1
|
Liu D, He Y, Zhang X, Ye Z, Ye M. Characterization, physicochemical properties, antioxidant activity and hypolipidemic activities of a polysaccharides from Lachnum YM40. Fitoterapia 2025; 181:106390. [PMID: 39805506 DOI: 10.1016/j.fitote.2025.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
LEP-1a, a new polysaccharide fraction isolated and purified from Lachnum YM40, has a molecular weight of 24.29 kDa. LEP-1a's chemical composition investigation showed that mannose, galactose, and glucose made up the majority of its cosmetics. The methylation, nuclear magnetic resonance, and Fourier transform infrared investigations demonstrated that the (1 → 2)-β-D-Galp, (1 → 2,6)-α-D-Manp, glycosidic connections of LEP-1a were comprised of 1→)-α-D-Manp, (1 → 4)-α-D-Galp, (1 → 6)-α-D-Manp, (1 → 2)-β-D-Glcp, (1 → 4)-β-D-Glcp, (1 → 2)-α-D-Manp, and (1 → 3, 6)-β-D-Manp. LEP-1a has a linear microscopic morphology, as demonstrated by atomic force microscopy, scanning electron microscopy, and rheological property investigation. Moreover, the polysaccharide LEP-1a displayed bile acid- and cholesterol-binding capacities and inhibitory activity on lipase.
Collapse
Affiliation(s)
- Dong Liu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anqing Vocational and Technical College, Anqing 246003, China
| | - Yaling He
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Liang J, Huang YX, Zhu XH, Zhou FY, Wu TY, Jia JF, Liu X, Kuang HX, Xia YG. Structural identification, rheological properties and immunological receptor of a complex galacturonoglucan from fruits of Schisandra chinensis (Turcz.) Baill. Carbohydr Polym 2024; 346:122644. [PMID: 39245531 DOI: 10.1016/j.carbpol.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
A complex heteropolysaccharide SCP-2 named schisanan B (Mw = 1.005 × 105 g/mol) was obtained from water extracts of Schisandra chinensis fruits, and its planar structure was finally deduced as a galacturonoglucan by a combination of monosaccharide compositions, methylation analysis, partial acid hydrolysis, enzymatic hydrolysis and 1D/2D-nuclear magnetic resonance spectroscopy. The conformation of SCP-2 exhibited a globular shape with branching in ammonium formate aqueous solutions. The rheological properties of SCP-2 were investigated on concentrations, temperature, pH and salts. The in vitro immunomodulatory activity assay demonstrated that SCP-2 significantly enhanced the production of nitric oxide (NO) and stimulated the secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in macrophages. Through a combination of high-resolution live-cell imaging, surface plasmon resonance, and molecular docking techniques, SCP-2 exhibited a strong binding affinity with the Toll-like receptor 4 (TLR4). Moreover, western blot analysis revealed that SCP-2 effectively induced downstream signaling proteins associated with TLR4 activation, thereby promoting macrophage activation. The evidence strongly indicates that TLR4 functions as a membrane protein target in the activation of macrophages and immune regulation induced by SCP-2.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Xin Huang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Fang-Yu Zhou
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Tian-Yuan Wu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Ju-Fang Jia
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Xu Liu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
3
|
Que Y, Zhang Y, Liang F, Wang L, Yang Y, Zhang J, Wang W, Sun Y, Zhong C, Zhang H, He C, Guan L, Ma H. Structural characterization, antioxidant activity, and fermentation characteristics of Flammulina velutipes residue polysaccharide degraded by ultrasonic assisted H 2O 2-Vc technique. ULTRASONICS SONOCHEMISTRY 2024; 111:107085. [PMID: 39368414 PMCID: PMC11490713 DOI: 10.1016/j.ultsonch.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Adhere to the concept of low-carbon environmental protection and turning waste into treasure, polysaccharides from Flammulina velutipes residue polysaccharide (FVRP) has been developed and possesses diverse bioactivities, comprising antioxidant, hypoglycemic, and relieving heavy metal damage, which still has the disadvantages of high molecular weight and low bioavailability. The current work is the first to prepare a degraded polysaccharide (FVRPV) from FVRP by ultrasonic assisted H2O2-Vc technique in order to reduce its molecular weight, thereby improving its activity and bioavailability. Our results found that the molecular weight and average particle size were declined, but the monosaccharide composition and characteristic functional group types of FVRPV had no impact. The structural changes of polysaccharides analyzed by XRD, Congo Red test, I2-KI, SEM, and methylation analysis indicated that the surface morphology and glycosidic bond composition of FVRPV possessed longer side chains and a greater number of branches with an amorphous crystal structure devoid of a triple helix configuration, and had experienced notable alterations after ultrasonic assisted H2O2-Vc treatment. Meanwhile, the in vitro antioxidant capacity of FVRPV had significantly increased compared to FVRP, implying ultrasonic assisted H2O2-Vc technique maybe a effective method to enhance the bioactivity of polysaccharides. In addition, the content of polysaccharide, reducing sugar, and uronic acid in FVRPV was significantly decreased, but antioxidant capacity of fermentation broth was stronger by in vitro human fecal fermentation. The 16S rDNA sequencing data displayed that FVRPV can enrich probiotics and reduce the abundance of pathogenic bacteria through different metabolic pathways mediated by gut microbiota, thereby exerting its potential probiotic effects. The interesting work provides a novel degraded polysaccharide by ultrasonic assisted H2O2-Vc technique, laying a foundation for developing FVRPV as a new antioxidant and prebiotic.
Collapse
Affiliation(s)
- Yunxiang Que
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Fengxiang Liang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Jingbo Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Wanting Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Ying Sun
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Changjiao Zhong
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
4
|
Zhang Y, Wang L, Qiu Z, Yang Y, Wang T, Inam M, Ma H, Zhang H, He C, Guan L. Comprehensive evaluation of Flammulina velutipes residues polysaccharide based on in vitro digestion and human fecal fermentation. Int J Biol Macromol 2024; 281:136487. [PMID: 39414219 DOI: 10.1016/j.ijbiomac.2024.136487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Flammulina velutipes residues (FVR) are the waste culture medium derived from the collection of Flammulina velutipes fruiting bodies, with an annual output that remains largely unexplored. The characteristics of digestion and fermentation of Flammulina velutipes residues polysaccharide (FVRP) are still relatively unknown. This study investigated the structure of the gut microbiota through 16 s rDNA gene sequencing and analyzed changes in short-chain fatty acid (SCFA) content via targeted metabolome analysis. The aim was to explore the prebiotic activity of FVRP based on a simulated digestion model combined with an in vitro anaerobic fermentation model. The results demonstrated that FVRP did not exhibit significant changes during in vitro digestion and fermentation but did enhance antioxidant activity. Furthermore, FVRP was found to rapidly reduce the pH value and increase SCFA production in the fermentation broth from lactic acid bacteria and human feces. Notably, FVRP altered the gut microbiota structure, significantly increasing the relative abundance of Firmicutes and Bacteroidota. Thus, FVRP could be considered a promising prebiotic food and feed additive that promotes the generation of short-chain fatty acids by modulating gut microbiota.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Zihan Qiu
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Tiezhu Wang
- Changchun Gaorong Biotechnological Co., Ltd., Changchun 130102, PR China
| | - Muhammad Inam
- Department of Zoology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
5
|
Valerio F, Di Biase M, Cifarelli V, Lonigro SL, Maalej A, Plazzotta S, Manzocco L, Calligaris S, Maalej H. Okra ( Abelmoschus esculentus L.) Flour Integration in Wheat-Based Sourdough: Effect on Nutritional and Technological Quality of Bread. Foods 2024; 13:3238. [PMID: 39456300 PMCID: PMC11507399 DOI: 10.3390/foods13203238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to develop an innovative sourdough using dehydrated okra (Abelmoschus esculentus L.) pod flour and to use it in the production of bread. Three different flours (sun-dried S, freeze-dried F, oven-dried O) were individually mixed at 9% with wheat flour (Dough Yield 300) and fermented (N0: 8.0 log10 CFU/g) for 14 h, using Lactiplantibacillus plantarum ITM21B, Weissella cibaria C43-11 or Leuconostoc mesenteroides C43-2M. The results showed that after fermentation, the content of organic acids (lactic, acetic and propionic), exopolysaccharides (EPS), l-glutamic acid and total free amino acids (TFAA) increased and the high molecular weight proteins were converted into smaller proteins. Sourdough based on Leuc. mesenteroides and O flour (O_LeuMes) was selected to evaluate its applicability in bread making. It was included in the yeast-leavened bread formulation at 20 or 40% (0.6% and 1.21% w/w O flour replacement). The results showed that fermentation limited the negative effects of unfermented O flour on bread quality attributes, mainly the specific volume and firmness. Bread with O_LeuMes at 40% was improved in TFAA, EPS and l-glutamic acid content and showed a higher specific volume and lower moisture and firmness compared to bread with the unfermented O flour.
Collapse
Affiliation(s)
- Francesca Valerio
- Institute of Sciences of Food Production, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy; (M.D.B.); (V.C.); (S.L.L.); (S.C.)
| | - Mariaelena Di Biase
- Institute of Sciences of Food Production, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy; (M.D.B.); (V.C.); (S.L.L.); (S.C.)
| | - Valentina Cifarelli
- Institute of Sciences of Food Production, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy; (M.D.B.); (V.C.); (S.L.L.); (S.C.)
| | - Stella Lisa Lonigro
- Institute of Sciences of Food Production, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy; (M.D.B.); (V.C.); (S.L.L.); (S.C.)
| | - Amina Maalej
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax 3018, Tunisia;
| | - Stella Plazzotta
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.P.); (L.M.)
| | - Lara Manzocco
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.P.); (L.M.)
| | - Sonia Calligaris
- Institute of Sciences of Food Production, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy; (M.D.B.); (V.C.); (S.L.L.); (S.C.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.P.); (L.M.)
| | - Hana Maalej
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), LR16ES36, Faculty of Sciences of Gabes, University of Gabes, Gabes 6072, Tunisia;
| |
Collapse
|
6
|
Apolinário da Silva AP, Xavier da Silva Neto J, Wemmenson Gonçalves Moura LF, de Lima Rebouças E, Flávio da Silva Lopes F, Barbosa da Silva WM, Maia de Morais S, Bezerra da Silva B, Florindo Guedes MI. Okra (Abelmoschus esculentus L. moench) fruit powder standardized in flavonoids improves glycemic control and metabolic memory in acute and chronic hyperglycemia. FOOD BIOSCI 2024; 61:104870. [DOI: 10.1016/j.fbio.2024.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
7
|
Zhang Q, Peng Y, Xu Y, Li F, Liu S, Bukvicki D, Zhang Q, Lin S, Wang M, Zhang T, Wu D, Qin W. Extraction, Characterization, and In Vitro Biological Activity of Polyphenols from Discarded Young Fig Fruits Based on Deep Eutectic Solvents. Antioxidants (Basel) 2024; 13:1084. [PMID: 39334743 PMCID: PMC11428376 DOI: 10.3390/antiox13091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Discarded young fig fruits (DYFFs) result in a waste of resources, such as sparse fruits and residual fruits, and there has been no research on the relationship between phenolic compounds and biological activity in DYFFs (2) Methods: Different deep eutectic solvents (DESs) and 80% ethanol were used to prepare DYFF extracts, and polyphenol extraction efficiency and bioactivities in the DYFFs extracts were compared. (3) Results: More than 1700 phytochemicals were identified in DYFFs, and thirteen of these typical phenolic compounds were analyzed quantitatively; chlorogenic acid, rutin, luteolin 8-C-glucoside, and epicatechin are the main polyphenols in DYFFs, especially chlorogenic acid with 2720-7980 mg/kg. Ferulic acid, caffeic acid, epicatechin, (+)-catechin, luteolin 8-C-glucoside, rutin, hesperetin, and chlorogenic acid showed different degrees of correlation with in vitro antioxidant activity. Moreover, the highest total phenol content found in the extracts of ChCl-Ethylene glycol (Choline chloride:Ethylene glycol = 1:2) was 8.88 mg GAE/g DW, and all quantitatively analyzed phenolic compounds had high levels in various DESs and 80% ethanol. The 80% ethanol and Choline chloride (ChCl) solvent system showed the greatest antioxidant properties, and the Choline chloride-Urea (Choline chloride: Urea = 1:2) extract of DYFFs exhibited the highest inhibitory activity. (4) Conclusions: DESs have demonstrated potential as promising green solvents, especially the ChCl solvent system, which facilitates the extraction of polyphenols.
Collapse
Affiliation(s)
- Qinqiu Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Peng
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yi Xu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Fan Li
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shuxiang Liu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Danka Bukvicki
- Faculty of Biology, Institute of Botany 43, Belgrade University, 11000 Belgrade, Serbia
| | - Qing Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shang Lin
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Miaomiao Wang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Tianyi Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Centre of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wen Qin
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
8
|
Li X, Yao W, Hu C, Lin C, You L, Mao J. Comparative Analysis of Gracilaria chouae Polysaccharides Derived from Different Geographical Regions: Focusing on Their Chemical Composition, Rheological Properties, and Gel Characteristics. Gels 2024; 10:454. [PMID: 39057478 PMCID: PMC11275624 DOI: 10.3390/gels10070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polysaccharides derived from diverse sources exhibit distinct rheological and gel properties, exerting a profound impact on their applicability in the food industry. In this study, we collected five Gracilaria chouae samples from distinct geographical regions, namely Rizhao (RZ), Lianyungang (LYG), Ningde (ND), Beihai (BH), and a wild source from Beihai (BHW). We conducted analyses on the chemical composition, viscosity, and rheological properties, as well as gel properties, to investigate the influence of chemical composition on variations in gel properties. The results revealed that the total sugar, sulfate content, and monosaccharide composition of G. chouae polysaccharides exhibit similarity; however, their anhydrogalactose content varies within a range of 15.31% to 18.98%. The molecular weight distribution of G. chouae polysaccharides ranged from 1.85 to 2.09 × 103 kDa. The apparent viscosity of the LYG and BHW polysaccharides was relatively high, whereas that of RZ and ND was comparatively low. The gel strength displayed a similar trend. BHW and LYG exhibited solid-like behavior, while ND, RZ, and BH demonstrated liquid-like characteristics at low frequencies. The redundancy analysis (RDA) analysis revealed a positive correlation between the texture profile analysis (TPA) characteristics and anhydrogalactose. The study could provide recommendations for the diverse applications of G. chouae polysaccharides derived from different geographical regions.
Collapse
Affiliation(s)
- Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Cebin Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Congyu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
| |
Collapse
|
9
|
Suo A, Fan G, Wu C, Li T, Li X, Zhou D, Cong K, Cheng X, Sun W. Efficient degradation and enhanced α-glucosidase inhibitory activity of apricot polysaccharides through non-thermal plasma assisted non-metallic Fenton reaction. Int J Biol Macromol 2024; 266:131103. [PMID: 38522683 DOI: 10.1016/j.ijbiomac.2024.131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Dielectric barrier discharge (DBD) was a commonly used non-thermal plasma (CP) technology. This paper aimed to enhance the biological activity of apricot polysaccharides (AP) by using dielectric barrier discharge (DBD-CP) assisted H2O2-VC Fenton reaction for degradation. The degradation conditions were optimized through response surface methodology. The molecular weight (Mw) of degraded apricot polysaccharides (DAP) was 19.71 kDa, which was 7.25 % of AP. The inhibition rate of DAP (2 mg/mL) was 82.8 ± 3.27 %, which was 106.87 % higher than that of AP. DBD-CP/H2O2-VC degradation changed the monosaccharide composition of AP and improved the linearity of polysaccharide chains. In addition, a novel apricot polysaccharide DAP-2 with a Mw of only 6.60 kDa was isolated from DAP. The repeating units of the main chain of DAP-2 were →4)-α-D-GalpA-(1 →, the branch chain was mainly composed of α-D-GalpA-(1 → 2)-α-L-Rhap-(1→ connected to O-3 position →3,4)-α-D-GalpA-(1→. The complex structure formed by the combination of DAP-2 and α-glucosidase was stable. DAP-2 had a higher α-glucosidase binding ability than the acarbose. These results suggested that DAP-2 had the potential to be developed as a potential hypoglycemic functional food and drug.
Collapse
Affiliation(s)
- Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaiping Cong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xin Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Wenjuan Sun
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
10
|
Fan L, Zhu X, Zhang D, Li D, Zhang C. In vitro digestion properties of Laiyang pear residue polysaccharides and it counteracts DSS-induced gut injury in mice via modulating gut inflammation, gut microbiota and intestinal barrier. Int J Biol Macromol 2024; 267:131482. [PMID: 38599423 DOI: 10.1016/j.ijbiomac.2024.131482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was to explore the dynamic changes in the physicochemical properties of Laiyang pear residue polysaccharide (LPP) during in vitro digestion, as well as its protective effect on the intestines. Monosaccharide composition and molecular weight analysis showed that there was no significant change in LPP during the oral digestion stage. However, during the gastric and intestinal digestion stages, the glycosidic bonds of LPP were broken, leading to the dissociation of large molecular aggregates and a significant increase in reducing sugar content (CR) accompanied by a decrease in molecular weight. In addition, LPP exerted the intestinal protective ability via inhibiting gut inflammation, improving intestinal barrier, and regulating intestinal flora in DSS-induced mice. Specifically, LPP mitigated DSS-induced intestinal pathological damage of mice via enhancing intestinal barrier integrity and upregulating expressions of TJ proteins, and suppressed inflammation by inhibiting NF-κB signaling axis. Furthermore, LPP decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and altered the diversity and the composition of gut microbiota in DSS-induced mice. Therefore, LPP had the potential to be a functional food that improved gut microbiota environment to enhance health and prevent diseases, such as a prebiotic.
Collapse
Affiliation(s)
- Liqing Fan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Xiangyang Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dexi Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
11
|
Hou S, Zhang D, Yu D, Li H, Xu Y, Wang W, Li R, Feng C, Meng J, Xu L, Cheng Y, Chang M, Geng X. Effect of Different Drying Methods on the Quality of Oudemansiella raphanipes. Foods 2024; 13:1087. [PMID: 38611391 PMCID: PMC11011357 DOI: 10.3390/foods13071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, we used fresh Oudemansiella raphanipes as raw materials and pre-treated through hot air drying (HD), infrared radiation drying (ID), and vacuum freeze drying (VD) to investigate the effects of different drying methods on the rehydration rate, appearance quality, microstructure, and volatile flavor components of the dried products, as well as to determine the physicochemical properties and bioactivities of the polysaccharides in the dried O. raphanipes. The results showed that the VD O. raphanipes had the highest rehydration rate and the least shrinkage in appearance, and it better maintained the original color of the gills, but their aroma was not as strong as that of the HD samples. The scanning electron microscopy results indicate that VD maintains a good porous structure in the tissue, while HD and ID exhibit varying degrees of shrinkage and collapse. Seventy-five common volatile substances were detected in the three dried samples, mainly alkanes, alcohols, and esters. The polysaccharides (PS-H, PS-I, and PS-V) extracted from the dried samples of these three species of O. raphanipes had similar infrared spectral features, indicating that their structures are basically consistent. The highest yield was obtained for PS-V, and the polysaccharide content and glucuronic acid content of PS-I were higher than those of the remaining two polysaccharides. In addition, PS-V also showed better antioxidant activity and inhibitory activity against α-glucosidase as well as α-amylase. In conclusion, among the above three drying methods, the quality of O. raphanipes obtained by vacuum freeze drying is the best, and this experiment provides a theoretical basis for the selection of drying methods for O. raphanipes.
Collapse
Affiliation(s)
- Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Defang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Dongmei Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Hao Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Wuxia Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Ruiting Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
12
|
Wang X, Hu K, Chen Y, Lai J, Zhang M, Li J, Li Q, Zhao N, Liu S. Effect of Lactiplantibacillus plantarum fermentation on the physicochemical, antioxidant activity and immunomodulatory ability of polysaccharides from Lvjian okra. Int J Biol Macromol 2024; 257:128649. [PMID: 38065452 DOI: 10.1016/j.ijbiomac.2023.128649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Okra polysaccharides exhibits a range of biological activities. To date, its processing using microbial fermentation has not been explored. This study investigated the fermentation of okra juice with various lactic acid bacteria, followed by the extraction and characterization of crude polysaccharides (termed OPS-F), in contrast to their non-fermented counterpart (OPS). Changes in physicochemical properties, antioxidant activity and immunomodulatory ability were noted. The results demonstrated that OPS-F had a 7.42-12.53 % increase in total polysaccharides content compared to OPS. However, high-performance size-exclusion chromatography indicated a reduction in the molecular weight of OPS-F (7.9-9.5 × 105 Da) relative to OPS (1.66 × 106 Da). Compared to OPS, OPS-F had reduced levels of mannose, glucose, glucuronic acid and arabinose, but increased rhamnose, galacturonic acid and galactose, exhibiting enhanced solubility and lower apparent viscosity. Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis showed minimal changes in polysaccharide structure post-fermentation. Moreover, despite a decrease in antioxidant activity post-fermentation, OPS-F exhibited superior immunomodulatory potential. In conclusion, fermenting okra juice with lactic acid bacteria alters the physicochemical properties of crude polysaccharides and enhances their immunomodulatory activity, offering a promising approach for developing new functional food resources.
Collapse
Affiliation(s)
- Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinghui Lai
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
13
|
Ye L, Zhang QQ, Lin S, Zhang Q, Yan J, Wu DT, Liu SX, Qin W. A Polysaccharide from Ficus carica L. Exerts Immunomodulatory Activity in Both In Vitro and In Vivo Experimental Models. Foods 2024; 13:195. [PMID: 38254496 PMCID: PMC10814953 DOI: 10.3390/foods13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Polysaccharides from Ficus carica L. (FCP) exert multiple biological activities. As a biological macromolecule, the available knowledge about the specific structures and mechanisms of the biological activity of purified 'Brunswick' fig polysaccharides is currently limited. In the present study, chemical purification and characteristics were identified via chemical and instrumental analysis, and then the impact of FCP on immunomodulation activity in vitro and in vivo was examined. Structural characteristics showed that the molecular weight of the FCP sample was determined to be 127.5 kDa; the primary monosaccharides present in the FCP sample were galacturonic acid (GalA), arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), and xylose (Xyl) at a ratio of 0.321:0.287:0.269:0.091:0.013:0.011. Based on the investigation of in vitro immunomodulatory activity, FCP was found to stimulate the production of NO, TNF-α, and IL-6, and increased the pinocytic activity of macrophages. Further analysis revealed that FCP activated macrophages by interacting with Toll-like receptor 4 (TLR4). Moreover, the in vivo test results indicate that FCP showed a significant increase in serum pro-inflammatory factors in immunosuppressed mice. Overall, this study suggests that FCP has the potential to be utilized as a novel immunomodulator in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Lin Ye
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Qin-Qiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Shang Lin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Jing Yan
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Shu-Xiang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| |
Collapse
|
14
|
Chen M, Chen X, Guo Y, Liu N, Wang K, Gong P, Zhao Y, Cai L. Effect of in vitro digestion and fermentation of kiwifruit pomace polysaccharides on structural characteristics and human gut microbiota. Int J Biol Macromol 2023; 253:127141. [PMID: 37776924 DOI: 10.1016/j.ijbiomac.2023.127141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Kiwifruit pomace is abundant in polysaccharides that exhibit diverse biological activities and prebiotic potential. This study delves into the digestive behavior and fermentation characteristics of kiwifruit pomace polysaccharides (KFP) through an in vitro simulated saliva-gastrointestinal digestion and fecal fermentation. The results reveal that following simulated digestion of KFP, its molecular weight reduced by 4.7%, and the reducing sugar (CR) increased by 9.5%. However, the monosaccharide composition and Fourier transform infrared spectroscopy characteristics showed no significant changes, suggesting that KFP remained undigested. Furthermore, even after saliva-gastrointestinal digestion, KFP retained in vitro hypolipidemic and hypoglycemic activities. Subsequently, fecal fermentation significantly altered the physicochemical properties of indigestible KFP (KFPI), particularly leading to an 89.71% reduction in CR. This indicates that gut microbiota could decompose KFPI and metabolize it into SCFAs. Moreover, after 48 h of KFPI fecal fermentation, it was observed that KFPI contributed to maintaining the balance of gut microbiota by promoting the proliferation of beneficial bacteria like Bacteroides, Lactobacillus, and Bifidobacterium, while inhibiting the unfavorable bacteria like Bilophila. In summary, this study offers a comprehensive exploration of in vitro digestion and fecal fermentation characteristics of KFP, providing valuable insights for potential development of KFP as a prebiotic for promoting intestinal health.
Collapse
Affiliation(s)
- Mengyin Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan 714000, China
| | - Ketang Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Luyang Cai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| |
Collapse
|
15
|
Toucheteau C, Deffains V, Gaignard C, Rihouey C, Laroche C, Pierre G, Lépine O, Probert I, Le Cerf D, Michaud P, Arnaudin-Fruitier I, Bridiau N, Maugard T. Role of some structural features in EPS from microalgae stimulating collagen production by human dermal fibroblasts. Bioengineered 2023; 14:2254027. [PMID: 37700452 PMCID: PMC10498797 DOI: 10.1080/21655979.2023.2254027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Exopolysaccharides (EPS) from the microalgae Porphyridium cruentum, Chrysotila dentata, Pavlova sp., Diacronema sp., Glossomastix sp., Phaeodactylum tricornutum, and Synechococcus sp. were isolated and depolymerized. First, EPS were submitted to a high pressure pre-treatment step, followed by a solid acid-catalyzed hydrolysis step carried out in a batch or recycle fixed-bed reactor, using a strong acidic cation-exchange resin. Twenty-eight different EPS forms were thus obtained. After characterization of their main structural features (weight- and number-averaged molecular weight, polydispersity index, sulfate and uronic acid contents), we investigated the structure-function relationship of their pro-collagen activity. We found that native microalgae EPS were able to inhibit until 27% of human matrix metalloproteinase-1 (MMP-1) activity while the depolymerized forms were able to enhance collagen production by two different human fibroblast lines, used as cell models due to their major role in dermal collagen biosynthesis. The most active EPS forms, obtained by depolymerization in the recycle fixed-bed reactor of D. ennorea and Glossomastix sp. EPS, led to 390% increase in collagen production. Finally, principal component (PCA) and Pearson analyses indicated that MMP-1 inhibition was strongly correlated to the sulfate group content of EPS whereas collagen production by fibroblasts was mostly related to their proportion of low molecular weight polysaccharides (<10 kDa). Uronic acid content of EPS was also shown essential but only if the size of EPS was reduced in the first place. Altogether, these results gave new insights of the dermo-cosmetic potential of microalgae EPS as well as the key parameters of their activity.
Collapse
Affiliation(s)
- Claire Toucheteau
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Valentine Deffains
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Clément Gaignard
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Christophe Rihouey
- Université de Rouen Normandie, PBS Laboratory, Mont Saint Aignan, France
| | - Céline Laroche
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Olivier Lépine
- Algosource Technologies, 37 Bd de l’Université, Saint-Nazaire, France
| | - Ian Probert
- Roscoff marine station, CNRS/Sorbonne Université, Roscoff, France
| | - Didier Le Cerf
- Université de Rouen Normandie, PBS Laboratory, Mont Saint Aignan, France
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Ingrid Arnaudin-Fruitier
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Nicolas Bridiau
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Thierry Maugard
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| |
Collapse
|
16
|
Hu S, Gao K, Jiao Y, Yuan Z. Glycolysis characteristics of intracellular polysaccharides from Agaricus bitorquis (Quél.) sacc. Chaidam and its effects on intestinal flora from different altitudes of mice in vitro fermentation. Food Res Int 2023; 173:113382. [PMID: 37803720 DOI: 10.1016/j.foodres.2023.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The glycolysis characteristics and effects on intestinal flora of polysaccharides from Agaricus bitorquis (Quél.) Sacc. Chaidam (ABIPs) in vitro fermentation by different altitudes of mice feces was examined, including low, medium, and high altitudes groups (LG, MG, and HG). In vitro, fermentation of ABIPs forty-eight hours resulted in a remarkable decrease in total sugar content and improvement of short-chain fatty acids (SCFAs) (mainly acetate, propionate, and butyrate), which simultaneously induced the composition of monose and uronic acids and SCFAs continuously change. Besides, ABIPs influenced the abundance and composition of the intestinal flora, generally increasing the abundance of probiotic bacteria (such as Bifidobacterium and Faecalibacterium) and decreasing the abundance of harmful bacteria (such as Phenylobacterium and Streptococcus) in all groups, with the highland biology core genus Blautia significantly enriched in LG and MG groups. It was also found that ABIPs enhanced pathways associated with biosynthesis and metabolism. In addition, correlation analysis speculated that the metabolism of SCFAs by ABIPs may be associated with genera such as Anaerostipes, Roseburia, and Weissella. ABIPs may protect organismal health by regulating hypoxic intestinal flora composition and metabolic function, and more superior fermentation performance was observed in MG compared to other groups.
Collapse
Affiliation(s)
- Shicheng Hu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Ke Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China.
| |
Collapse
|
17
|
Luo Q, Li X, Li H, Kong K, Li C, Fang Z, Hu B, Wang C, Chen S, Wu W, Li X, Liu Y, Zeng Z. Effect of in vitro simulated digestion and fecal fermentation on Boletus auripes polysaccharide characteristics and intestinal flora. Int J Biol Macromol 2023; 249:126461. [PMID: 37619676 DOI: 10.1016/j.ijbiomac.2023.126461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Boletus auripes is edible and medicinal boletus mushrooms rich in diverse nutrients and bioactive compounds, of which indigestible dietary polysaccharides are the most abundant compounds involved the regulation of gut microbes. However, the physicochemical, digestive, and fermentation characteristics of Boletus auripes polysaccharide (BAP) are not well studied. This study aimed to investigate the influence of different digestive stages on BAP's physicochemical characteristics and biological activities, and its effect on intestinal flora. We found that mannose (0.23 %), glucose (0.31 %), galactose (0.17 %), and fucose (0.19 %) were the main monosaccharides of BAP, with a high-molecular-weight (Mw) and a low-Mw fraction of 2084.83 and 62.93 kDa, respectively. During the course of digestion, there were slight alterations in the chemical composition, monosaccharide composition, and Mw of BAP. Despite these changes, the fundamental structural features of BAP remained largely unaffected. Moreover, the antioxidant and hypoglycemic activities of BAP were weakened under simulated saliva-gastrointestinal digestion. However, gut microbiota decomposed and utilized BAP to generate various short-chain fatty acids during fermentation, which decreased the pH of fecal cultures. Meanwhile, BAP modulated the gut microbiota composition and increased the relative abundance of Bacteroidetes. These findings suggest that BAP have potential for maintaining intestinal health and protecting against interrelated diseases.
Collapse
Affiliation(s)
- Qingying Luo
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Xuejiao Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Hongyu Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Keyang Kong
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Cheng Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Zhengfeng Fang
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Bin Hu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Caixia Wang
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Saiyan Chen
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Wenjuan Wu
- Sichuan Agricultural University, College of Science, Yaan 625014, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Edible fungi cultivation and Physiology Research Center, Chengdu 610066, China
| | - Yuntao Liu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| | - Zhen Zeng
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| |
Collapse
|
18
|
Bai C, Chen R, Zhang Y, Bai H, Tian L, Sun H, Li D, Wu W. Comparison in structural, physicochemical and functional properties of sweet potato stems and leaves polysaccharide conjugates from different technologies. Int J Biol Macromol 2023; 247:125730. [PMID: 37422248 DOI: 10.1016/j.ijbiomac.2023.125730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
In order to better understand the influences of extraction techniques on the yield, characteristics, and bioactivities of polysaccharide conjugates, hot reflux extraction (HRE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), complex enzymolysis extraction (CEE), ultra-high pressure extraction (UPE), ultrasonic complex enzymes extraction (UEE) were used to extract sweet potato stems leaves polysaccharide conjugates (SPSPCs), and their physicochemical characteristics, functional properties, antioxidant and hypoglycemic activities were compared. Results showed that compared with HRE conjugate (HR-SPSPC), the yield, content of uronic acid (UAC), total phenol (TPC), total flavonoid (TFC) and sulfate group (SGC), water solubility (WS), percentage of glucuronic acid (GlcA), galacuronic acid (GalA) and galactose (Gal), antioxidant and hypoglycemia activities of UEE polysaccharide conjugates (UE-SPSPC) significant increased, while its molecular weight (Mw), degree of esterification (DE), content of protein (PC) and percentage of glucose (Glc) declined, but monosaccharides and amino acid types, and glycosyl linkages were not much different. Indeed, UE-SPSPC possessed the highest antioxidant activities and hypolipidemic activities among six SPSPCs, which might be due to the high UAC, TPC, TFC, SGC, GlcA, GalA and WS, low Mw, DE and Glc of UE-SPSPC. The results reveal that UEE is an effective extraction and modification technology of polysaccharide conjugates.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yu Zhang
- CHINA FAW GROUP CO., LTD, General Institute of FAW Vehicle benchmarking Center, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
19
|
Lin TY, Wu YT, Chang HJ, Huang CC, Cheng KC, Hsu HY, Hsieh CW. Anti-Inflammatory and Anti-Oxidative Effects of Polysaccharides Extracted from Unripe Carica papaya L. Fruit. Antioxidants (Basel) 2023; 12:1506. [PMID: 37627501 PMCID: PMC10451988 DOI: 10.3390/antiox12081506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Yun-Ting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Hui-Ju Chang
- Department of Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Executive Yuan, Taichung City 426017, Taiwan;
| | - Chun-Chen Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| | - Hsien-Yi Hsu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|
20
|
Jing Y, Yan M, Zhang H, Liu D, Qiu X, Hu B, Zhang D, Zheng Y, Wu L. Effects of Extraction Methods on the Physicochemical Properties and Biological Activities of Polysaccharides from Polygonatum sibiricum. Foods 2023; 12:foods12102088. [PMID: 37238906 DOI: 10.3390/foods12102088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Polygonatum sibiricum polysaccharides (PSPs) have important biological functions, such as antioxidation, immunomodulatory, and hypolipidemic functions. Different extraction methods have effects on their structures and activities. In this study, six extraction methods, including hot water extraction (HWE), alkali extraction (AAE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), and freeze-thaw-assisted extraction (FAE) were used to extract PSPs, and their structure-activity relationships were analyzed. The results showed that all six PSPs had similar functional group compositions, thermal stability, and glycosidic bond compositions. PSP-As (PSPs extracted by AAE) exhibited better rheological properties due to their higher molecular weight (Mw). PSP-Es (PSPs extracted by EAE) and PSP-Fs (PSPs extracted by FAE) had better lipid-lowering activity due to their lower Mw. PSP-Es and PSP-Ms (PSPs extracted by MAE), which do not contain uronic acid and have a moderate Mw, had better 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical-scavenging activity. On the contrary, PSP-Hs (PSPs extracted by HWE) and PSP-Fs, with the Mw of uronic acid, had the best OH-radical-scavenging activity. The high-Mw PSP-As had the best Fe2+-chelating ability. In addition, mannose (Man) may play an important role in the immunomodulatory activity. These results indicate that different extraction methods affect the structure and biological activity of polysaccharides to varying degrees, and these results are helpful for understanding the structure-activity relationship of PSPs.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Meng Yan
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Hao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Dongbo Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| |
Collapse
|
21
|
Zhao YX, Huang L, Wu DT, Li J, Lei J, Fu MX, Zhang Q, Qin W. Catabolism of Dictyophora indusiata Polysaccharide and Its Impacts on Gut Microbial Composition during In Vitro Digestion and Microbial Fermentation. Foods 2023; 12:foods12091909. [PMID: 37174446 PMCID: PMC10178076 DOI: 10.3390/foods12091909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Dictyophora indusiata is one of the most famous edible mushrooms in China. D. indusiata polysaccharide (DP) has attracted increasing attention because of its multiple beneficial effects. In this study, the in vitro simulated digestion and microbial fermentation were designed to reveal the potential catabolic property of DP and its impacts on the modulation of gut microbial composition. The results showed that the reducing sugar content, total polysaccharides content, molecular weight, and rheological property of DP were not significantly altered under in vitro simulated digestive conditions. However, the molecular weight, apparent viscosity, and total polysaccharides content of indigestible DP (DPI) significantly decreased during in vitro fecal fermentation, and the reducing sugar content and the release of free monosaccharides notably increased, suggesting that DP could be degraded and used by gut microbiota. Additionally, the relative abundances of several beneficial bacteria, such as Bacteroides, Catenibacterium, Parabacteroides, and Megamonas, increased significantly, indicating that DP can regulate the composition and abundance of gut microbiota. Moreover, DP could also promote the production of SCFAs, thus changing the acid-base environment of the large intestine. The results of this study are beneficial for deeply clarifying the catabolic behavior of DP in the gastrointestinal tract, which can provide a theoretical basis for developing microbiota-directed products based on DP.
Collapse
Affiliation(s)
- Yun-Xuan Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ling Huang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jie Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jing Lei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Meng-Xi Fu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qing Zhang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
22
|
Yang X, Lu S, Feng Y, Cao C, Zhang Y, Cheng S. Characteristics and properties of a polysaccharide isolated from Wolfiporia cocos as potential dietary supplement for IBS. Front Nutr 2023; 10:1119583. [PMID: 37051119 PMCID: PMC10083290 DOI: 10.3389/fnut.2023.1119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionAs low FODMAP (Fermentable oligosaccharides, disaccharides, monosaccharides and polyols) diet therapy is recommended for most of Irritable Bowel Syndrome (IBS) patients, the consequent insufficient of dietary fibers (DFs) intake exert an adverse impact on intestinal health. It is necessary to find suitable DFs for IBS patients.MethodsThis study extracted a water-insoluble polysaccharide from Wolfiporia cocos (WIP) by alkali-extraction and acid-precipitation method. Its molecular weight was detected by high performance gel permeation chromatography (HPGPC) analysis. The structure of WIP was analyzed by Fourier transform infrared (FT-IR) spectrum, Nuclear Magnetic Resonance (NMR) spectra and X-ray diffraction (XRD). The properties related to stability, digestion, viscosity, osmotic activity, adsorption and fermentation were investigated, aimed to explore the feasibility of WIP as a new DF supplement for patients with IBS. In addition, 16S rRNA sequencing analysis was conducted to explore its effects on IBS-related gut microbiota.Results and DiscussionThe results showed that WIP had a single homogeneous composition and the molecular weight was 8.1 × 103 Da. WIP was indicated as a kind of pyranose form with β anomeric configuration and the main chain of WIP was 1,3-β-glucan with amorphous structure. In addition to good thermal stability, WIP also has low bioavailability and can reach the colon mostly without being digested. Moreover, the low viscosity and osmotic activity, the high water- swelling and water/oil-holding capacity, fructose adsorption capacity and poor fermentation performance of WIP demonstrated that it is suitable for IBS patients. It is worth noting that WIP regulates IBS associated gut microbiota effectively, such as the abundance of Lachnospiraceae and Prevotella. These findings provide a theoretical basis for the development of WIP as a dietary supplement for IBS patients with low FODMAP diet therapy.GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Xuan Yang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shun Lu
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuhan Feng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, China
| | - Shujie Cheng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, China
- *Correspondence: Shujie Cheng,
| |
Collapse
|
23
|
He S, Peng WB, Zhou HL, Fu XJ, Sun YH, Wang ZG. A Combination of Deep-Sea Water and Fucoidan Alleviates T2DM through Modulation of Gut Microbiota and Metabolic Pathways. Pharmaceuticals (Basel) 2023; 16:ph16030462. [PMID: 36986561 PMCID: PMC10053583 DOI: 10.3390/ph16030462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Fucoidan and deep-sea water (DSW) are attractive marine resources for treating type 2 diabetes (T2DM). In this study, the regulation and mechanism associated with the co-administration of the two were first studied using T2DM rats, induced by a high fat diet (HFD) and streptozocin (STZ) injection. Results demonstrate that, compared to those with DSW or FPS alone, the orally administered combination of DSW and FPS (CDF), especially the high dose (H-CDF), could preferably inhibit weight loss, decrease levels of fasting blood glucose (FBG) and lipids, and improve hepatopancreatic pathology and the abnormal Akt/GSK-3β signaling pathway. The fecal metabolomics data show that H-CDF could regulate the abnormal levels of metabolites mainly through the regulation of linoleic acid (LA) metabolism, bile acid (BA) metabolism, and other related pathways. Moreover, H-CDF could adjust the diversity and richness of bacterial flora and enrich bacterial groups, such as Lactobacillaceae and Ruminococcaceae UCG-014. In addition, Spearman correlation analysis illustrated that the interaction between the gut microbiota and BAs plays an essential role in the action of H-CDF. In the ileum, H-CDF was verified to inhibit activation of the farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) pathway, which is regulated by the microbiota-BA-axis. In conclusion, H-CDF enriched Lactobacillaceae and Ruminococcaceae UCG-014, thereby changing BA metabolism, linoleic acid metabolism, and other related pathways, as well as enhancing insulin sensitivity and improving glucose and lipid metabolism.
Collapse
Affiliation(s)
- Shan He
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wei-Bing Peng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Hong-Lei Zhou
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Hua Sun
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen-Guo Wang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
24
|
Geng X, Guo D, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Chang M. Effects of in vitro digestion and fecal fermentation on physico-chemical properties and metabolic behavior of polysaccharides from Clitocybe squamulosa. Food Chem X 2023; 18:100644. [PMID: 37032744 PMCID: PMC10074541 DOI: 10.1016/j.fochx.2023.100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The aim of this study was to establish a human digestion model in vitro to explore the degradation characteristics of a novel high-purity polysaccharide from Clitocybe squamulosa (CSFP2). The results showed that the content of reducing sugars (CR ) of CSFP2 increased from 0.13 to 0.23 mg/mL, the molecular weight (Mw) of CSFP2 decreased significantly during the saliva-gastrointestinal digestion. The constituent monosaccharides of CSFP2, including galactose, glucose, and mannose, were stable during in vitro digestion, but their molar ratios were changed from 0.023: 0.737: 0.234 to 0.496: 0.478: 0.027. The surface of CSFP2 changes from a rough flaky structure to a scattered flocculent or rod-shaped structure after the gastrointestinal digestion. However, the apparent viscosity of CSFP2 was overall stable during in vitro digestion. Moreover, CSFP2 still maintains its strong antioxidant capacity after saliva-gastrointestinal digestion. The results showed that CSFP2 can be partially decomposed during digestion. Meanwhile, some physico-chemical properties of the fermentation broth containing CSFP2 changed significantly after gut microbiota fermentation. For example, the pH value (from 8.46 to 4.72) decreased significantly (p < 0.05) after 48 h of fermentation. the OD 600 value increased first and then decreased (from 2.00 to 2.68 to 1.32) during 48-h fermentation. In addition, CSFP2 could also increase the amounts of short-chain fatty acids (SCFAs) (from 5.5 to 37.15 mmol/L) during fermentation (in particular, acetic acid, propionic acid, and butyric acid). Furthermore, the relative abundances of Bacteriodes, Bifidobacterium, Catenibacterium, Lachnospiraceae_NK4A136_group, Megasphaera, Prevotella, Megamonas, and Lactobacillus at genus level were markedly increased with the intervention of CSFP2. These results provided a theoretical basis for the further development of functional foods related to CSFP2.
Collapse
|
25
|
Li H, Liu Y, Zhou J, Liu S, Liu Y, Yang Y, Wang W, Che Y, Inam M, Guan L. The protective mechanism of a novel polysaccharide from Lactobacillus-fermented Nostoc commune Vauch. on attenuating cadmium-induced kidney injury in mice. Int J Biol Macromol 2023; 226:1444-1454. [PMID: 36442563 DOI: 10.1016/j.ijbiomac.2022.11.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A novel polysaccharide (NCVP-F) from Lactobacillus-fermented Nostoc commune Vauch. was obtained to investigate its underlying mechanism in cadmium-induced kidney injury. Results indicated that in comparison with NCVP, NCVP-F with lower molecular weight of 365.369 kDa, exhibited higher mole percentage of Man and Glc-UA, whereas slightly lower mole percentage of other monosaccharides. NCVP-F is a α-pyran polysaccharide similar to NCVP. Meanwhile, NCVP-F can more effectively alleviate hepatorenal injury (ALT, AST, TG, BUN and SCr) and kidney tissue lesions in Cd-injured mice model by increasing antioxidant enzyme activity (SOD, GSH and GSH-Px), inhibiting cytokines levels (IL-6, IL-1β, TNF-α and IL-18). In addition, NCVP-F effectively inhibited apoptosis proteins (Bax, cytochrome c, a-caspase-9 and a-caspase-3) and enhanced anti-apoptotic protein (Bcl-2) probably via activating PI3K/AKT/mTOR pathway in the Cd-injury kidney. Furthermore, 16S rRNA sequencing results indicated that NCVP-F better enriched Lachnospiraceae, reduced Muribaculaceae, Alloprevotella and Blautia to regulate Cd-induced gut microbiota disorders, which was probably down-regulated 7 pathways including apoptosis and lipopolysaccharide biosynthesis, and up-regulated 63 pathways, such as carbohydrate metabolism and lipid metabolism. This study suggested that applying functional NCVP-F prepared by biotransformation with low molecular weight might be more beneficial.
Collapse
Affiliation(s)
- Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Su Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yue Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Muhammad Inam
- Department of Animal Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Pakistan
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
26
|
Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage. Foods 2023; 12:foods12030569. [PMID: 36766097 PMCID: PMC9914348 DOI: 10.3390/foods12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Gum and mucilage from seeds and fruits are objects of study because they have characteristics of high viscosity at low concentrations and gelling properties, which are useful characteristics for modifying the texture and stabilizing products in the food industry. Chia and okra have high concentrations of polysaccharide gums in their composition, which makes them an interesting target for use in the composition of foods that require the use of texture enhancers and stabilizers. The present study investigated the influence of dehydration temperature on the characteristics of chia and okra powder mucilage obtained at different temperatures. The mucilages were extracted using an aqueous process and dehydrated in an air circulation oven at 50, 60, and 70 °C until hydroscopic equilibrium. Then, the powdered chia mucilage (CM) and okra mucilage (OM) were analyzed for chemical and physicochemical characteristics, bioactive compounds, antioxidant activity, and physical properties. It was found that powdered mucilage had low water content and water activity, with CM standing out in terms of ash, pectin, and starch content and OM, along with higher averages of proteins, sugars, total phenolic compounds, anthocyanins, flavonoids, and antioxidant activity. As for the physical parameters, CM stood out in relation to greater solubility and lower hygroscopicity, whereas OM presented higher wettability rates. Both powdered mucilages were classified as having good fluidity and cohesiveness from low to intermediate. In relation to the dehydration temperature, the best mucilage properties were verified at 70 °C. The study revealed that mucilages have good functional properties offering great potential as raw material for industry.
Collapse
|
27
|
Thymol Edible Coating Controls Postharvest Anthracnose by Regulating the Synthesis Pathway of Okra Lignin. Foods 2023; 12:foods12020395. [PMID: 36673486 PMCID: PMC9858591 DOI: 10.3390/foods12020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Okra has received extensive attention due to its high nutritional value and remarkable functional characteristics, but postharvest diseases have severely limited its application. It is important to further explore the methods and potential methods to control the postharvest diseases of okra. In this study, Colletotrichum fioriniae is the major pathogen that causes okra anthracnose, which can be isolated from naturally decaying okra. The pathogenicity of C. fioriniae against okra was preliminarily verified, and the related biological characteristics were explored. At the same time, an observational study was conducted to investigate the in vitro antifungal effect of thymol edible coating (TKL) on C. fioriniae. After culturing at 28 °C for 5 days, it was found that TKL showed an obvious growth inhibition effect on C. fioriniae. The concentration for 50% of the maximal effect was 95.10 mg/L, and the minimum inhibitory concentration was 1000 mg/L. In addition, it was found that thymol edible coating with a thymol concentration of 100 mg/L (TKL100) may cause different degrees of damage to the cell membrane, cell wall, and metabolism of C. fioriniae, thereby inhibiting the growth of hyphae and causing hyphal rupture. Refer to the results of the in vitro bacteriostatic experiment. Furthermore, the okra was sprayed with TKL100. It was found that the TKL100 coating could significantly inhibit the infection of C. fioriniae to okra, reduce the rate of brown spots and fold on the okra surface, and inhibit mycelium growth. In addition, the contents of total phenols and flavonoids of okra treated with TKL100 were higher than those of the control group. Meanwhile, the activities of phenylalaninammo-nialyase, cinnamic acid-4-hydroxylase, and 4-coumarate-CoA ligase in the lignin synthesis pathway were generally increased, especially after 6 days in a 28 °C incubator. The lignin content of TKL-W was the highest, reaching 65.62 ± 0.68 mg/g, which was 2.24 times of that of CK-W. Therefore, TKL may promote the synthesis of total phenols and flavonoids in okra, then stimulate the activity of key enzymes in the lignin synthesis pathway, and finally regulate the synthesis of lignin in okra. Thus, TKL could have a certain controlling effect on okra anthracnose.
Collapse
|
28
|
Yang Z, Zeng Y, Hu Y, Zhou T, Li J, He L, Zhang W, Zeng X, Fan J. Comparison of chemical property and in vitro digestion behavior of polysaccharides from Auricularia polytricha mycelium and fruit body. Food Chem X 2023; 17:100570. [PMID: 36845476 PMCID: PMC9945431 DOI: 10.1016/j.fochx.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
The antioxidant activity of Auricularia polytricha is associated tightly with its polysaccharide concentration, molar mass and architecture. This study aims to explore the differences in structural and physicochemical traits and oxidation resistances between the polysaccharides from fruit body (ABPs) and mycelial (IAPs) of Auricularia polytricha. The results showed that ABPs and IAPs were constituted by glucose, glucuronic acid, galactose and mannose. However, the molecular weight distribution of IAPs (3.22 × 104 Da (52.73%) and 1.95 × 106 Da (24.71%)) was wider than that of ABPs (5.4 × 106 Da (95.77%)). The shear-thinning performance and viscoelastic behavior of both IAPs and ABPs are representative. IAPs are scattered in sheets, with folds and holes, and have a triple helix structure. ABPs are compact in structure and clear in texture. The main functional groups and thermal stability of both polysaccharides were similar. Concerning the in-vitro oxidation resistance, both of the studied polysaccharides exhibited the potent potential to scavenge hydroxyl radicals (IC50 = 3.37 ± 0.32 and 6.56 ± 0.54 mg/mL, respectively) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (IC50 = 0.89 ± 0.22 and 1.48 ± 0.63 mg/mL, respectively), as well as the moderate reduction power. In addition, IAPs and ABPs were both completely undigested in simulated contexts of saliva, small intestine and stomach, and the two polysaccharide types maintained high DPPH and hydroxyl radical scavenging activities. DDPH scavenging rate during digestion was positively correlated with uronic acid content. To conclude, this study suggests the potential of IAPs as an equivalent alternative to ABPs.
Collapse
Affiliation(s)
- Zhengbin Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Yongde Zeng
- Guizhou Industrial Technology Research Institute of Rare Edible and Medicinal Fungi Co., Ltd, Guiyang 550025, China
| | - Yuedan Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Tingting Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Lapin He
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Industrial Technology Research Institute of Rare Edible and Medicinal Fungi Co., Ltd, Guiyang 550025, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China,Corresponding authors at: School of Liquor and Food Engineering, Guizhou University, Guiyang, China.
| | - Jin Fan
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China,Corresponding authors at: School of Liquor and Food Engineering, Guizhou University, Guiyang, China.
| |
Collapse
|
29
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Wang H, Yu W, Li Q. Structural diversity and physicochemical properties of polysaccharides isolated from pumpkin (Cucurbita moschata) by different methods. Food Res Int 2023; 163:112157. [PMID: 36596108 DOI: 10.1016/j.foodres.2022.112157] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Natural polysaccharides were isolated and purified from Cucurbita moschata by hot water extraction and mild acid-base sequential extraction. Chemical and instrumental studies revealed that hot water-extracted and mild acid-extracted polysaccharides with molecular masses of 48 kDa and 85 kDa were both pectic polysaccharides with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) domains, while mild acid-extracted polysaccharide was more dominated by branched RG-I with higher contents of galactose (10.59 %) and arabinose (8.08 %). Furthermore, mild acid-extracted polysaccharide exhibited better thickening and emulsifying properties, likely due to its larger molecular mass and higher branching degree. Mild base-extracted polysaccharide with a molecular mass of 18 kDa was a glucan-like polysaccharide. It showed the strongest thermostability and gel behavior among these pumpkin polysaccharides, likely attributed to its unique network structure stabilized by substantial intra/intermolecular hydrogen bonds. This study aimed to establish the structure-property relationships between these structurally diverse pumpkin polysaccharides from different extraction methods and provided theoretical foundations for their targeted application in foods.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, No. 308, Ningxia Road, Laoshan District, Qingdao, Shandong 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Segment of Qinglong Avenue, Fucheng District, Mianyang, Sichuan 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Haojie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
30
|
Sereno AB, Dayane Pinto C, Antunes Andrade F, Aparecida Bertolazo da Silva M, Carvalho Garcia A, Carneiro Hecke Krüger C, José de Messias Reason I. Effects of okra (Abelmoschus esculentus (L.) Moench) on glycemic markers in animal models of diabetes: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115544. [PMID: 35963420 DOI: 10.1016/j.jep.2022.115544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Okra (Abelmoschus esculentus (L.) Moench) is traditionally used by different populations of Africa, América, Asia, and Europa to control diabetes. Although its action has been evaluated in several preclinical rodent trials, they have not been systematically analyzed. OBJECTIVE To evaluate the effectiveness of using okra in the treatment of diabetes in experimental rodent models. MATERIAL AND METHODS Controlled and randomized rodent animal trials with induced diabetes published between January 2000 and January 2021 were searched in the PubMed, Scopus, Scielo, and Web of Science databases. The search strategy included studies comprising the descriptors: animal species, diabetes induction method, intervention time, part of okra fruit used (whole, seeds, or peels), and dose as well as observed effects on biochemical and metabolic parameters. The systematic review was carried out according to the PRISMA statement, Cochrane bias risk tool (SYRCLE's RoB tool), and registered for systematic review protocols (PROSPERO). RESULTS A total of 326 articles were identified and after the exclusion of studies with gestational animal models, non-rodent animals, and non-diabetic animals, 11 studies involving 388 rodents were selected for the synthesis of results. The diabetes induction methods included streptozotocin, streptozotocin-nicotinamide, alloxan monohydrate, insulin resistance by high-fat diets or formulation described in AIN - 76, and feeding with high-fat food. Both Wistar albino rats, Sprague-Dawley males, and rats of both sexes of the Long-Evans lineage as well as male albino mice and C57BL females were included in the experiments. Studies showed that extracts of the fruit, the fresh fruit, or its various fractions had positive effects on the following markers: glycated hemoglobin, cholesterol, HOMA-IR, oral glucose tolerance test, and blood glucose, in acute (2 and 24 h), and chronic (up to 4 months) treatment. CONCLUSION An important hypoglycemic effect of okra in its various fractions on induced diabetes was observed by different authors. Moreover, okra promoted improvement in metabolic markers such as insulin sensitivity, lipid profile, and bodyweight loss.
Collapse
Affiliation(s)
- Aiane Benevide Sereno
- Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, 80.069-900, Curitiba, Paraná, Brazil.
| | - Carla Dayane Pinto
- Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, 80.069-900, Curitiba, Paraná, Brazil.
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná (UFPR), R. Padre Camargo, 280, 80.069-900, Curitiba, Paraná, Brazil; Department of Medicine, Positive University (UP), R. Pedro Viriato Parigot de Souza, 5300, 81280-330, Curitiba, Paraná, Brazil.
| | - Michelli Aparecida Bertolazo da Silva
- Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, 80.069-900, Curitiba, Paraná, Brazil; Tuiuti University of Paraná (UTP), R. Sydnei Antonio Rangel Santos, 238 - Santo Inacio, 82010-330, Curitiba, Paraná, Brazil.
| | - Amanda Carvalho Garcia
- Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, 80.069-900, Curitiba, Paraná, Brazil.
| | - Cláudia Carneiro Hecke Krüger
- Postgraduate Program in Food and Nutrition, Federal University of Paraná (UFPR), Av. Lothário Meissner, 632, 80.210-170, Curitiba, Paraná, Brazil.
| | - Iara José de Messias Reason
- Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, 80.069-900, Curitiba, Paraná, Brazil; Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná (UFPR), R. Padre Camargo, 280, 80.069-900, Curitiba, Paraná, Brazil.
| |
Collapse
|
31
|
Zhu H, Xu L, Wang J, Zhang Z, Xu X, Yang K, Sun P, Liao X, Cai M. Rheological behaviors of ethanol-fractional polysaccharides from Dendrobium officinale in aqueous solution: Effects of concentration, temperature, pH, and metal ions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
32
|
Li W, Li J, Wang J, He Y, Hu YC, Wu DT, Zou L. Effects of various degrees of esterification on antioxidant and immunostimulatory activities of okra pectic-polysaccharides. Front Nutr 2022; 9:1025897. [PMID: 36337617 PMCID: PMC9630948 DOI: 10.3389/fnut.2022.1025897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2024] Open
Abstract
Pectic-polysaccharides are considered as one of the most abundant bioactive components in okra, which possess various promising health-promoting effects. However, the knowledge regarding the structure-bioactivity relationship of okra pectic-polysaccharides (OPP) is still limited. In this study, effects of various degrees of esterification (DEs) on in vitro antioxidant and immunostimulatory activities of OPP were analyzed. Results displayed that OPP with high (42.13%), middle (25.88%), and low (4.77%) DE values were successfully prepared by mild alkaline de-esterification, and their primary chemical structures (compositional monosaccharide and glycosidic linkage) and molecular characteristics (molecular weight distribution, particle size, and rheological property) were overall stable. Additionally, results showed that the notable decrease of DE value did not significantly affect antioxidant activities [2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO) radical scavenging abilities as well as ferric reducing antioxidant power (FRAP)] of OPP, suggesting that the DE was not closely related to its antioxidant activity. In fact, the slight decrease of antioxidant activity of OPP after the alkaline de-esterification might be attributed to the slight decrease of uronic acid content. Nevertheless, the immunostimulatory effect of OPP was closely related to its DE, and a suitable degree of acetylation was beneficial to its in vitro immunostimulatory effect. Besides, the complete de-acetylation resulted in a remarkable reduction of immune response. The findings are beneficial to better understanding the effect of DE value on antioxidant and immunomodulatory activities of OPP, which also provide theoretical foundations for developing OPP as functional foods or health products.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yuan He
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Liu G, Kamilijiang M, Abuduwaili A, Zang D, Abudukelimu N, Liu G, Yili A, AIsa HA. Isolation, structure elucidation, and biological activity of polysaccharides from Saussurea involucrata. Int J Biol Macromol 2022; 222:154-166. [PMID: 36122780 DOI: 10.1016/j.ijbiomac.2022.09.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
The optimum extraction condition for the Saussurea involucrata polysaccharide (SIP) was determined to be a temperature of 80 °C, time 2 h, and a liquid-solid ratio of 30 mL/g with a yield of 11.37 %. An acidic homogenous polysaccharide, namely SIP-II was isolated from Saussurea involucrate through anion exchange and gel permeation column chromatography. The structure of the SIP-II was elucidated through the combination of HPLC, GC-MS, IC, peroxide oxidation, smith degradation, methylation, NMR analysis, it was mainly composed of arabinose, rhamnose, galactose, galacturonic acid, and glucose with the molar ratio of 19.85:20.30: 27.12:11.95:8.69 with a molecular weight of 237,570 Da. The glycosidic linkages of SIP-II mainly composed of →1)-α-L-Rhap-(2→, T-Araf, →1)-β-D-GalpA-(4→, →1)-β-D-Galp-(3,6→, →1)-β-D-Galp-(6→, →1)-α-L-Rhap-(2,4→, T-Galp, and →1)-α-L-Araf-(5→. Meanwhile, the structures were characterized through extensive analysis of UV, FT-IR, SEM-EDX, CD, XRD, and TG. SIP-II possessed a remarkable anti-inflammatory activity by effectively inhibiting the expression of pro-inflammatory cytokines and inflammation-related mediators in LPS-stimulated RAW264.7 macrophages, and the anti-inflammatory response of SIP-II might be attributed to the regulation of the NF-κB, MAPK and JAK/STAT pathways. The results showed that polysaccharides from Saussurea involucrate could be a potential ingredient in the functional food and pharmaceutical industry.
Collapse
Affiliation(s)
- Guangrong Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Infinitus (China) Company Ltd, Guangzhou 510665, China
| | - Mayila Kamilijiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Aytursun Abuduwaili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nuermaimaiti Abudukelimu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber AIsa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
34
|
Ormanli E, Bayraktar O, Şahar U, Tavman S, Kumcuoglu S. Development and characterization of films based on okra polysaccharides and whey protein isolate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
|
35
|
Huang Y, Fan C, Liu Y, Yang L, Hu W, Liu S, Wang T, Shu Z, Li B, Xing M, Yang S. Nature-Derived Okra Gel as Strong Hemostatic Bioadhesive in Human Blood, Liver, and Heart Trauma of Rabbits and Dogs. Adv Healthc Mater 2022; 11:e2200939. [PMID: 35776108 DOI: 10.1002/adhm.202200939] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Bioadhesive performance can be compromised due to bleeding. Bleeding increases mortality. Adhesives with hemostatic function are of great significance. A sustainable and robust hemostatic bioadhesive from okra is reported. The adhesive strength reaches around three and six-fold higher than commercial fibrin on pigskin and glass, respectively. The okra gel presents high-pressure resistance and great underwater adhesive strength. In human blood experiments, the okra gel can activate platelets, enhance the adhesion of activated platelets, and release coagulation factors XI and XII. By forming a fast gel layer and closely adhering to the wound, it can quickly stop bleeding in the liver and heart of rabbits and dogs. Meanwhile, okra gel can cause platelet activation at the wound site and further strengthen its hemostatic performance. It is biocompatible, biodegradable, and can promote wound healing and shows potential as a sustainable bioadhesive, especially in the scenario of significant hemorrhage.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lu Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, P. R. China
| | - Weichao Hu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shuang Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tongchuan Wang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhenzhen Shu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Bingyun Li
- School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| |
Collapse
|
36
|
Guo Y, Chen X, Gong P, Wang M, Yao W, Yang W, Chen F. In vitro digestion and fecal fermentation of Siraitia grosvenorii polysaccharide and its impact on human gut microbiota. Food Funct 2022; 13:9443-9458. [PMID: 35972431 DOI: 10.1039/d2fo01776h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
In this study, the structure of Siraitia grosvenorii polysaccharides (SGPs) changed significantly after digestion. After 48 h of in vitro fecal fermentation, Mw decreased and the content of CR showed a trend of increasing and then decreasing. The monosaccharide composition (glucose) of SGPs showed a trend of decreasing and then stabilizing during fecal fermentation, indicating that SGPs were partially degraded during in vitro fermentation and significantly degraded and utilized by the human intestinal microbiota. In addition, SGPs fermentation for 48 h increased the production of SCFAs especially acetic acid, propionic acid, and butyric acid. Moreover, after in vitro digestion and enzymatic digestion, the in vitro hypoglycemic activity of SGPs remained relatively high afterward, albeit reduced. This study contributes to a better understanding of the potential digestion and enzymatic mechanisms of SGP, which is important for the future development of SGP as a functional food and drug.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Mengrao Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
37
|
Guo H, Fu MX, Zhao YX, Wu DT, Liu HY, Li HB, Ayyash M, Gan RY. Effect of different drying techniques on structural characteristics and bioactivities of polysaccharides extracted from (Lithocarpus litseifolius [Hance] Chun) sweet tea leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01510-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
38
|
Guo Y, Chen X, Gong P, Wang M, Yao W, Yang W, Chen F. Effects of simulated saliva‐gastrointestinal digestion on the physicochemical properties and bioactivities of
Siraitia grosvenorii
polysaccharides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xuefeng Chen
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Pin Gong
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Mengrao Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Wenbo Yao
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Wenjuan Yang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering Xi’an University of Science and Technology Xi’an 710054 China
| |
Collapse
|
39
|
Effects of in vitro digestion and fermentation of Nostoc commune Vauch. polysaccharides on properties and gut microbiota. Carbohydr Polym 2022; 281:119055. [DOI: 10.1016/j.carbpol.2021.119055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2021] [Revised: 12/05/2021] [Accepted: 12/24/2021] [Indexed: 01/11/2023]
|
40
|
Guo D, Lei J, He C, Peng Z, Liu R, Pan X, Meng J, Feng C, Xu L, Cheng Y, Chang M, Geng X. In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose. Int J Biol Macromol 2022; 208:343-355. [PMID: 35337916 DOI: 10.1016/j.ijbiomac.2022.03.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the effects of in vitro simulated saliva-gastrointestinal digestion and fecal fermentation behavior on the chemical composition, structure and bioactivity of polysaccharides from Clitocybe squamulosa (CSFP). Results showed that gastric digestion significantly changed the chemical composition and structural properties of CSFP, such as total uronic acid, reducing sugar, molecular weight, rheological properties, particle size, and microscopic morphology. In particular, the molecular weight decreased from 19,480 Da to 10,945 Da, while the reducing-sugar content increased from 0.149 mg/mL to 0.293 mg/mL. Gastric digestion also affected the biological activity of CSFP. Although after gastric digestion, CSFP retained its vigorous antioxidant activity, ability to inhibit α-amylase activity, and the binding ability to bile acid, fat, and free cholesterol in vitro. However, there was an apparent weakening trend. After in vitro fermentation of gut microbiota, the content of total sugar was significantly decreased from 11.6 mg/mL to 2.4 mg/mL, and the pH value in the fecal culture significantly decreased to 5.20, indicating that CSFP could be broken down and utilized by gut microbiota. Compared to the blank, the concentrations of total short-chain fatty acids (SCFAs) including acetic, propionic and n-butyric significantly increased. Simultaneously, CSFP could remarkably reduce the proportions of Firmicutes and Bacteroides (F/B) and promote the growth of some beneficial intestinal microbiota. Therefore, CSFP can potentially be a new functional food as prebiotics to promote human gut health.
Collapse
Affiliation(s)
- Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Chang He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Zhijie Peng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| |
Collapse
|
41
|
Bai C, Chen R, Tan L, Bai H, Tian L, Lu J, Gao M, Sun H, Chi Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int J Biol Macromol 2022; 206:896-910. [PMID: 35318082 DOI: 10.1016/j.ijbiomac.2022.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The effect of multi-frequency ultrasonic extraction (MUE) on the yields, physicochemical properties, antioxidant and α-glucosidase inhibitory activities of polysaccharides (GPs) from different parts of ginseng were compared. Results demonstrated that yields of polysaccharides from different parts were found to vary significantly differences, in the order of roots (M-GRPs) > flowers (M-GFPs) > leaves (M-GLPs). Compared with heat reflux extraction, MUE not only increased the yield of GPs by up to 9.14%-210.87%, with higher uronic acid content (UAC: increased by 4.99%-53.48%), total phenolics content (TPC: increased by 7.60% to 42.61%), total flavonoids content (TFC: increased by 2.52%-5.45%), and lower molecular weight (Mw: reduced by 6.51%- 33.08%) and protein content (PC: reduced by 5.15%-8.95%), but also improved their functional properties and bioactivities. All six purified polysaccharides extracted by MUE were acidic pyran polysaccharide with different monosaccharide composition, possessed remarkable antioxidant and α-glucosidase inhibitory activities. Especially, M-GFP-1 exhibited the highest bioactivities, illustrated that the activities were highly correlated with UAC and TPC, Mw, and triple helical structure. These results indicate that MUE was an efficient technique for improving yields, physicochemical and functional properties and enhancing biological activities of polysaccharide.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Li Tan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ming Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
42
|
The effects of different drying methods on the structural characteristics and bioactivities in vitro of polysaccharides from coconut (Cocos nucifera L.) water. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
43
|
Physicochemical characterization and in vitro biological activities of water-extracted polysaccharides fractionated by stepwise ethanol precipitation from Rosa roxburghii Tratt fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
|
44
|
Huang X, Hou R, Pan W, Wu D, Zhao W, Li Q. A functional polysaccharide from Eriobotrya japonica relieves myocardial ischemia injury via anti-oxidative and anti-inflammatory effects. Food Funct 2022; 13:113-120. [PMID: 34878451 DOI: 10.1039/d1fo03208a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
We herein report a food-derived polysaccharide (EJP) with the effect of relieving myocardial ischemia reperfusion injury (MIRI). This novel polysaccharide was isolated from the leaf of Eriobotrya japonica, and we first found its myocardium protective effects in vitro. Then, we firstly characterized EJP with a series of analytical technologies and further tested its effect on myocardial ischemia reperfusion injury (MIRI) with the illustration of the potential mechanisms in vivo. Interestingly, in the murine model of MIRI, administration of EJP effectively improved post-I/R heart contraction and limited the infarct size. Moreover, EJP significantly attenuated IR-induced oxidative damage and inflammatory reaction, as evidenced by decreasing MDA, IL-6, and TNF-α contents and increasing SOD activity and GSH-Px expression. In addition, we proved that EJP not only had no nephrotoxicity but also demonstrated a protective effect on the kidneys through HE staining and biochemical analysis. In sum, EJP, with a significant protective effect against myocardial I/R injury by showing anti-inflammatory and anti-oxidative activities, may become a meaningful drug candidate for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoli Huang
- College of Chemical and Pharmaceutical Sciences & Central Laboratory, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Ranran Hou
- College of Chemical and Pharmaceutical Sciences & Central Laboratory, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Wei Pan
- College of Chemical and Pharmaceutical Sciences & Central Laboratory, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266021, China.
| | - Qiu Li
- College of Chemical and Pharmaceutical Sciences & Central Laboratory, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| |
Collapse
|
45
|
Wu DT, He Y, Fu MX, Gan RY, Hu YC, Peng LX, Zhao G, Zou L. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107085] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
46
|
Impacts of extraction methods on physicochemical characteristics and bioactivities of polysaccharides from rice bran. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
47
|
Olawuyi IF, Kim SR, Lee WY. Application of plant mucilage polysaccharides and their techno-functional properties' modification for fresh produce preservation. Carbohydr Polym 2021; 272:118371. [PMID: 34420702 DOI: 10.1016/j.carbpol.2021.118371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
The use of edible coating/film to improve fresh produce's quality and shelf life is an old but reliable and popular method of preservation. Recently, plant-derived mucilages have been extensively used to prepare edible packages (MEPs). This review focuses on recent studies that characterize mucilages from different plants, and examine their specific applications as edible packages in preserving fruits and vegetables. Structure-function relations and corresponding influence on film-forming properties are discussed. This review also surveys the additive-modifications of MEPs techno-functional properties. MEPs from a range of plant sources are effective in preventing quality loss and improving the storability of various fruits and vegetables. The preservative mechanisms and essential techno-functional properties of MEPs required for fruit and vegetable packaging were summarized. The key findings summarized in this study will help promote the utilization of mucilages and draw attention to other novel applications of this valuable polymer.
Collapse
Affiliation(s)
- Ibukunoluwa Fola Olawuyi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
48
|
Okra ( Abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits. PLANTS 2021; 10:plants10081683. [PMID: 34451728 PMCID: PMC8399980 DOI: 10.3390/plants10081683] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
Abelmoschus esculentus has fruit popularly known as okra and belongs to the Malvaceae family. It is commonly used in cooking but also in traditional medicine in the treatment of worms, dysentery, inflammation, and also irritation of the stomach, intestines, and kidneys, as it is a potential functional food. Its mucilage is a highly viscous polysaccharide that is mostly composed of monosaccharides D-galactose, L-rhamnose, and galacturonic acid, as well as proteins and minerals. The functional properties of okra mucilage have been widely studied, mainly for its potential antidiabetic activity; thus, its use as adjuvant or nutraceutical therapy for diabetes is very promising. Due to its rheological properties, it is a potential resource for pharmaceutical and food applications. Okra mucilage can be extracted by several methods, which can directly influence its physicochemical characteristics and biological activity. Features such as low cost, non-toxicity, biocompatibility, and high availability in nature arouse the interest of researchers for the study of okra mucilage. The survey of research on the applications of okra mucilage highlights the importance of using this promising source of bioactive compounds with interesting technological properties. The potential of okra as a functional food, the properties of okra mucilage, and its technological applications are discussed in this review.
Collapse
|
49
|
Pressurized Hot Water Extraction of Okra Seeds Reveals Antioxidant, Antidiabetic and Vasoprotective Activities. PLANTS 2021; 10:plants10081645. [PMID: 34451690 PMCID: PMC8399463 DOI: 10.3390/plants10081645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022]
Abstract
Abelmoschus esculentus L. Moench (okra) is a commonly consumed vegetable that consists of the seeds and peel component which are rich in polyphenolic compounds. The aim of this study is to utilize pressurized hot water extraction (PHWE) for the extraction of bioactive phytochemicals from different parts of okra. A single step PHWE was performed at various temperatures (60 °C, 80 °C, 100 °C and 120 °C) to determine which extraction temperature exhibits the optimum phytochemical profile, antioxidant and antidiabetic activities. The optimum temperature for PHWE extraction was determined at 80 °C and the biological activities of the different parts of okra (Inner Skin, Outer Skin and Seeds) were characterized using antioxidant (DPPH and ABTS), α-glucosidase and vasoprotective assays. Using PHWE, the different parts of okra displayed distinct phytochemical profiles, which consist of primarily polyphenolic compounds. The okra Seeds were shown to have the most antioxidant capacity and antidiabetic effects compared to other okra parts, likely to be attributed to their higher levels of polyphenolic compounds. Similarly, okra Seeds also reduced vascular inflammation by downregulating TNFα-stimulated VCAM-1 and SELE expression. Furthermore, metabolite profiling by LC/MS also provided evidence of the cytoprotective effect of okra Seeds in endothelial cells. Therefore, the use of PHWE may be an alternative approach for the environmentally friendly extraction and evaluation of plant extracts for functional food applications.
Collapse
|
50
|
Li W, Wu DT, Li F, Gan RY, Hu YC, Zou L. Structural and Biological Properties of Water Soluble Polysaccharides from Lotus Leaves: Effects of Drying Techniques. Molecules 2021; 26:molecules26154395. [PMID: 34361549 PMCID: PMC8347772 DOI: 10.3390/molecules26154395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 01/09/2023] Open
Abstract
In the present study, the influence of five drying techniques on the structural and biological properties of polysaccharides from lotus leaves (LLPs) was investigated. Results revealed that the yields, contents of basic chemical components, molecular weights, and molar ratios of compositional monosaccharides of LLPs varied by different drying technologies. Low molecular weight distributions were observed in polysaccharides obtained from lotus leaves by hot air drying (LLP-H), microwave drying (LLP-M), and radio frequency drying (LLP-RF), respectively. The high contents of bound polyphenolics were measured in LLP-H and LLP-M, as well as polysaccharides obtained from lotus leaves by vacuum drying (LLP-V). Furthermore, both Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of LLPs were similar, indicating that drying technologies did not change their basic chemical structures. Besides, all LLPs exhibited obvious biological properties, including in vitro antioxidant capacities, antiglycation activities, and inhibitory effects on α-glucosidase. Indeed, LLP-H exhibited higher 2,2-azidobisphenol (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability (IC50 values, LLP-H, 0.176 ± 0.004 mg/mL; vitamin C, 0.043 ± 0.002 mg/mL) and 2,2-diphenyl-1-(2,4,6-trinitrate phenyl) hydrazine radical scavenging ability (IC50 values, LLP-H, 0.241 ± 0.007 mg/mL; butylated hydroxytoluene, 0.366 ± 0.010 mg/mL) than others, and LLP-M exerted stronger antiglycation (IC50 values, LLP-M, 1.023 ± 0.053 mg/mL; aminoguanidine, 1.744 ± 0.080 mg/mL) and inhibitory effects on α-glucosidase (IC50 values, LLP-M, 1.90 ± 0.02 μg/mL; acarbose, 724.98 ± 16.93 μg/mL) than others. These findings indicate that both hot air drying and microwave drying can be potential drying techniques for the pre-processing of lotus leaves for industrial applications.
Collapse
Affiliation(s)
- Wei Li
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Ding-Tao Wu
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
- Correspondence: or (D.-T.W.); (L.Z.)
| | - Fen Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ren-You Gan
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yi-Chen Hu
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
| | - Liang Zou
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- Correspondence: or (D.-T.W.); (L.Z.)
| |
Collapse
|