insights towards biochemical and biophysical properties. Int J Biol Macromol 2018; 119:770-778. [DOI: 10.1016/j.ijbiomac.2018.06.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
|
22
|
Pawar VA, Prajapati AS, Akhani RC, Patel DH, Subramanian RB. Molecular and biochemical characterization of a thermostable keratinase from Bacillus altitudinis RBDV1. 3 Biotech 2018; 8:107. [PMID: 29430368 DOI: 10.1007/s13205-018-1130-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/20/2018] [Indexed: 11/26/2022] Open
Abstract
A thermostable keratinase designated as KBALT was purified from Bacillus altitudinis RBDV1 from a poultry farm in Gujarat, India. The molecular weight of the native KBALT (nKBALT) purified using ammonium sulfate and ion exchange and gel permeation chromatography with a 40% yield and 80-fold purification was estimated to be ~ 43 kDa. The gene for KBALT was successfully cloned, sequenced and expressed in Escherichia coli. Recombinant KBALT (rKBALT) when purified using a single step Ni-NTA His affinity chromatography achieved a yield of 38.20% and a 76.4-fold purification. Comparison of the deduced amino acid sequence of rKBALT with known proteases of Bacillus species and inhibitory effect of PMSF suggest that rKBALT was a subtilisin-like serine protease. Both native and rKBALT exhibited higher activity at 85 °C and pH 8.0 in the presence of Mg2+, Mn2+, Zn2+, Ba2+ and Fe3+ metal ions. Interestingly, 70% of their activity was retained at temperatures ranging from 35 to > 95 °C. The keratinolytic activity of both nKBALT and rKBALT was enhanced in the presence of reducing agents. They exhibited broad substrate specificity towards various protein substrates. KBALT was determined for its kinetic properties by calculating its Km (0.61 mg/ml) and Vmax (1673 U/mg/min) values. These results suggest KBALT as a robust and promising contender for enzymatic processing of keratinous wastes in waste processing plants.
Collapse
Affiliation(s)
- Vishakha A Pawar
- 1P. G. Department Of Biosciences, Satellite Campus, Sardar Patel Maidaan, Bakrol-Vadtal Road, Sardar Patel University, P.O. Box No. 39, Vallabh Vidyanagar, Gujarat 388120 India
| | - Anil S Prajapati
- 1P. G. Department Of Biosciences, Satellite Campus, Sardar Patel Maidaan, Bakrol-Vadtal Road, Sardar Patel University, P.O. Box No. 39, Vallabh Vidyanagar, Gujarat 388120 India
| | - Rekha C Akhani
- 2Department of Biochemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, Gujarat India
| | - Darshan H Patel
- 2Department of Biochemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, Gujarat India
| | - R B Subramanian
- 1P. G. Department Of Biosciences, Satellite Campus, Sardar Patel Maidaan, Bakrol-Vadtal Road, Sardar Patel University, P.O. Box No. 39, Vallabh Vidyanagar, Gujarat 388120 India
| |
Collapse
|