1
|
Kim HS, Ahn K, Han BY, Haque AMJ, Kim S, Kim S, Wee Y, Kim J. Conductive single enzyme nanocomposites prepared by in-situ growth of nanoscale polyaniline for high performance enzymatic bioelectrode. Biosens Bioelectron 2025; 267:116841. [PMID: 39406565 DOI: 10.1016/j.bios.2024.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Enzyme-based electrochemical biosensors hold great promise for applications in health/disease monitoring, drug discovery, and environmental monitoring. However, inherently non-conductive nature of proteinaceous enzymes often hampers effective electron transfer at enzyme-electrode interface, limiting biosensor performance of enzyme bioelectrodes. To address this problem, we present an approach to synthesize polyaniline (PAN)-based conductive single enzyme nanocomposites of glucose oxidase (GOx) (denoted as PAN-GOx). To prevent multimerization of enzymes during nanocomposite synthesis and enable single enzyme wrapping, we activate GOx surface with phenylamine groups based on the programmed diffusion of reactants in the reaction solution. Subsequent in-situ polymerization enables the synthesis of nanoscale conductive PAN layer (∼2.7 nm thickness) grafted from individual GOx molecule. PAN-GOx retains 83% and 74% of its specific activity and catalytic efficiency, respectively, compared to free GOx, while demonstrating a ∼500% improved conductivity. Furthermore, PAN-GOx-based glucose biosensors show an approximately 16- and 3-fold higher sensitivity compared to biosensors prepared by using free GOx and a mixture of PAN and GOx, respectively. This study provides a facile method to fabricate conductive single enzyme nanocomposites with enhanced electron transfer, which can potentially be further modified and/or compounded with conductive materials for demonstrating high performance enzymatic bioelectrodes.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92039, USA
| | - Kyungmin Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Byeol Yi Han
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | | | - Sujin Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Seungkeun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Youngho Wee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Monavari SM, Memarian N. A DFTB study on the electronic response of encapsulated DNA nucleobases onto chiral CNTs as a sequencer. Sci Rep 2024; 14:10826. [PMID: 38734799 PMCID: PMC11636929 DOI: 10.1038/s41598-024-61677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.
Collapse
Affiliation(s)
| | - Nafiseh Memarian
- Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran.
| |
Collapse
|
4
|
Dezhakam E, Tavakkol M, Kafili T, Nozohouri E, Naseri A, Khalilzadeh B, Rahbarghazi R. Electrochemical and optical (bio)sensors for analysis of antibiotic residuals. Food Chem 2024; 439:138145. [PMID: 38091787 DOI: 10.1016/j.foodchem.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Antibiotic residuals in foods may lead to crucial health and safety issues in the human body. Rapid and in-time analysis of antibiotics using simple and sensitive techniques is in high demand. Among the most commonly applicable modalities, chromatography-based techniques like HPLC and LC-MS, along with immunological approaches, particularly ELISA have been exampled in the analysis of antibiotics. Despite being highly sensitive, these methods are considerably time-consuming, thus the presence of skilled personnel and costly equipment is essential. Nanomaterial-based (bio)sensors, however, are de novo analytical equipment with some beneficial characteristics, such as simplicity, low price, on-site, high accuracy, and sensitivity for the detection of analytes. This review aimed to collect the latest developments in NM-based sensors and biosensors for the observation of highly used antibiotics like Vancomycin (Van), Linezolid (Lin), and Clindamycin (Clin). The current challenges and developmental perspectives are also debated in detail for future research directions.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Tavakkol
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Taha Kafili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Abdolhosein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ding K, Zhu Y, Yan L, Zhu L, Zhang TT, Zhang R, Li Q, Xie B, Ding L, Shang L, Wang Y, Xu P, Zhu T, Chen C, Zhu Y. Multiwalled Carbon Nanotubes-Reprogrammed Macrophages Facilitate Breast Cancer Metastasis via NBR2/TBX1 Axis. ACS NANO 2024; 18:11103-11119. [PMID: 38623806 DOI: 10.1021/acsnano.3c11651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In recent years, carbon nanotubes have emerged as a widely used nanomaterial, but their human exposure has become a significant concern. In our former study, we reported that pulmonary exposure of multiwalled carbon nanotubes (MWCNTs) promoted tumor metastasis of breast cancer; macrophages were key effectors of MWCNTs and contributed to the metastasis-promoting procedure in breast cancer, but the underlying molecular mechanisms remain to be explored. As a follow-up study, we herein demonstrated that MWCNT exposure in breast cancer cells and macrophage coculture systems promoted metastasis of breast cancer cells both in vitro and in vivo; macrophages were skewed into M2 polarization by MWCNT exposure. LncRNA NBR2 was screened out to be significantly decreased in MWCNTs-stimulated macrophages through RNA-seq; depletion of NBR2 led to the acquisition of M2 phenotypes in macrophages by activating multiple M2-related pathways. Specifically, NBR2 was found to positively regulate the downstream gene TBX1 through H3k27ac activation. TBX1 silence rescued NBR2-induced impairment of M2 polarization in IL-4 & IL-13-stimulated macrophages. Moreover, NBR2 overexpression mitigated the enhancing effects of MWCNT-exposed macrophages on breast cancer metastasis. This study uncovered the molecular mechanisms underlying breast cancer metastasis induced by MWCNT exposure.
Collapse
Affiliation(s)
- Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yaling Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Tian-Tian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Bin Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Limeng Shang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Panpan Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Zhang D, Bai Y, Niu H, Chen L, Xiao J, Guo Q, Jia P. Enzyme Immobilization by Inkjet Printing on Reagentless Biosensors for Electrochemical Phosphate Detection. BIOSENSORS 2024; 14:168. [PMID: 38667161 PMCID: PMC11047959 DOI: 10.3390/bios14040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Enzyme-based biosensors commonly utilize the drop-casting method for their surface modification. However, the drawbacks of this technique, such as low reproducibility, coffee ring effects, and challenges in mass production, hinder its application. To overcome these limitations, we propose a novel surface functionalization strategy of enzyme crosslinking via inkjet printing for reagentless enzyme-based biosensors. This method includes printing three functional layers onto a screen-printed electrode: the enzyme layer, crosslinking layer, and protective layer. Nanomaterials and substrates are preloaded together during our inkjet printing. Inkjet-printed electrodes feature a uniform enzyme deposition, ensuring high reproducibility and superior electrochemical performance compared to traditional drop-casted ones. The resultant biosensors display high sensitivity, as well as a broad linear response in the physiological range of the serum phosphate. This enzyme crosslinking method has the potential to extend into various enzyme-based biosensors through altering functional layer components.
Collapse
Affiliation(s)
- Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Yang Bai
- Department of Biomedical Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Haoran Niu
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Lingyun Chen
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Junfeng Xiao
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Peipei Jia
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| |
Collapse
|
7
|
Osaki S, Saito M, Nagai H, Tamiya E. Surface Modification of Screen-Printed Carbon Electrode through Oxygen Plasma to Enhance Biosensor Sensitivity. BIOSENSORS 2024; 14:165. [PMID: 38667159 PMCID: PMC11048330 DOI: 10.3390/bios14040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-treated biosensors. In this research, we compared antibody modification by plasma treatment and physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Consequently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed the electrochemical properties owing to electrostatic interactions. In this study, we compared the following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody (a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were 0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the plasma treatment generated many carboxyl groups and increased the number of antibody adsorption sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as a simple method for modifying various molecular recognition elements on printed carbon electrodes.
Collapse
Affiliation(s)
- Shuto Osaki
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
| | - Masato Saito
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hidenori Nagai
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
| | - Eiichi Tamiya
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
- SANKEN-The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| |
Collapse
|
8
|
García Verdugo K, Salazar Salas BM, Chan LHC, Rodríguez Félix DE, Quiroz Castillo JM, Castillo Castro TD. Nanocomposite Hydrogels Based on Poly(vinyl alcohol) and Carbon Nanotubes for NIR-Light Triggered Drug Delivery. ACS OMEGA 2024; 9:11860-11869. [PMID: 38496922 PMCID: PMC10938584 DOI: 10.1021/acsomega.3c09609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Photothermal nanocomposite hydrogels are promising materials for remotely triggering drug delivery by near-infrared (NIR) radiation stimuli. In this work, a novel hydrogel based on poly(vinyl alcohol), poly(vinyl methyl ether-alt-maleic acid), poly(vinyl methyl ether), and functionalized multiwalled carbon nanotubes (MWCNT-f) was prepared by the freeze/thaw method. A comparative characterization of materials (with and without MWCNT-f) was carried out by infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, mechanical assays, swelling kinetics measurements, and photothermal analysis under NIR irradiation. Hydrophilic chemotherapeutic 5-fluorouracil (5-FU) and hydrophobic ibuprofen drugs were independently loaded into hydrogels, and the drug release profiles were obtained under passive and NIR-irradiation conditions. The concentration-dependent cytotoxicity of materials was studied in vitro using noncancerous cells and cancer cells. Notable changes in the microstructure and physicochemical properties of hydrogels were observed by adding a low content (0.2 wt %) of MWCNT-f. The cumulative release amounts of 5-FU and ibuprofen from the hydrogel containing MWCNT-f were significantly increased by 21 and 39%, respectively, through the application of short-term NIR irradiation pulses. Appropriate concentrations of the nanocomposite hydrogel loaded with 5-FU produced cytotoxicity in cancer cells without affecting noncancerous cells. The overall properties of the MWCNT-f-containing hydrogel and its photothermal behavior make it an attractive material to promote the release of hydrophilic and hydrophobic drugs, depending on the treatment requirements.
Collapse
Affiliation(s)
- Karla
F. García Verdugo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo CP 83000, Mexico
| | - Brianda M. Salazar Salas
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo CP 83000, Mexico
| | | | - Dora E. Rodríguez Félix
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo CP 83000, Mexico
| | - Jesús M. Quiroz Castillo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo CP 83000, Mexico
| | - Teresa del Castillo Castro
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo CP 83000, Mexico
| |
Collapse
|
9
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
10
|
Srivastava A, Azad UP. Nanobioengineered surface comprising carbon based materials for advanced biosensing and biomedical application. Int J Biol Macromol 2023; 253:126802. [PMID: 37690641 DOI: 10.1016/j.ijbiomac.2023.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc. This review is mainly focused on the classifications and synthesis of various types of CNMs and their electroanalytical application for development of efficient and ultra-sensitive electrochemical biosensors for the point of care diagnosis of fatal and severe diseases at their very initial stage. This review is mainly focused on the classification, synthesis and application of carbon-based material for biosensing applications. The integration of various types of CNMs with nanomaterials, enzymes, redox mediators and biomarkers have been used discussed in development of smart biosensing platform. We have also made an effort to discuss the future prospects for these CNMs in the biosensing area as well as the most recent advancements and applications which will be quite useful for the researchers working across the globe working specially in biosensors field.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Uday Pratap Azad
- Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495 009, CG, India.
| |
Collapse
|
11
|
He P, Zhang Q, Liu Q. Impedimetric aptasensor based on MOF based composite for measuring of carcinoembryonic antigen as a tumor biomarker. CHEMOSPHERE 2023; 338:139339. [PMID: 37385481 DOI: 10.1016/j.chemosphere.2023.139339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/27/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
In this research, gold nanoparticle (GNPs)-modified metal-organic framework/reduced graphene oxide (MOF(801)/rGO) hybrid was employed to design a new aptasensor for carcinoembryonic antigen (CEA) quantification in biological sample. The sensing ability of the electrode for CEA biomarker was examined with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry procedures. Besides, CEA was electrochemically quantified by the EIS method. With respect to the high surface-to-volume ratio of MOF(801) and the good electron transfer ability of rGO, the proposed sensor displayed notable sensitivity and reliability in the CEA analysis. The derived electrode showed an appreciable detection limit of 0.8 pg L-1 using EIS protocol. In addition, the present aptasensor revealed diverse advantages including anti-interference property, wide linear range (0.0025-0.25 ng L-1), convenience and high efficiency toward CEA quantification. More importantly, the performance of the suggested assay remains unchanged in analysis of CEA in body fluids. The established assay demonstrates that the suggested biosensor is a promising device in clinical diagnosis.
Collapse
Affiliation(s)
- Ping He
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Qiang Zhang
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Qiwei Liu
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China.
| |
Collapse
|
12
|
Tsong JL, Robert R, Khor SM. Emerging trends in wearable glove-based sensors: A review. Anal Chim Acta 2023; 1262:341277. [PMID: 37179058 DOI: 10.1016/j.aca.2023.341277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Glove-based wearable chemical sensors are universal analytical tools that provide surface analysis for various samples in dry or liquid form by swiping glove sensors on the sample surface. They are useful in crime scene investigation, airport security, and disease control for detecting illicit drugs, hazardous chemicals, flammables, and pathogens on various surfaces, such as foods and furniture. It overcomes the inability of most portable sensors to monitor solid samples. It outperforms most wearable sensors (e.g., contact lenses and mouthguard sensors) for healthcare monitoring by providing comfort that does not interfere with daily activities and reducing the risk of infection or other adverse health effects caused by prolonged usage. Detailed information is provided regarding the challenges and selection criteria for the desired glove materials and conducting nanomaterials for developing glove-based wearable sensors. Focusing on nanomaterials, various transducer modification techniques for various real-world applications are discussed. The steps taken by each study platform to address the existing issues are revealed, as are their benefits and drawbacks. The Sustainable Development Goals (SDGs) and strategies for properly disposing of used glove-based wearable sensors are critically evaluated. A glance at all the provided tables provides insight into the features of each glove-based wearable sensor and enables a quick comparison of their functionalities.
Collapse
Affiliation(s)
- Jia Ling Tsong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rodney Robert
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
14
|
Mollamohammadi F, Faridnouri H, Zare EN. Electrochemical Biosensing of L-DOPA Using Tyrosinase Immobilized on Carboxymethyl Starch- Graft-Polyaniline@MWCNTs Nanocomposite. BIOSENSORS 2023; 13:bios13050562. [PMID: 37232923 DOI: 10.3390/bios13050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The electrochemical behavior of the immobilized tyrosinase (Tyrase) on a modified glassy carbon electrode with carboxymethyl starch-graft-polyaniline/multi-walled carbon nanotubes nanocomposite (CMS-g-PANI@MWCNTs) was investigated. The molecular properties of CMS-g-PANI@MWCNTs nanocomposite and its morphological characterization were examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). A simple drop-casting method was employed to immobilize Tyrase on the CMS-g-PANI@MWCNTs nanocomposite. In the cyclic voltammogram (CV), a pair of redox peaks were observed at the potentials of +0.25 to -0.1 V and E°' was equal to 0.1 V and the apparent rate constant of electron transfer (Ks) was calculated at 0.4 s-1. Using differential pulse voltammetry (DPV), the sensitivity and selectivity of the biosensor were investigated. The biosensor exhibits linearity towards catechol and L-dopa in the concentration range of 5-100 and 10-300 μM with a sensitivity of 2.4 and 1.11 μA μΜ-1 cm-2 and limit of detection (LOD) 25 and 30 μM, respectively. The Michaelis-Menten constant (Km) was calculated at 42 μΜ for catechol and 86 μΜ for L-dopa. After 28 working days, the biosensor provided good repeatability and selectivity, and maintained 67% of its stability. The existence of -COO- and -OH groups in carboxymethyl starch, -NH2 groups in polyaniline, and high surface-to-volume ratio and electrical conductivity of multi-walled carbon nanotubes in the CMS-g-PANI@MWCNTs nanocomposite cause good Tyrase immobilization on the surface of the electrode.
Collapse
|
15
|
Osman AM, Hendi A, Osman NMA. Multiwalled Carbon Nanotubes-Modified Metallic Electrode Prepared Using Chemical Vapor Deposition as Sequential Injection Analysis Detector for Determination of Ascorbic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1264. [PMID: 37049357 PMCID: PMC10096536 DOI: 10.3390/nano13071264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
A carbon nanotubes modified silver electrode (CNTs-Ag) was prepared via catalytic chemical vapor deposition and characterized. The morphology, crystallinity, elemental composition, and other quality parameters of the prepared electrode were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman techniques. The characterization results revealed the modification of the silver metal surface with CNTs of good characteristics. A sequential injection analysis (SIA) system was developed for studying the reaction of ascorbic acid with KIO3 using the prepared CNTs-Ag electrode. Electrodes were polarized with both direct current (DC) and periodic square wave (SW). Various experimental conditions affecting the differential electrolytic potentiometric (DEP) peak such as current density, SW bias value, and flow rate were appraised. Under the optimum conditions, good linear responses for ascorbic acid were obtained in the range of 60.0-850.0 µM for both types of polarization with detection limits of 14.0-19.0 µM. The results obtained showed that the periodic polarization method was more sensitive than DC polarization and the electrode response was faster. Ascorbic acid in pharmaceutical tablets was determined with satisfactory results using this method. The prepared CNTs-based electrode exhibited good performance for a long period of use. The method is simple, rapid, and inexpensive for routine analysis.
Collapse
Affiliation(s)
- Abdalghaffar M. Osman
- Chemistry Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center (IRC) for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Abdulmajeed Hendi
- Physics Department, Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center (IRC) for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Nadir M. A. Osman
- Chemistry Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
16
|
Singh PK, Dhar R, Dabrowski R. Enhancement of dielectric and electro-optical characteristics of liquid crystalline material 4'-octyl-4-cyano-biphenyl with dispersed functionalized and nonfunctionalized multiwalled carbon nanotubes. Phys Rev E 2023; 107:044704. [PMID: 37198864 DOI: 10.1103/physreve.107.044704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/01/2023] [Indexed: 05/19/2023]
Abstract
For recent applications, liquid crystal-carbon nanotube based nanocomposite systems have been proven to be highly attractive. In this paper, we give a thorough analysis of a nanocomposite system made of both functionalized and nonfunctionalized multiwalled carbon nanotubes that are disseminated in a 4'-octyl-4-cyano-biphenyl liquid crystal medium. Thermodynamic study reveals a decrease in the nanocomposites' transition temperatures. In contrast to nonfunctionalized multiwalled carbon nanotube dispersed systems, the enthalpy of functionalized multiwalled carbon nanotube dispersed systems has increased. In comparison to the pure sample, the dispersed nanocomposites have a smaller optical band gap. A rise in the longitudinal component of permittivity and, consequently, the dielectric anisotropy of the dispersed nanocomposites has been observed by dielectric studies. When compared to the pure sample, the conductivity of both dispersed nanocomposite materials has increased by two orders of magnitude. For the system with dispersed functionalized multiwalled carbon nanotubes, the threshold voltage, splay elastic constant, and rotational viscosity all decreased. For the dispersed nanocomposite of nonfunctionalized multiwalled carbon nanotubes, the value of the threshold voltage is somewhat decreased but the rotational viscosity and splay elastic constant both are enhanced. These findings show the applicability of the liquid crystal nanocomposites for display and electro-optical systems with appropriate tuning of the parameters.
Collapse
Affiliation(s)
- Praveen Kumar Singh
- Centre of Material Sciences, University of Allahabad, Prayagraj-211002, India
| | - Ravindra Dhar
- Centre of Material Sciences, University of Allahabad, Prayagraj-211002, India
| | - Roman Dabrowski
- Institute of Applied Sciences and Chemistry, Military University of Technology, Warsaw 00-908, Poland
| |
Collapse
|
17
|
Thakkar JB, Aghera DJ, Trivedi B, Prabha CR. Design and characterization of a biosensor with lipase immobilized nanoparticles in polymer film for the detection of triglycerides. Int J Biol Macromol 2023; 229:136-145. [PMID: 36586648 DOI: 10.1016/j.ijbiomac.2022.12.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/11/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
High levels of triglycerides in blood can harden and block the arteries increasing the risk of heart disease and strokes. Triglycerides are important constituents of oils and fats used in various foods. The triglyceride content in commercial preparations of oils is estimated using conventional methods. In the present study, an electrochemical biosensor with lipase immobilized novel conductive polymer film has been developed for estimating triglyceride content in a variety of products. The portable biosensor can bring down the detection costs dramatically and can be used for varied purposes. It is based on cyclic voltammetry and has a three-electrode configuration system. Glassy carbon electrode is functionalized with nanoparticles embedded in polyethyleneimine and lipase is immobilized using glutaraldehyde. The strategy increases the electrochemical conductance manifold and overcomes the hindrance to lipase posed by membranes as it is oriented on the outside of the membrane. Thus, it increases the sensitivity and selectivity of detection. Results of scanning electron microscopy and FT-IR spectroscopy were used for characterizing the electrode surface. Linear range of the electrode for triglycerides is 100-500 mg/dL. The sensor was used successfully to determine triglyceride content in several real samples and the average recovery values lie from 95.47 % to 101.05 %.
Collapse
Affiliation(s)
- Jinal B Thakkar
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390005, India
| | - Dimpal J Aghera
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390005, India
| | - Bhavana Trivedi
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390005, India
| | - C Ratna Prabha
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390005, India.
| |
Collapse
|
18
|
Bounegru AV, Apetrei C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:760. [PMID: 36839128 PMCID: PMC9962745 DOI: 10.3390/nano13040760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The development of enzyme biosensors has successfully overcome various challenges such as enzyme instability, loss of enzyme activity or long response time. In the electroanalytical field, tyrosinase is used to develop biosensors that exploit its ability to catalyze the oxidation of numerous types of phenolic compounds with antioxidant and neurotransmitter roles. This review critically examines the main tyrosinase immobilization techniques for the development of sensitive electrochemical biosensors. Immobilization strategies are mainly classified according to the degree of reversibility/irreversibility of enzyme binding to the support material. Each tyrosinase immobilization method has advantages and limitations, and its selection depends mainly on the type of support electrode, electrode-modifying nanomaterials, cross-linking agent or surfactants used. Tyrosinase immobilization by cross-linking is characterized by very frequent use with outstanding performance of the developed biosensors. Additionally, research in recent years has focused on new immobilization strategies involving cross-linking, such as cross-linked enzyme aggregates (CLEAs) and magnetic cross-linked enzyme aggregates (mCLEAs). Therefore, it can be considered that cross-linking immobilization is the most feasible and economical approach, also providing the possibility of selecting the reagents used and the order of the immobilization steps, which favor the enhancement of biosensor performance characteristics.
Collapse
|
19
|
Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian Jazi F, Lynch I. A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications. Crit Rev Anal Chem 2023; 54:2398-2421. [PMID: 36724894 DOI: 10.1080/10408347.2023.2171277] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Teqwa Ragdi
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Services, Saveetha University, Chennai, India
- CoE for Energy and Eco-sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Chaumuhan, Uttar Pradesh, India
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Swetha PDP, Nikitha A, Shenoy MM, Shim YB, Prasad KS. Ni/Ni(OH) 2-rGO nanocomposites sensor for the detection of long forgotten mycotoxin, xanthomegnin. Talanta 2023; 253:123953. [PMID: 36179558 DOI: 10.1016/j.talanta.2022.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
Xanthomegnin, a known fungal toxin, secondary metabolite, and pigment diffuses from the dermatophytes has gained attention as local virulence factor because of the mutagenicity, toxicity, cytocidal, and immunosuppressive properties. Not only as a dermatophyte in skin related disorders, the production of xanthomegnin is implicated as a powerful diagnostic marker in patients suffering from ocular mycoses. Incidentally also attributed to death in livestock's majorly by exposing themselves to food-borne fungi like Aspergillus and Penicillium. The production of xanthomegnin in dermetophytic species Trichophyton rubrum, found commonly in infected skin and nails. In this study nickel/nickel hydroxide nanoparticles decorated reduced graphene oxide (Ni/Ni(OH)2-rGO) modified glassy carbon electrode has been successfully used for non-enzymatic detection of xanthomegnin. The Ni/Ni(OH)2-rGO composites were synthesized through a simple microwave assisted technique with less harmful reducing agent. The UV-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and electrochemical investigations demonstrated the robust formation of the sensor. The sensor exhibited improved electrochemical properties with enhanced electrochemical active area and excellent electrochemical behavior towards xanthomegnin detection with a limit of detection of 0.12 μM. The selectivity, stability, and analytical recovery studies proved the potential use of the sensor for the detection of xanthomegnin in real samples. Further, the sensor successfully detected xanthomegnin produced by the Trichophyton rubrum, the most common superficial fungus, accounting for at least 60% of all superficial fungal infections in humans. Validation studies showed satisfiable and quantifiable amount of xanthomegnin in comparison with common bench mark UV-Vis studies meant for fungal mycotoxin detection.
Collapse
Affiliation(s)
- P D Priya Swetha
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - A Nikitha
- Department of Dermatology,Venereology and Leprosy, Yenepoya Medical College, Deralakatte, Mangalore, 575018, India
| | - M Manjunath Shenoy
- Department of Dermatology,Venereology and Leprosy, Yenepoya Medical College, Deralakatte, Mangalore, 575018, India
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
21
|
da Costa Siqueira JT, Reis AC, Lopes JML, Ladeira LO, Viccini LF, de Mello Brandão H, Munk M, de Sousa SM. Chromosomal aberrations and changes in the methylation patterns of Lactuca sativa L. (Asteraceae) exposed to carbon nanotubes. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Lee J. Carbon Nanotube-Based Biosensors Using Fusion Technologies with Biologicals & Chemicals for Food Assessment. BIOSENSORS 2023; 13:183. [PMID: 36831949 PMCID: PMC9953396 DOI: 10.3390/bios13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
High-sensitivity sensors applied in various diagnostic systems are considered to be a promising technology in the era of the fourth industrial revolution. Biosensors that can quickly detect the presence and concentration of specific biomaterials are receiving research attention owing to the breakthroughs in detection technology. In particular, the latest technologies involving the miniaturization of biosensors using nanomaterials, such as nanowires, carbon nanotubes, and nanometals, have been widely studied. Nano-sized biosensors applied in food assessment and in in vivo measurements have the advantages of rapid diagnosis, high sensitivity and selectivity. Nanomaterial-based biosensors are inexpensive and can be applied to various fields. In the present society, where people are paying attention to health and wellness, high-technology food assessment is becoming essential as the consumer demand for healthy food increases. Thus, biosensor technology is required in the food and medical fields. Carbon nanotubes (CNTs) are widely studied for use in electrochemical biosensors. The sensitive electrical characteristics of CNTs allow them to act as electron transfer mediators in electrochemical biosensors. CNT-based biosensors require novel technologies for immobilizing CNTs on electrodes, such as silicon wafers, to use as biosensor templates. CNT-based electrochemical biosensors that serve as field-effect transistors (FET) increase sensitivity. In this review, we critically discuss the recent advances in CNT-based electrochemical biosensors applied with various receptors (antibodies, DNA fragments, and other nanomaterials) for food evaluation, including pathogens, food allergens, and other food-based substances.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
| |
Collapse
|
23
|
Vaid K, Dhiman J, Kumar S, Kumar V. Citrate and glutathione capped gold nanoparticles for electrochemical immunosensing of atrazine: Effect of conjugation chemistry. ENVIRONMENTAL RESEARCH 2023; 217:114855. [PMID: 36427637 DOI: 10.1016/j.envres.2022.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Recently, the exposure of pesticides/herbicides to the living organisms is increased especially due to agricultural malpractices and industrial processes. In particular, the exposure of pesticides/herbicides (e.g., atrazine) can impart several harsh effects on the human health. The development of efficient detection systems can be crucial in monitoring the atrazine in water and food/plant products, which can be decisive in controlling the deadly exposures of atrazine. Herein, we have developed electrochemical immunosensors for atrazine by employing monoclonal anti-atrazine antibody conjugated gold nanoparticles. Two types of gold nanoparticles (i.e., citrate and glutathione (GSH)-capped AuNPs) were used to modify gold working electrode and utilized for the development of atrazine immunosensors. The conjugation of immunoprobe on working electrode was especially designed to obtain stable and efficient sensing signals. The nanosensing immunoprobes fabricated using citrate-AuNPs and GSH-AuNPs exhibited comparable responses for a wide linear working range of 50 ng/L- 30 μg/L with limit of detection (LOD) values of 0.08 and 0.06 ng/L for atrazine, respectively.
Collapse
Affiliation(s)
- Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India; CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Jasmeen Dhiman
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Suresh Kumar
- Department of Applied Sciences, UIET, Panjab University, Chandigarh, 160014, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
24
|
Adsorption Kinetic Model Predicts and Improves Reliability of Electrochemical Serotonin Detection. Methods Protoc 2023; 6:mps6010006. [PMID: 36648955 PMCID: PMC9844352 DOI: 10.3390/mps6010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Serotonin (5-HT) is a neurotransmitter involved in many biophysiological processes in the brain and in the gastrointestinal tract. Electrochemical methods are commonly used to quantify 5-HT, but their reliability may suffer due to the time-dependent nature of adsorption-limited 5-HT detection, as well as electrode fouling over repeated measurements. Mathematical characterization and modeling of adsorption-based electrochemical signal generation would improve reliability of 5-HT measurement. Here, a model was developed to track 5-HT electrode adsorption and resulting current output by combining Langmuir adsorption kinetic equations and adsorption-limited electrochemical equations. 5-HT adsorption binding parameters were experimentally determined at a carbon-nanotube coated Au electrode: KD = 7 × 10-7 M, kon = 130 M-1 s-1, koff = 9.1 × 10-5 s-1. A computational model of 5-HT adsorption was then constructed, which could effectively predict 5-HT fouling over 50 measurements (R2 = 0.9947), as well as predict electrode responses over varying concentrations and measurement times. The model aided in optimizing the measurement of 5-HT secreted from a model enterochromaffin cell line-RIN14B-minimizing measurement time. The presented model simplified and improved the characterization of 5-HT detection at the selected electrode. This could be applied to many other adsorption-limited electrochemical analytes and electrode types, contributing to the improvement of application-specific modeling and optimization processes.
Collapse
|
25
|
Yuan K, Jurado-Sánchez B, Escarpa A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J Nanobiotechnology 2022; 20:537. [PMID: 36544151 PMCID: PMC9771791 DOI: 10.1186/s12951-022-01711-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a very promising tool for the direct detection of biomarkers for the diagnosis of i.e., cancer and pathogens. Yet, current SERS strategies are hampered by non-specific interactions with co-existing substances in the biological matrices and the difficulties of obtaining molecular fingerprint information from the complex vibrational spectrum. Raman signal enhancement is necessary, along with convenient surface modification and machine-based learning to address the former issues. This review aims to describe recent advances and prospects in SERS-based approaches for cancer and pathogens diagnosis. First, direct SERS strategies for key biomarker sensing, including the use of substrates such as plasmonic, semiconductor structures, and 3D order nanostructures for signal enhancement will be discussed. Secondly, we will illustrate recent advances for indirect diagnosis using active nanomaterials, Raman reporters, and specific capture elements as SERS tags. Thirdly, critical challenges for translating the potential of the SERS sensing techniques into clinical applications via machine learning and portable instrumentation will be described. The unique nature and integrated sensing capabilities of SERS provide great promise for early cancer diagnosis or fast pathogens detection, reducing sanitary costs but most importantly allowing disease prevention and decreasing mortality rates.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| |
Collapse
|
26
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
27
|
Parshina A, Yelnikova A, Safronova E, Kolganova T, Kuleshova V, Bobreshova O, Yaroslavtsev A. Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Functionalized CNTs for Determination of Sulfamethoxazole and Trimethoprim in Pharmaceuticals. MEMBRANES 2022; 12:1091. [PMID: 36363646 PMCID: PMC9695963 DOI: 10.3390/membranes12111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Sulfamethoxazole and trimethoprim are synthetic bacteriostatic drugs. A potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. Perfluorosulfonic acid membranes containing functionalized CNTs were used as the sensor materials. The CNTs' surface was modified by carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. The influence of the CNT concentration and the properties of their surface, as well as preliminary ultrasonic treatment of the polymer and CNT solution before the casting of hybrid membranes, on their ion-exchange capacity, water uptake, and transport properties was revealed. Cross-sensitivity of the sensors to the analytes was achieved due to ion exchange and hydrophobic interactions with hybrid membranes. An array of cross-sensitive sensors based on the membranes containing 1.0 wt% of CNTs with sulfonic acid or (3-aminopropyl)trimethoxysilanol groups enabled us to provide the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous solutions with a concentration ranging from 1.0 × 10-5 to 1.0 × 10-3 M (pH 4.53-8.31). The detection limits of sulfamethoxazole and trimethoprim were 3.5 × 10-7 and 1.3 × 10-7 М. The relative errors of sulfamethoxazole and trimethoprim determination in the combination drug as compared with the content declared by the manufacturer were 4% (at 6% RSD) and 5% (at 7% RSD).
Collapse
Affiliation(s)
- Anna Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Anastasia Yelnikova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina Safronova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Tatyana Kolganova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Victoria Kuleshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Olga Bobreshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| |
Collapse
|
28
|
Albarghouthi FM, Williams NX, Doherty JL, Lu S, Franklin AD. Passivation Strategies for Enhancing Solution-Gated Carbon Nanotube Field-Effect Transistor Biosensing Performance and Stability in Ionic Solutions. ACS APPLIED NANO MATERIALS 2022; 5:15865-15874. [PMID: 36815139 PMCID: PMC9943062 DOI: 10.1021/acsanm.2c04098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interest in point-of-care diagnostics has led to increasing demand for the development of nanomaterial-based electronic biosensors such as biosensor field-effect transistors (BioFETs) due to their inherent simplicity, sensitivity, and scalability. The utility of BioFETs, which use electrical transduction to detect biological signals, is directly dependent upon their electrical stability in detection-relevant environments. BioFET device structures vary substantially, especially in electrode passivation modalities. Improper passivation of electronic components in ionic solutions can lead to excessive leakage currents and signal drift, thus presenting a hinderance to signal detectability. Here, we harness the sensitivity of nanomaterials to study the effects of various passivation strategies on the performance and stability of a transistor-based biosensing platform based on aerosol-jet-printed carbon nanotube thin-film transistors. Specifically, non-passivated devices were compared to devices passivated with photoresist (SU-8), dielectric (HfO2), or photoresist + dielectric (SU-8 followed by HfO2) and were evaluated primarily by initial performance metrics, large-scale device yield, and stability throughout long-duration cycling in phosphate buffered saline. We find that all three passivation conditions result in improved device performance compared to non-passivated devices, with the photoresist + dielectric strategy providing the lowest average leakage current in solution (~2 nA). Notably, the photoresist + dielectric strategy also results in the greatest yield of BioFET devices meeting our selected performance criteria on a wafer scale (~90%), the highest long-term stability in solution (<0.01% change in on-current), and the best average on/off-current ratio (~104), hysteresis (~32 mV), and subthreshold swing (~192 mV/decade). This passivation schema has the potential to pave the path toward a truly high-yield, stable, and robust electrical biosensing platform.
Collapse
Affiliation(s)
- Faris M. Albarghouthi
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas X. Williams
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - James L. Doherty
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Shiheng Lu
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Aaron D. Franklin
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
Bounegru AV, Apetrei C. Studies on the Detection of Oleuropein from Extra Virgin Olive Oils Using Enzymatic Biosensors. Int J Mol Sci 2022; 23:ijms232012569. [PMID: 36293426 PMCID: PMC9604468 DOI: 10.3390/ijms232012569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
Oleuropein (OLEU) is an important indicator of the quality and authenticity of extra virgin olive oils (EVOO). Electrochemical sensors and biosensors for the detection of oleuropein can be used to test the adulteration of extra virgin olive oils. The present study aimed at the qualitative and quantitative determination of oleuropein in commercial EVOO samples by applying electrochemical techniques, cyclic voltammetry (CV) and square wave voltammetry (SWV). The sensing devices used were two newly constructed enzyme biosensors, supported on single-layer carbon-nanotube-modified carbon screen-printed electrode (SPE/SWCNT) on whose surface tyrosinase (SPE/SWCNT/Tyr) and laccase (SPE/SWCNT/Lac) were immobilized, respectively. The active surfaces of the two biosensors were analyzed and characterized by different methods, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) and the results confirmed the efficient immobilization of the enzymes. SPE/SWCNT/Tyr was characterized by a low detection limit (LOD = 9.53 × 10−8 M) and a very good sensitivity (0.0718 μA·μM−1·cm−2) over a wide linearity range from 0.49 to 11.22 μM. The process occurring at the biosensor surface corresponds to kinetics (h = 0.90), and tyrosinase showed a high affinity towards OLEU. The tyrosinase-based biosensor was shown to have superior sensitive properties to the laccase-based one. Quantitative determination of OLEU in EVOOs was performed using SPE/SWCNT/Tyr and the results confirmed the presence of the compound in close amounts in the EVOOs analysed, proving that they have very good sensory properties.
Collapse
|
30
|
Sea-urchin-like cobalt-MOF on electrospun carbon nanofiber mat as a self-supporting electrode for sensing of xanthine and uric acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Thakur A, Kumar A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155219. [PMID: 35421493 DOI: 10.1016/j.scitotenv.2022.155219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Environmental safety has become a significant issue for the safety of living species, humans, and the ecosystem as a consequence of the harmful and detrimental consequences of various pollutants such as pesticides, heavy metals, dyes, etc., emitted into the surroundings. To resolve this issue, various efforts, legal acts, scientific and technological perspectives have been embraced, but still remain a global concern. Furthermore, due to non-portability, complex detection, and inappropriate on-site recognition of sophisticated laboratory tools, the real-time analysis of these environmental contaminants has been limited. As a result of innovative nano bioconjugation and nanofabrication techniques, nanotechnology enables enhanced nanomaterials (NMs) based (bio)sensors demonstrating ultra-sensitivity and a short detection time in real-time analysis, as well as superior sensitivity, reliability, and selectivity have been developed. Several researchers have demonstrated the potent detection of pollutants such as Hg2+ ion by the usage of AgNP-MD in electronic and optoelectronic methods with a detection limit of 5-45 μM which is quite significant. Taking into consideration of such tremendous research, herein, the authors have highlighted 21st-century strategies towards NMs based biosensor technology for pollutants detection, including nano biosensors, enzyme-based biosensors, electrochemical-based biosensors, carbon-based biosensors and optical biosensors for on-site identification and detection of target analytes. This article will provide a brief overview of the significance of utilizing NMs-based biosensors for the detection of a diverse array of hazardous pollutants, and a thorough understanding of the detection processes of NMs-based biosensors, as well as the limit of quantification (LOQ) and limit of detection (LOD) values, rendering researchers to focus on the world's need for a sustainable earth.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India; NCE, Department of Science and Technology, Government of Bihar, India.
| |
Collapse
|
32
|
Ovais M, You M, Ahmad J, Djellabi R, Ali A, Akhtar MH, Abbas M, Chen C. Engineering carbon nanotubes for sensitive viral detection. Trends Analyt Chem 2022; 153:116659. [PMID: 35527799 PMCID: PMC9054723 DOI: 10.1016/j.trac.2022.116659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023]
Abstract
Viral infections have been proven a severe threat to human beings, and the pandemic of Coronavirus Disease 2019 (COVID-19) has become a societal health concern, including mental distress and morbidity. Therefore, the early diagnosis and differentiation of viral infections are the prerequisite for curbing the local and global spread of viruses. To this end, carbon nanotubes (CNTs) based virus detection strategies are developed that provide feasible alternatives to conventional diagnostic techniques. Here in this review, an overview of the design and engineering of CNTs-based sensors for virus detection is summarized, followed by the nano-bio interactions used in developing biosensors. Then, we classify the viral sensors into covalently engineered CNTs, non-covalently engineered CNTs, and size-tunable CNTs arrays for viral detection, based on the type of CNTs-based nano-bio interfaces. Finally, the current challenges and prospects of CNTs-based sensors for virus detection are discussed.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, PR China
| | - Jalal Ahmad
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Ridha Djellabi
- Università degli Studi di Milano, Dipartimento di Chimica, Via Gogi 19, 20133, Milano, Italy
| | - Arbab Ali
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Mahmood Hassan Akhtar
- Department of Chemistry, School of Applied Sciences and Humanities, National University of Technology, Islamabad, 42000, Pakistan
| | - Manzar Abbas
- Institute for Molecules and Materials, Radboud University Nijmegen Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China,University of Chinese Academy of Sciences, Beijing, 100049, PR China,GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, PR China,Corresponding author. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| |
Collapse
|
33
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
34
|
Shariati S, Ghaffarinejad A, Omidinia E. Early detection of multiple sclerosis (MS) as a neurodegenerative disease using electrochemical nano-aptasensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Graur F, Puia A, Mois EI, Moldovan S, Pusta A, Cristea C, Cavalu S, Puia C, Al Hajjar N. Nanotechnology in the Diagnostic and Therapy of Hepatocellular Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3893. [PMID: 35683190 PMCID: PMC9182427 DOI: 10.3390/ma15113893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is the most common liver malignancy and is among the top five most common cancers. Despite the progress of surgery and chemotherapy, the results are often disappointing, in part due to chemoresistance. This type of tumor has special characteristics that allow the improvement of diagnostic and treatment techniques used in clinical practice, by combining nanotechnology. This article presents a brief review of the literature focused on nano-conditioned diagnostic methods, targeted therapy, and therapeutic implications for the pathology of hepatocellular carcinoma. Within each subdomain, several modern technologies with significant impact were highlighted: serological, imaging, or histopathological diagnosis; intraoperative detection; carrier-type nano-conditioned therapy, thermal ablation, and gene therapy. The prospects offered by nanomedicine will strengthen the hope of more efficient diagnoses and therapies in the future.
Collapse
Affiliation(s)
- Florin Graur
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Aida Puia
- Department of General Practitioner, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| | - Emil Ioan Mois
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Simona Cavalu
- Department of Medical Biophysics, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Cosmin Puia
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Nadim Al Hajjar
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| |
Collapse
|
36
|
Gupta SS, Singh KP, Gupta S, Dusinska M, Rahman Q. Do Carbon Nanotubes and Asbestos Fibers Exhibit Common Toxicity Mechanisms? NANOMATERIALS 2022; 12:nano12101708. [PMID: 35630938 PMCID: PMC9145953 DOI: 10.3390/nano12101708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers. In this review, we present a comparative analysis between CNTs and asbestos fibers using the following four parameters: (1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and (4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream pathways associated with altered gene expression data from both asbestos and CNT exposure. Our results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated toxicity is concerned.
Collapse
Affiliation(s)
- Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Krishna P. Singh
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway;
| | - Qamar Rahman
- Amity Institute of Biotechnology, Amity University, Lucknow 226028, India
- Correspondence:
| |
Collapse
|
37
|
Moradi O. Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A-A review. Food Chem Toxicol 2022; 165:113074. [PMID: 35489466 DOI: 10.1016/j.fct.2022.113074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Overuse of Bisphenol A (BPA), a proven endocrine disruptor, has become a serious public health problem across the world. It has the potential to harm both the environment and human health, notably reproductive disorders, heart disease, and diabetes. Accordingly, much attention has been paid to the detection of BPA to promote food safety and environmental health. Carbon based nanostructures have proven themselves well in a variety of applications, such as energy storage, catalysis and sensors, due to their remarkable properties. Therefore, researchers have recently focused on fabricating electrochemical BPA sensors based on carbon nanostructures due to their unique advantages, such as real-time monitoring, simplicity, high selectivity, high sensitivity and easy operation. The purpose of the current review was to summarize the recent findings on carbon nanostructures for electrochemically sensing the BPA, as well as relevant future prospects and ongoing challenges.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
38
|
Ghanbari-Ghanbarlo M, Bozorgmehr MR, Morsali A. Non-Covalent Hybridization of Carbon Nanotube by Single-Stranded DNA Homodecamers: in-silico Approach. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Yang S, Zhao D, Xu Z, Yu H, Zhou J. Molecular understanding of acetylcholinesterase adsorption on functionalized carbon nanotubes for enzymatic biosensors. Phys Chem Chem Phys 2022; 24:2866-2878. [PMID: 35060980 DOI: 10.1039/d1cp04997f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immobilization of acetylcholinesterase on different nanomaterials has been widely used in the field of amperometric organophosphorus pesticide (OP) biosensors. However, the molecular adsorption mechanism of acetylcholinesterase on a nanomaterial's surface is still unclear. In this work, multiscale simulations were utilized to study the adsorption behavior of acetylcholinesterase from Torpedo californica (TcAChE) on amino-functionalized carbon nanotube (CNT) (NH2-CNT), carboxyl-functionalized CNT (COOH-CNT) and pristine CNT surfaces. The simulation results show that the active center and enzyme substrate tunnel of TcAChE are both close to and oriented toward the surface when adsorbed on the positively charged NH2-CNT, which is beneficial to the direct electron transfer (DET) and accessibility of the substrate molecule. Meanwhile, the NH2-CNT can also reduce the tunnel cost of the enzyme substrate of TcAChE, thereby further accelerating the transfer rate of the substrate from the surface or solution to the active center. However, for the cases of TcAChE adsorbed on COOH-CNT and pristine CNT, the active center and substrate tunnel are far away from the surface and face toward the solution, which is disadvantageous for the DET and transportation of enzyme substrate. These results indicate that NH2-CNT is more suitable for the immobilization of TcAChE. This work provides a better molecular understanding of the adsorption mechanism of TcAChE on functionalized CNT, and also provides theoretical guidance for the ordered immobilization of TcAChE and the design, development and improvement of TcAChE-OPs biosensors based on functionalized carbon nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
41
|
Choi SH, Lee JS, Choi WJ, Seo JW, Choi SJ. Nanomaterials for IoT Sensing Platforms and Point-of-Care Applications in South Korea. SENSORS (BASEL, SWITZERLAND) 2022; 22:610. [PMID: 35062576 PMCID: PMC8781063 DOI: 10.3390/s22020610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 05/03/2023]
Abstract
Herein, state-of-the-art research advances in South Korea regarding the development of chemical sensing materials and fully integrated Internet of Things (IoT) sensing platforms were comprehensively reviewed for verifying the applicability of such sensing systems in point-of-care testing (POCT). Various organic/inorganic nanomaterials were synthesized and characterized to understand their fundamental chemical sensing mechanisms upon exposure to target analytes. Moreover, the applicability of nanomaterials integrated with IoT-based signal transducers for the real-time and on-site analysis of chemical species was verified. In this review, we focused on the development of noble nanostructures and signal transduction techniques for use in IoT sensing platforms, and based on their applications, such systems were classified into gas sensors, ion sensors, and biosensors. A future perspective for the development of chemical sensors was discussed for application to next-generation POCT systems that facilitate rapid and multiplexed screening of various analytes.
Collapse
Affiliation(s)
- Seung-Ho Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Joon-Seok Lee
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Won-Jun Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Jae-Woo Seo
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
42
|
Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD. Carbon nanotubes in biomedical applications: current status, promises, and challenges. CARBON LETTERS 2022; 32:1207-1226. [PMCID: PMC9252568 DOI: 10.1007/s42823-022-00364-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 06/17/2023]
Abstract
In the past decade, there has been phenomenal progress in the field of nanomaterials, especially in the area of carbon nanotubes (CNTs). In this review, we have elucidated a contemporary synopsis of properties, synthesis, functionalization, toxicity, and several potential biomedical applications of CNTs. Researchers have reported remarkable mechanical, electronic, and physical properties of CNTs which makes their applications so versatile. Functionalization of CNTs has been valuable in modifying their properties, expanding their applications, and reducing their toxicity. In recent years, the use of CNTs in biomedical applications has grown exponentially as they are utilized in the field of drug delivery, tissue engineering, biosensors, bioimaging, and cancer treatment. CNTs can increase the lifespan of drugs in humans and facilitate their delivery directly to the targeted cells; they are also highly efficient biocompatible biosensors and bioimaging agents. CNTs have also shown great results in detecting the SARS COVID-19 virus and in the field of cancer treatment and tissue engineering which is substantially required looking at the present conditions. The concerns about CNTs include cytotoxicity faced in in vivo biomedical applications and its high manufacturing cost are discussed in the review.
Collapse
Affiliation(s)
- Bhushan O. Murjani
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Parikshit S. Kadu
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Manasi Bansod
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Saloni S. Vaidya
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Manishkumar D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| |
Collapse
|
43
|
Pusta A, Tertiș M, Cristea C, Mirel S. Wearable Sensors for the Detection of Biomarkers for Wound Infection. BIOSENSORS 2021; 12:1. [PMID: 35049629 PMCID: PMC8773884 DOI: 10.3390/bios12010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Infection represents a major complication that can affect wound healing in any type of wound, especially in chronic ones. There are currently certain limitations to the methods that are used for establishing a clinical diagnosis of wound infection. Thus, new, rapid and easy-to-use strategies for wound infection diagnosis need to be developed. To this aim, wearable sensors for infection diagnosis have been recently developed. These sensors are incorporated into the wound dressings that are used to treat and protect the wound, and are able to detect certain biomarkers that can be correlated with the presence of wound infection. Among these biomarkers, the most commonly used ones are pH and uric acid, but a plethora of others (lactic acid, oxygenation, inflammatory mediators, bacteria metabolites or bacteria) have also been detected using wearable sensors. In this work, an overview of the main types of wearable sensors for wound infection detection will be provided. These sensors will be divided into electrochemical, colorimetric and fluorimetric sensors and the examples will be presented and discussed comparatively.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
44
|
Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021; 19:423. [PMID: 34915901 PMCID: PMC8679967 DOI: 10.1186/s12951-021-01174-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the exciting breakthroughs in medical technology, cancer still accounts for one of the principle triggers of death and conventional therapeutic modalities often fail to attain an effective cure. Recently, nanobiotechnology has made huge advancement in cancer therapy with gigantic application potential because of their ability in achieving precise and controlled drug release, elevating drug solubility and reducing adverse effects. Carbon nanotubes (CNTs), one of the most promising carbon-related nanomaterials, have already achieved much success in biomedical field. Due to their excellent optical property, thermal and electronic conductivity, easy functionalization ability and high drug loading capacity, CNTs can be applied in a multifunctional way for cancer treatment and diagnosis. In this review, we will give an overview of the recent progress of CNT-based drug delivery systems in cancer theranostics, which emphasizes their targetability to intracellular components of tumor cells and extracellular elements in tumor microenvironment. Moreover, a detailed introduction on how CNTs penetrate inside the tumor cells to reach their sites of action and achieve the therapeutic effects, as well as their diagnostic applications will be highlighted. ![]()
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
45
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
46
|
Parchekani J, Hashemzadeh H, Allahverdi A, Siampour H, Abbasian S, Moshaii A, Naderi-Manesh H. Zepto molar miRNA-21 detection in gold Nano-islands platform toward early cancer screening. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
A systematic review on the detection and monitoring of toxic gases using carbon nanotube-based biosensors. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
48
|
Lim WY, Lan BL, Ramakrishnan N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. BIOSENSORS 2021; 11:bios11110434. [PMID: 34821650 PMCID: PMC8615996 DOI: 10.3390/bios11110434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 05/07/2023]
Abstract
Coronavirus disease (COVID-19) is a global health crisis caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard test for diagnosing COVID-19. Although it is highly accurate, this lab test requires highly-trained personnel and the turn-around time is long. Rapid and inexpensive immuno-diagnostic tests (antigen or antibody test) are available, but these point of care (POC) tests are not as accurate as the RT-PCR test. Biosensors are promising alternatives to these rapid POC tests. Here we review three types of recently developed biosensors for SARS-CoV-2 detection: surface plasmon resonance (SPR)-based, electrochemical and field-effect transistor (FET)-based biosensors. We explain the sensing principles and discuss the advantages and limitations of these sensors. The accuracies of these sensors need to be improved before they could be translated into POC devices for commercial use. We suggest potential biorecognition elements with highly selective target-analyte binding that could be explored to increase the true negative detection rate. To increase the true positive detection rate, we suggest two-dimensional materials and nanomaterials that could be used to modify the sensor surface to increase the sensitivity of the sensor.
Collapse
|
49
|
Li W, Qamar SA, Qamar M, Basharat A, Bilal M, Iqbal HMN. Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants. Int J Biol Macromol 2021; 190:700-712. [PMID: 34520777 DOI: 10.1016/j.ijbiomac.2021.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/05/2023]
Abstract
Fast industrialization and population growth are associated with the increased release of hazardous contaminants in the environment. These hazardous substances, including pharmaceutical, biomedical, personal-care products, heavy metals, endocrine-disrupters, and colorants, pollute the ecosystem by disturbing nature's balance. Nanotechnology has paved new horizons in biochemical engineering by designing novel approaches of integrating nanoscale science with biotechnology to construct improved quality materials for target uptake of pollutants. Recently, nanostructured materials have emerged as research and development frontiers owing to their excellent properties. The tailored designing of nanohybrids constructs with physicochemical alteration enables the nano-bioadsorbent with high target specificity and efficiency. The development of eco-friendly, biodegradable, cost-efficient, and biopolymer-based nanohybrid constructs is gaining attention to remove hazardous environmental pollutants. κ-carrageenan biopolymer is frequently used with different nanomaterials to design nanohybrid bio-adsorbents to remove various contaminants. Herein, the potentialities of carrageenan-based nanohybrid constructs in environmental remediation have been summarized. Different nanostructures, e.g., silica, non-magnetic/magnetic, carbon nanotubes/nanorods, nanoclay/nanomembrane, metal organic frameworks, graphene oxide, and other nanomaterials have been described in combination with carrageenan biopolymers focusing on environmental remediation.
Collapse
Affiliation(s)
- Wenqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
50
|
Ranjan P, Yadav S, Sadique MA, Khan R, Chaurasia JP, Srivastava AK. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. BIOSENSORS 2021; 11:414. [PMID: 34821629 PMCID: PMC8615372 DOI: 10.3390/bios11110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
| | - Raju Khan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamana Prasad Chaurasia
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|