1
|
Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr Polym 2023; 299:120142. [PMID: 36876773 DOI: 10.1016/j.carbpol.2022.120142] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Chitin is the most abundant natural amino polysaccharide, showing various practical applications owing to its functional properties. However, there are barriers in the development due to the difficulty of chitin extraction and purification, regarding its high crystallinity and low solubility. In recent years, some novel technologies such as microbial fermentation, ionic liquid, electrochemical extraction have emerged for the green extraction of chitin from new sources. Furthermore, nanotechnology, dissolution systems and chemical modification were applied to develop a variety of chitin-based biomaterials. Remarkably, chitin was used in delivering active ingredients and developing functional foods for weight loss, lipid reduction, gastrointestinal health, and anti-aging. Moreover, the application of chitin-based materials was expanded into medicine, energy and the environment. This review outlined the emerging extraction methods and processing routes of different chitin sources and advances in applying chitin-based materials. We aimed to provide some direction for the multi-disciplinary production and application of chitin.
Collapse
|
2
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
3
|
Tsurkan MV, Voronkina A, Khrunyk Y, Wysokowski M, Petrenko I, Ehrlich H. Progress in chitin analytics. Carbohydr Polym 2021; 252:117204. [DOI: 10.1016/j.carbpol.2020.117204] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
|
4
|
Muzychka L, Voronkina A, Kovalchuk V, Smolii OB, Wysokowski M, Petrenko I, Youssef DTA, Ehrlich I, Ehrlich H. Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:15. [PMID: 33424135 PMCID: PMC7776313 DOI: 10.1007/s00339-020-04167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
UNLABELLED The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00339-020-04167-0.
Collapse
Affiliation(s)
- Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Oleg B. Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522 Egypt
| | | | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
5
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
6
|
Talevski T, Talevska Leshoska A, Pejoski E, Pejin B, Machałowski T, Wysokowski M, Tsurkan MV, Petrova O, Sivkov V, Martinovic R, Pantovic S, Khrunyk Y, Trylis V, Fursov A, Djurovic M, Jesionowski T, Ehrlich H. Identification and first insights into the structure of chitin from the endemic freshwater demosponge Ochridaspongia rotunda (Arndt, 1937). Int J Biol Macromol 2020; 162:1187-1194. [PMID: 32615216 DOI: 10.1016/j.ijbiomac.2020.06.247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Studies on the identification, properties and function of chitin in sponges (Porifera), which are recognized as the first multicellular organisms on Earth, continue to be of fundamental scientific interest. The occurrence of chitin has so far been reported in 21 marine sponge species and only in two inhabiting fresh water. In this study, we present the discovery of α-chitin in the endemic demosponge Ochridaspongia rotunda, found in Lake Ohrid, which dates from the Tertiary. The presence of chitin in this species was confirmed using special staining, a chitinase test, FTIR, Raman and NEXAFS spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). In contrast to the case of marine sponges, chitin in O. rotunda has been found only within its holdfast, suggesting a role of chitin in the attachment of the sponge to the hard substratum. Isolated fibrous matter strongly resemble the shape and size of the sponge holdfast with membrane-like structure.
Collapse
Affiliation(s)
- Trajce Talevski
- Hydrobiological Institute, Naum Ohridski 50, 6000 Ohrid, Macedonia.
| | - Aleksandra Talevska Leshoska
- Hydrobiological Institute, Naum Ohridski 50, 6000 Ohrid, Macedonia; PHO BIOMED LAB, Vancho Pitosheski 19 a, 6000 Ohrid, Macedonia
| | - Elena Pejoski
- PHO BIOMED LAB, Vancho Pitosheski 19 a, 6000 Ohrid, Macedonia
| | - Boris Pejin
- Department of Life Sciences, Institute for Multidisciplinary Research - IMSI, University of Belgrade, 11030 Belgrade, Serbia
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany
| | - Mikhail V Tsurkan
- Max Bergmann Centre of Biomaterials, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Olga Petrova
- Federal Research Center Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic 167982, Russia
| | - Viktor Sivkov
- Federal Research Center Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic 167982, Russia
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro
| | - Snezana Pantovic
- Faculty of Medicine, University of Montenegro, Kruševac, 81000 Podgorica, Montenegro
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia; The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Volodymyr Trylis
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany
| | - Mirko Djurovic
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany; Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland.
| |
Collapse
|
7
|
Nowacki K, Stępniak I, Langer E, Tsurkan M, Wysokowski M, Petrenko I, Khrunyk Y, Fursov A, Bo M, Bavestrello G, Joseph Y, Ehrlich H. Electrochemical Approach for Isolation of Chitin from the Skeleton of the Black Coral Cirrhipathes sp. (Antipatharia). Mar Drugs 2020; 18:md18060297. [PMID: 32498448 PMCID: PMC7344944 DOI: 10.3390/md18060297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of α-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals.
Collapse
Affiliation(s)
- Krzysztof Nowacki
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Berdychowo 4, 60965 Poznan, Poland
- Correspondence: (K.N.); (I.S.); ; (H.E.)
| | - Izabela Stępniak
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Berdychowo 4, 60965 Poznan, Poland
- Correspondence: (K.N.); (I.S.); ; (H.E.)
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, 01062 Dresden, Germany;
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.); (Y.J.)
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.); (Y.J.)
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, Ekaterinburg 620002, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, Ekaterinburg 620990, Russia
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.); (Y.J.)
| | - Marzia Bo
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy; (M.B.); (G.B.)
| | - Giorgio Bavestrello
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy; (M.B.); (G.B.)
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.); (Y.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.); (Y.J.)
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Correspondence: (K.N.); (I.S.); ; (H.E.)
| |
Collapse
|
8
|
İlk S, Ramanauskaitė A, Koç Bilican B, Mulerčikas P, Çam D, Onses MS, Torun I, Kazlauskaitė S, Baublys V, Aydın Ö, Zang LS, Kaya M. Usage of natural chitosan membrane obtained from insect corneal lenses as a drug carrier and its potential for point of care tests. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110897. [PMID: 32409054 DOI: 10.1016/j.msec.2020.110897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Chitosan is an indispensable biopolymer for use as a drug carrier thanks to its non-toxic, biodegradable, biocompatible, antimicrobial, and anti-oxidative nature. In previous studies, chitosan was first dissolved into weak acids and formed into gel, then used for carrying pharmaceutically active compounds such as nanoparticles, capsules, composites, and films. Using the produced chitosan gel after dissolving it in weak acids has advantages, such as ease of processing for loading the required amount of active substance and making the desired shape and size. However, dissolved chitosan loses some of its natural properties such as fibrous structure, crystallinity, and thermal stability. In this study, for the first time, three-dimensional chitosan lenses obtained from an insect's (Tabanus bovinus) compound eyes, with the original shape intact, were tested as a drug carrier. A model drug, quercetin, was loaded into chitosan membrane, and its release profile was examined. Also, a point-of-care test was conducted for both chitin and chitosan membranes. Chitin and chitosan membranes obtained from insect corneal lenses were characterized by using FTIR, TGA, elemental analysis, and surface wettability analysis as well as stereo, binocular, and scanning electron microscopies. It was observed that chitosan membrane could be used as a drug carrier material. Both chitin and chitosan membranes will be improved for lateral flow assay, and these membranes can be tested for other bioengineering applications in further studies.
Collapse
Affiliation(s)
- Sedef İlk
- Department of Immunology, Faculty of Medicine, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - Aurelija Ramanauskaitė
- Department of Biology, Faculty of Natural Science, Vytautas Magnus University, 44248 Kaunas, Lithuania
| | - Behlül Koç Bilican
- Department of Biotechnology and Molecular Biology, Aksaray University, 68100 Aksaray, Turkey
| | - Povilas Mulerčikas
- Vytautas Magnus University, K. Donelaičio str. 58, 44248 Kaunas, Lithuania
| | - Dilek Çam
- Department of Biology, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - M Serdar Onses
- ERNAM - Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey; Department of Materials Science and Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Ilker Torun
- ERNAM - Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
| | | | - Vykintas Baublys
- Department of Biology, Faculty of Natural Science, Vytautas Magnus University, 44248 Kaunas, Lithuania
| | - Ömer Aydın
- ERNAM - Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey; Department of Biomedical Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Lian-Sheng Zang
- Jilin Engineering Research Center of Resource Insects Industrialization, Jilin Agricultural University, Changchun 130118, PR China
| | - Murat Kaya
- Department of Biotechnology and Molecular Biology, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
9
|
Li H, Yu H, Wu W, Sun P. Chemical constituents of sponge Pseudoceratina sp. and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
11
|
Wardhono EY, Pinem MP, Kustiningsih I, Agustina S, Oudet F, Lefebvre C, Clausse D, Saleh K, Guénin E. Cellulose Nanocrystals to Improve Stability and Functional Properties of Emulsified Film Based on Chitosan Nanoparticles and Beeswax. NANOMATERIALS 2019; 9:nano9121707. [PMID: 31795284 PMCID: PMC6955958 DOI: 10.3390/nano9121707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The framework of this work was to develop an emulsion-based edible film based on a chitosan nanoparticle matrix with cellulose nanocrystals (CNCs) as a stabilizer and reinforcement filler. The chitosan nanoparticles were synthesized based on ionic cross-linking with sodium tripolyphosphate and glycerol as a plasticizer. The emulsified film was prepared through a combination system of Pickering emulsification and water evaporation. The oil-in-water emulsion was prepared by dispersing beeswax into an aqueous colloidal suspension of chitosan nanoparticles using high-speed homogenizer at room temperature. Various properties were characterized, including surface morphology, stability, water vapor barrier, mechanical properties, compatibility, and thermal behaviour. Experimental results established that CNCs and glycerol improve the homogeneity and stability of the beeswax dispersed droplets in the emulsion system which promotes the water-resistant properties but deteriorates the film strength at the same time. When incorporating 2.5% w/w CNCs, the tensile strength of the composite film reached the maximum value, 74.9 MPa, which was 32.5% higher than that of the pure chitosan film, while the optimum one was at 62.5 MPa, and was obtained by the addition of 25% w/w beeswax. All film characterizations demonstrated that the interaction between CNCs and chitosan molecules improved their physical and thermal properties.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
- Correspondence: (E.Y.W.); (E.G.); Tel.: +62-254-395-502 (E.Y.W.); +33-344-234-584 (E.G.)
| | - Mekro Permana Pinem
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Indar Kustiningsih
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
| | - Sri Agustina
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
| | - François Oudet
- Service d’Analyse Physico-Chimique (SAPC), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (F.O.); (C.L.)
| | - Caroline Lefebvre
- Service d’Analyse Physico-Chimique (SAPC), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (F.O.); (C.L.)
| | - Danièle Clausse
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Khashayar Saleh
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
- Correspondence: (E.Y.W.); (E.G.); Tel.: +62-254-395-502 (E.Y.W.); +33-344-234-584 (E.G.)
| |
Collapse
|
12
|
Machałowski T, Wysokowski M, Tsurkan MV, Galli R, Schimpf C, Rafaja D, Brendler E, Viehweger C, Żółtowska-Aksamitowska S, Petrenko I, Czaczyk K, Kraft M, Bertau M, Bechmann N, Guan K, Bornstein SR, Voronkina A, Fursov A, Bejger M, Biniek-Antosiak K, Rypniewski W, Figlerowicz M, Pokrovsky O, Jesionowski T, Ehrlich H. Spider Chitin: An Ultrafast Microwave-Assisted Method for Chitin Isolation from Caribena versicolor Spider Molt Cuticle. Molecules 2019; 24:E3736. [PMID: 31623238 PMCID: PMC6833065 DOI: 10.3390/molecules24203736] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
Chitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders. These organisms "lose" large quantities of cuticles during their molting cycle. Here, we present for the first time a highly effective method for the isolation of chitin from Caribena versicolor spider molt cuticle, as well as its identification and characterization using modern analytical methods. We suggest that the tube-like molt cuticle of this spider can serve as a naturally prefabricated and renewable source of tubular chitin with high potential for application in technology and biomedicine.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany.
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Erica Brendler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Christine Viehweger
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60637 Poznan, Poland.
| | - Michael Kraft
- Institute of Chemical Technology, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Martin Bertau
- Institute of Chemical Technology, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, TU Dresden, 01307 Dresden, Germany.
| | - Stefan R Bornstein
- Center for Regenerative Therapies Dresden, TU Dresden, 01307 Dresden, Germany.
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany.
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnytsia, Ukraine.
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61704 Poznan, Poland.
| | | | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61704 Poznan, Poland.
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61704 Poznan, Poland.
| | - Oleg Pokrovsky
- Geoscience and Environment Toulouse, UMR 5563 CNRS, 31400 Toulouse, France.
- BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina St. 36, 634050 Tomsk, Russia.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| |
Collapse
|
13
|
Sustainable ecofriendly phytoextract mediated one pot green recovery of chitosan. Sci Rep 2019; 9:13832. [PMID: 31554844 PMCID: PMC6761131 DOI: 10.1038/s41598-019-50133-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/31/2019] [Indexed: 02/05/2023] Open
Abstract
Chitin and chitosan are biopolymers that have diverse applications in medicine, agriculture, food, cosmetics, pharmaceuticals, wastewater treatment and textiles. With bio-origins, they easily blend with biological systems and show exemplified compatibility which is mandatory when it comes to biomedical research. Chitin and chitosan are ecofriendly, however the processes that are used to recover them aren’t ecofriendly. The focus of this work is to attempt an ecofriendly, sustainable phytomediated one pot recovery of chitosan from commercial chitin and from crab and shrimp shells and squid pen solid wastes. Graviola extracts have been employed, given the fact file that their active ingredients acetogenins actively interact with chitin in insects (resulting in its application as an insecticide). With that as the core idea, the graviola extracts were chosen for orchestrating chitin recovery and a possible chitin to chitosan transformation. The results confirm that graviola extracts did succeed in recovery of chitosan nanofibers from commercial chitin flakes and recovery of chitosan particles directly from solid marine wastes of crab, shrimp and squids. This is a first time report of a phyto-extract mediated novel chitosan synthesis method.
Collapse
|
14
|
Machałowski T, Wysokowski M, Żółtowska-Aksamitowska S, Bechmann N, Binnewerg B, Schubert M, Guan K, Bornstein SR, Czaczyk K, Pokrovsky O, Kraft M, Bertau M, Schimpf C, Rafaja D, Tsurkan M, Galli R, Meissner H, Petrenko I, Fursov A, Voronkina A, Figlerowicz M, Joseph Y, Jesionowski T, Ehrlich H. Spider Chitin. The biomimetic potential and applications of Caribena versicolor tubular chitin. Carbohydr Polym 2019; 226:115301. [PMID: 31582063 DOI: 10.1016/j.carbpol.2019.115301] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Diverse fields of modern technology and biomedicine can benefit from the application of ready-to-use chitin-based scaffolds. In this work we show for the first time the applicability of tubular and porous chitin from Caribena versicolor spiders as a scaffold for the development of an effective CuO/Cu(OH)2 catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AM), and as a scaffold for the tissue engineering of selected cells. The formation of CuO/Cu(OH)2 phases on and within the chitinous tubes leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol. On the other hand, experimental results provide for the first time strong evidence for the biocompatibility of spider chitin with different cell types, a human progenitor cell line (hPheo1), as well as cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) that were cultured on a tube-like scaffold.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden 01307, Germany
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden 01307, Germany
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan 60637, Poland
| | - Oleg Pokrovsky
- Geoscience and Environment Toulouse, UMR 5563 CNRS, Toulouse 31400, France; BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - Michael Kraft
- Institute of Chemical Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Martin Bertau
- Institute of Chemical Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Mikhail Tsurkan
- Leibnitz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsia 21018, Ukraine
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61704, Poland
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany.
| |
Collapse
|
15
|
Vacelet J, Erpenbeck D, Diaz C, Ehrlich H, Fromont J. New family and genus for Dendrilla-like sponges with characters of Verongiida. Part I redescription of Dendrilla lacunosa Hentschel 1912, diagnosis of the new family Ernstillidae and Ernstilla n. g. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Fromont J, Żółtowska-Aksamitowska S, Galli R, Meissner H, Erpenbeck D, Vacelet J, Diaz C, Tsurkan MV, Petrenko I, Youssef D, Ehrlich H. New family and genus of a Dendrilla-like sponge with characters of Verongiida. Part II. Discovery of chitin in the skeleton of Ernstilla lacunosa. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Klinger C, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan MV, Galli R, Petrenko I, Machałowski T, Ereskovsky A, Martinović R, Muzychka L, Smolii OB, Bechmann N, Ivanenko V, Schupp PJ, Jesionowski T, Giovine M, Joseph Y, Bornstein SR, Voronkina A, Ehrlich H. Express Method for Isolation of Ready-to-Use 3D Chitin Scaffolds from Aplysina archeri (Aplysineidae: Verongiida) Demosponge. Mar Drugs 2019; 17:md17020131. [PMID: 30813373 PMCID: PMC6409528 DOI: 10.3390/md17020131] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields.
Collapse
Affiliation(s)
- Christine Klinger
- Institute of Physical Chemistry, TU Bergakademie-Freiberg, Leipziger str. 29, 09559 Freiberg, Germany.
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany.
| | - Mikhail V Tsurkan
- Leibnitz Institute of Polymer Research Dresden, 01069 Dresden, Germany.
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany.
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland.
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d'Endoume, 13003 Marseille, France.
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 19992 Saint-Petersburg, Russia.
| | - Rajko Martinović
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro.
| | - Lyubov Muzychka
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str., 1, 02094 Kyiv, Ukraine.
| | - Oleg B Smolii
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str., 1, 02094 Kyiv, Ukraine.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Viatcheslav Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia.
- Naturalis Biodiversity Center, 2332 Leiden, The Netherlands.
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland.
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK.
| | - Alona Voronkina
- National Pirogov Memorial Medical University, Vinnytsya, Department of Pharmacy, Pirogov str. 56, 21018, Vinnytsia, Ukraine.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany.
| |
Collapse
|
18
|
Shaala LA, Asfour HZ, Youssef DTA, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan M, Galli R, Meissner H, Petrenko I, Tabachnick K, Ivanenko VN, Bechmann N, Muzychka LV, Smolii OB, Martinović R, Joseph Y, Jesionowski T, Ehrlich H. New Source of 3D Chitin Scaffolds: The Red Sea Demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Mar Drugs 2019; 17:E92. [PMID: 30717221 PMCID: PMC6410331 DOI: 10.3390/md17020092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of α-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine.
Collapse
Affiliation(s)
- Lamiaa A Shaala
- Natural Products Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt.
| | - Hani Z Asfour
- Department of Medical Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany.
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany.
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Konstantin Tabachnick
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden 01307, Germany.
| | - Lyubov V Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kiev 02094, Ukraine.
| | - Oleg B Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kiev 02094, Ukraine.
| | - Rajko Martinović
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro.
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| |
Collapse
|
19
|
Ehrlich H, Shaala LA, Youssef DTA, Żółtowska- Aksamitowska S, Tsurkan M, Galli R, Meissner H, Wysokowski M, Petrenko I, Tabachnick KR, Ivanenko VN, Bechmann N, Joseph Y, Jesionowski T. Discovery of chitin in skeletons of non-verongiid Red Sea demosponges. PLoS One 2018; 13:e0195803. [PMID: 29763421 PMCID: PMC5953452 DOI: 10.1371/journal.pone.0195803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Suez Canal University Hospital, Suez Canal University, Ismailia, Egypt
| | - Diaa T. A. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sonia Żółtowska- Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology Poznan University of Technology, Poznan, Poland
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology Poznan University of Technology, Poznan, Poland
| | - Iaroslav Petrenko
- Institute of Experimental Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology Poznan University of Technology, Poznan, Poland
| |
Collapse
|