1
|
Li L, Yang Y, Ma CM, Wang B, Bian X, Zhang G, Liu XF, Zhang N. Structure, antioxidant activity, and neuroprotective effect of black soybean (Glycine max (L.) merr.) protein hydrolysates. Food Chem 2025; 463:141390. [PMID: 39362092 DOI: 10.1016/j.foodchem.2024.141390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
The potential biological properties of protein hydrolysates have generated considerable research interest. This study was to hydrolyze black soybean protein (BSP) using five different commercial enzymes, and elucidate the influence of these enzymes on the structure and biological activities of the resulting hydrolysates. Enzymatic treatment changed secondary and tertiary structures of BSP, decreased particle size, α-helix and β-sheet. Alcalase hydrolysate had the highest hydrolytic degree (29.84 %), absolute zeta potential (38.43 mV), the smallest particle (149.87 nm) and molecular weight (<3 kDa). In silico revealed alcalase hydrolysate had the strongest antioxidant potential. This finding was further validated through the lowest IC50 (mg/mL) in DPPH (2.67), ABTS (0.82), Fe2+ chelating (1.33) and·OH (1.12). Moreover, cellular antioxidant assays showed alcalase hydrolysate had the strongest cytoprotective effects on H2O2-induced PC12 cells. These results suggest BSPEHs, especially those prepared by alcalase, have potential as bioactive ingredients for nutrition, healthcare and food industry.
Collapse
Affiliation(s)
- Lulu Li
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Hu Y, Cao Y, Shen Y, Shan Y, Liu J, Song Y, Yang Y, Zhao J. Research progress of edible mushroom polysaccharide-metal trace element complexes. Food Chem X 2024; 24:101711. [PMID: 39310894 PMCID: PMC11414690 DOI: 10.1016/j.fochx.2024.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Metal trace elements are crucial for human health, and the complexes of edible mushroom polysaccharides with metal trace elements are currently a research hotspot in the field of food science. This article reviews the preparation methods, structural characterization, and physiological activities of edible mushroom polysaccharide-metal trace element complexes, including iron, selenium, and zinc. Research has shown that iron complexes obtained through Co-thermal synthesis of the FeCl3 method exhibit excellent antioxidant and anti-anemia functions; selenium complexes prepared via selenium-enriched cultivation significantly enhance immunological and anti-cancer properties; zinc complexes improve lipid-lowering, liver protection, and antioxidant capabilities. However, there is an imbalance in research among different metal elements, particularly with a high density of studies on selenium complexes. These studies provide a foundation for the future development of edible mushroom polysaccharide-metal trace element complexes.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi Cao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yuzhu Shen
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yakun Shan
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130012, China
| | - Yudi Song
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yue Yang
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jun Zhao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| |
Collapse
|
3
|
Zheng J, Xiong W, Yi J, Zhou L, Cai S. High internal phase Pickering emulsions co-loaded with astaxanthin and ferrous gluconate improve iron deficiency anemia in mice and their applications in 3D printing. Food Res Int 2024; 197:115242. [PMID: 39593324 DOI: 10.1016/j.foodres.2024.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Iron deficiency anemia (IDA) is a prevalent and serious nutritional health issue that can be mitigated through dietary iron supplementation. However, only ferrous ions, prone to oxidation, can be absorbed in the gastrointestinal tract. In the current work, the effects of high internal phase Pickering emulsions (HIPPEs) co-loaded with astaxanthin (ASTA) and ferrous gluconate on Fe2+ oxidation, IDA management, and their 3D printing performance were investigated. The results demonstrated that the HIPPEs co-loaded with ASTA and ferrous gluconate effectively reduced the oxidation rate of Fe2+ during storage. Animal studies also revealed that HIPPE co-loaded with ASTA and ferrous gluconate had a therapeutic effect on IDA symptoms in mice. HIPPE co-loaded with ASTA and 400 mg/L ferrous gluconate demonstrated superior efficacy in restoring hemoglobin (Hb) levels, organ coefficients, and histological parameters in mice with IDA. Moreover, the evaluation of the adaptability of HIPPEs co-loaded with ASTA and ferrous gluconate for food 3D printing indicated a slight reduction in printing resolution. Overall printing performance was found to be acceptable and satisfactory. Co-loading ASTA and ferrous gluconate in HIPPEs offers an efficient way to address the oxidation challenge of ferrous ion supplementation, enabling customization and flexibility in the production of iron-fortified foods to mitigate IDA.
Collapse
Affiliation(s)
- Jingyi Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Wenyun Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China.
| |
Collapse
|
4
|
Du Q, Song H, Yan C, Ai C, Wu S, Song S. Structural analysis and bioavailability study of low-molecular-weight chondroitin sulfate‑iron complexes prepared by photocatalysis-Fenton reaction. Carbohydr Polym 2024; 342:122435. [PMID: 39048209 DOI: 10.1016/j.carbpol.2024.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Increasing studies focus on depolymerization of chondroitin sulfate (CS) to enhance its biological activities. In the present study, low-molecular-weight chondroitin sulfate (LMWCS)‑iron complexes were obtained by photocatalysis-Fenton reaction. After degradation with the optimal condition of 0.25 % (w/v) TiO2, 10 mM FeSO4, and 400 mM H2O2 for 0, 15, and 60 min, the average relative molecular weights of CS were reduced to 4.77, 2.47, and 1.21 kDa, respectively. Electron paramagnetic resonance and free radical capture test identified •OH, •O2-, and h+ in the photocatalysis-Fenton system, among them h+ was the major contributor for CS degradation. The structures of degradation products were analyzed by UV, CD, XRD, SEM-EDS, and NMR, and the results indicated that CS chelated iron with its carboxyl and sulfate groups, leading to changes in conformation and microtopography. Then 10 oligosaccharides were identified in the degradation products using HPLC-MSn and the depolymerization mechanism was proposed. Furthermore, iron release was observed in simulated gastrointestinal digestion of LMWCS‑iron complexes. Notably, the everted gut sac experiment demonstrated that LMWCS‑iron complex possessed 3.75 times higher iron absorption than FeSO4 (p < 0.01) and 12.60 times higher CS absorption than original CS (p < 0.0001). In addition, LMWCS‑iron exhibited stronger in vitro antioxidant activity than CS.
Collapse
Affiliation(s)
- Qianqian Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Haoran Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Sitong Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
5
|
Jia H, Zheng Z, Qu J, Feng T, Jiang X, Yu H, Zhu Z, Su F, Yang Y, Lu Q, Jie Q. Study on the synthesis of iron-based nanomedicine assisted by angelica sinensis polysaccharide with enhanced retention performance and its application in anemia treatment. Int J Biol Macromol 2024; 280:135969. [PMID: 39322144 DOI: 10.1016/j.ijbiomac.2024.135969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Inappropriate treatment of chronic inflammation and infection can lead to serious consequences, with anemia being the most common secondary disease that often requires systematic treatment. However, the complex pathology and gastrointestinal irritation associated with oral iron supplements limit their effectiveness. To address this, a bioactive ingredient derived from natural herbs, Angelica sinensis polysaccharide (ASP), was utilized as an ideal adjuvant for regulating the size and stability of iron oxide nanoparticles (IONPs). Highly hydrophilic ASP-modified IONPs (IONPs@ASP) with a mesoporous structure were developed under the induction of microemulsion.The as-prepared IONPs@ASP exhibited enhanced stability, retention performance and controlled degradation in blood and lysosomal environments, respectively, which is beneficial for long-term intravenous iron maintenance in anemia treatment. After confirming the biosafety of IONPs@ASP, pharmacodynamic results showed that hemoglobin levels increased significantly and rapidly returned to normal levels in anemia model rats treated with IONPs@ASP, even surpassing the effects of IONPs or ASP monotherapy. Additionally, analysis of inflammatory factors in rat serum suggested that ASP effectively upregulated the expression of anti-inflammatory factors, indicating synergistic effects of iron-based nanomedicine and immune regulation in anemia treatment. These findings represent a significant advancement in anemia treatment and open new possibilities for developing versatile nanoparticles based on ASP.
Collapse
Affiliation(s)
- Haoruo Jia
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Ziyuan Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jining Qu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | | | - Xin Jiang
- Xi'an Medical University, Xian 710068, China
| | - Hongtao Yu
- First Affiliated Hospital, Shihezi University, Shihezi 832008, China
| | - Zhoujun Zhu
- Department of Joint Surgery, Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi 830092, China
| | - Fei Su
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Yating Yang
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Qingda Lu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China.
| |
Collapse
|
6
|
Feng Y, Wu Y, Wang J, Dong Z, Yu Q, Xia S, Liu C, Wang H, Wu X. Enteromorpha prolifera polysaccharide-Fe (III) complex promotes intestinal development as a new iron supplement. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2562-9. [PMID: 39269679 DOI: 10.1007/s11427-023-2562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/06/2024] [Indexed: 09/15/2024]
Abstract
Iron is a crucial micronutrient, and its deficiency can have detrimental effects on the health of infants. Dietary polysaccharide-iron (III) complexes (PICs) are promising for addressing iron deficiency due to their minimal adverse reactions and high iron absorption rate. This study aimed to investigate the effects of dietary Enteromorpha prolifera polysaccharide-Fe (III) complex (EP-Fe) on newborns, using 3-day weaned piglets as the iron-deficiency model. Results showed that EP-Fe improved iron levels and promoted intestinal development in piglets. Transcriptome sequencing revealed that EP-Fe increased the survival of intestinal epithelial cells under hypoxia by upregulating the expression of genes that promote the development of the vascular system. Additionally, EP-Fe enhanced the mucosal barrier functions by inhibiting myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) signaling pathway to increase the expression of intestinal tight junction proteins. Furthermore, the 16S rRNA gene sequencing of gut microbiota showed that EP-Fe promoted the enrichment of Bacteroides_fragilis and other gut microbes that can metabolize carbohydrates. In conclusion, EP-Fe is an effective iron supplement for newborns, and it can be developed as a comprehensive nutritional supplement.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jialu Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhenglin Dong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qian Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | | | - Chunxue Liu
- ANYOU Biotechnology Group Co. Ltd, Taicang, 215412, China
| | - Haihua Wang
- Qingdao Seawin Biotech Group Co., LTD, Qingdao, 266071, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
7
|
Yang H, Ren J, Ji P, Zhang X, Mai Z, Li C, Zhao N, Ma T, Zhu X, Hua Y, Wei Y. Investigating the regulatory effect of Shen Qi Bu Qi powder on the gastrointestinal flora and serum metabolites in calves. Front Cell Infect Microbiol 2024; 14:1443712. [PMID: 39247054 PMCID: PMC11377352 DOI: 10.3389/fcimb.2024.1443712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Object To investigate the effects of Shen Qi Bu Qi Powder (SQBQP) on the average daily gain, blood indexes, gastrointestinal microflora, and serum metabolites of calves. Methods A total of 105 calves were randomly assigned to three groups (n = 35 per group): the control group (C, fed with a basal diet for 21 days) and two treatment groups (SQBQP-L and SQBQP-H, fed with the basal diet supplemented with 15 and 30 g/kg of SQBQP), respectively for 21 days. The active components of SQBQP were identified using LC-MS/MS. Serum digestive enzymes and antioxidant indices were determined by ELISA kits and biochemical kits, respectively. Serum differential metabolites were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), while flora in rumen fluid and fecal were analyzed by 16S rDNA sequencing. Further correlation analysis of gastrointestinal flora and serum metabolites of SQBQP-H and C groups were performed with Spearman's correlation. Results The principal active components of SQBQP mainly includes polysaccharides, flavonoids, and organic acids. Compared to the control group (C), calves in the SQBQP-H (high dose) and SQBQP-L (low dose) groups showed a significant increase in serum amylase (AMS) levels (P<0.001), while lipase content significantly decreased (P<0.05). Additionally, the average daily gain, T-AOC, and cellulase content of calves in the SQBQP-H group significantly increased (P<0.05). Proteobacteria and Succinivibrio in the rumen flora of the SQBQP-H group was significantly lower than that of the C group (P<0.05). The relative abundance of Proteobacteria, Actinobacteria, Candidatus_Saccharibacteria, Deinococcus_Thermus, Cyanobacteria, and Succinivibrio in the SQBQP-H group was significantly increased (P<0.05), while the relative abundance of Tenericutes and Oscillibacter was significantly decreased (P<0.05). Serum metabolomics analysis revealed 20 differential metabolites, mainly enriched in amino acid biosynthesis, β-alanine metabolism, tyrosine, and tryptophan biosynthesis metabolic pathways (P<0.05). Correlation analysis results showed that Butyrivibrio in rumen flora and Oscillibacter_valericigenes in intestinal flora were significantly positively correlated with average daily gain, serum biochemical indexes, and differential metabolite (-)-Epigallocatechin (R>0.58, P<0.05). Conclusion SQBQP can promote calves weight gain and enhance health by modulating gastrointestinal flora and metabolic processes in the body.
Collapse
Affiliation(s)
- Haochi Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianming Ren
- College of Chemistry and Life Sciences, Gansu Minzu Normal University, Gannan, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaosong Zhang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Nianshou Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ting Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaopeng Zhu
- Zhangye Wanhe Animal Husbandry Industry Technology Development Co., Ltd, Zhangye, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Liu SM, Liu CY, Chen ZL, Fang Y, Jiao FZ, Zhang LH, Zhang TT, Zhao P. Preparation of Rehmanniae Radix Praeparata Polysaccharide Iron(III) Complex and Evaluation of Its Biological Activity. Chem Biodivers 2024; 21:e202302059. [PMID: 38736027 DOI: 10.1002/cbdv.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
This study extracted and purified a polysaccharide from Rehmanniae radix praeparata (RGP) with an average molecular weight. The structural characteristics of RGP and its iron (III) complex, RGP-Fe(III), were examined for their antioxidant properties and potential in treating iron deficiency anemia (IDA). Analysis revealed that RGP comprised Man, Rha, Gal, and Xyl, with a sugar residue skeleton featuring 1→3; 1→2, 3; and 1→2, 3, 4 linkages, among others. RGP-Fe(III) had a molecular weight of 4.39×104 Da. Notably, RGP-Fe(III) exhibited superior antioxidant activity compared to RGP alone. In IDA rat models, treatment with RGP-Fe(III) led to increased weight gain, restoration of key blood parameters including hemoglobin, red blood cells, and mean hemoglobin content, elevated serum iron levels, and decreased total iron-binding capacity. Histological examination revealed no observable toxic effects of RGP-Fe(III) on the liver and spleen. These findings suggest the potential of RGP-Fe(III) as a therapeutic agent for managing IDA and highlight its promising antioxidant properties.
Collapse
Affiliation(s)
- Si-Mei Liu
- School of Pharmacy, School of Foreign Languages, Shaanxi University of Chinese Medicine, Xian, 712046
| | - Chong-Ying Liu
- School of Pharmacy, School of Foreign Languages, Shaanxi University of Chinese Medicine, Xian, 712046
| | - Zi-Long Chen
- Food and Drug Control Center of Weinan Institute of Inspection and Research in Shaanxi Province, Weinan, Shaanxi, 714000
| | - Yan Fang
- School of Pharmacy, School of Foreign Languages, Shaanxi University of Chinese Medicine, Xian, 712046
| | | | - Li-Hua Zhang
- School of Pharmacy, School of Foreign Languages, Shaanxi University of Chinese Medicine, Xian, 712046
| | - Ting-Ting Zhang
- School of Pharmacy, School of Foreign Languages, Shaanxi University of Chinese Medicine, Xian, 712046
| | - Peng Zhao
- School of Pharmacy, School of Foreign Languages, Shaanxi University of Chinese Medicine, Xian, 712046
| |
Collapse
|
9
|
Ding X, Xu M, Li H, Li X, Li M. Improvement of in vivo iron bioavailability using mung bean peptide-ferrous chelate. Food Res Int 2024; 190:114602. [PMID: 38945571 DOI: 10.1016/j.foodres.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
There is an increasing amount of research into the development of a third generation of iron supplementation using peptide-iron chelates. Peptides isolated from mung bean were chelated with ferrous iron (MBP-Fe) and tested as a supplement in mice suffering from iron-deficiency anemia (IDA). Mice were randomly divided into seven groups: a group fed the normal diet, the IDA model group, and IDA groups treated with inorganic iron (FeSO4), organic iron (ferrous bisglycinate, Gly-Fe), low-dose MBP-Fe(L-MBP-Fe), high-dose MBP-Fe(H-MBP-Fe), and MBP mixed with FeSO4 (MBP/Fe). The different iron supplements were fed for 28 days via intragastric administration. The results showed that MBP-Fe and MBP/Fe had ameliorative effects, restoring hemoglobin (HGB), red blood cell (RBC), hematocrit (HCT), and serum iron (SI) levels as well as total iron binding capacity (TIBC) and body weight gain of the IDA mice to normal levels. Compared to the inorganic (FeSO4) and organic (Gly-Fe) iron treatments, the spleen coefficient and damage to liver and spleen tissues were significantly lower in the H-MBP-Fe and MBP/Fe mixture groups, with reparative effects on jejunal tissue. Gene expression analysis of the iron transporters Dmt 1 (Divalent metal transporter 1), Fpn 1 (Ferroportin 1), and Dcytb (Duodenal cytochrome b) indicated that MBP promoted iron uptake. These findings suggest that mung bean peptide-ferrous chelate has potential as a peptide-based dietary supplement for treating iron deficiency.
Collapse
Affiliation(s)
- Xiangjun Ding
- Department of Food Science and Engineering, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Mengdan Xu
- Department of Food Science and Engineering, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Haili Li
- Department of Food Science and Engineering, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xueling Li
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; Department of Food Science and Engineering, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meiqing Li
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; Department of Food Science and Engineering, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
10
|
Liu M, Wang Y, Wang R, Zong W, Zhang L, Wang L. Preparation and Performance Evaluation of Polysaccharide-Iron Complex of Eucommia ulmoides. Foods 2024; 13:2302. [PMID: 39063386 PMCID: PMC11276215 DOI: 10.3390/foods13142302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
An innovative iron supplement crucial for treating iron-deficiency anemia was developed in this study. Polysaccharide was extracted from Eucommia ulmoides leaves using a microwave-assisted hot water method, and subsequently, the polysaccharide-iron complex was synthesized through co-thermal synthesis with FeCl3. The physicochemical properties, structure, and thermal stability of the complex were analyzed using FE-SEM, SEC-MALLS, FT-IR, XRD, and DSC techniques. Furthermore, the antioxidant activity of the polysaccharide-iron complex was evaluated through an experiment in vitro. The results revealed that the polysaccharide-iron complex had an iron content of 6.1% and an average particle size of 860.4 nm. The microstructure analysis indicated that the polysaccharide-iron complex possessed a flaky morphology with smooth and compact surfaces. Moreover, the formation of the Fe3+ complex did not alter the structural framework of the polysaccharide; instead, it enhanced the polysaccharide's thermal stability. Compared to traditional iron supplements, the E. ulmoides-derived polysaccharide-iron complex demonstrated significant antioxidant activity. Therefore, this novel compound exhibits significant potential as a viable iron supplement.
Collapse
Affiliation(s)
- Mengpei Liu
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.L.); (R.W.); (W.Z.); (L.Z.)
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Rong Wang
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.L.); (R.W.); (W.Z.); (L.Z.)
| | - Wei Zong
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.L.); (R.W.); (W.Z.); (L.Z.)
| | - Lihua Zhang
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.L.); (R.W.); (W.Z.); (L.Z.)
| | - Lu Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
11
|
Qi Y, Qiu Z, Li L, Zhao R, Xiang L, Gong X, Zheng Z, Qiao X. Developing garlic polysaccharide-Fe (III) complexes using garlic pomace to provide enhanced iron-supplementing activity in vivo. Food Chem 2024; 437:137819. [PMID: 37922796 DOI: 10.1016/j.foodchem.2023.137819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
This study investigated the potential of garlic polysaccharides (GPs) from garlic pomace as iron carriers. The obtained GP-Fe (III) complexes had a higher molecular weight (5646 Da) and more fructose (90.46 %) than the GPs did and contained 9.7 % Fe (III). GPs were mainly composed of → 2)-β-d-Fruf (1 → and → 2)-β-d-Fruf (6 → residues, and their interactions with Fe (III) reduced the crystallinity, increased the thermal stability, and altered the morphological features through targeting the OH stretching vibrations of the hydroxyl groups and affecting the COC and OCO structures. The GP-Fe (III) complexes had high stability under simulated gastrointestinal digestion system and showed better therapeutic effects on iron deficiency anemia in mice than FeSO4 did, evidenced by improved hematological parameters, restored iron levels, and attenuated oxidative damage. Thus, GP-Fe (III) complexes are promising as novel Fe (III) supplements for Fe-deficient individuals, and promote the high-value utilization of garlic pomace.
Collapse
Affiliation(s)
- Yongqiu Qi
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Zhichang Qiu
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Lingyu Li
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Renjie Zhao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Lu Xiang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Xulin Gong
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Zhenjia Zheng
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Xuguang Qiao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
12
|
Wang L, Zhang Z, Zhao W, Lin C, Zhou X, Pang H, Qin G, Li H, Ma B. Physicochemical, rheological, antioxidant and immunological properties of four novel non-inulin (poly)saccharides from Asparagus cochinchinensis. Int J Biol Macromol 2024; 258:129034. [PMID: 38151080 DOI: 10.1016/j.ijbiomac.2023.129034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
The impacts of four extraction techniques, including hot water, ultrasonic-assisted, complex enzyme-assisted and acid-assisted methods, on the morphological, physicochemical properties and bioactivities of Asparagus cochinchinensis (poly)saccharides (EACP, WACP, UACP, and AACP) were investigated and compared. The four samples were mainly composed of glucose, fructose, and galactose with molar ratios of 50.8:22.7:4.4 for WACP, 53.9:26.0:5.3 for UACP, 35.6:14.1:21.4 for AACP and 45.0:15.6:9.0 for EACP, respectively. The rheological result showed that ACPs were non-Newtonian fluids. EACP with high purity (97.65 %) had good DPPH, O2- and ABTS+ radical scavenging activities, and significantly promoted the proliferation of the RAW264.7 cells at low concentration. UACP had good Fe2+ chelating ability, radical (DPPH, O2- and OH) scavenging activities, which might be attributed to the existence of triple-helix structure. AACP had high yield, molecular weight (17,477.2 Da), high crystallinity (23.33 %), and good radical (OH and ABTS+) scavenging activities. All four significantly stimulated the transcript expression levels of TNF-α, IL-1β and IL-6, as determined by RT-PCR. These results suggest that the exploitation and utilization of non-inulin (poly)saccharides extracted by ultrasonic-assisted, complex enzyme-assisted and acid-assisted extraction methods are potentially valuable as effective and natural immune adjuvants and antioxidants.
Collapse
Affiliation(s)
- Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiqiang Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wanlin Zhao
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chaoyang Lin
- High and New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
| | - Xianyu Zhou
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huili Pang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Guangyong Qin
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Li
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bingji Ma
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Feng Y, Wu Y, Duan R, Wang P, Zhong X, Wu X. Structural characterization and anti-inflammatory effects of Enteromorpha prolifera polysaccharide-Fe/Zn complexes. Int J Biol Macromol 2023; 253:127166. [PMID: 37778595 DOI: 10.1016/j.ijbiomac.2023.127166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The structure of polysaccharide has a great influence on its biological functions, and the chelation with metal ions is an effective way to change polysaccharide structural configuration. Herein, the structure of Enteromorpha prolifera polysaccharide (EP)-Fe/Zn complexes were characterized and the results showed that the iron (III) existed in form of β-FeOOH in EP-Fe (III) complex and the zinc (II) existed in form of C-O-Zn in EP-Zn (II) complex. Besides, the chelation with iron (III) or zinc (II) completely changed the apparent forms, and improved the thermal stability of EP. Furthermore, the anti-inflammatory activities of EP, EP-Fe and EP-Zn were proved by a lipopolysaccharide (LPS)-induced RAW264.7 macrophages model. The results showed that EP, EP-Fe (III) and EP-Zn (II) could decrease the mitochondrial membrane potential and the secretion of NO and cytokines induced by LPS. One of the anti-inflammatory mechanisms of EP, EP-Fe (III) and EP-Zn (II) was that they could inhibit mitogen-activated protein kinase (MAPK) signaling pathway via increasing its inhibitor content in cells. Collectively, the research suggested that the chelation with iron (III) or zinc (II) could change the structure and improve the anti-inflammatory activities of EP.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ran Duan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Peng Wang
- Qingdao Seawin Biotech Group Co., LTD, Qingdao 266071, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Changsha, Hunan 410125, China.
| |
Collapse
|
14
|
Liu Y, Niu CF, Wang Y, Ruan Y, Wang L, Li H, Ma BJ. Preparation, structural characteristics and antioxidant activity of polysaccharide and its metal chelates from the peel of Dioscorea oppositifolia L. Nat Prod Res 2023:1-8. [PMID: 37861244 DOI: 10.1080/14786419.2023.2255917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023]
Abstract
Two metal chelates of Dioscorea oppositifolia L. peel polysaccharides (DTP) were prepared: iron chelate (DTP-Fe) and zinc chelate (DTP-Zn). The physicochemical properties of the polysaccharide and its metal chelates were assessed by UV-Vis absorption spectroscopy, Fourier-transform infra-red spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Antioxidant activities were evaluated by DPPH, ABTS + and hydroxyl radical scavenging assays. According to ICP-MS, the iron content of DTP-Fe was 9.47%, while the zinc content of DTP-Zn was 4.02%. The antioxidant capacity of DTP-Fe increased with the increase of concentration, and its overall activity was higher than that of DTP and DTP-Zn. This polysaccharide-iron chelate can be developed and utilised as an antioxidant and multifunctional iron supplement. DTP-Zn showed the potential to be a natural antioxidant and zinc supplement food.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacy, Anqing Medical College, Anqing, China
| | - Chao-Fei Niu
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Wang
- Aikexing Biopharmaceurial Corporation, Hefei, Anhui, China
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hui Li
- College of Science, Henan Agricultural University, Zhengzhou, China
| | - Bing-Ji Ma
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
15
|
Saleem A, Zulfiqar A, Saleem MZ, Ali B, Saleem MH, Ali S, Tufekci ED, Tufekci AR, Rahimi M, Mostafa RM. Alkaline and acidic soil constraints on iron accumulation by Rice cultivars in relation to several physio-biochemical parameters. BMC PLANT BIOLOGY 2023; 23:397. [PMID: 37596537 PMCID: PMC10439600 DOI: 10.1186/s12870-023-04400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Agricultural production is severely limited by an iron deficiency. Alkaline soils increase iron deficiency in rice crops, consequently leading to nutrient deficiencies in humans. Adding iron to rice enhances both its elemental composition and the nutritional value it offers humans through the food chain. The purpose of the current pot experiment was to investigate the impact of Fe treatment in alkaline (pH 7.5) and acidic (pH 5.5) soils to introduce iron-rich rice. Iron was applied to the plants in the soil in the form of an aqueous solution of FeSO4 with five different concentrations (100, 200, 300, 400, and 500 mM). The results obtained from the current study demonstrated a significant increase in Fe content in Oryza sativa with the application of iron in both alkaline and acidic pH soils. Specifically, Basmati-515, one of the rice cultivars tested, exhibited a notable 13% increase in iron total accumulation per plant and an 11% increase in root-to-shoot ratio in acidic soil. In contrast to Basmati-198, which demonstrated maximum response in alkaline soil, Basmati-515 exhibited notable increases in all parameters, including a 31% increase in dry weight, 16% increase in total chlorophyll content, an 11% increase in CAT (catalase) activity, 7% increase in APX (ascorbate peroxidase) activity, 26% increase in POD (peroxidase) activity, and a remarkable 92% increase in SOD (superoxide dismutase) in acidic soil. In alkaline soil, Basmati-198 exhibited respective decreases of 40% and 39% in MDA and H2O2 content, whereas Basmati-515 demonstrated a more significant decrease of 50% and 67% in MDA and H2O2 in acidic soil. These results emphasize the potential for targeted soil management strategies to improve iron nutrition and address iron deficiency in agricultural systems. By considering soil conditions, it is possible to enhance iron content and promote its availability in alkaline and acidic soils, ultimately contributing to improved crop nutrition and human health.
Collapse
Affiliation(s)
- Ammara Saleem
- Institute of Botany, University of the Punjab Lahore, Lahore, 54590, Pakistan
| | - Asma Zulfiqar
- Institute of Botany, University of the Punjab Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Zafar Saleem
- Centre for Applied Molecular Biology, University of the Punjab Lahore, Lahore, 54590, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38040, Pakistan
- Department of Biological Sciences and Technology, China Medical University (CMU), Taichung City, 40402, Taiwan
| | - Ebru Derelli Tufekci
- Food and Agriculture Vocational School, Department of Field Crops, Cankiri Karatekin Universitesi, 18100, Cankiri, Turkey
| | - Ali Rıza Tufekci
- Faculty of Science, Department of Chemistry, Cankiri Karatekin Universitesi, Cankiri18100, Turkey
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Reham M Mostafa
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
16
|
Feng Y, Wassie T, Wu Y, Wu X. Advances on novel iron saccharide-iron (III) complexes as nutritional supplements. Crit Rev Food Sci Nutr 2023; 64:10239-10255. [PMID: 37366165 DOI: 10.1080/10408398.2023.2222175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron deficiency is prevalent worldwide, and iron supplementation is a promising strategy to address iron needs of the body. However, traditional oral supplements such as ferrous sulfate, ferrous succinate, and ferrous gluconate are absorbed in the form of ferrous ions, leading to lipid peroxidation and side effects due to other reasons. In recent years, saccharide-iron (III) complexes (SICs) as novel iron supplements have aroused attention for the high iron absorption rate and no gastrointestinal irritation at oral doses. In addition, research on the biological activities of SICs revealed that they also exhibited good abilities in treating anemia, eliminating free radicals, and regulating the immune response. This review focused on the preparation, structural characterization, and bioactivities of these new iron supplements, as promising candidates for the prevention and treatment of iron deficiency.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| |
Collapse
|
17
|
Li H, Gao T, Zhang Z, Lei J, Hu J, Tang Z, Feng S, Ding C, Chen T, Chen Y, Yuan S, Yuan M. A novel Stauntonia leucantha fruits arabinogalactan: and structural characterization. Carbohydr Polym 2023; 303:120481. [PMID: 36657852 DOI: 10.1016/j.carbpol.2022.120481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Polysaccharides were the key ingredients of many herbal medicines, and were responsible for multiple pharmacological activities. In this study, a novel polysaccharide fraction, named SLP-2, was isolated from Stauntonia leucantha fruits, and purified by DEAE-52 and Sephadex G-100 column chromatography. Furthermore, SLP-2 was identified by congo red, methylation, partial acid hydrolysis and NMR. The results indicated that the backbone of SLP-2 was composed of →4)-β-D-Galp-(1 → 4)-β-D-Galp-(1→ substituted at C-6 with 1,5-linked arabinan. SLP-2 had good anti-oxidation ability in vitro. Surprisingly, we found that reduction of carboxyl groups and methylation of hydroxyl groups enhanced the ability to scavenge 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and inhibit lipid peroxidation, and weakened the activity to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and reduce ferric iron.
Collapse
Affiliation(s)
- Hui Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Tao Gao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Zhonghao Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Jiangping Lei
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Junchao Hu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611134, Sichuan Province, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China.
| |
Collapse
|
18
|
Zhang Y, Huang J, Sun M, Duan Y, Wang L, Yu N, Peng D, Chen W, Wang Y. Preparation, characterization, antioxidant and antianemia activities of Poria cocos polysaccharide iron (III) complex. Heliyon 2023; 9:e12819. [PMID: 36647359 PMCID: PMC9840143 DOI: 10.1016/j.heliyon.2023.e12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
As a new natural antioxidant with high safety and non-toxic side effects, polysaccharide can also be used as a critical macromolecular carrier to form a stable iron complex with Fe3+. Our previous study has extracted and purified the homogeneous polysaccharide (PCP1C) from Poria cocos. In this study, the PCP1C-iron (III) complex was synthesized by co-thermal synthesis with PCP1C and ferric trichloride. The chelating capacity, iron releasing capacity, and qualitative identification of complex were evaluated. The complex was characterized by scanning electron microscope-energy dispersive spectrometer (SEM-EDS) analysis, particle size distribution, and fourier transform infrared (FTIR) spectroscopy. The antioxidant and iron supplement effects of the complex were also studied in vitro and in the iron deficiency anemia (IDA) rat model. The results showed that the iron content in the PCP1C-iron (III) complex was 28.14% with no free iron, and the iron release rate was 95.3%. The structure analysis showed that the iron core of the PCP1C-iron (III) complex existed in the form of β-FeOOH and the surface of the complex become smooth and particle size increased, which indicated the high iron content of polysaccharide iron and slow release. Furthermore, we found that the PCP1C iron (III) complex had positive scavenging effect on DPPH, ABTS, MDA, and hydroxyl radical in vitro study and significantly increased the levels of red blood cell (RBC), Hemoglobin (Hb), and red blood cell specific volume (HCT) in IDA rat model. Therefore, our results suggested that the PCP1C-iron (III) complex is expected to develop into a new comprehensive iron supplement and antioxidant.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Jiajing Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mingjie Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China,Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
19
|
Chen M, Chen C, Zhang Y, Jiang H, Fang Y, Huang G. Effects of Iron-Peptides Chelate Nanoliposomes on Iron Supplementation in Rats. Biol Trace Elem Res 2022:10.1007/s12011-022-03539-2. [PMID: 36567423 DOI: 10.1007/s12011-022-03539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
The objective of this study was to investigate the effects of iron nanoliposomes on iron supplementation and toxicity in SD rats induced by a low-iron diet. The size and infrared spectroscopy of a liposomal oral delivery system were investigated. The particle size of nanoliposomes embedded with chelates was increased. Infrared spectra proved that peptides-iron and blank nanoliposomes were bonded by interaction forces, including the fracture of hydrogen bonds, C = C bonds, hydrophobic interaction, and C-N bonds. We found that iron supplementation chelates had a certain protective effect on viscera after being embedded by nanoliposomes. After 10 days of treatment, the concentration of hemoglobin could be gradually increased. Nanoliposome encapsulated peptides-iron has a better effect than other groups. At the same time, SOD, MDA, and CAT reached normal levels after 20 days. Histological results showed that the sections of the nanoliposomes groups were clearer than those of the other groups. There was a little inflammation in the liver without obvious pathological changes, which also proved that the iron chelates embedded by nanoliposomes had no obvious side effects on iron supplementation in rats. Nanoliposome encapsulated peptides-iron has a small side effect and a significant curative effect of iron supplementation. It maybe has a good application prospect in the clinical medical field.
Collapse
Affiliation(s)
- Mengqian Chen
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Cen Chen
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yuhang Zhang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - YiZhou Fang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Guangrong Huang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
20
|
Long H, Lin H, Zheng P, Hou L, Zhang M, Lin S, Yin K, Zhao G. WTAP mediates the anti-inflammatory effect of Astragalus mongholicus polysaccharide on THP-1 macrophages. Front Pharmacol 2022; 13:1023878. [PMID: 36278233 PMCID: PMC9585178 DOI: 10.3389/fphar.2022.1023878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background:Astragalus mongholicus polysaccharides (APS) have anti-inflammatory, antioxidant and immunomodulatory effects. Recent studies have demonstrated the epigenetic regulation of N6-methyladenosine (m6A) in the development of inflammation. However, the effect of APS on m6A modification is unclear. Here, for the first time, we investigate the mechanism of m6A modification in APS regulation of THP-1 macrophage inflammation. Methods: We treated LPS-induced THP-1 macrophages with APS at different concentrations and times, and detected IL-6 mRNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blot, respectively. The m6A modification level was detected by m6A quantification kit. The proteins that regulate m6A modification were screened by western blot. Wilms’ tumor 1-associating protein (WTAP) was overexpressed in APS-treated THP-1 macrophages and the m6A modification level and IL-6 expressions were detected. Results: These findings confirmed that APS significantly abolished LPS-induced IL-6 levels in THP-1 macrophages. Meanwhile, APS reduced m6A modification levels and WTAP gene expression in THP-1 macrophages. Further overexpression of WTAP can significantly reverse APS-induced m6A modification level and IL-6 expression. Mechanistically, APS regulates IL-6 expression through WTAP-mediated p65 nuclear translocation. Conclusion: Overall, our study suggested that WTAP mediates the anti-inflammatory effect of APS by regulating m6A modification levels in THP-1 macrophages. This study reveals a new dimension of APS regulation of inflammation at the epigenetic level.
Collapse
Affiliation(s)
- Haijiao Long
- Xiangya Hospital, Central South University, Changsha, China
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
| | - Haiyue Lin
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
| | - Pan Zheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
| | - Ming Zhang
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
| | - Shuyun Lin
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
| | - Kai Yin
- Department of Cardiology, The Second Afliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, China
- *Correspondence: Kai Yin, ; Guojun Zhao,
| | - Guojun Zhao
- Xiangya Hospital, Central South University, Changsha, China
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
- *Correspondence: Kai Yin, ; Guojun Zhao,
| |
Collapse
|
21
|
Abd Elrahim Abd Elkader HT, Essawy AE, Al-Shami AS. Astragalus species: Phytochemistry, biological actions and molecular mechanisms underlying their potential neuroprotective effects on neurological diseases. PHYTOCHEMISTRY 2022; 202:113293. [PMID: 35780924 DOI: 10.1016/j.phytochem.2022.113293] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative and neuropsychiatric illnesses are prevalent and life-threatening disorders characterized by a wide range of clinical syndromes and comorbidities, all of which have complex origins and share common molecular pathomechanisms. Although the pathophysiology of neurological illnesses is not completely understood, researchers have discovered that several ion channels and signalling pathways may have played a role in disease pathogenesis. Active substances from Astragalus sp. are being employed for nutrition, and their usefulness in the treatment of neurological illnesses is receiving more attention. Because their extracts and active components exert different pharmacological effects on a variety of ailments, they have a long history of usage as a cure for various diseases. This review summarizes the research work on Astragalus and their biologically active constituents as potential candidates for the protection against and treatment of neurodegenerative and neuropsychiatric disorders to show the potential efficacy of Astragalus sp. and its active ingredients in treating some neurological diseases. Simultaneously, the chemical structures of these active compounds, their sources, biological properties, and mechanisms are also listed. In ethnopharmacological applications, Astragalus membranaceus and spinosus have been studied as traditional medicines worldwide. The chemical constituents of Astragalus species mainly comprise terpenoids, flavonoids, and polysaccharides. The extracts and phytochemical compounds of Astragalus species exhibit various pharmacological activities, including antioxidant, anti-inflammatory, anticancer, antitumor, anticonvulsive, immunomodulatory, and other activities. Based on the current literature, we conclude that Astragalus is a promising dietary herb with multiple potential signal modulating applications that mainly include the modulation of neurotransmitters and receptors, anti-inflammatory activities, inhibition of amyloid aggregation, induction of myelin sheath repair and neurogenesis, as well as activation of the signalling pathways relevant to neurological diseases.
Collapse
Affiliation(s)
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed S Al-Shami
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Jing Y, Zhang S, Li M, Zhang R, Zhang H, Zheng Y, Zhang D, Wu L. Structural characterization and biological activities of polysaccharide iron complex synthesized by plant polysaccharides: A review. Front Nutr 2022; 9:1013067. [PMID: 36245516 PMCID: PMC9561936 DOI: 10.3389/fnut.2022.1013067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Iron deficiency anemia can lead to a variety of functional disorders, which is one of the highest incidence of nutrient deficiency diseases. The direct addition of iron to food will not only brings difficulties to the production of products, but also brings damages to human body. In recent years, international studies have shown that polysaccharide iron complex (PIC) not only has a variety of pharmacological activities of polysaccharide itself, but also has the function of supplementing iron, so it is a good iron supplement. With the advantages of good solubility, high iron content, low gastrointestinal irritation and high bioavailability, PIC is an effective iron supplement for iron deficiency anemia and has attracted more and more attention. In this paper, the different preparation methods, structural characterization, biological activities and clinical applications of PIC synthesized by natural polysaccharides from plant were reviewed, in order to provide theoretical basis for the development and application of PIC.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shilin Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mingsong Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ruijuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Hao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yuguang Zheng
- College of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lanfang Wu
| |
Collapse
|
23
|
Chi MH, Chao J, Ko CY, Huang SS. An Ethnopharmaceutical Study on the Hypolipidemic Formulae in Taiwan Issued by Traditional Chinese Medicine Pharmacies. Front Pharmacol 2022; 13:900693. [PMID: 36188612 PMCID: PMC9520573 DOI: 10.3389/fphar.2022.900693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Globally, approximately one-third of ischemic heart diseases are due to hyperlipidemia, which has been shown to cause various metabolic disorders. This study was aimed to disassemble and analyze hypolipidemic formulae sold by traditional Chinese medicine (TCM) pharmacies. Using commonly used statistical parameters in ethnopharmacology, we identified the core drug combination of the hypolipidemic formulae, thereby exploring the strategy by which the Taiwanese people select hypolipidemic drugs. Most important of all, we preserved the inherited knowledge of TCM. We visited 116 TCM pharmacies in Taiwan and collected 91 TCM formulae. The formulae were mainly disassembled by macroscopical identification, and the medicinal materials with a relative frequency of citation (RFC) >0.2 were defined as commonly used medicinal materials. Subsequently, we sorted the information of medicinal materials recorded in the Pharmacopeia, searched for modern pharmacological research on commonly used medicinal materials using PubMed database, and visualized data based on the statistical results. Finally, the core hypolipidemic medicinal materials used in folk medicine were obtained. Of the 91 TCM formulae collected in this study, 80 traditional Chinese medicinal materials were used, belonging to 43 families, predominantly Lamiaceae. Roots were the most commonly used part as a medicinal material. There were 17 commonly used medicinal materials. Based on medicinal records in Pharmacopeia, most flavors and properties were warm and pungent, the majority traditional effects were “tonifying and replenishing” and “blood-regulating.” Besides, the targeted diseases searching from modern pharmacological studies were diabetes mellitus and dyslipidemia. The core medicinal materials consisted of Astragalus mongholicus Bunge and Crataegus pinnatifida Bunge, and the core formulae were Bu-Yang-Huan-Wu-Tang and Xie-Fu-Zhu-Yu-Tang. In addition, 7 groups of folk misused medicinal materials were found. Although these TCMs have been used for a long period of time, their hypolipidemic mechanisms remain unclear, and further studies are needed to validate their safety and efficacy.
Collapse
Affiliation(s)
- Min-Han Chi
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Master Program for Food and Drug Safety, Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Shyh-Shyun Huang,
| |
Collapse
|
24
|
Pan W, Gao H, Ying X, Xu C, Ye X, Shao Y, Hua M, Shao J, Zhang X, Fu S, Yang M. Food-derived bioactive oligopeptide iron complexes ameliorate iron deficiency anemia and offspring development in pregnant rats. Front Nutr 2022; 9:997006. [PMID: 36159485 PMCID: PMC9490415 DOI: 10.3389/fnut.2022.997006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate anemia treatment and other potential effects of two food-derived bioactive oligopeptide iron complexes on pregnant rats with iron deficiency anemia (IDA) and their offspring. Rats with IDA were established with a low iron diet and then mated. There were one control group and seven randomly assigned groups of pregnant rats with IDA: Control group [Control, 40 ppm ferrous sulfate (FeSO4)]; IDA model group (ID, 4 ppm FeSO4), three high-iron groups (H-FeSO4, 400 ppm FeSO4; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron complex) and three low-iron groups (L-FeSO4, 40 ppm FeSO4; MOP-Fe, 40 ppm marine fish oligopeptide iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex). Rats in each group were fed the corresponding special diet during pregnancy until the day of delivery. After different doses of iron supplement, serum hemoglobin, iron, and ferritin levels in rats with IDA were significantly increased to normal levels (P < 0.05). Serum iron levels were significantly lower in two food-derived bioactive oligopeptide low-iron complex groups than in the low FeSO4 group (P<0.05). Liver malondialdehyde levels were significantly increased in the three high-iron groups compared with the other five groups (P < 0.05), and hemosiderin deposition was observed in liver tissue, indicating that the iron dose was overloaded and aggravated the peroxidative damage in pregnant rats. Liver inflammation was reduced in the three low-iron groups. Tumor necrosis factor α secretion was significantly decreased in all groups with supplemented oligopeptide (P < 0.05), with the concentration of tumor necrosis factor α declining to normal levels in the two whey protein oligopeptide iron complex groups. In the marine fish oligopeptide iron complex groups, body length, tail length, and weight of offspring were significantly increased (P < 0.05) and reached normal levels. Therefore, food-derived bioactive oligopeptide (derived from marine fish skin and milk) iron complexes may be an effective type of iron supplement for pregnancy to improve anemia, as well as reduce the side effects of iron overload, and improve the growth and nutritional status of offspring.
Collapse
Affiliation(s)
- Wenfei Pan
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - He Gao
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Ying
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caiju Xu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Xiang Ye
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yelin Shao
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdi Hua
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinxue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Shaowei Fu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Min Yang
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Min Yang
| |
Collapse
|
25
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
26
|
Li X, Jiang F, Liu M, Qu Y, Lan Z, Dai X, Huang C, Yue X, Zhao S, Pan X, Zhang C. Synthesis, Characterization, and Bioactivities of Polysaccharide Metal Complexes: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6922-6942. [PMID: 35639848 DOI: 10.1021/acs.jafc.2c01349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural polysaccharides are critical to a wide range of fields (e.g., medicine, food production, and cosmetics) for their various remarkable physical properties and biological activities. However, the bioactivities of naturally acquired polysaccharides may be unsatisfactory and limit their further applications. It is generally known that the chemical structure exhibited by polysaccharides lays the material basis for their biological activities. Accordingly, possible structural modifications should be conducted on polysaccharides for their enhancement. Recently, polysaccharides complexed with metal ions (e.g., Fe, Zn, Mg, Cr, and Pt) have been reported to be possibly used to improve their bioactivities. Moreover, since the properties exhibited by metal ions are normally conserved, polysaccharides may be endowed with new applications. In this review, the synthesis methods, characterization methods, and bioactivities of polysaccharide metal complexes are summarized specifically. Then, the application prospects and limitations of these complexes are analyzed and discussed.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Meiyan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Zhiqiong Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| |
Collapse
|
27
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
28
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
29
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
30
|
Strontium based Astragalus polysaccharides promote osteoblasts differentiation and mineralization. Int J Biol Macromol 2022; 205:761-771. [PMID: 35318083 DOI: 10.1016/j.ijbiomac.2022.03.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
Bone formation and repair represent a clinical challenge. In this work, we designed and synthesized strontium Astragalus polysaccharide (APS-Sr), a novel polysaccharide compound that should have therapeutic effects on both anti-inflammation and promoting bone formation. Using material characterization techniques, including SEM, FITR, XRD, etc., we verified the successful synthesis of this compound. Moreover, we examined the potential of this compound for promoting bone repair and inhibiting inflammatory response by cell proliferation assay, ALP and Alizarin Red staining experiments and RT-qPCR. The biological experiment results showed that APS-Sr can effectively inhibit inflammatory factors, promote osteogenic differentiation and up-regulate the bone growth factors. It is therefore believed that APS-Sr should be a promising polysaccharide compound in bone-related biomedical applications.
Collapse
|
31
|
Gao L, Liu L, Liu P, Zhao Y, Zhang S, Xu H. Preparation and related properties of melanin iron supplement. Food Funct 2022; 13:4009-4022. [PMID: 35315843 DOI: 10.1039/d1fo03293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, BM-Fe (black sesame melanin-iron complex) was prepared and characterized. The results showed that the carboxyl hydroxyl group of BSM (black sesame melanin) participated in the chelation of iron ions. EDS (energy dispersive spectroscopy) and XPS (X-ray photoelectron spectroscopy) results confirmed the presence of iron ions in BM-Fe. The results of DLS (dynamic light scattering) showed that the average particle sizes of BSM and BM-Fe were 844.9 nm and 294.3 nm, respectively, indicating that the structure of BM-Fe with a smaller particle size was formed after the binding of iron ions with the active group on BSM. Finally, the in vitro iron dissolution, iron ion identification, in vitro iron ion reduction, antioxidant activity, cytotoxicity and moisture resistance properties of BM-Fe and FST (ferrous sulfate tablets, a commonly used iron supplement) were comprehensively compared. The results showed that BSM combined with iron instead of physically mixing, and BM-Fe was easily reduced in the gastrointestinal environment. BM-Fe had good bioavailability and retained the excellent characteristics (such as oxidation resistance and biocompatibility) of BSM, and had the potential to be applied in the treatment of iron-deficiency-related diseases. In summary, BM-Fe prepared in this study not only retained the excellent characteristics of BSM but also had a good effect on iron supplementation, high bioavailability and low side effects. Comprehensive analysis showed that the performance of BM-Fe prepared in this study was similar to or even better than that of the control (FST). Thus, BM-Fe is expected to become a new comprehensive multi-functional iron supplement and has a broad developmental prospect.
Collapse
Affiliation(s)
- Li Gao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.,School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Linlin Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Panpan Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Yinghu Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Shuli Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Hongyu Xu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| |
Collapse
|
32
|
Luo Y, Fang Q, Lai Y, Lei H, Zhang D, Niu H, Wang R, Song C. Polysaccharides from the leaves of Polygonatum sibiricum Red. regulate the gut microbiota and affect the production of short-chain fatty acids in mice. AMB Express 2022; 12:35. [PMID: 35312878 PMCID: PMC8938542 DOI: 10.1186/s13568-022-01376-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Polysaccharides from the rhizome of Polygonatum sibiricum display a variety of biological activities, including the regulation of intestinal microbiota, but the polysaccharides from the leaves of P. sibiricum have not been studied extensively. Here, we extracted crude polysaccharides from the leaves of P. sibiricum and further separated and purified them to study the effects of P. sibiricum polysaccharides (PsPs) on intestinal microbes and short-chain fatty acids (SCFAs). The PsPs had a total sugar content of 97.48% and a monosaccharide composition comprising mannose, rhamnose, galacturonic acid, glucose, xylose, and arabinose, with molar ratios of 6.6:15.4:4.5:8.8:40.7:24, respectively. The effects of PsPs on intestinal microflora in mice were also studied, with 16S sequencing results showing an increase in the relative abundance of Firmicutes and a decrease in Bacteroidetes at the phylum level. The abundance of Lactobacillus increased, while those of Lachnospiraceae and Bacteroides reduced (at the genus level) by PsPs treatment. The composition of microbes changed. Levels of SCFAs in the PsPs group were significantly increased compared with control mice, including acetic acid, propionic acid, and butyric acid. These results suggest that PsPs can act as prebiotics, regulating the intestinal tract probiotics.
Collapse
|
33
|
Du Y, Wan H, Huang P, Yang J, He Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Pharmacotherapy 2022; 147:112654. [DOI: 10.1016/j.biopha.2022.112654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
|
34
|
Song C, Yang C, Meng S, Li M, Wang X, Zhu Y, Kong L, Lv W, Qiao H, Sun Y. Deciphering the mechanism of Fang-Ji-Di-Huang-Decoction in ameliorating psoriasis-like skin inflammation via the inhibition of IL-23/Th17 cell axis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114571. [PMID: 34464701 DOI: 10.1016/j.jep.2021.114571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the theory of traditional Chinese medicine (TCM), the etiology of psoriasis is assigned to damp-heat internal depression, blood poisoning, Yin deficiency and loss of nourishment. Fang-Ji-Di-Huang-Decoction (FJDH), a well-known Chinese traditional formula, is recorded in Synopsis of the Golden Chamber (in the Eastern Han Dynasty). This decoction is composed of dried roots of Rehmannia glutinosa (Gaertn.) DC., dried roots of Stephania tetrandra S. Moore, roots of Saposhnikovia divaricata (Turcz.) Schischk., dried twigs of Cinnamomum cassia (L.) J. Presl and dry roots and rhizomes of Glycyrrhiza uralensis Fisch. FJDH has the function of clearing heat, removing dampness, and nourishing blood. Therefore, in modern medical theory, FJDH can regulate the infiltration of inflammatory cells and the secretion of inflammatory cytokines in the process of psoriasis. AIM OF THE STUDY This study evaluated whether FJDH treated psoriasis and its specific mechanism for the efficacy in mice. At the same time, it clarified s what important role of the copperware played s in the curative effect of FJDH. METHODS AND MATERIALS We used imiquimod (IMQ) to induce psoriasis-like skin inflammation in mice. Mice were treated with imiquimod for one week, and FJDH was given by intragastric administration one week in advance. Record the weight change and psoriasis Area and Severity Index (PASI) score of the mouse during the whole process to assess the severity of psoriasis were recored mouse. Hematoxylin-eosin staining was used to evaluate skin tissue structure change. Immunohistochemistry was performed to observe the expressions of Ki67 and proliferating cell nuclear antigen (PCNA) in skin tissue. In order to further explore the mechanism of FJDH in the treatment of psoriasis, we used network pharmacology to predict the therapeutic target. TCMSP and Uniprot were used to collect compounds and genes of FJDH. Genecards was used for obtaining genes of psoriasis. String was used to analyze the relationship between genes. Metascape was used for gene enrichment and pathway prediction. Using molecular biological detection methods, we verified whether FJDH could regulate Interleukin 17 signaling pathway and T helper cell 17 (Th17) cell differentiation. Flow cytometry was used to detect Th17 cell differentiation in mouse spleen. Quantitative Real-time PCR was used to detect mRNA expression of IL-17 signaling pathway-related inflammatory factors in mouse skin tissues. UPLC-Triple TOF-MS/MS and Phenol-Sulphate colorimetry were used to explore the main components of FJDH, and further elaborate the mechanism of FJDH in the treatment of psoriasis. RESULTS FJDH with copper was found to improve psoriasis-related pathological symptoms in a dose-dependent manner, possibly by inhibiting IL-23/Th17 cell axis and reducing inflammatory cytokines such as IL-17A, IL-17F, IL-22 and TNF-α. Furthermore, R. glutinosa polysaccharide in FJDH was the main substance that exerted the drug effect and it work by forming a complex with copper. Experimental data proved that Rehmannia glutinosa polysaccharide and copper complex had the same pharmacological activity and therapeutic effect as FJDH. CONCLUSIONS FJDH may attenulated imiquimod-induced psoriasis-like skin inflammation in mice by inhibiting IL-23/Th17 cell axis. The material basis for the therapeutic effect may be the formation of complexes between the polysaccharides of R. glutinosa and copper in FJDH to produce the effect. These findings suggest that FJDH can be used as an effective Chinese medicine to treat psoriasis.
Collapse
Affiliation(s)
- Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Siwei Meng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Manru Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiao Wang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yaoxuan Zhu
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China.
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
35
|
Chang WCW, Wang CY, Liu WY, Tsai CC, Wu YT, Hsu MC. Chinese Herbal Medicine Significantly Impacts the Haematological Variables of the Athlete Biological Passport. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9533. [PMID: 34574458 PMCID: PMC8469363 DOI: 10.3390/ijerph18189533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
In the fight against sports doping, the Athlete Biological Passport (ABP) system aims to indirectly unveil the doping incidents by monitoring selected biomarkers; however, several unexplored extrinsic factors may dampen a fair interpretation of ABP profiles. Chinese herbal medicine (CHM) plays a pivotal role in the health care system, and some remedies have a long history of being used to treat anaemia. In this study, we addressed the concerns of whether the CHM administration could yield a measurable effect on altering the ABP haematological variables. Forty-eight healthy volunteers were randomly assigned to receive two-week oral administration of one of the six selected CHM products that are commonly prescribed in Taiwan (eight subjects per group). Their blood variables were determined longitudinally in the phases of baseline, intervention, and recovery over 5 weeks. Blood collection and analyses were carried out in strict compliance with relevant operating guidelines. In the groups receiving Angelicae Sinensis Radix, Astragali Radix, and Salviae Miltiorrhizae Radix et Rhizoma, a significant increased reticulocyte percentage and decreased OFF-hr Score were manifested during the intervention, and such effects even sustained for a period of time after withdrawal. All other variables, including haemoglobin and Abnormal Blood Profile Score, did not generate statistical significance. Our results show that the use of CHM may impact the ABP haematological variables. As a consequence, we recommend athletes, particularly those who have been registered in the testing pool, should be aware of taking specific Chinese herbal-based treatment or supplementation, and document any of its usage on the anti-doping forms.
Collapse
Affiliation(s)
- William Chih-Wei Chang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
- Master Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yuan Wang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
| | - Wan-Yi Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan;
- Chinese Medicine Department, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
36
|
Wu X, Huang J, Wang J, Xu Y, Yang X, Sun M, Shi J. Multi-Pharmaceutical Activities of Chinese Herbal Polysaccharides in the Treatment of Pulmonary Fibrosis: Concept and Future Prospects. Front Pharmacol 2021; 12:707491. [PMID: 34489700 PMCID: PMC8418122 DOI: 10.3389/fphar.2021.707491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis is a fatal chronic progressive respiratory disease, characterized by continuous scarring of the lung parenchyma, leading to respiratory failure and death. The incidence of PF has increased over time. There are drugs, yet, there are some limitations. Hence, it is of importance to find new therapies and new drugs to replace the treatment of pulmonary fibrosis. In recent years, there have been a great number of research reports on the treatment of traditional Chinese medicine polysaccharides in various system fields. Among them, the treatment of PF has also gained extensive attention. This review summarized the source of polysaccharides, the drug activity of traditional Chinese medicine, and the protective effects on targets of Pulmonary fibrosis. We hope it can inspire researchers to design and develop polysaccharides, serving as a reference for potential clinical therapeutic drugs.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
37
|
Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural Antioxidants in Anemia Treatment. Int J Mol Sci 2021; 22:ijms22041883. [PMID: 33668657 PMCID: PMC7918704 DOI: 10.3390/ijms22041883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
- Correspondence:
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
38
|
Chao J, Ko CY, Lin CY, Tomoji M, Huang CH, Chiang HC, Yang JJ, Huang SS, Su SY. Ethnobotanical Survey of Natural Galactagogues Prescribed in Traditional Chinese Medicine Pharmacies in Taiwan. Front Pharmacol 2021; 11:625869. [PMID: 33679390 PMCID: PMC7928277 DOI: 10.3389/fphar.2020.625869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Natural medicinal materials have been used to promote breast milk secretion. Here, we investigated the natural medicinal materials prescribed in traditional Chinese medicine (TCM) pharmacies across Taiwan to induce lactation. We collected medicinal materials from 87 TCM pharmacies, identified them in the prescriptions, and analyzed their drug contents. We examined their botanical origins, biological classifications, traditional usage, and modern pharmacological properties. We used the TCM Inheritance Support System to identify core medicinal materials in galactogenous prescriptions. We collected 81 medicinal materials from 90 galactogenous prescriptions. Leguminosae accounted for 12%, whereas Apiaceae accounted for 7% of all materials examined. The primary medicinal plant parts used were roots and seeds. Nineteen frequently used medicinal materials had a relative frequency of citation of greater than or equal to 0.2. According to their efficacy, 58% were warm, 54% were sweet, and 63% were tonifying; 74% of the frequently used medicinal materials have been showed efficacy against breast cancer. The primary core medicinal material was Angelica sinensis (Oliv.) Diels, whereas the secondary core medicinal materials were Tetrapanax papyrifer (Hook.) K. Koch and Hedysarum polybotrys Hand.-Mazz. Most galactogenous prescriptions consisted of multiple materials from Leguminosae and Apiaceae. The mechanisms underlying galactogenous efficacy warrant further investigations.
Collapse
Affiliation(s)
- Jung Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Maeda Tomoji
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | | | - Hung-Che Chiang
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Jeng-Jer Yang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
39
|
Hao Z, Li Z, Huo J, Li J, Liu F, Yin P. Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver. PLoS One 2021; 16:e0245749. [PMID: 33503027 PMCID: PMC7840052 DOI: 10.1371/journal.pone.0245749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P<0.05), total antioxidative capacity (T-AOC) (P<0.05), and catalase (CAT) activity (P<0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P >0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhen Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jinjin Huo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiandong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Ma X, Jing J, Yu J, Wang J, Zhu H, Hu Z. Synthesis and Characterization of a Novel Apple Pectin-Fe(III) Complex. ACS OMEGA 2021; 6:1391-1399. [PMID: 33490798 PMCID: PMC7818595 DOI: 10.1021/acsomega.0c05029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In the present study, apple pectin (AP) extracted from apple pomace was used to chelate with Fe(III) to synthesize an AP-Fe(III) complex. The obtained AP-Fe(III) complex was characterized by UV-vis spectroscopy, FTIR, XPS, and TG analysis. The Fe content in the AP-Fe(III) complex was determined to be 24.5%. Moreover, the reduction properties of the complex were also investigated. The AP-Fe(III) complex was found to be soluble in water and maintained stability in the pH range of 3-8. The complex was reduced to Fe(II) after 6 h. In addition, the AP-Fe(III) complex did not release iron ions in the simulated gastric fluid, and Fe release of the complex reached 96.5% after 4 h of digestion in simulated intestinal fluid. In particular, the antioxidant activity of the AP-Fe(III) complex against free DPPH and ABTS radicals was evaluated. The results obtained in this study demonstrate the potential of the AP-Fe(III) complex as a novel iron supplement.
Collapse
|
41
|
Ozkok F, Sahin YM, Enisoglu Atalay V, Asgarova K, Onul N, Catal T. Sensitive detection of iron (II) sulfate with a novel reagent using spectrophotometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118631. [PMID: 32619787 DOI: 10.1016/j.saa.2020.118631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel reagent was developed for sensitive detection of iron (II) sulfate, spectrophotometrically. A novel thio-anthraquinone derivative, 1-(Dodecylthio)anthracene-9,10-dione (3), was synthesized from the chemical reaction of 1-Chloroanthraquinone (1) and 1-Dodecanethiol (2) by an original reaction method and was used in the preparation of the novel reagent called Catal's reagent. A synthesized thio-anthraquinone analogue (3) was purified by column chromatography, and its chemical structure was characterized by spectroscopic methods such as Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and ultraviolet (UV)-visible spectrophotometry. The chemical and molecular structure of the developed thio-antraquinone derivative (3) was illuminated using computational methods with the GaussView5 and Gaussian09 programs. Various solvents including ethanol, methanol, and acetonitrile were examined in the preparation of the reagent. A concentration range from 0.2 mg mL-1 up to 10 mg mL-1 of iron (II) sulfate heptahydrate solution in distilled water was prepared. The absorption spectra of Catal's reagent (0.816 mM) showed three peaks between 185 nm-700 nm of wavelength. However, after the reaction with H2O2 and the 30 mM trisodium citrate dihydrate mixture in the presence of an iron sulfate (II) solution, a single peak was observed, producing a stable and reddish/brownish homogenous solution (λ max = 304 nm). The following concentrations of iron (II) sulfate heptahydrate was examined using developed protocol and the reagent, and the concentrations were measured spectrophotometrically at 304 nm, 0.2-1 mg mL-1. Absorbances of reaction mixtures of iron (II) sulfate remained stable up to 48 h. The results indicated that the novel Catal's reagent can be used for sensitive spectrophotometric detection of iron (II) sulfate in aqueous solutions.
Collapse
Affiliation(s)
- Funda Ozkok
- Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey.
| | - Yesim Muge Sahin
- Department of Biomedical Engineering, Istanbul Arel University, Turkey; Polymer Technologies and Composite Aplication and Research Center (ArelPOTKAM), Istanbul Arel University Buyukcekmece, Istanbul, Turkey.
| | - Vildan Enisoglu Atalay
- Istanbul Protein Research Application and Inovation Center (PROMER), Turkey; Department of Bioengineering, Uskudar University, 34662 Uskudar, Istanbul, Turkey
| | - Kamala Asgarova
- Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Nihal Onul
- Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Tunc Catal
- Istanbul Protein Research Application and Inovation Center (PROMER), Turkey; Department of Molecular Biology and Genetics, Uskudar University, 34662 Uskudar, Istanbul, Turkey.
| |
Collapse
|
42
|
Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5430407. [PMID: 33062142 PMCID: PMC7537704 DOI: 10.1155/2020/5430407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress (OS) refers to the physiological imbalance between oxidative and antioxidative processes leading to increased oxidation, which then results in the inflammatory infiltration of neutrophils, increased protease secretion, and the production of a large number of oxidative intermediates. Oxidative stress is considered an important factor in the pathogenesis of cardiovascular disease (CVD). At present, active components of Chinese herbal medicines (CHMs) have been widely used for the treatment of CVD, including coronary heart disease and hypertension. Since the discovery of artemisinin for the treatment of malaria by Nobel laureate Youyou Tu, the therapeutic effects of active components of CHM on various diseases have been widely investigated by the medical community. It has been found that various active CHM components can regulate oxidative stress and the circulatory system, including ginsenoside, astragaloside, and resveratrol. This paper reviews advances in the use of active CHM components that modulate oxidative stress, suggesting potential drugs for the treatment of various CVDs.
Collapse
|
43
|
Qin X, Hua J, Lin SJ, Zheng HT, Wang JJ, Li W, Ke JJ, Cai HB. Astragalus polysaccharide alleviates cognitive impairment and β-amyloid accumulation in APP/PS1 mice via Nrf2 pathway. Biochem Biophys Res Commun 2020; 531:431-437. [PMID: 32800555 DOI: 10.1016/j.bbrc.2020.07.122] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its etiology and pathogenesis are not fully understood. Astragalus polysaccharide (APS) has many pharmacological activities, but there are few reports about its role in AD. Using the common AD model APP/PS1 mice, it was found that the expression of Keap1 (a negative regulatory factor of Nrf2), the protein level of cytoplasmic Nrf2 and the content of MDA were increased significantly, while the mRNA level of Nrf2, the expression of Nrf2 in nucleus and the contents of SOD and GSH-Px were decreased significantly. APS treatment significantly increased the expression of Nrf2 in the nucleus but decreased its expression in the cytoplasm, and restored the expression levels of Keap1, SOD, GSH-Px and MDA. When APP/PS1 mice were treated with APS and injected with Nrf2 siRNA, the down-regulation of Nrf2 expression significantly blocked the regulation of APS on oxidative stress. Continuing to test the physiological function of AD mice showed that the spatial learning and memory abilities of APP/PS1 mice were impaired, the apoptosis of brain cells and the content of β-amyloid (Aβ) were significantly increased. APS treatment significantly improved the cognitive ability of APP/PS1 mice, reduced apoptosis and the accumulation of Aβ, but the above effects of APS were blocked by Nrf2 siRNA injection. Therefore, APS can activate Nrf2 pathway to improve the physiological function of AD mice, which may have important clinical application value.
Collapse
Affiliation(s)
- Xiude Qin
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jun Hua
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Song-Jun Lin
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Hao-Tao Zheng
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jian-Jun Wang
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Wei Li
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jin-Ju Ke
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Hao-Bin Cai
- Neurology & Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
44
|
Zhang R, Xu L, An X, Sui X, Lin S. Astragalus polysaccharides attenuate pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition and NF-κB pathway activation. Int J Mol Med 2020; 46:331-339. [PMID: 32319542 PMCID: PMC7255476 DOI: 10.3892/ijmm.2020.4574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Astragalus polysaccharides (APS), the active ingredients isolated from the plant Astragalus, have been reported to have numerous biological activities, including anti‑inflammatory and antitumor activities. However, the effect of APS on pulmonary fibrosis (PF) remains unknown. The present study aimed to evaluate the protective effect of APS against PF and to explore its underlying mechanisms by using in vivo and in vitro models. A mouse in vivo model of bleomycin‑induced PF and an in vitro model of transforming growth factor β1 (TGF‑β1)‑stimulated human lung epithelial A549 cells were established. Histopathologic examination and collagen deposition were investigated by hematoxylin and eosin staining and Masson staining, and by detecting the hydroxyproline content. The expression of related genes was analyzed by western blotting, reverse transcription‑quantitative (RT‑q) PCR, immunofluorescence and immunohistochemistry. The results from the in vivo mouse model demonstrated that treatment with APS could ameliorate collagen deposition and reduce fibrotic area and hydroxyproline content in the matrix. Furthermore, APS significantly inhibited the epithelial‑mesenchymal transition (EMT), as evidenced by an increased level of E‑cadherin and a decreased expression of vimentin and alpha smooth muscle actin. Furthermore, APS treatment significantly decreased TGF‑β1‑induced EMT and NF‑κB pathway activation in vitro. The results from the present study provided new insights on PF regression via the anti‑fibrotic effects of APS.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Internal Medicine, The Wuyun Mountain Sanatorium of Hangzhou
| | - Liming Xu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xiaoxia An
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University
| | - Shuang Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
45
|
Ye XW, Deng YL, Xia LT, Ren HM, Zhang JL. Uncovering the mechanism of the effects of Paeoniae Radix Alba on iron-deficiency anaemia through a network pharmacology-based strategy. BMC Complement Med Ther 2020; 20:130. [PMID: 32345291 PMCID: PMC7189569 DOI: 10.1186/s12906-020-02925-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Paeoniae Radix Alba, the root of the plant Paeonia lactiflora Pall, is a common blood-enriching drug in traditional Chinese medicine. Its effectiveness in the clinical treatment of anaemia is remarkable, but its potential pharmacologic mechanism has not been clarified. METHODS In this study, the potential pharmacologic mechanism of Paeoniae Radix Alba in the treatment of iron-deficiency anaemia was preliminarily elucidated through systematic and comprehensive network pharmacology. RESULTS Specifically, we obtained 15 candidate active ingredients from among 146 chemical components in Paeoniae Radix Alba. The ingredients were predicted to target 77 genes associated with iron-deficiency anaemia. In-depth analyses of these targets revealed that they were mostly associated with energy metabolism, cell proliferation, and stress responses, suggesting that Paeoniae Radix Alba helps alleviate iron-deficiency anaemia by affecting these processes. In addition, we conducted a core target analysis and a cluster analysis of protein-protein interaction (PPI) networks. The results showed that four pathways, the p53 signalling pathway, the IL-17 signalling pathway, the TNF signalling pathway and the AGE-RAGE signalling pathway in diabetic complications, may be major pathways associated with the ameliorative effects of Paeoniae Radix Alba on iron-deficiency anaemia. Moreover, molecular docking verified the credibility of the network for molecular target prediction. CONCLUSIONS Overall, this study predicted the functional ingredients in Paeoniae Radix Alba and their targets and uncovered the mechanism of action of this drug, providing new insights for advanced research on Paeoniae Radix Alba and other traditional Chinese medicines.
Collapse
Affiliation(s)
- Xian-Wen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ya-Ling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Lan-Ting Xia
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Hong-Min Ren
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jin-Lian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
46
|
Effect of Astragalus membranaceus Oral Solution on Lifespan and Learning and Memory Ability of Honey Bees. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5745048. [PMID: 32351998 PMCID: PMC7174962 DOI: 10.1155/2020/5745048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
In this study, the effects of Astragalus membranaceus oral solution on lifespan and learning and memory abilities of honey bees were evaluated. Two groups of bees were fed with sucrose syrup (50%) containing low dose (1.33%) and high dose (13.3%) of A. membranaceus oral solution, respectively. The proboscis extension response (PER) analysis was applied to examine the learning and memory capabilities of bees. Two genes related to memory formation in honey bees were determined by real-time PCR. High dose (13.3%) of A. membranaceus significantly decreased the mean lifespan of bees compared to the bees fed with low dose (1.33%) and control bees. No significant differences in lifespan of bees were found between low-dose-fed bees and control bees. The results of PER experiments showed apparent improvement in the memorizing ability of the high-dose group (in comparison with the control group). Moreover, the relative expression levels of Nmdar1 in the low-dose group and control group were significantly lower than those in the high-dose group. It is preliminarily concluded that A. membranaceus has an adverse effect on the mean lifespan of honey bees but might be helpful in strengthening memories.
Collapse
|
47
|
Zhang M, Zhao H, Shen Y, Wang Y, Zhao Z, Zhang Y. Preparation, characterization and antioxidant activity evaluation in vitro of Fritillaria ussuriensis polysaccharide-zinc complex. Int J Biol Macromol 2020; 146:462-474. [DOI: 10.1016/j.ijbiomac.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
|
48
|
Yu S, Jiang J, Li W. Co-cultured Lepista sordida and Pholiota nameko polysaccharide-iron(iii) chelates exhibit good antioxidant activity. RSC Adv 2020; 10:27259-27265. [PMID: 35516923 PMCID: PMC9055521 DOI: 10.1039/d0ra03258a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022] Open
Abstract
In the present study, the structural characteristics and antioxidant activities of polysaccharide from the co-cultured Lepista sordida and Pholiota nameko and its polysaccharide-iron(iii) chelates were determined. Two polysaccharide fractions named CP-1 and CP-3 were isolated previously from polysaccharide of the fermentation liquid of the co-cultured Lepista sordida and Pholiota nameko. And their chemical structures were measured by FT-IR infrared spectroscopy, TG analysis, X-ray diffraction and 1H NMR spectroscopy. The results suggested that polysaccharides were chelated with iron(iii) by –OH and –COOH groups, forming a stable structure of β-FeOOH and improving crystallinity. Furthermore, the antioxidant activities of polysaccharide-iron(iii) chelates exhibited stronger hydroxyl radical and superoxide radical scavenging activity than the polysaccharides. Therefore, the polysaccharide-iron(iii) chelates could be used as a potential iron supplement. In the present study, the structural characteristics and antioxidant activities of polysaccharide from the co-cultured Lepista sordida and Pholiota nameko and its polysaccharide-iron(iii) chelates were determined.![]()
Collapse
Affiliation(s)
- Shuping Yu
- Qingdao Agricultural University
- Qingdao
- China
- Shandong Provincial Laboratory of Applied Mycology
- Qingdao Agricultural University
| | - Jikang Jiang
- Qingdao Agricultural University
- Qingdao
- China
- Shandong Provincial Laboratory of Applied Mycology
- Qingdao Agricultural University
| | - Wenxiang Li
- Qingdao Agricultural University
- Qingdao
- China
- Shandong Provincial Laboratory of Applied Mycology
- Qingdao Agricultural University
| |
Collapse
|