1
|
Liu Q, Huo X, Wang P, Zhao F, Yuan G, Yang C, Su J. Lactobacillus casei displaying MCP2α and FlaC delivered by PLA microspheres effectively enhances the immune protection of largemouth bass (Micropterus salmoides) against LMBV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109870. [PMID: 39218416 DOI: 10.1016/j.fsi.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Largemouth bass ranavirus (LMBV) seriously affects the development of largemouth bass (Micropterus salmoides) industry and causes huge economic losses. Oral vaccine can be a promising method for viral disease precaution. In this study, MCP2α was identified as a valuable epitope region superior to MCP and MCP2 of LMBV by neutralizing antibody experiments. Then, recombinant Lactobacillus casei expressing the fusion protein MCP2αC (MCP2α as antigen, C represents flagellin C from Aeromonas hydrophila as adjuvant) on surface was constructed and verified. Further, PLA microsphere vaccine loading recombinant MCP2αC L. casei was prepared. The PLA microspheres vaccine were observed by scanning electron microscopy and showed a smooth, regular spherical surface with a particle size distribution between 100 and 200 μm. Furthermore, we evaluated the tolerance of PLA-MCP2αC vaccine in simulated gastric fluid and simulated intestinal fluid, and the results showed that PLA-MCP2αC can effectively resist the gastrointestinal environment. Moreover, the protective effect of PLA-MCP2αC against LMBV was evaluated after oral immunization and LMBV challenge. The results showed that PLA-MCP2αC effectively up-regulated the activity of serum biochemical enzymes (T-SOD, T-AOC, LZM, complement C3) and induced the mRNA expression of representative immune genes (IL-1β, TNF-α, IFN-γ, MHC-IIα, Mx, IgM) in spleen and head kidney tissues. The survival rate of largemouth bass vaccinated with PLA-MCP2αC increased from 24 % to 68 %. Meanwhile, PLA-MCP2αC inhibited the LMBV burden in spleen, head kidney and liver tissues and attenuated tissue damage in spleen. These results suggested that PLA-MCP2αC can be used as a candidate oral vaccine against LMBV infection in aquaculture.
Collapse
Affiliation(s)
- Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengxu Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Mani G, Rajendran I, Jayakumar T, Mani A, Govindaraju R, Dhayalan S. Evaluation of Antibiofilm and Antiquorum Sensing Activities of Fucoidan Characterized from Padina boryana against Nosocomial Pathogens. Appl Biochem Biotechnol 2024; 196:4727-4744. [PMID: 37947943 DOI: 10.1007/s12010-023-04767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Modern functional chemicals that can be employed in biotechnology, pharmaceutics, and food science are a sustainable source to be found in seaweeds. The bioactivity of the majority of these marine compounds has received scant research. Fucoidan is a highly sulfated polysaccharide with a range of bioactivities, including an antipathogenic effect. There is still much to learn about the relationship between fucoidan structure and its function in pathogen infections. By employing microwave and probe sonication to create crude fucoidan, DEAE-cellulose anion-exchange chromatography was used to further purify the substance. Purified fucoidan was structurally characterized using UV-Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and NMR analysis. The results of the structural analysis demonstrate that sulfates and hydroxyl groups are present in the isolated fucoidan. There are fucose residues, according to the NMR data. The present study investigates the bioactivity of fucoidan, a polysaccharide derived from the brown algae Padina boryana, as a potent weapon against the known nosocomial diseases Proteus vulgaris and Salmonella enterica. Fluorescence microscopy was used to show that fucoidan antibiofilm action is totally effective against Proteus vulgaris and Salmonella enterica biofilm formations as well as planktonic cell growths at dosages over 25 g/mL. Here, using in vitro investigations of the possible inactivation of molecules that are regulated by acyl-homoserine lactone (AHL) in both bacterial species, we explore the antiquarum sensing and antibiofilm capabilities of fucoidan. According to the present study, extracted fucoidan from Padina boryana can be used to generate antibacterial compounds and operate as a quorum-sensing inhibitor to combat side effects and antibiotic resistance.
Collapse
Affiliation(s)
- Geetha Mani
- Department of Microbiology, Annamalai University, Chidambaram, 608002, Tamil Nadu, India
| | - Ishwarya Rajendran
- Department of Microbiology, Annamalai University, Chidambaram, 608002, Tamil Nadu, India
| | - Tharani Jayakumar
- Department of Microbiology, Annamalai University, Chidambaram, 608002, Tamil Nadu, India
| | - Arunkumar Mani
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, 612001, Tamil Nadu, India
| | | | - Sangeetha Dhayalan
- Department of Microbiology, Annamalai University, Chidambaram, 608002, Tamil Nadu, India.
| |
Collapse
|
3
|
Jiang Z, Li J, Wang J, Pan Y, Liang S, Hu Y, Wang L. Multifunctional fucoidan-loaded Zn-MOF-encapsulated microneedles for MRSA-infected wound healing. J Nanobiotechnology 2024; 22:152. [PMID: 38575979 PMCID: PMC10996189 DOI: 10.1186/s12951-024-02398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Khorami F, Babaei S, Valizadeh S, Naseri M, Golmakani M. Bilayer coatings for extension of the shelf life of fish fillets: Incorporating seaweed sulfated polysaccharides in chitosan-alginate LbL structures. Food Sci Nutr 2024; 12:2511-2522. [PMID: 38628222 PMCID: PMC11016443 DOI: 10.1002/fsn3.3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
The aim of this study was to develop a new active coating of layer-by-layer (LbL) structure composed of alginate (as polyanions) and chitosan (as a polycation) containing sulfated polysaccharide (fucoidan) from Sargassum angustifolium, to protect rainbow trout fillets during refrigerated storage. Chitosan and alginate do not combine with each other as a homogeneous solution, so they are suitable for multilayer coatings. The results demonstrated that coating samples with chitosan and fucoidan significantly improved the quality of fish fillets and extended their shelf life from 6 to 16 days. The chemical values (TBARS and TVB-N) and bacterial growth (total viable count (TVC), total psychrophilic count (PTC), and lactic acid bacteria (LAB)) indicated lower levels in the LbL coating samples containing fucoidan compared to the alginate and control samples. Among the different coating samples, the LbL coating with fucoidan (AChF1) exhibited lower weight loss, improved chromaticity (L*, a*, and b*), and minimal changes in mechanical and sensory evaluations. Based on the findings, AChF1 was the most effective treatment for increasing the shelf life of rainbow trout fillets during refrigerated storage. Therefore, it has potential applications in the food packaging industry.
Collapse
Affiliation(s)
- Fatemeh Khorami
- Department of Natural Resources and Environmental Engineering, School of AgricultureShiraz UniversityShirazIran
| | - Sedigheh Babaei
- Department of Natural Resources and Environmental Engineering, School of AgricultureShiraz UniversityShirazIran
| | - Shahriyar Valizadeh
- Food and Nutritional Sciences ProgramNorth Carolina Agricultural and Technical State UniversityGreensboroNorth CarolinaUSA
| | - Mahmood Naseri
- Department of Natural Resources and Environmental Engineering, School of AgricultureShiraz UniversityShirazIran
| | | |
Collapse
|
5
|
Jahaniyan Bahnamiri A, Abedian Kenari A, Babaei S, Banavreh A, Soltanian S. Dietary sulfated polysaccharides extracted from Caulerpa sp. and Padina sp. modulated physiological performance, antibacterial activity and ammonia challenge test in juvenile rainbow trout (Oncorhynchus mykiss). J Anim Physiol Anim Nutr (Berl) 2024; 108:324-337. [PMID: 37867426 DOI: 10.1111/jpn.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/06/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Nowadays, the use of seaweed derivatives in aquaculture has drawn attention for their potential as an immunostimulant and growth promotor. The sulfated polysaccharide extracted (SPE ) from green (Caulerpa sp.; SPC) and brown (Padina sp.; SPP) seaweeds with two concentrations (0.05% and 0.1%); nominated in four groups: SPC0.05 , SPC0.1 , SPP0.05 , SPP0.1 and control group (free of SPE ) were used for juvenile rainbow trout (Oncorhynchus mykiss) diet. Fish (N: 150; 8.5 ± 0.2 g) were selected aleatory distributed in 15 circular tanks (triplicate for the group) and fed test diets for 56 days. The outcomes revealed that the supplementation of SPE up to 1 g kg-1 failed to show significant differences in the organosomatic indices as compared to the control group. The most inferior protein value of dress-out fish composition was observed in the fish fed the control diet, which was statistically lower than the SCP0.1 group (p < 0.05), while no significant difference was observed in other macronutrient composition among the treatments. Total monounsaturated fatty acid (MUFA) had lower trend in the carcass of fish fed SPE supplemented diets, so that lowest MUFA were observed in SPC0.05 group (p < 0.05; 25.22 ± 4.29%). The lowest value of docosahexaenoic acid was observed in the control diet compared to the SPE -supplemented diets (p < 0.05). The serum alternative complement pathway levels in all treatments tend to promote compared to the control treatment. A similar trend was observed for lysozyme activity. According to the results, the superoxide dismutase (SOD) value were highest in SPC0.05 and SPC0.1 compared to the other treatments (p < 0.05), while a further elevation of the SPE Padina sp. extracted level (SPP0.1 ) leads to a decrease in SOD value. Thiobarbituric acid reactive substances of plasma was indicated not to influence by sulfated polysaccharide extracts in the refrigerated storage. The lowest serum stress indicators were observed in fish fed SPP0.05 group postchallenge test. Taken together, our outcomes revealed that SPE of two species of seaweeds bestows benefits in some of the immunity and antioxidant system. Also, notable elevations in HUFA were observed in juvenile rainbow trout fed supplemented with SPE .
Collapse
Affiliation(s)
- Ahmad Jahaniyan Bahnamiri
- Aquaculture Department, Natural Resources and Marine Sciences Faculty, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Abdolmohammad Abedian Kenari
- Aquaculture Department, Natural Resources and Marine Sciences Faculty, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sedigheh Babaei
- Natural Resources and Environmental Engineering Department, School of Agriculture, Shiraz University, Shiraz, Fars, Iran
| | - Akbar Banavreh
- Animal Science Department, Agriculture Faculty, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Siyavash Soltanian
- Aquatic Animal Health and Diseases Department, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| |
Collapse
|
6
|
Bakky MAH, Tran NT, Zhang Y, Hu H, Lin H, Zhang M, Liang H, Zhang Y, Li S. Effects of dietary supplementation of Gracilaria lemaneiformis-derived sulfated polysaccharides on the growth, antioxidant capacity, and innate immunity of rabbitfish (Siganus canaliculatus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108933. [PMID: 37419435 DOI: 10.1016/j.fsi.2023.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The dietary supplementation of red seaweed-derived polysaccharides has been shown to be beneficial to fish and shellfish aquaculture. However, the function of red seaweed (Gracilaria lemaneiformis)-extracted polysaccharide (GLP) on the health status of rabbitfish (Siganus canaliculatus) is still unknown. This study explored the influences of GLP on growth performance, antioxidant activity, and immunity of rabbitfish. Herein, the fish were fed commercial pelleted feed incorporated with the diverse amount of GLP: 0 (control), 0.10 (GLP0.10), and 0.15 g kg-1 (GLP0.15) for 60 days. The results demonstrated that dietary GLP0.15 significantly elevated FBW and WG, while feed utilization efficiency improved (reduced feed conversion ratio and increased protein efficiency ratio) upon GLP0.10 treatment, regarding the control (P < 0.05). Also, dietary administration of GLP0.15 suggestively improved the serum acid phosphatase and lysozyme activity as well as hepatic total antioxidant capacity, catalase, and superoxide dismutase activity. In contrast, GLP0.15decreased the serum alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and malonaldehyde activity when compared to the control (P<0.05). Moreover, the lipase (36.08 and 16.46 U/mgprot in GLP0.10 and GLP0.15, respectively) and amylase (0.43 and 0.23 U/mgprot in GLP0.10 and GLP0.15, respectively) activity recorded the maximum values than the control (8.61 and 0.13 U/mgprot, respectively).Further, the intestinal morphometry was developed (such as increased villus length, width, and area) in the fish fed with a GLP-supplemented diet compared to the control. The KEGG pathway analysis unveiled that several differentially expressed genes (DEGs) in control vs. GLP0.10 and control vs. GLP0.15 were associated with metabolic or immune-associated pathways like antigen processing and presentation, phagosome, complement and coagulation cascades, and platelet activation. The DEGs, namely C3, f5, fgb, MHC1, and cfb, were evaluated in control vs. GLP0.10 and C3 and MHC1 in control vs. GLP0.15, suggesting their possible contributions to GLP-regulated immunity. Additionally, the cumulative mortality of rabbitfish after the Vibrio parahaemolyticus challenge was lower in both GLP0.10 (8.88%) and GLP0.15 (11.11%) than in control (33.33%) (P<0.05). Thus, these findings direct the potential use of GLP as an immunostimulant and growth promoter in rabbitfish aquaculture.
Collapse
Affiliation(s)
- Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Hang Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Haitian Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
7
|
Flores-Contreras EA, Araújo RG, Rodríguez-Aguayo AA, Guzmán-Román M, García-Venegas JC, Nájera-Martínez EF, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldivar R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2445. [PMID: 37447006 DOI: 10.3390/plants12132445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.
Collapse
Affiliation(s)
- Elda A Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Muriel Guzmán-Román
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Erik Francisco Nájera-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
8
|
Carvajal-Barriga EJ, Fields RD. Sulfated polysaccharides as multi target molecules to fight COVID 19 and comorbidities. Heliyon 2023; 9:e13797. [PMID: 36811015 PMCID: PMC9936785 DOI: 10.1016/j.heliyon.2023.e13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
The majority of research to combat SARS-CoV-2 infection exploits the adaptive immune system, but innate immunity, the first line of defense against pathogenic microbes, is equally important in understanding and controlling infectious diseases. Various cellular mechanisms provide physiochemical barriers to microbe infection in mucosal membranes and epithelia, with extracellular polysaccharides, particularly sulfated polysaccharides, being among the most widespread and potent extracellular and secreted molecules blocking and deactivating bacteria, fungi, and viruses. New research reveals that a range of polysaccharides effectively inhibits COV-2 infection of mammalian cells in culture. This review provides an overview of sulfated polysaccharides nomenclature, its significance as immunomodulators, antioxidants, antitumors, anticoagulants, antibacterial, and as potent antivirals. It summarizes current research on various interactions of sulfated polysaccharide with a range of viruses, including SARS-CoV-2, and their application for potential treatments for COVID-19. These molecules interact with biochemical signaling in immune cell responses, by actions in oxidative reactions, cytokine signaling, receptor binding, and through antiviral and antibacterial toxicity. These properties provide the potential for the development of novel therapeutic treatments for SARS-CoV-2 and other infectious diseases from modified polysaccharides.
Collapse
Affiliation(s)
- Enrique Javier Carvajal-Barriga
- Pontificia Universidad Católica Del Ecuador, Neotropical Center for the Biomass Research, Quito, Ecuador.,The Eunice Kennedy Shriver National Institutes of Health, National Institute of Children and Human Development, Bethesda, MD, USA
| | - R Douglas Fields
- The Eunice Kennedy Shriver National Institutes of Health, National Institute of Children and Human Development, Bethesda, MD, USA
| |
Collapse
|
9
|
In Vitro Evaluation of Brown Seaweed Laminaria spp. as a Source of Antibacterial and Prebiotic Extracts That Could Modulate the Gastrointestinal Microbiota of Weaned Pigs. Animals (Basel) 2023; 13:ani13050823. [PMID: 36899679 PMCID: PMC10000092 DOI: 10.3390/ani13050823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Laminaria spp. and their extracts have preventative potential as dietary supplements during weaning in pigs. The first objective of this study was to evaluate increasing concentrations of four whole seaweed biomass samples from two different Laminaria species harvested in two different months in a weaned pig faecal batch fermentation assay. Particularly, February and November whole seaweed biomass samples of L. hyperborea (LHWB-F and LHWB-N) and L. digitata (LDWB-F and LDWB-N) were used. In the next part of the study, the increasing concentrations of four extracts produced from L. hyperborea (LHE1-4) and L. digitata (LDE1-4) were evaluated in individual pure-culture growth assays using a panel of beneficial and pathogenic bacterial strains (second objective). The LHE1-4 and LDE1-4 were obtained using different combinations of temperature, incubation time and volume of solvent within a hydrothermal-assisted extraction methodology (E1-4). In the batch fermentation assay, the L. hyperborea biomass samples, LHWB-F and LHWB-N, lowered Bifidobacterium spp. counts compared to the L. digitata biomass samples, LDWB-F and LDWB-N (p < 0.05). LHWB-F and LDWB-N reduced Enterobacteriaceae counts (p < 0.05). LHWB-F and LDWB-F were selected as the most and least promising sources of antibacterial extracts from which to produce LHE1-4 and LDE1-4. In the pure-culture growth assays, E1- and E4-produced extracts were predominantly associated with antibacterial and bifidogenic activities, respectively. LHE1 reduced both Salmonella Typhimurium and Enterotoxigenic Escherichia coli with LDE1 having a similar effect on both of these pathogenic strains, albeit to a lesser extent (p < 0.05). Both LHE1 and LDE1 reduced B. thermophilum counts (p < 0.05). LDE4 exhibited strong bifidogenic activity (p < 0.05), whereas LHE4 increased Bifidobacterium thermophilum and Lactiplantibacillus plantarum counts (p < 0.05). In conclusion, antibacterial and bifidogenic extracts of Laminaria spp. were identified in vitro with the potential to alleviate gastrointestinal dysbiosis in newly weaned pigs.
Collapse
|
10
|
Haggag YA, Abd Elrahman AA, Ulber R, Zayed A. Fucoidan in Pharmaceutical Formulations: A Comprehensive Review for Smart Drug Delivery Systems. Mar Drugs 2023; 21:112. [PMID: 36827153 PMCID: PMC9965894 DOI: 10.3390/md21020112] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Fucoidan is a heterogeneous group of polysaccharides isolated from marine organisms, including brown algae and marine invertebrates. The physicochemical characteristics and potential bioactivities of fucoidan have attracted substantial interest in pharmaceutical industries in the past few decades. These polysaccharides are characterized by possessing sulfate ester groups that impart negatively charged surfaces, low/high molecular weight, and water solubility. In addition, various promising bioactivities have been reported, such as antitumor, immunomodulatory, and antiviral effects. Hence, the formulation of fucoidan has been investigated in the past few years in diverse pharmaceutical dosage forms to be able to reach their site of action effectively. Moreover, they can act as carriers for various drugs in value-added drug delivery systems. The current work highlights the attractive biopharmaceutical properties of fucoidan being formulated in oral, inhalable, topical, injectable, and other advanced formulations treating life-quality-affecting diseases. Therefore, the present work points out the current status of fucoidan pharmaceutical formulations for future research transferring their application from in vitro and in vivo studies to clinical application and market availability.
Collapse
Affiliation(s)
- Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, El-Geish Street, Tanta 31527, Egypt
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abeer A. Abd Elrahman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, El-Geish Street, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Street 49, 67663 Kaiserslautern, Germany
| | - Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Street 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, El-Guish Street, Tanta 31527, Egypt
| |
Collapse
|
11
|
Zhou J, Feng M, Zhang W, Kuang R, Zou Q, Su J, Yuan G. Oral administration of hepcidin and chitosan benefits growth, immunity, and gut microbiota in grass carp ( Ctenopharyngodon idella). Front Immunol 2022; 13:1075128. [PMID: 36591242 PMCID: PMC9798086 DOI: 10.3389/fimmu.2022.1075128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Intensive high-density culture patterns are causing an increasing number of bacterial diseases in fish. Hepcidin links iron metabolism with innate immunity in the process of resisting bacterial infection. In this study, the antibacterial effect of the combination of hepcidin (Cihep) and chitosan (CS) against Flavobacterium columnare was investigated. The dosing regimen was also optimized by adopting a feeding schedule of every three days and every seven days. After 56 days of feeding experiment, grass carp growth, immunity, and gut microbiota were tested. In vitro experiments, Cihep and CS can regulate iron metabolism and antibacterial activity, and that the combination of Cihep and CS had the best protective effect. In vivo experiments, Cihep and CS can improve the growth index of grass carp. After challenge with Flavobacterium columnare, the highest survival rate was observed in the Cihep+CS-3d group. By serum biochemical indicators assay and Prussian blue staining, Cihep and CS can increase iron accumulation and decrease serum iron levels. The contents of lysozyme and superoxide dismutase in Cihep+CS-3d group increased significantly. Meanwhile, Cihep and CS can significantly reduce the pathological damage of gill tissue. The 16S rRNA sequencing results showed that Cihep and CS can significantly increase the abundance and diversity of grass carp gut microbiota. These results indicated that the protective effect of consecutive 3-day feeding followed by a 3-day interval was better than that of consecutive 7-day feeding followed by a 7-day interval, and that the protective effect of Cihep in combination with chitosan was better than that of Cihep alone. Our findings optimize the feeding pattern for better oral administration of Cihep in aquaculture.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Mengzhen Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Kuang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Zou
- Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,*Correspondence: Gailing Yuan,
| |
Collapse
|
12
|
Alreshidi M, Badraoui R, Adnan M, Patel M, Alotaibi A, Saeed M, Ghandourah M, Al-Motair KA, Arif IA, Albulaihed Y, Snoussi M. Phytochemical profiling, antibacterial, and antibiofilm activities of Sargassum sp. (brown algae) from the Red Sea: ADMET prediction and molecular docking analysis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Lee MK, Ryu H, Lee JY, Jeong HH, Baek J, Van JY, Kim MJ, Jung WK, Lee B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Mar Drugs 2022; 20:540. [PMID: 36005543 PMCID: PMC9410049 DOI: 10.3390/md20080540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Seaweeds are receiving much attention as a rich source of bioactive compounds with cosmeceutical potential. Recent studies have revealed that Sargassum spp., a genus of brown algae in the family Sargassaceae, has multiple functions in preventing and improving skin aging. Sargassum spp. contains many bioactive compounds, such as fucoidan, fucoxanthin, terpenoids, flavonoids, and meroterpenoids. These Sargassum spp. extracts and derivative compounds have excellent potential for skincare, as they exhibit skin health-promoting properties, including antioxidants, anti-inflammation, whitening, skin barrier repair, and moisturizing. Therefore, searching for bioactive compounds in marine resources such as Sargassum spp. could be an attractive approach to preventing and improving skin aging. The current review focused on the various biological abilities of Sargassum extracts or derived compounds for anti-skin aging.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Ji Yun Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Hyeon Hak Jeong
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Jiwon Baek
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Ji Yun Van
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| |
Collapse
|
14
|
Effect of Saccharides Coating on Antibacterial Potential and Drug Loading and Releasing Capability of Plasma Treated Polylactic Acid Films. Int J Mol Sci 2022; 23:ijms23158821. [PMID: 35955952 PMCID: PMC9369226 DOI: 10.3390/ijms23158821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023] Open
Abstract
More than half of the hospital-associated infections worldwide are related to the adhesion of bacteria cells to biomedical devices and implants. To prevent these infections, it is crucial to modify biomaterial surfaces to develop the antibacterial property. In this study, chitosan (CS) and chondroitin sulfate (ChS) were chosen as antibacterial coating materials on polylactic acid (PLA) surfaces. Plasma-treated PLA surfaces were coated with CS either direct coating method or the carbodiimide coupling method. As a next step for the combined saccharide coating, CS grafted samples were immersed in ChS solution, which resulted in the polyelectrolyte complex (PEC) formation. Also in this experiment, to test the drug loading and releasing efficiency of the thin film coatings, CS grafted samples were immersed into lomefloxacin-containing ChS solution. The successful modifications were confirmed by elemental composition analysis (XPS), surface topography images (SEM), and hydrophilicity change (contact angle measurements). The carbodiimide coupling resulted in higher CS grafting on the PLA surface. The coatings with the PEC formation between CS-ChS showed improved activity against the bacteria strains than the separate coatings. Moreover, these interactions increased the lomefloxacin amount adhered to the film coatings and extended the drug release profile. Finally, the zone of inhibition test confirmed that the CS-ChS coating showed a contact killing mechanism while drug-loaded films have a dual killing mechanism, which includes contact, and release killing.
Collapse
|
15
|
Depolymerized Fractions of Sulfated Galactans Extracted from Gracilaria fisheri and Their Antibacterial Activity against Vibrio parahaemolyticus and Vibrio harveyi. Mar Drugs 2022; 20:md20080469. [PMID: 35892937 PMCID: PMC9394303 DOI: 10.3390/md20080469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Various seaweed sulfated polysaccharides have been explored for antimicrobial application. This study aimed to evaluate the antibacterial activity of the native Gracilaria fisheri sulfated galactans (NSG) and depolymerized fractions against the marine pathogenic bacteria Vibrio parahaemolyticus and Vibrio harveyi. NSG was hydrolyzed in different concentrations of H2O2 to generate sulfated galactans degraded fractions (SGF). The molecular weight, structural characteristics, and physicochemical parameters of both NSG and SGF were determined. The results revealed that the high molecular weight NSG (228.33 kDa) was significantly degraded to SGFs of 115.76, 3.79, and 3.19 kDa by hydrolysis with 0.4, 2, and 10% H2O2, respectively. The Fourier transformed spectroscopy (FTIR) and 1H− and 13C−Nuclear magnetic resonance (NMR) analyses demonstrated that the polysaccharide chain structure of SGFs was not affected by H2O2 degradation, but alterations were detected at the peak positions of some functional groups. In vitro study showed that SGFs significantly exerted a stronger antibacterial activity against V. parahaemolyticus and V. harveyi than NSG, which might be due to the low molecular weight and higher sulfation properties of SGF. SGF disrupted the bacterial cell membrane, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for the exploitation and utilization of low-molecular-weight sulfated galactans from G. fisheri to prevent and control the shrimp pathogens.
Collapse
|
16
|
Tang S, Zhang H, Mei L, Dou K, Jiang Y, Sun Z, Wang S, Hasanin MS, Deng J, Zhou Q. Fucoidan-derived carbon dots against Enterococcus faecalis biofilm and infected dentinal tubules for the treatment of persistent endodontic infections. J Nanobiotechnology 2022; 20:321. [PMID: 35836267 PMCID: PMC9281061 DOI: 10.1186/s12951-022-01501-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) biofilm-associated persistent endodontic infections (PEIs) are one of the most common tooth lesions, causing chronic periapical periodontitis, root resorption, and even tooth loss. Clinical root canal disinfectants have the risk of damaging soft tissues (e.g., mucosa and tongue) and teeth in the oral cavity, unsatisfactory to the therapy of PEIs. Nanomaterials with remarkable antibacterial properties and good biocompatibility have been developed as a promising strategy for removing pathogenic bacteria and related biofilm. Herein, carbon dots (CDs) derived from fucoidan (FD) are prepared through a one-pot hydrothermal method for the treatment of PEIs. The prepared FDCDs (7.15 nm) with sulfate groups and fluorescence property are well dispersed and stable in water. Further, it is found that in vitro FDCDs display excellent inhibiting effects on E. faecalis and its biofilm by inducing the formation of intracellular and extracellular reactive oxygen species and altering bacterial permeability. Importantly, the FDCDs penetrated the root canals and dentinal tubules, removing located E. faecalis biofilm. Moreover, the cellular assays show that the developed FDCDs have satisfactory cytocompatibility and promote macrophage recruitment. Thus, the developed FDCDs hold great potential for the management of PEIs.
Collapse
Affiliation(s)
- Shang Tang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, 266003, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Keke Dou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yuying Jiang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, 266400, China
| | - Shuai Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mohamed Sayed Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266003, China. .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, 266003, China.
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266003, China. .,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China. .,University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
17
|
Interaction between live seaweed and various Vibrio species by co-culture: Antibacterial activity and seaweed microenvironment. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Venardou B, O'Doherty JV, Maher S, Ryan MT, Gath V, Ravindran R, Kiely C, Rajauria G, Garcia-Vaquero M, Sweeney T. Potential of a fucoidan-rich Ascophyllum nodosum extract to reduce Salmonella shedding and improve gastrointestinal health in weaned pigs naturally infected with Salmonella. J Anim Sci Biotechnol 2022; 13:39. [PMID: 35369884 PMCID: PMC8978420 DOI: 10.1186/s40104-022-00685-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dietary supplementation with a fucoidan-rich Ascophyllum nodosum extract (ANE), possessing an in vitro anti-Salmonella Typhimurium activity could be a promising on-farm strategy to control Salmonella infection in pigs. The objectives of this study were to: 1) evaluate the anti-S. Typhimurium activity of ANE (containing 46.6% fucoidan, 18.6% laminarin, 10.7% mannitol, 4.6% alginate) in vitro, and; 2) compare the effects of dietary supplementation with ANE and Zinc oxide (ZnO) on growth performance, Salmonella shedding and selected gut parameters in naturally infected pigs. This was established post-weaning (newly weaned pig experiment) and following regrouping of post-weaned pigs and experimental re-infection with S. Typhimurium (challenge experiment). RESULTS In the in vitro assay, increasing ANE concentrations led to a linear reduction in S. Typhimurium counts (P < 0.05). In the newly weaned pig experiment (12 replicates/treatment), high ANE supplementation increased gain to feed ratio, similar to ZnO supplementation, and reduced faecal Salmonella counts on d 21 compared to the low ANE and control groups (P < 0.05). The challenge experiment included thirty-six pigs from the previous experiment that remained on their original dietary treatments (control and high ANE groups with the latter being renamed to ANE group) apart from the ZnO group which transitioned onto a control diet on d 21 (ZnO-residual group). These dietary treatments had no effect on performance, faecal scores, Salmonella shedding or colonic and caecal Salmonella counts (P > 0.05). ANE supplementation decreased the Enterobacteriaceae counts compared to the control. Enterobacteriaceae counts were also reduced in the ZnO-residual group compared to the control (P < 0.05). ANE supplementation decreased the expression of interleukin 22 and transforming growth factor beta 1 in the ileum compared to the control (P < 0.05). CONCLUSIONS ANE supplementation was associated with some beneficial changes in the composition of the colonic microbiota, Salmonella shedding, and the expression of inflammatory genes associated with persistent Salmonella infection.
Collapse
Affiliation(s)
- Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shane Maher
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vivian Gath
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rajeev Ravindran
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Kiely
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Susilo B, Rohim A, Wahyu ML. Serial Extraction Technique of Rich Antibacterial Compounds in Sargassum cristaefolium Using Different Solvents and Testing their Activity. CURRENT BIOACTIVE COMPOUNDS 2022; 18. [DOI: 10.2174/1573407217666210910095732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 09/02/2023]
Abstract
Background:
Sargassum cristaefolium, as one of the brown seaweeds locally found in
Indonesia, is extracted using the serial technique employing different solvents.
Methods:
S. cristaefolium powder (50 mesh) was extracted with three different solvents, including
hexane, ethyl acetate, and methanol. S. cristaefolium powder residue was dried prior to serial re-extraction
using different solvents. Three serial extracts were obtained and named as 1-stage extract,
2-stage extract, and 3-stage extract. Besides, a single-step extract (i.e., extraction using only
methanol) was produced to be compared with three serial extracts in antibacterial activity tests (against
E. coli and S. aureus). The three serial extracts were detected for their antibacterial compounds
using GC-MS, LC-HRMS, and FT-IR.
Results:
The 3-stage extract exhibited the highest extraction yield. On S. aureus, the inhibition
zone in all extracts was not significantly different. On E.coli, the highest inhibition zone
(5.42±0.14 mm) was of the 3-stage extract; indeed, it was higher than both antibiotic and a single-
step extract. Antibacterial compounds, such as phenol, 9-Tricosene(Z)-, palmitic acid, and
oleamide, were present in all extracts. Other antibacterial compound types, both the 1-stage and 2-stage
extracts, contained 7 types, whilst the 3-stage extract contained the most types (11 types). Particularly,
hexyl cinnamic aldehyde, betaine and several cinnamic aldehyde groups were detected only
in the 3-stage extract comprising the dominant area. The carboxylic acid groups were detected in
all extracts to confirm the fatty acid structure.
Conclusions:
The serial extraction technique could produce the 3-stage extract which exhibited the
strongest antibacterial activity and contained the richest antibacterial compounds.
Collapse
Affiliation(s)
- Bambang Susilo
- Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Brawijaya, Malang-East Java,
Indonesia
| | - Abd. Rohim
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas
Brawijaya, Malang-East Java, Indonesia | Department of Agricultural Product Technology, Institut Teknologi dan
Sains Nahdlatul Ulama Pasuruan, Pasuruan-East Java, Indonesia
| | - Midia Lestari Wahyu
- Central Laboratory of Life Science, Universitas
Brawijaya, Malang-East Java, Indonesia
| |
Collapse
|
20
|
Abdel-Latif HMR, Dawood MAO, Alagawany M, Faggio C, Nowosad J, Kucharczyk D. Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. FISH & SHELLFISH IMMUNOLOGY 2022; 122:115-130. [PMID: 35093524 DOI: 10.1016/j.fsi.2022.01.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the application of immunomodulators in aquaculture has become of an urgent need because of high incidence of fish and shrimp diseases. For a long time, researchers have paid great interest to find suitable, relatively economical, and environmentally safe immunostimulant products to be used either as feed or water additives to boost immunity and increase the resistance of fish and shrimp against the challenging pathogens. Probiotics, prebiotics, synbiotics, phytobiotics, herbal extracts, microalgae, macroalgae, and essential oils have been extensively evaluated. Brown seaweeds (Phaeophyceae) are a large group of multi-cellular macroalgae that are widely distributed in marine aquatic environments. They are abundant in several bioactive sulfated polysaccharides known as fucoidan (FCD). Research studies demonstrated the beneficial functions of FCD in human medicine because of its immunomodulating, antioxidant, anti-allergic, antitumor, antiviral, anti-inflammatory, and hepatoprotective effects. In aquaculture, several researchers have tested the benefits and potential applications of FCD in aquafeed. This literature review provides an updated information and key references of research studies that focused principally on using FCD in aquaculture. Its effects on growth, intestinal health, antioxidant capacity, and immune responses of several finfish and shellfish species will be discussed. This review paper will also highlight the potential efficacy and mechanisms of FCD in the modulation of toxicity signs and increasing the resistance of fish and shrimp against bacterial and viral infections. Hence, this contribution will be valuable to maintain aquaculture sustainability and to improve the health and welfare of farmed fish and shrimp.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S.Agata-Messina, Italy
| | - Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
21
|
Zhang X, Wei Z, Xue C. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit Rev Food Sci Nutr 2022; 62:8935-8953. [PMID: 34132606 DOI: 10.1080/10408398.2021.1937042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many bioactive ingredients with health effects such as antioxidant, anti-inflammatory and neuroprotective possess low bioavailability due to poor solubility and sensitivity. Fucoidan is an ideal material for encapsulating bioactive ingredients because of its unique physicochemical and biological properties, which can improve the function and application of bioactive ingredients. Nevertheless, there is still a lack of review about the physicochemical properties as well as functionalities of fucoidan and the application of fucoidan-based delivery systems in functional food. Hence, in this review, recent advances on the structure, chemical modification, physicochemical properties and biological activity of fucoidan are summarized. This review systematacially describes the recent update on the fucoidan as a wall material for delivering nutraceuticals with a broad discussion on various types of delivery systems ranging from nanoparticles, nanoparticle/bead complexes, emulsions, edible films, nanocapsules and hydrogels. Futhermore, the technical scientific issues of the application of fucoidan in the field of food are emphasized. On the basis of more comprehensive and deeper understandings, the review ends with a concluding remark on future directions of fucoidan-based delivery systems for purposes. Novel fucoidan-based delivery systems such as aerogels, Pickering emulsions, emulsion-filled-hydrogels, liposomes-in-fucoidan, co-delivery systems of bioactive igredients can be designed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
23
|
Venardou B, O’Doherty JV, Garcia-Vaquero M, Kiely C, Rajauria G, McDonnell MJ, Ryan MT, Sweeney T. Evaluation of the Antibacterial and Prebiotic Potential of Ascophyllum nodosum and Its Extracts Using Selected Bacterial Members of the Pig Gastrointestinal Microbiota. Mar Drugs 2021; 20:41. [PMID: 35049896 PMCID: PMC8778111 DOI: 10.3390/md20010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022] Open
Abstract
Ascophyllum nodosum and its extracts are promising antibacterial and prebiotic dietary supplements for pigs. The objectives of this study were to evaluate the effects of the increasing concentrations of: (1) two whole biomass samples of A. nodosum with different harvest seasons, February (ANWB-F) and November (ANWB-N), in a weaned pig faecal batch fermentation assay, and (2) A. nodosum extracts produced using four different extraction conditions of a hydrothermal-assisted extraction methodology (ANE1-4) and conventional extraction methods with water (ANWE) and ethanol (ANEE) as solvent in individual pure culture growth assays using a panel of beneficial and pathogenic bacterial strains. In the batch fermentation assay, ANWB-F reduced Bifidobacterium spp. counts (p < 0.05) while ANWB-N increased total bacterial counts and reduced Bifidobacterium spp. and Enterobacteriaceae counts (p < 0.05). Of the ANE1-4, produced from ANWB-F, ANWE and ANEE that were evaluated in the pure culture growth assays, the most interesting extracts were the ANE1 that reduced Salmonella Typhimurium, enterotoxigenic Escherichia coli and B. thermophilum counts and the ANE4 that stimulated B. thermophilum growth (p < 0.05). In conclusion, the extraction method and conditions influenced the bioactivities of the A. nodosum extracts with ANE1 and ANE4 exhibiting distinct antibacterial and prebiotic properties in vitro, respectively, that merit further exploration.
Collapse
Affiliation(s)
- Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (M.T.R.)
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Claire Kiely
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Mary J. McDonnell
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Marion T. Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (M.T.R.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (M.T.R.)
| |
Collapse
|
24
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
25
|
O’Doherty JV, Venardou B, Rattigan R, Sweeney T. Feeding Marine Polysaccharides to Alleviate the Negative Effects Associated with Weaning in Pigs. Animals (Basel) 2021; 11:2644. [PMID: 34573610 PMCID: PMC8465377 DOI: 10.3390/ani11092644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In young pigs, the challenge of weaning frequently leads to dysbiosis. This predisposes pigs to intestinal infection such as post-weaning diarrhoea (PWD). Dietary interventions to reduce PWD have centred on dietary inclusion of antibiotic growth promoters (AGP) and antimicrobials in pig diets, or high concentrations of zinc oxide. These interventions are under scrutiny because of their role in promoting multidrug resistant bacteria and the accumulation of minerals in the environment. There are significant efforts being made to identify natural alternatives. Marine polysaccharides, such as laminarin and fucoidan from macroalgae and chitosan and chito-oligosaccharides from chitin, are an interesting group of marine dietary supplements, due to their prebiotic, antibacterial, anti-oxidant, and immunomodulatory activities. However, natural variability exists in the quantity, structure, and bioactivity of these polysaccharides between different macroalgae species and harvest seasons, while the wide range of available extraction methodologies and conditions results in further variation. This review will discuss the development of the gastrointestinal tract in the pig during the post-weaning period and how feeding marine polysaccharides in both the maternal and the post-weaned pig diet, can be used to alleviate the negative effects associated with weaning.
Collapse
Affiliation(s)
- John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| | - Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| |
Collapse
|
26
|
Cabral EM, Mondala JRM, Oliveira M, Przyborska J, Fitzpatrick S, Rai DK, Sivagnanam SP, Garcia-Vaquero M, O'Shea D, Devereux M, Tiwari BK, Curtin J. Influence of molecular weight fractionation on the antimicrobial and anticancer properties of a fucoidan rich-extract from the macroalgae Fucus vesiculosus. Int J Biol Macromol 2021; 186:994-1002. [PMID: 34216667 DOI: 10.1016/j.ijbiomac.2021.06.182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the antimicrobial and anticancer properties of a fucoidan extract and subsequent fractions isolated from the macroalgae Fucus vesiculosus. The fractions obtained (>300 kDa, <300 kDa, <100 kDa, <50 kDa and <10 kDa) could inhibit the growth of B. subtilis, E. coli, L. innocua and P. fluorescens when assayed at concentrations between 12,500 and 25,000 ppm. The bacterial growth was monitored by optical density (OD) measurements (600 nm, 24 h) at 30 °C or 37 °C, depending upon on the strain used. The extracted fractions were also tested for cytotoxicity against brain glioblastoma cancer cells using the Alamar Blue assay for 24 h, 48 h and 6 days. The >300 kDa fraction presented the lowest IC50 values (0.052% - 24 h; 0.032% - 6 days). The potential bioactivity of fucoidan as an antimicrobial and anticancer agent was demonstrated in this study. Hence, the related mechanisms of action should be explored in a near future.
Collapse
Affiliation(s)
| | - Julie Rose Mae Mondala
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Márcia Oliveira
- Department of Food Hygiene and Technology, Institute of Food Science and Technology, University of León, León, Spain.
| | - Joanna Przyborska
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, Co. Kerry, Ireland.
| | | | - Dilip K Rai
- Teagasc Food Research Centre Ashtown, Dublin 15, Ireland.
| | | | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Denis O'Shea
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Michael Devereux
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| | | | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| |
Collapse
|
27
|
Cabral EM, Oliveira M, Mondala JRM, Curtin J, Tiwari BK, Garcia-Vaquero M. Antimicrobials from Seaweeds for Food Applications. Mar Drugs 2021; 19:md19040211. [PMID: 33920329 PMCID: PMC8070350 DOI: 10.3390/md19040211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The exponential growth of emerging multidrug-resistant microorganisms, including foodborne pathogens affecting the shelf-life and quality of foods, has recently increased the needs of the food industry to search for novel, natural and eco-friendly antimicrobial agents. Macroalgae are a bio-diverse group distributed worldwide, known to produce multiple compounds of diverse chemical nature, different to those produced by terrestrial plants. These novel compounds have shown promising health benefits when incorporated into foods, including antimicrobial properties. This review aims to provide an overview of the general methods and novel compounds with antimicrobial properties recently isolated and characterized from macroalgae, emphasizing the molecular pathways of their antimicrobial mechanisms of action. The current scientific evidence on the use of macroalgae or macroalgal extracts to increase the shelf-life of foods and prevent the development of foodborne pathogens in real food products and their influence on the sensory attributes of multiple foods (i.e., meat, dairy, beverages, fish and bakery products) will also be discussed, together with the main challenges and future trends of the use of marine natural products as antimicrobials.
Collapse
Affiliation(s)
- Eduarda M. Cabral
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Márcia Oliveira
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, 24071 León, Spain;
| | - Julie R. M. Mondala
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - Brijesh K. Tiwari
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland
- Correspondence:
| |
Collapse
|
28
|
Ayrapetyan ON, Obluchinskaya ED, Zhurishkina EV, Skorik YA, Lebedev DV, Kulminskaya AA, Lapina IM. Antibacterial Properties of Fucoidans from the Brown Algae Fucus vesiculosus L. of the Barents Sea. BIOLOGY 2021; 10:67. [PMID: 33477817 PMCID: PMC7832856 DOI: 10.3390/biology10010067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Fucoidans, sulfated polysaccharides found in cell walls of brown algae, are considered as a promising antimicrobial component for various applications in medicine and the food industry. In this study, we compare the antibacterial properties of two fractions of fucoidan from the brown algae Fucus vesiculosus gathered in the littoral of the Barents Sea and sampled at different stages of purification. The crude fraction of fucoidan was isolated from algae by extraction with aqueous ethanol and sonication. The purified fraction was obtained by additional treatment of the crude fraction with a solution of calcium chloride. The structural features of both fractions were characterized in detail and their antibacterial effects against several Gram-positive and Gram-negative bacteria were compared by photometry, acridine orange staining assay, and atomic force microscopy. Fucoidan inhibited growth in all of the above microorganisms, showing a bacteriostatic effect with minimum inhibitory concentrations (MIC) in the range between 4 and 6 mg/mL, with E. coli being the most sensitive to both fractions. Changes in the chemical composition after treatment of the crude fraction with a solution of calcium chloride led to a decrease in the content of sulfates and uronic acids and diminished antibacterial activity.
Collapse
Affiliation(s)
- Olga N. Ayrapetyan
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia; (O.N.A.); (E.V.Z.); (D.V.L.); (A.A.K.)
- Kurchatov Genome Center—PNPI, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia
- Faculty of Biotechnologies, ITMO University, Kronverksky Prospekt 49, Building. A, 197101 Saint Petersburg, Russia
| | - Ekaterina D. Obluchinskaya
- Federal State Budgetary Scientific Institution of Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia;
| | - Elena V. Zhurishkina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia; (O.N.A.); (E.V.Z.); (D.V.L.); (A.A.K.)
- Kurchatov Genome Center—PNPI, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy Prospekt V.O. 31, 199004 Saint Petersburg, Russia;
| | - Dmitry V. Lebedev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia; (O.N.A.); (E.V.Z.); (D.V.L.); (A.A.K.)
- National Research Centre Kurchatov Institute, Akademika Kurchatova Square 1, 123182 Moscow, Russia
| | - Anna A. Kulminskaya
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia; (O.N.A.); (E.V.Z.); (D.V.L.); (A.A.K.)
- Kurchatov Genome Center—PNPI, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia
| | - Irina M. Lapina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia; (O.N.A.); (E.V.Z.); (D.V.L.); (A.A.K.)
- Kurchatov Genome Center—PNPI, Mkr. Orlova Roshcha, 1, 188300 Gatchina, Russia
| |
Collapse
|
29
|
Alkahtani J, Soliman Elshikh M, Almaary KS, Ali S, Imtiyaz Z, Bilal Ahmad S. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides. Saudi J Biol Sci 2020; 27:2929-2935. [PMID: 33100848 PMCID: PMC7569137 DOI: 10.1016/j.sjbs.2020.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Plants polysaccharides are an infinite stock of drug composites with varying pharmacological and biological activities. The present investigation aimed to examine the antibacterial, anti-scavenging and cytotoxic potential of garden cress (GC) polysaccharides. The antibacterial effects vs Escherichia coli and as well as Staphylococcus aureus of GC polysaccharides were examined by means of agar diffusion assay, minimum inhibitory concentration (MIC), outer and inner cell membrane permeability. Antioxidant potential of the GC polysaccharides were performed by free radical DPPH scavenging, superoxide anion scavenging, hydroxyl radical scavenging, reducing power potential assay, and hydrogen peroxide method. Cytotoxicity potential of GC polysaccharides were evaluated by MTT assay in human cervical (HeLa) and liver carcinoma (HepG2) cell lines. The findings showed that GC polysaccharides MIC were 1.06 and 0.56 mg mL-1 against E. coli and S. aureus, respectively. Compared to the standard inhibitor, the GC polysaccharides showed essential inhibitor assays in a very dose dependent approach, and notable actions to scavenge reactive oxygen species (ROS) are also due to the large quantities of hydrophilic polyphenols. The IC50 values of all tested parameters were measured against standard ascorbic acid antioxidant agent. The GC polysaccharides diminish the cell viability percentage of HeLa and HepG2 in a concentration dependent manner. GC polysaccharides at a dose of 500 µg ml-1 exhibited higher anti-tumor activity in both HeLa (65.33 ± 3.75%) and HepG2 (60.33 ± 3.48%). The findings obtained in this study indicate that GC polysaccharides has antibacterial and has a possible source of natural antioxidant and also has cytotoxic effect on different carcinoma cell lines.
Collapse
Affiliation(s)
- Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafat Ali
- Department of Biochemistry, Government Medical College (GMC-Srinagar), 190010 India
| | - Zuha Imtiyaz
- College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheikh Bilal Ahmad
- Division of Veterinary, Biochemistry, SKUAST-Kashmir, Shuhama, Alustang, J&K 190006, India
| |
Collapse
|
30
|
Couteau C, Coiffard L. Phycocosmetics and Other Marine Cosmetics, Specific Cosmetics Formulated Using Marine Resources. Mar Drugs 2020; 18:md18060322. [PMID: 32570957 PMCID: PMC7345487 DOI: 10.3390/md18060322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Marine resources exist in vast numbers and show enormous diversity. As a result, there are likely many possible applications for marine molecules of interest in the cosmetic industry, whether as excipients or additives, but especially as active substances. It is possible to obtain extracts from active substances; for example, quite a few algae species can be used in moisturizing or anti-ageing products. In the field of topical photoprotection, mycosporine-like amino acids and gadusol are important lines of enquiry that should not be overlooked. In the field of additives, the demonstration that certain seaweed (algae) extracts have antimicrobial properties suggests that they could provide alternatives to currently authorized preservatives. These promising leads must be explored, but it should be kept in mind that it is a long process to bring ingredients to market that are both effective and safe to use.
Collapse
|
31
|
Abu-Khudir R, Ismail GA, Diab T. Antimicrobial, Antioxidant, and Anti-Tumor Activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast. Nutr Cancer 2020; 73:829-844. [PMID: 32406258 DOI: 10.1080/01635581.2020.1764069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/02/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Brown algae earned importance by virtue of their promising secondary metabolites of reasonable biological activities. Herein, the antioxidant, antimicrobial, and anticancer effects of crude extracts obtained from two Egyptian brown seaweeds, Sargassum linearifolium and Cystoseira crinita were evaluated. Phytochemical and GC-MS analyses revealed numerous active secondary metabolites in C. crinita cold methanolic extract (CCME) and S. linearifolium hot aqueous extract (SHAE). Both SHAE and CCME exhibited comparable DPPH (124.5 vs 125.6 µg/ml) and ABTS (257.1 vs 254.8 µg/ml) scavenging activities, respectively. Moreover, both crude extracts exhibited antimicrobial activity against various pathogenic microorganisms. Interestingly, employing MTT assay revealed cytotoxic effects of both extracts against a panel of cancer cells, where CCME showed a strong cytotoxic activity against MCF-7 cells (IC50 = 18.0 ± 0.74 µg/ml), while SHAE exhibited a moderate effect (IC50 = 31.1 ± 1.04 µg/ml). Increased mRNA and protein expression of Bax and Beclin-1 as well as the decreased expression of Bcl-2 revealed the ability of both extracts to induce apoptosis and autophagy in MCF-7 cells. Collectively, these findings provide evidence for antioxidant, antimicrobial, as well as anticancer effects driven by the two brown seaweeds that may underlay their plausible application in the therapeutic uses.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gehan A Ismail
- Botany Department, Phycology Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Diab
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Palacios-Gorba C, Pina R, Tortajada-Girbés M, Jiménez-Belenguer A, Siguemoto É, Ferrús MA, Rodrigo D, Pina-Pérez MC. Caenorhabditis elegans as an in vivo model to assess fucoidan bioactivity preventing Helicobacter pylori infection. Food Funct 2020; 11:4525-4534. [PMID: 32393934 DOI: 10.1039/d0fo00768d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Currently, Helicobacter pylori is the unique biological carcinogenic agent. The search for antimicrobial alternatives to antibiotics against this pathogen has been categorized as a priority due to the drastic failure associated with current applied antibiotic therapy. The present study assessed the bioactive antimicrobial capability of fucoidan ("Generally Recognized as Safe" approval - European Commission December 2017) from different species of Phaeophyceae algae (Fucus vesiculosus, Undaria pinnatifida, Macrocystis pyrifera) against H. pylori. All the studied fucoidans showed bacteriostatic and bactericidal effects at the studied concentrations [5-100] μg ml-1 and exposure times [0-7 days]. The most effective anti-H. pylori fucoidan was validated in Caenorhabditis elegans as an in vivo model. C. elegans feed was supplemented with Undaria pinnatifida [0-100] μg ml-1 fucoidan, resulting in a significant improvement in lifespan, lowered H. pylori concentration in the digestive tract, and increased egg-laying pattern. New research lines proposing this compound as an active agent in nutraceutical and preventive novel therapies should be opened.
Collapse
Affiliation(s)
- Carla Palacios-Gorba
- Universidad Cardenal Herrera-CEU, Facultad de Veterinaria, Avenida Seminario s/n, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Vinosha M, Palanisamy S, Anjali R, Li C, Yelithao K, Marudhupandi T, Tabarsa M, You S, Prabhu NM. Sulfated galactan from Halymenia dilatata enhance the antioxidant properties and prevents Aeromonas hydrophila infection in tilapia fish: In vitro and in vivo study. Int J Biol Macromol 2020; 158:569-579. [PMID: 32360202 DOI: 10.1016/j.ijbiomac.2020.04.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
The structural characterization and pharmaceutical perspective of sulfated galactan from Halymenia dilatata (Hd-SG) were reported in this study. The Hd-SG consists of carbohydrate (58.5 ± 0.9%), sulfate (28.7 ± 0.9%) and protein (2.7 ± 0.2%). The existence of carbon (28.14%), hydrogen (5.50%), nitrogen (0.51%) and sulfur (8.26%) was confirmed in CHNS analysis. The Hd-SG was mainly comprising of galactose and mannose connected by (1 → 4)-glycosidic linkages, and it shows the molecular weight of 900.9 × 103 g/mol in high-performance size exclusion chromatography (HPSEC). The Hd-SG exhibited the dose depended on antioxidant activities. The in vitro and in vivo studies proved the antibacterial efficacy of Hd-SG against Aeromonas hydrophila. The pre-treated Oreochromis fish with Hd-SG (2.0 g/0.1 kg of feed) showed the highest survival, antioxidant, and improved histological changes than the fish infected with A. hydrophila alone. These results concluded that the isolated Hd-SG has extensive therapeutic properties, and it can be used as preventive medicine.
Collapse
Affiliation(s)
- Manoharan Vinosha
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Subramanian Palanisamy
- East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-720, Republic of Korea; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - Ravichandran Anjali
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Changsheng Li
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - Khamphone Yelithao
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea; Deparment of Food Science and Technology, Souphanouvong University, 13th North rout Laungprabang, Lao People's Democratic Republic
| | - Thangapandi Marudhupandi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - SangGuan You
- East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-720, Republic of Korea; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
34
|
Hu Y, Ren D, Song Y, Wu L, He Y, Peng Y, Zhou H, Liu S, Cong H, Zhang Z, Wang Q. Gastric protective activities of fucoidan from brown alga Kjellmaniella crassifolia through the NF-κB signaling pathway. Int J Biol Macromol 2020; 149:893-900. [PMID: 31972198 DOI: 10.1016/j.ijbiomac.2020.01.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/21/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Fucoidan has been reported to have abundant biological activities. The objective of the present study was to detect the protective effects of fucoidan from Kjellmaniella crassifolia (KF) newly cultured in Dalian, North of China on aspirin-induced gastric ulcers of the Wistar rat model. The present study showed that inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 were effectively regulated in rats pretreated with KF. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities increased significantly in the KF pretreated groups, while the levels of maleic dialdehyde (MDA) decreased. The findings obtained by RT-PCR and western blotting indicated that KF could suppress aspirin-induced NF-κB activation via stabilization of IκB-α and thereby induced the downregulation of COX-2 and iNOS. It was demonstrated that KF exerted positive gastric protective effects via suppression of the inflammatory response and oxidative stress, and the mechanism of KF appeared to mediate the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yue Hu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuefan Song
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yongbo Peng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Haihua Cong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Zeyu Zhang
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
35
|
Klongklaew N, Praiboon J, Tamtin M, Srisapoome P. Antibacterial and Antiviral Activities of Local Thai Green Macroalgae Crude Extracts in Pacific white Shrimp ( Litopenaeus vannamei). Mar Drugs 2020; 18:E140. [PMID: 32120969 PMCID: PMC7142668 DOI: 10.3390/md18030140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Macroalgae are potentially excellent sources of bioactive secondary metabolites useful for the development of new functional ingredients. This study was conducted to determine the antimicrobial efficacy of the hot water crude extracts (HWCEs) of three species of local Thai green macroalgae Ulva intestinalis (Ui), U. rigida (Ur), and Caulopa lentillifera (Cl) and a commercial ulvan from U. armoricana (Ua). Chemical analysis indicated that the HWCE of Ur showed the highest sulfate content (13.9% ± 0.4%), while that of Ua contained the highest uronic acid and carbohydrate contents (41.47% ± 4.98% and 64.03% ± 2.75%, respectively), which were higher than those of Ur (32.75% ± 1.53% and 51.02% ± 3.72%). Structural analysis of these extracts by Fourier-transform infrared (FTIR) spectroscopy revealed that these HWCEs are complex with a signal at 1250 cm-1 corresponding to S=O stretching vibrations, while the signals at 850 cm-1 were attributed to the C-O-S bending vibration of the sulfate ester in the axial position. These HWCEs showed the growth suppression against some pathogenic Vibrio spp. Interestingly, the HWCEs from Ui at concentrations of 5 and 10 mg/mL completely inhibited white spot syndrome virus (WSSV) in shrimp injected with HWCE-WSSV preincubated solutions. This inhibitory effect was further confirmed by the reduction in viral loads and histopathology of surviving and moribund shrimp.
Collapse
Affiliation(s)
- Nawanith Klongklaew
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Montakarn Tamtin
- Phetchaburi Coastal Aquaculture Research and Development Center, Department of Fisheries, Ministry of Agriculture and Cooperatives, Phetchaburi 76100, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
36
|
Liu Y, Liu W, Wang Y, Ma Y, Huang L, Zou C, Li D, Cao MJ, Liu GM. Inhibitory Effect of Depolymerized Sulfated Galactans from Marine Red Algae on the Growth and Adhesion of Diarrheagenic Escherichia coli. Mar Drugs 2019; 17:md17120694. [PMID: 31835446 PMCID: PMC6950454 DOI: 10.3390/md17120694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022] Open
Abstract
Active polysaccharides as safe and natural polymers against bacterial diarrhea have been reconsidered as an alternative to antibiotics. This work investigated the inhibiting effect of depolymerized sulfated galactans from Eucheuma serra and Gracilaria verrucosa on the growth and adhesion of diarrheagenic enterotoxigenic Escherichia coli (ETEC) K88. Results showed that the sulfated polysaccharides with molecular weight distribution ≤20.0 kDa exhibited antibacterial activity against ETEC K88. A structure-activity study revealed that the anti-ETEC K88 activity of sulfated polysaccharides is strictly determined by their molecular weight distribution, sulfate group content, and monosaccharide composition. In addition, the promoted nucleic acid release and the fluorescence quenching of membrane proteins were observed after the treatment with selected polysaccharides. Scanning electron microscopy further confirmed that the depolymerized sulfated galactans can effectively inhibit ETEC K88 adhesion. In conclusion, depolymerized sulfated galactans exhibited an inhibitory effect on the growth and adhesion of ETEC K88.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
- Correspondence: ; Tel.: +86-0592-6181915; Fax: +86-0592-6180470
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
37
|
Ren D, Wang Q, Yang Y, Hu Y, Song Y, He Y, Liu S, Wu L. Hypolipidemic effects of fucoidan fractions from Saccharina sculpera (Laminariales, Phaeophyceae). Int J Biol Macromol 2019; 140:188-195. [PMID: 31381913 DOI: 10.1016/j.ijbiomac.2019.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
Fucoidan is a kind of brown algae-derived macromolecule suggested to have hypolipidemic activity. Saccharina sculpera has attracted interest because it is rich in fucoidan. The monosaccharide composition and structural characteristics of isolated fractions (F1, F2 and F3) were determined using high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). The hypolipidemic effects of fucoidan fractions from Saccharina sculpera cultured in northern China were clarified by measuring cholesterol levels, antioxidative indicators and hepatic gene mRNA expression using an established hyperlipidemic Wistar rat model. The results showed that F1 is an acetylated galactofucan and that F2 consists of fucose, galactose, mannose and glucuronic acid. F3 is an acetylated galactofucan with high fucose. Fucoidan fractions from Saccharina sculpera could effectively reduce the level of lipids in serum by reducing the TG, TC, and LDL-C levels and increasing HDL-C levels and could effectively prevent lipid accumulation in the liver. The findings obtained from hepatic gene expression showed that fucoidan could inhibit cholesterol synthesis via downregulation of HMG-CoA-R and upregulation of LCAT, slow the synthesis of fatty acids via downregulation of SREBP-1c, and promote β-oxidation of fatty acids via upregulation of PPARα, PPARγ and LPL. These results demonstrated that the hypolipidemic activity of fucoidan was related to the inhibition of cholesterol synthesis and reverse transport, the regulation of fatty acid synthesis, and acceleration of mitochondrial β-oxidation.
Collapse
Affiliation(s)
- Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China.
| | - Ying Yang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China
| | - Yue Hu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China
| | - Yuefan Song
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; National Research and Development Branch, Center for Seaweed Processing, Dalian 116023, PR China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, PR China
| |
Collapse
|
38
|
Methods Used for the Eradication of Staphylococcal Biofilms. Antibiotics (Basel) 2019; 8:antibiotics8040174. [PMID: 31590240 PMCID: PMC6963202 DOI: 10.3390/antibiotics8040174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is considered one of the leading pathogens responsible for community and healthcare-associated infections. Among them, infections caused by methicillin-resistant strains (MRSA) are connected with ineffective or prolonged treatment. The therapy of staphylococcal infections faces many difficulties, not only because of the bacteria's resistance to antibiotics and the multiplicity of virulence factors it produces, but also due to its ability to form a biofilm. The present review focuses on several approaches used for the assessment of staphylococcal biofilm eradication. The methods described here are successfully applied in research on the prevention of biofilm-associated infections, as well as in their management. They include not only the evaluation of the antimicrobial activity of novel compounds, but also the methods for biomaterial functionalization. Moreover, the advantages and limitations of different dyes and techniques used for biofilm characterization are discussed. Therefore, this review may be helpful for those scientists who work on the development of new antistaphylococcal compounds.
Collapse
|