1
|
Khoshbin Z, Mohammadi F, Moeenfard M, Abnous K, Taghdisi SM. An ultrasensitive liquid crystal aptasensing chip assisted by three-way junction DNA pockets for acrylamide detection in food samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136240. [PMID: 39454329 DOI: 10.1016/j.jhazmat.2024.136240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Acrylamide, an unsaturated amide found in heat-processed foods, poses serious risks to human health due to its neurotoxicity, carcinogenicity, and genotoxicity. This highlights the importance of quantitative determination of acrylamide in foods and the environments to ensure public health safety. Therefore, there is an urgent need for simple, rapid, and highly sensitive methods to accurately quantify acrylamide. In the present study, a user-friendly aptasensor was designed to quantify ultra-low levels of acrylamide in nuts for the first time. This innovative approach utilizes chemical engineering of a glass slide as a portable sensing platform, which incorporates liquid crystal (LC) molecules and a three-way junction (TWJ) DNA pocket. The immobilized TWJ pocket can disrupt the vertical alignment of LCs, turning the dark polarized background of the aptasensor to a colorful state. The binding of the specific aptamer to acrylamide disrupts the TWJ structure, enabling the LCs to return to their homotropic alignment. This structural change restores the dark polarized view of the sensing platform. The TWJ-engineered LC aptasensor effectively detects ultra-low concentrations of acrylamide in the range of 0.0005 to 50 fmol/L, with a detection limit of 0.106 amol/L. The aptasensor was successfully applied to real roasted nut samples, including peanut, almond, pistachio, and hazelnut, achieving recovery values ranging from 96.84 % to 99.61 %. With its simplicity, portability, ease of use, and cost-effectiveness, this aptasensor is a powerful sensing device for food safety monitoring.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mohammadi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Moeenfard
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Long X, Wu Q, Yang L, Xie L, Ma L, Zhao Q, Cui Y, He Y, Zhang Y. A photothermal aptasensor based on rolling circle amplification-enriched DNAzyme for portable detection of ochratoxin A in grape juice. Int J Biol Macromol 2024; 269:132279. [PMID: 38734344 DOI: 10.1016/j.ijbiomac.2024.132279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Aptasensors for detection of ochratoxin A (OTA) have been extensively studied, but the majority of them require costly and large-scale equipment as signal readers. Herein, a photothermal aptasensor capable of portable detection of OTA through a thermometer was developed on basis of aptamer structural switching and rolling circle amplification (RCA)-enriched DNAzyme. Oligonucleotides and alkaline phosphatase (ALP) modified magnetic beads were prepared. The binding of aptamers to OTA led to the release of ALP labeled complementary DNA. After magnetic separation, ALP catalyzed the padlock dephosphorylation, inhibiting the subsequent RCA reaction. This process converted the OTA concentration into the amount of the photothermal reagent oxTMB produced from the catalytic reaction induced by RCA-enriched DNAzyme. Under the optimal conditions, the detection limit (LOD) of this aptasensor was 2.28 nM in a clean buffer, while the LOD reached 2.43 nM in 2 % grape juice. The good performance of the photothermal aptasensor makes it possible to measure OTA pollution in low resource environments.
Collapse
Affiliation(s)
- Xinqi Long
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Qi Wu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Lu Yang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Longyingzi Xie
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Lanrui Ma
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| |
Collapse
|
3
|
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y, Le T. Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 2024; 257:128677. [PMID: 38072350 DOI: 10.1016/j.ijbiomac.2023.128677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Animal diseases often have significant consequences due to the unclear and time-consuming diagnosis process. Furthermore, the emergence of new viral infections and drug-resistant pathogens has further complicated the diagnosis and treatment of viral diseases. Aptamers, which are obtained through systematic evolution of ligands by exponential enrichment (SELEX) technology, provide a promising solution as they enable specific identification and binding to targets, facilitating pathogen detection and the development of novel therapeutics. This review presented an overview of aptasensors for animal virus detection, discussed the antiviral activity and mechanisms of aptamers, and highlighted advancements in aptamer-based antiviral research following the COVID-19 pandemic. Additionally, the challenges and prospects of aptamer-based virus diagnosis and treatment research were explored. Although this review was not exhaustive, it offered valuable insights into the progress of aptamer-based antiviral drug research, target mechanisms, as well as the development of novel antiviral drugs and biosensors.
Collapse
Affiliation(s)
- Zhuoer Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Ying Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenyu Xiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yueyang Ren
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
4
|
Lafi Z, Gharaibeh L, Nsairat H, Asha N, Alshaer W. Aptasensors: employing molecular probes for precise medical diagnostics and drug monitoring. Bioanalysis 2023; 15:1439-1460. [PMID: 37847048 DOI: 10.4155/bio-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nisreen Asha
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
5
|
Azzouz A, Hejji L, Kumar V, Kim KH. Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples. ENVIRONMENTAL RESEARCH 2023; 238:117170. [PMID: 37722582 DOI: 10.1016/j.envres.2023.117170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur S/n, 23700, Linares, Jaén, Spain
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
6
|
Erdoğan NÖ, Uslu B, Aydoğdu Tığ G. Development of an electrochemical biosensor utilizing a combined aptamer and MIP strategy for the detection of the food allergen lysozyme. Mikrochim Acta 2023; 190:471. [PMID: 37975892 DOI: 10.1007/s00604-023-06054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
This study aims to develop a MIP-Apt-based electrochemical biosensor for the sensitive and selective determination of Lysozyme (Lyz), a food allergen. For the development of the sensor, in the first stage, modifications were made to the screen-printed electrode (SPE) surface with graphene oxide (GO) and gold nanoparticles (AuNPs) to increase conductivity and surface area. The advantages of using aptamer (Apt) and molecularly imprinted polymer (MIP) technology were combined in a single biointerface in the prepared sensing tool. Surface characterization of the biosensor was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), contact angle measurements, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A wide linear range from 0.001 to 100 pM was obtained under optimized conditions for the determination of Lyz detection using the proposed MIP-Apt sensing strategy. The limit of detection (LOD) and limit of quantification (LOQ) for Lyz were 3.67 fM and 12 fM, respectively. This biosensor displays high selectivity, repeatability, reproducibility, and long storage stability towards Lyz detection. The results show that a sensitive and selective sensor fabrication is achieved compared with existing methods.
Collapse
Affiliation(s)
- Niran Öykü Erdoğan
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
| | - Gözde Aydoğdu Tığ
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey.
| |
Collapse
|
7
|
Wu X, Yuan H, Zhao R, Wang P, Yuan M, Cao H, Ye T, Xu F. Mechanisms of ssDNA aptamer binding to Cd 2+ in aqueous solution: A molecular dynamics study. Int J Biol Macromol 2023; 251:126412. [PMID: 37598831 DOI: 10.1016/j.ijbiomac.2023.126412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ssDNA aptamers have been increasingly used to detect heavy metal ions as recognition elements due to their high affinity and specificity. However, the specific recognition and binding mechanisms between aptamers and most heavy metals were still unclear, which limits the development of aptamer-based detection methods. In this work, the interaction mechanisms of CD-2-1 aptamers with Cd2+ in aqueous solutions were investigated using molecular dynamic simulations. The most stable complex was found where Cd2+ binding at aptamer's stem-loop junction and preferred at the phosphate backbone or bases. Noteworthily, two binding modes of Cd2+ combining aptamer in aqueous solution were discovered: direct and indirect. In the former mode, Cd2+ directly coordinated O atoms of bases. For the latter, Cd2+ connected to bases with coordinated water molecules as bridges. Electrostatic interaction was found to be the main driving force, and differences of residues role between two binding modes were elucidated. Buffer molecules in aqueous solutions can stabilize aptamer-Cd2+ complex by hydrogen bonds. This study revealed the specific interaction mechanisms of aptamer with Cd2+ at an atomic level, which provided theoretical references for aptamer-based Cd2+ detection methods establishment as well as an efficient technical route of screening potential aptamers for heavy metal ions.
Collapse
Affiliation(s)
- Xiuxiu Wu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongen Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rui Zhao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pengsheng Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China..
| |
Collapse
|
8
|
Yu H, Zhao Q. Rapid sensitive fluorescence detection of cadmium (II) with pyrene excimer switching aptasensor. J Environ Sci (China) 2023; 133:1-7. [PMID: 37451780 DOI: 10.1016/j.jes.2022.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 07/18/2023]
Abstract
Heavy metal cadmium (II) contamination often occurs, causing great health risk to human due to high toxicity of cadmium (II). Rapid, sensitive and simple detection of cadmium (II) are of great importance in environmental monitoring. Taking advantage of aptamer in specific recognition, easy modification, and capability of binding-induced structure change, here we reported a simple fluorescent sensor with rapid and sensitive response for Cd2+ using aptamer pyrene excimer switch. The aptamer was labeled with dual pyrene molecules at two ends of the sequence. The binding of Cd2+ to this aptamer probe brought the pyrene labels into close proximity and enhanced formation of a pyrene excimer, which generated increased fluorescence at 485 nm. By measuring the fluorescence of pyrene excimer, we achieved detection of Cd2+ with this aptasensor. Under the optimum experimental conditions, the detection limit of Cd2+ reached nanomolar levels. This method was selective and allowed for the detection of Cd2+ in tap water. This fluorescence aptasensor is promising for rapid detection of Cd2+ in broad applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
9
|
Economou A, Kokkinos C, Bousiakou L, Hianik T. Paper-Based Aptasensors: Working Principles, Detection Modes, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:7786. [PMID: 37765843 PMCID: PMC10536119 DOI: 10.3390/s23187786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Aptamers are short oligonucleotides designed to possess high binding affinity towards specific target compounds (ions, molecules, or cells). Due to their function and unique advantages, aptamers are considered viable alternatives to antibodies as biorecognition elements in bioassays and biosensors. On the other hand, paper-based devices (PADs) have emerged as a promising and powerful technology for the fabrication of low-cost analytical tools, mainly intended for on-site and point-of-care applications. The present work aims to provide a comprehensive overview of paper-based aptasensors. The review describes the fabrication methods and working principles of paper-based devices, the properties of aptamers as bioreceptors, the different modes of detection used in conjunction with aptasensing PADs, and representative applications for the detection of ions, small molecules, proteins, and cells. The future challenges and prospects of these devices are also discussed.
Collapse
Affiliation(s)
- Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Leda Bousiakou
- IMD Laboratories Co., R&D Section, Lefkippos Technology Park, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, P.O. Box 60037, 15130 Athens, Greece;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 84248 Bratislava, Slovakia;
| |
Collapse
|
10
|
Li Y, Tan J, Wang M, Jia Q, Zhang S, Wang M, Zhang Z. A dual-photoelectrode fuel cell-driven self-powered aptasensor based on the 1D/2D In 2S 3/MoS 2@Fe-CNTs heterojunction for the ultrasensitive detection of Staphylococcus aureus. Anal Chim Acta 2023; 1272:341473. [PMID: 37355319 DOI: 10.1016/j.aca.2023.341473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
A novel dual-electrode photo-fuel cell (PFC)-driven self-powered aptasensor was manufactured for the sensitive and selective detection of Staphylococcus aureus (S. aureus) using the one-dimensional (1D)/2D Schottky heterojunction comprising bimetallic indium/molybdenum sulfide nanosheets and iron-doped carbon nanotube (Fe-CNT) (denoted as In2S3/MoS2@Fe-CNTs) as the photocathode. Given the generation of a robust interface at In2S3/MoS2 and Fe-CNTs, the charge separation and transfer ability of photoexcited electron-hole pairs were enforced, thus improving the output voltage of the assembled PFC. In addition, the numerous active sites of the 1D/2D In2S3/MoS2@Fe-CNTs Schottky heterojunction enabled the immobilization of large amounts of aptamer. Accordingly, the proposed PFC-driven self-powered aptasensor exhibited a wide linear range in 10-1 × 107 CFU mL-1 with a detection limit of 1.2 CFU mL-1 toward S. aureus. High selectivity, excellent reproducibility, good stability, and acceptable regenerability, as well as great potential practicality, were also achieved for the detection of S. aureus using the developed PFC-driven self-powered aptasensor. This work not only provides a new photoactive material based on a robust 1D/2D Schottky heterojunction, but also constructs a novel PFC-based self-powered aptasensing strategy based on dual-photoelectrodes and with satisfactory performance for the detection of foodborne pathogens in diverse environments.
Collapse
Affiliation(s)
- Yu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, PR China.
| | - Jun Tan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Qiaojuan Jia
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| |
Collapse
|
11
|
Jiang C, Xie L, Yan F, Liang Z, Liang J, Huang K, Li H, Wang Y, Luo L, Li T, Ning D, Tang L, Ya Y. A novel electrochemical aptasensor based on polyaniline and gold nanoparticles for ultrasensitive and selective detection of ascorbic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4010-4020. [PMID: 37545402 DOI: 10.1039/d3ay00806a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Ascorbic acid (AA) is involved in many physiological activities of the body and plays an important role in maintaining and promoting human health. It is also present in many natural and artificial foods. Therefore, the development of highly sensitive and accurate AA sensors is highly desirable for human health monitoring, as well as other commercial application fields. Herein, an ultrasensitive and selective electrochemical sensor based on an aptamer was developed for the determination of AA for the first time. The aptasensor was fabricated by modifying a composite made of polyaniline (PANI) and gold nanoparticles (AuNPs) on a glassy carbon electrode. The morphologies and electrochemical properties of the resulting electrodes were characterized by various analytical methods. The results indicated relatively good electrical conduction properties of PANI for accelerated electron transfer. The modification with AuNPs provided signal amplification, suitable for applications as novel platforms for the sensitive sensing of AA. Under optimized conditions, the proposed aptasensor displayed a wide linear response toward the detection of AA from 1.0 to 1.0 × 105 ng L-1 coupled with a low detection limit of 0.10 ng L-1. The sensor also exhibited excellent selectivity and high stability, with at least 2000-fold higher sensitivity than similar previously reported methods. Importantly, the aptasensor exhibited promising properties for the determination of AA in real fruits, vegetables, and infant milk powder, thereby showing potential for food analysis.
Collapse
Affiliation(s)
- Cuiwen Jiang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Liping Xie
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Feiyan Yan
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Zhongdan Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jing Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Kejing Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Huiling Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanli Wang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Lihong Luo
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Tao Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Dejiao Ning
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Li Tang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
12
|
Vishwakarma A, Meganathan Y, Ramya M. Aptamer-based assay for rapid detection, surveillance, and screening of pathogenic Leptospira in water samples. Sci Rep 2023; 13:13379. [PMID: 37591900 PMCID: PMC10435560 DOI: 10.1038/s41598-023-40120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Leptospirosis is a potentially fatal waterborne infection caused by Leptospira interrogans, impacting both humans and animals in tropical regions. However, current diagnostic methods for detecting pathogenic Leptospira have sensitivity, cost, and time limitations. Therefore, there is a critical need for a rapid, sensitive, and cost-effective detection method. This study presents the development of an aptamer-based assay for pathogenic Leptospira detection. Aptamers targeting Leptospira were generated using the SELEX method and screened for binding affinity with major Leptospiral outer membrane proteins through in silico analysis. The aptamer with the highest binding affinity was selected for further evaluation. To enable visual detection, the aptamer was conjugated to gold nanoparticles (AuNPs), resulting in a colorimetric response in the presence of L. interrogans. The aptamer-AuNP-based colorimetric assay exhibited a detection limit of 57 CFU/mL and demonstrated high specificity and reproducibility in detecting pathogenic Leptospira in water samples. This aptamer-based assay represents a significant advancement in leptospirosis diagnostics, offering a rapid, sensitive, and cost-effective approach for detecting pathogenic Leptospira. Its potential for epidemiological applications, such as outbreak source identification and improved prevention, diagnosis, and treatment, particularly in resource-limited settings, highlights its importance in addressing the challenges associated with leptospirosis.
Collapse
Affiliation(s)
- Archana Vishwakarma
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India
| | - Yogesan Meganathan
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India
| | - Mohandass Ramya
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
13
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
14
|
A novel label-free dual-mode aptasensor based on the mutual regulation of silver nanoclusters and MoSe 2 nanosheets for reliable detection of ampicillin. Anal Chim Acta 2023; 1251:340997. [PMID: 36925307 DOI: 10.1016/j.aca.2023.340997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Current methods for the rapid detection of trace antibiotics in the environment remains problems of low accuracy and false negative or false positive, making the development of fast, and accurate, and reliable methods for antibiotic testing a major challenge that needs to be addressed. Herein, we developed a novel label-free colorimetric and fluorescent dual-mode aptasensor assembled by the strong interaction of layered MoSe2 nanosheets (MoSe2 NSs) with ampicillin (AMP) aptamer functionalized silver nanoclusters (Apt-AgNCs) that specifically bind AMP to allow the sensitive and selective detection of AMP. Apt-AgNCs could be adsorbed on the surface of MoSe2 NSs via van der Waals force to form a nanocomposite, Apt-AgNCs/MoSe2 NSs. Interestingly, Apt-AgNCs/MoSe2 NSs act together to construct dual mode aptasensor through modulation of the intrinsic peroxidase activity of MoSe2 NSs and the fluorescence of Apt-AgNCs. In the presence of AMP, Apt-AgNCs could specifically bind AMP, triggering desorption from the MoSe2 NSs surface, leading to a decrease in the peroxidase activity of the system with the recovery in Apt-AgNCs fluorescence. The dual-signal aptasensor exhibited good linear colorimetric and fluorescence responses in the AMP concentration ranges of 0.115-2.00 μM and 6-100 nM, respectively. Furthermore, the aptasensor was successfully measured AMP levels in commercially-bought milk and lake water with satisfactory results. Unlike single-signal aptasensors, the constructed dual-signal aptasensor could not only improve the detection precision, but also reduce the false positive or false negative results. These promising results suggest that the dual-readout strategy as demonstrated is general mode for the detection of other antibiotics or compounds using various aptamers functionalized AgNCs in concert with MoSe2 NSs.
Collapse
|
15
|
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. BIOSENSORS 2023; 13:bios13040461. [PMID: 37185536 PMCID: PMC10136715 DOI: 10.3390/bios13040461] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
This review highlights the recent advancements in the field of nanozymes and their applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-mimicking components in biosensing systems has led to improved performance and miniaturization of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface tunability, make them an attractive alternative to traditional enzymes in biosensing applications. Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and metal-organic frameworks, for the development of nanozyme-based biosensors. Different sensing strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented using nanozymes as signal-producing components. Despite the numerous advantages, there are also challenges associated with nanozyme-based biosensors, including stability and specificity, which need to be addressed for their wider applications. The future of nanozyme-based biosensors looks promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the accuracy and sensitivity of diagnostic tools.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
16
|
Lu B, Guo Z, Zhong K, Osire T, Sun Y, Jiang L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
18
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Li P, Luo C, Chen X, Huang C. An off-on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. RSC Adv 2022; 12:35763-35769. [PMID: 36545096 PMCID: PMC9749934 DOI: 10.1039/d2ra06891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
An off-on fluorescence aptasensor was developed for trace thrombin detection based on fluorescence resonance energy transfer (FRET) between CdS QDs and gold nanoparticles (AuNPs). Using DNA pairwise hybridization of the aptamer to the complementary DNA (cDNA), the CdS QDs (energy donor) were tightly coupled to the AuNPs (energy acceptor), resulting in the occurrence of FRET and there was a dramatic fluorescence quenching of CdS QDs (turn off). When the thrombin was added to the fluorescence aptasensor, the specific binding of the aptamer to the target formed a G-quadruplex that caused the AuNPs receptor to detach and the DNA duplex to be disassembled. The process would inhibit the FRET which contribute to the recovery of fluorescence (turn on) and an "off-on" fluorescence aptasensor for thrombin detection was constructed accordingly. Under optimal conditions, the fluorescence recovery showed good linearity with the concentration of thrombin in the range of 1.35-54.0 nmol L-1, and the detection limit was 0.38 nmol L-1 (S/N = 3, n = 9). Importantly, the fluorescence aptasensor presented excellent specificity for thrombin, and was successfully applied to the quantitative determination of thrombin in real serum with satisfactory recoveries of 98.60-102.2%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University Lanxi 321100 China
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
20
|
Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review. Biosens Bioelectron 2022; 216:114634. [DOI: 10.1016/j.bios.2022.114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
|
21
|
Cai R, Chen X, Zhang Y, Wang X, Zhou N. Systematic bio-fabrication of aptamers and their applications in engineering biology. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 3:223-245. [PMID: 38013802 PMCID: PMC9550155 DOI: 10.1007/s43393-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/27/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules that have high affinity and selectivity to bind to specific targets. Compared to antibodies, aptamers are easy to in vitro synthesize with low cost, and exhibit excellent thermal stability and programmability. With these features, aptamers have been widely used in biology and medicine-related fields. In the meantime, a variety of systematic evolution of ligands by exponential enrichment (SELEX) technologies have been developed to screen aptamers for various targets. According to the characteristics of targets, customizing appropriate SELEX technology and post-SELEX optimization helps to obtain ideal aptamers with high affinity and specificity. In this review, we first summarize the latest research on the systematic bio-fabrication of aptamers, including various SELEX technologies, post-SELEX optimization, and aptamer modification technology. These procedures not only help to gain the aptamer sequences but also provide insights into the relationship between structure and function of the aptamers. The latter provides a new perspective for the systems bio-fabrication of aptamers. Furthermore, on this basis, we review the applications of aptamers, particularly in the fields of engineering biology, including industrial biotechnology, medical and health engineering, and environmental and food safety monitoring. And the encountered challenges and prospects are discussed, providing an outlook for the future development of aptamers.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
22
|
Kamali H, Golmohammadzadeh S, Zare H, Nosrati R, Fereidouni M, Safarpour H. The recent advancements in the early detection of cancer biomarkers by DNAzyme-assisted aptasensors. J Nanobiotechnology 2022; 20:438. [PMID: 36195928 PMCID: PMC9531510 DOI: 10.1186/s12951-022-01640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Clinical diagnostics rely heavily on the detection and quantification of cancer biomarkers. The rapid detection of cancer-specific biomarkers is of great importance in the early diagnosis of cancers and plays a crucial role in the subsequent treatments. There are several different detection techniques available today for detecting cancer biomarkers. Because of target-related conformational alterations, high stability, and target variety, aptamers have received considerable interest as a biosensing system component. To date, several sensitivity-enhancement strategies have been used with a broad spectrum of nanomaterials and nanoparticles (NPs) to improve the limit and sensitivity of analyte detection in the construction of innovative aptasensors. The present article aims to outline the research developments on the potential of DNAzymes-based aptasensors for cancer biomarker detection.
Collapse
Affiliation(s)
- Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
23
|
Padmakumari Kurup C, Abdullah Lim S, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry 2022; 147:108170. [DOI: 10.1016/j.bioelechem.2022.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
|
24
|
Chen CH, Jong YJ, Chao YY, Wang CC, Chen YL. Fluorescent aptasensor based on conformational switch-induced hybridization for facile detection of β-amyloid oligomers. Anal Bioanal Chem 2022; 414:8155-8165. [PMID: 36178490 DOI: 10.1007/s00216-022-04350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Aβ oligomers (AβO) are a dominant biomarker for early Alzheimer's disease diagnosis. A fluorescent aptasensor coupled with conformational switch-induced hybridization was established to detect AβO. The fluorescent aptasensor is based on the interaction of fluorophore-labeled AβO-specific aptamer (FAM-Apt) against its partly complementary DNA sequence on the surface of magnetic beads (cDNA-MBs). Once the FAM-Apt binds to AβO, the conformational switch of FAM-Apt increases the tendency to be captured by cDNA-MBs. This causes a descending fluorescence of supernatant, which can be utilized to determine the levels of AβO. Thus, the base-pair matching above 12 between FAM-Apt and cDNA-MBs with increasing hybridizing free energies reached the ascending fluorescent signal equilibrium. The optimized aptasensor showed linearity from 1.7 ng mL-1 to 85.1 (R = 0.9977) with good recoveries (79.27-109.17%) in plasma. Furthermore, the established aptasensor possesses rational selectivity in the presence of monomeric Aβ, fibrotic Aβ, and interferences. Therefore, the developed aptasensor is capable of quantifying AβO in human plasma and possesses the potential to apply in clinical cases.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ying Chao
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Lu X, He B, Liang Y, Wang J, Wei M, Jin H, Ren W, Suo Z, Xu Y. Ultrasensitive detection of patulin based on a Ag +-driven one-step dual signal amplification. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129530. [PMID: 35816803 DOI: 10.1016/j.jhazmat.2022.129530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Due to improper storage, the presence of patulin in fruits poses a threat to food safety. Herein, a one-step dual amplification strategy-based electrochemical aptasensor was proposed for patulin detection. Silver-palladium nanoparticles (AgPdNPs) with a hollow and branched structure were used as a supporting material for thionine to provide numerous attachment sites. AuNFs/g-C3N4 was employed as an electrode modification material, which has been demonstrated to facilitate electron transport and improve signal label loading capacity. Ag+ ions were released in the presence of patulin, activating the Ag+-DNAzyme on the electrode surface. The formed Ag+-DNAzymes further cyclically cleaved the substrate DNA, and the released sequences were used as a new trigger to mediate the secondary recirculation. This one-step dual amplification strategy enabled double target recycling without additional procedures. The signal cascade amplification through dual target recycling, was thus available for trace detection of patulin. Under the optimal conditions, the electrochemical aptasensor achieved a satisfactory linear range from 5.0 × 10-6 μg L-1 to 50 μg L-1 with a detection limit of 0.92 fg·mL-1 for the determination of patulin. In addition, the aptasensor exhibited favorable selectivity, reproducibility, repeatability and long-term stability, and thus can be employed for patulin detection in apple juice samples, providing excellent choice for the detection of trace patulin.
Collapse
Affiliation(s)
- Xia Lu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
26
|
Akgönüllü S, Özgür E, Denizli A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. MICROMACHINES 2022; 13:1441. [PMID: 36144064 PMCID: PMC9503788 DOI: 10.3390/mi13091441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Aptamers are important materials for the specific determination of different disease-related biomarkers. Several methods have been enhanced to transform selected target molecule-specific aptamer bindings into measurable signals. A number of specific aptamer-based biosensors have been designed for potential applications in clinical diagnostics. Various methods in combination with a wide variety of nano-scale materials have been employed to develop aptamer-based biosensors to further increase sensitivity and detection limit for related target molecules. In this critical review, we highlight the advantages of aptamers as biorecognition elements in biosensors for target biomolecules. In recent years, it has been demonstrated that electrode material plays an important role in obtaining quick, label-free, simple, stable, and sensitive detection in biological analysis using piezoelectric devices. For this reason, we review the recent progress in growth of aptamer-based QCM biosensors for medical diagnoses, including virus, bacteria, cell, protein, and disease biomarker detection.
Collapse
|
27
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
28
|
Davydova A, Vorobyeva M. Aptamer-Based Biosensors for the Colorimetric Detection of Blood Biomarkers: Paving the Way to Clinical Laboratory Testing. Biomedicines 2022; 10:biomedicines10071606. [PMID: 35884911 PMCID: PMC9313021 DOI: 10.3390/biomedicines10071606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical diagnostics for human diseases rely largely on enzyme immunoassays for the detection of blood biomarkers. Nevertheless, antibody-based test systems have a number of shortcomings that have stimulated a search for alternative diagnostic assays. Oligonucleotide aptamers are now considered as promising molecular recognizing elements for biosensors (aptasensors) due to their high affinity and specificity of target binding. At the moment, a huge variety of aptasensors have been engineered for the detection of various analytes, especially disease biomarkers. However, despite their great potential and excellent characteristics in model systems, only a few of these aptamer-based assays have been translated into practice as diagnostic kits. Here, we will review the current progress in the engineering of aptamer-based colorimetric assays as the most suitable format for clinical lab diagnostics. In particular, we will focus on aptasensors for the detection of blood biomarkers of cardiovascular, malignant, and neurodegenerative diseases along with common inflammation biomarkers. We will also analyze the main obstacles that have to be overcome before aptamer test systems can become tantamount to ELISA for clinical diagnosis purposes.
Collapse
|
29
|
Rabiee N, Ahmadi S, Soufi GJ, Hekmatnia A, Khatami M, Fatahi Y, Iravani S, Varma RS. Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2022; 97:1640-1654. [PMID: 35463806 PMCID: PMC9015521 DOI: 10.1002/jctb.7036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 05/02/2023]
Abstract
The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyAustralia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Ali Hekmatnia
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mehrdad Khatami
- Non‐communicable Diseases Research CenterBam University of Medical SciencesBamIran
- Department of Medical Biotechnology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacký University in OlomoucOlomoucCzech Republic
| |
Collapse
|
30
|
A Review of Apta-POF-Sensors: The Successful Coupling between Aptamers and Plastic Optical Fibers for Biosensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aptamers represent the next frontier as biorecognition elements in biosensors thanks to a smaller size and lower molecular weight with respect to antibodies, more structural flexibility with the possibility to be regenerated, reduced batch-to-batch variation, and a potentially lower cost. Their high specificity and small size are particularly interesting for their application in optical biosensors since the perturbation of the evanescent field are low. Apart from the conventional plasmonic optical sensors, platforms based on silica and plastic optical fibers represent an interesting class of devices for point-of-care testing (POCT) in different applications. The first example of the coupling between aptamers and silica optical fibers was reported by Pollet in 2009 for the detection of IgE molecules. Six years later, the first example was published using a plastic optical fiber (POF) for the detection of Vascular Endothelial Growth Factor (VEGF). The excellent flexibility, great numerical aperture, and the large diameter make POFs extremely promising to be coupled to aptamers for the development of a sensitive platform easily integrable in portable, small-size, and simple devices. Starting from silica fiber-based surface plasmon resonance devices, here, a focus on significant biological applications based on aptamers, combined with plasmonic-POF probes, is reported.
Collapse
|
31
|
Yousef H, Liu Y, Zheng L. Nanomaterial-Based Label-Free Electrochemical Aptasensors for the Detection of Thrombin. BIOSENSORS 2022; 12:bios12040253. [PMID: 35448312 PMCID: PMC9025199 DOI: 10.3390/bios12040253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 05/06/2023]
Abstract
Thrombin plays a central role in hemostasis and its imbalances in coagulation can lead to various pathologies. It is of clinical significance to develop a fast and accurate method for the quantitative detection of thrombin. Electrochemical aptasensors have the capability of combining the specific selectivity from aptamers with the extraordinary sensitivity from electrochemical techniques and thus have attracted considerable attention for the trace-level detection of thrombin. Nanomaterials and nanostructures can further enhance the performance of thrombin aptasensors to achieve high sensitivity, selectivity, and antifouling functions. In highlighting these material merits and their impacts on sensor performance, this paper reviews the most recent advances in label-free electrochemical aptasensors for thrombin detection, with an emphasis on nanomaterials and nanostructures utilized in sensor design and fabrication. The performance, advantages, and limitations of those aptasensors are summarized and compared according to their material structures and compositions.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Lianxi Zheng
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
32
|
Chauhan N, Saxena K, Jain U. Single molecule detection; from microscopy to sensors. Int J Biol Macromol 2022; 209:1389-1401. [PMID: 35413320 DOI: 10.1016/j.ijbiomac.2022.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
Single molecule detection is necessary to find out physical, chemical properties and their mechanism involved in the normal functioning of body cells. In this way, they can provide a new direction to the healthcare system. Various techniques have been developed and employed for their successful detection. Herein, we have emphasized various traditional methods as well as biosensing technology which offer single molecule sensitivity. The various methods including plasmonic resonance, nanopores, whispering gallery mode, Simoa assay and recognition tunneling are discussed in the initial part which has been followed by a discussion about biosensor-based detection. Plasmonic, SERS, CRISPR/Cas, and other types of biosensors are focused in this review and found to be highly sensitive for single molecule detection. This review provides an overview of progression in different techniques employed for single molecule detection.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India.
| |
Collapse
|
33
|
Svitková V, Konderíková K, Nemčeková K. Photoelectrochemical aptasensors for detection of viruses. MONATSHEFTE FUR CHEMIE 2022; 153:963-970. [PMID: 35345838 PMCID: PMC8943106 DOI: 10.1007/s00706-022-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 10/31/2022]
Abstract
Photoelectrochemistry (PEC) is a dynamic discipline studying the effect of light on photoelectrode or photosensitive material, and the conversion from solar energy into electrical power. The basic PEC process refers to the oxidation or reduction reactions between electrochemical active species in solution and photoactive materials that occurred at the electrode/electrolyte interface during illumination. In recent years, the PEC biosensing approaches have also been developed by the combination of the PEC technique with bioanalysis, where the interaction between biological recognition element and analyte influences a photocurrent signal. This involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Coupling the advantages of PEC bioanalysis and aptamers has provided new concepts for highly selective and sensitive biosensors development, applicable in human health monitoring and environmental protection. In a typical assay, a photoactive material converts the affinity binding properties of aptamers into a detectable electrical signal, presenting an innovative method for probing numerous aptamer-analyte interactions. Using different aptamer probes aiming for specific purposes, more sensing strategies with rational design and exquisite signaling mechanisms have been proposed. This review concentrated on the current topic of PEC aptasensors that are used for the detection of viruses. The prospects in this area are also discussed. Graphical abstract
Collapse
Affiliation(s)
- Veronika Svitková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Kristína Konderíková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
34
|
Díaz-García V, Contreras-Trigo B, Rodríguez C, Coelho P, Oyarzún P. A Simple Yet Effective Preanalytical Strategy Enabling the Application of Aptamer-Conjugated Gold Nanoparticles for the Colorimetric Detection of Antibiotic Residues in Raw Milk. SENSORS 2022; 22:s22031281. [PMID: 35162026 PMCID: PMC8837955 DOI: 10.3390/s22031281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022]
Abstract
The misuse of antibiotics in the cattle sector can lead to milk contamination, with concomitant effects on the dairy industry and human health. Biosensors can be applied in this field; however, the influence of the milk matrix on their activity has been poorly studied in light of the preanalytical process. Herein, aptamer-conjugated gold nanoparticles (nanoaptasensors) were investigated for the colorimetric detection in raw milk of four antibiotics used in cattle. The effect of milk components on the colorimetric response of the nanoaptasensors was analyzed by following the selective aggregation of the nanoparticles, using the absorption ratio A520/A720. A preanalytical strategy was developed to apply the nanoaptasensors to antibiotic-contaminated raw milk samples, which involves a clarification step with Carrez reagents followed by the removal of cations through dilution, chelation (EDTA) or precipitation (NaHCO3). The colorimetric signals were detected in spiked samples at concentrations of antibiotics as low as 0.25-fold the maximum residue limits (MRLs) for kanamycin (37.5 μg/L), oxytetracycline (25 μg/L), sulfadimethoxine (6.25 μg/L) and ampicillin (1 μg/L), according to European and Chilean legislation. Overall, we conclude that this methodology holds potential for the semiquantitative analysis of antibiotic residues in raw milk obtained directly from dairy farms.
Collapse
|
35
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
36
|
Yang L, Cao Y, Pei R. Selection of Aptamer for N-Methyl Mesoporphyrin IX to Develop Porphyrin Metalation DNAzyme. Methods Mol Biol 2022; 2439:15-26. [PMID: 35226312 DOI: 10.1007/978-1-0716-2047-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesoporphyrin IX (MPIX) contains a planar macrocycle center that can interact with various divalent metal ions through the exposed binding sites, leading to the metalation of MPIX. The DNA aptamers for porphyrin molecules usually display different catalytic functions (termed deoxyribozymes or DNAzymes), which can accelerate such chemical reactions. Inspired by this, an affinity chromatography selection approach was designed for identifying a porphyrin metalation DNAzyme. In our experiment, N-methyl mesoporphyrin IX (NMM), an analog of MPIX, is used as the target molecule, owing to its stable and high fluorescence enhancement after combining with specific oligonucleotides. Our results showed that the selected aptamer Nm1 is capable of binding to NMM with a low micromolar dissociation constant (0.75 ± 0.08 μM) and displays a catalytic activity for MPIX metalation with 3.3-fold rate enhancement. The protocol for isolation of such a porphyrin metalation DNAzyme is described in detail here.
Collapse
Affiliation(s)
- Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
37
|
Farhadian S, Hashemi-Shahraki F, Amirifar S, Asadpour S, Shareghi B, Heidari E, Shakerian B, Rafatifard M, Firooz AR. Malachite Green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer. Int J Biol Macromol 2022; 194:790-799. [PMID: 34838577 DOI: 10.1016/j.ijbiomac.2021.11.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
Different groups of synthetic dyes might lead to environmental pollution. The binding affinity among hazardous materials with biomolecules necessitates a detailed understanding of their binding properties. Malachite Green might induce a change in the iron transfer by Apo-transferrin. Spectroscopic studies showed malachite green oxalate (MGO) could form the apo-transferrin-MGO complex and change the Accessible Surface Area (ASA) of the key amino acids for iron transfer. According to the ASA results the accessible surface area of Tyrosine, Aspartate, and Histidine of apo-transferrin significantly were changed, which can be considered as a convincing reason for changing the iron transfer. Moreover, based on the fluorescence data MGO could quench the fluorescence intensity of apo-transferrin in a static quenching mechanism. The experimental and Molecular Dynamic simulation results represented that the binding process led to micro environmental changes, around tryptophan residues and altered the tertiary structure of apo-transferrin. The Circular Dichroism (CD) spectra result represented a decrease in the amount of the α-Helix, as well as, increase in the β-sheet volumes of the apo-transferrin structure. Moreover, FTIR spectroscopy results showed a hypochromic shift in the peaks of amide I and II. Molecular docking and MD simulation confirmed all the computational findings.
Collapse
Affiliation(s)
- Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sogand Amirifar
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Ehsan Heidari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Behnam Shakerian
- Cardiovascular Diseases Research Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rafatifard
- Exercise Science/Physiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Reza Firooz
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
38
|
Roushani M, Zalpour N. Impedimetric ultrasensitive detection of trypsin based on hybrid aptamer-2DMIP using a glassy carbon electrode modified by nickel oxide nanoparticle. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Wang Y, Liu X, Wu L, Ding L, Effah CY, Wu Y, Xiong Y, He L. Construction and bioapplications of aptamer-based dual recognition strategy. Biosens Bioelectron 2022; 195:113661. [PMID: 34592501 DOI: 10.1016/j.bios.2021.113661] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023]
Abstract
Aptamer-based dual recognition strategy, using dual aptamers or the cooperation of aptamers with other recognition elements, can better utilize the advantages of each recognition molecule and increase the design flexibility to effectively overcome the limitations of a single molecule recognition strategy, thereby improving the sensitivity and selectivity and facilitating the regulation of biological process. Hence, this review systematically tracks the construction and application of dual aptamers recognition strategy in the versatile detection of protein biomarkers, pathogenic microorganisms, cancer cells, and the treatment of some diseases and, more importantly, in functional regulation and imaging of cell-surface protein receptors. Then, the cooperation of aptamers with other recognition elements are briefly introduced. Potential challenges facing this field have been highlighted, aiming to expand bioanalytical applications of aptamer-based dual or multiple recognition strategies and meet the growing demand for precision medicine.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinlian Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Longjie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Ozturk M, Nilsen-Hamilton M, Ilgu M. Aptamer Applications in Neuroscience. Pharmaceuticals (Basel) 2021; 14:1260. [PMID: 34959661 PMCID: PMC8709198 DOI: 10.3390/ph14121260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, prion disease, or brain tumors. The diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theragnostic applications to meet these needs. This review covers pioneering studies in applying aptamers, which shows promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.
Collapse
Affiliation(s)
- Meric Ozturk
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Marit Nilsen-Hamilton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| | - Muslum Ilgu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
41
|
Amouzadeh Tabrizi M, Nazari L, Acedo P. A photo-electrochemical aptasensor for the determination of severe acute respiratory syndrome coronavirus 2 receptor-binding domain by using graphitic carbon nitride-cadmium sulfide quantum dots nanocomposite. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130377. [PMID: 34219971 PMCID: PMC8240452 DOI: 10.1016/j.snb.2021.130377] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 05/18/2023]
Abstract
Herein, a photoelectrochemical aptasensor for the quantitive measurement of the severe acute respiratory syndrome coronavirus-2 receptor-binding domain (Sars-Cov-2 RBD) has been reported for the first time. For this purpose, first, graphitic carbon nitride and (gC3N4) and cadmium sulfide (CdS) quantum dots were fabricated and characterized. After that, gC3N4 and CdS were mixed well. The fabricated nanomaterials were characterized by scanning transmission electron microscopy. Then, the CdS QDs-gC3N4 nanocomposite was added to the solution containing chitosan as an amine-rich polymer to generate a Chitosan/CdS-gC3N4 nanocomposite. Subsequently, the surface of the ITO electrode was modified with Chitosan/CdS-gC3N4. After that, the amine-terminal aptamer probes were immobilized on the surface of the Chitosan/CdS QDs-gC3N4/ITO electrode by using glutaraldehyde as an amine-amine crosslinker. The electrochemical performances of the electrodes were studied using cyclic voltammetry (CV), electrochemical Impedance Spectroscopy (EIS), and photo-electrochemistry (PEC). The surface coverage of the immobilized aptamer probe was founded to be 26.2 pmol.cm-2. The obtained results demonstrated that the proposed photo-electrochemical aptasensor can be used for the measurement of Sars-Cov-2 RBD within 0.5-32.0 nM. The limit of detection (LOD) was obtained to be 0.12 nM (at 3σ/slope). The affinity of the Aptamer/Chitosan/CdS QDs-gC3N4/ITO was also founded to be 3.4 nM by using Langmuir-typical adsorption systems. The proposed photo-electrochemical aptasensor was applied for the measurement of the spiked Sars-Cov-2 RBD in human saliva samples at two concentrations. The effect of the interfering biomaterials such as human immunoglobulin G human immunoglobulin A, human immunoglobulin M, and human serum albumin was also studied.
Collapse
Affiliation(s)
| | - Leila Nazari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan, Iran
| | - Pablo Acedo
- Electronic Technology Department, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
42
|
Kurup CP, Mohd-Naim NF, Ahmed MU. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit Rev Biotechnol 2021; 42:794-812. [PMID: 34632900 DOI: 10.1080/07388551.2021.1960792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasensitive biosensors have become a necessity in the world of scientific research, and several signal enhancement strategies have been employed to attain exceptionally low detection limits. Nanotechnology turns out to be a strong contender for signal amplification, as they can be employed as platform modifiers, catalysts, carriers or labels. Here, we have described the most recent advancements in the utilization of nanomaterials as signal amplification components in aptamer-based electrochemical biosensors. We have briefly reviewed the methods that utilized nanomaterials, namely gold and carbon, as well as nanocomposites such as: graphene, carbon nanotubes, quantum dots, and metal-organic frameworks.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.,PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
43
|
Yagati AK, Behrent A, Tomanek V, Chavan SG, Go A, Park SR, Jin Z, Baeumner AJ, Lee MH. Polypyrrole-palladium nanocomposite as a high-efficiency transducer for thrombin detection with liposomes as a label. Anal Bioanal Chem 2021; 414:3205-3217. [PMID: 34617153 DOI: 10.1007/s00216-021-03673-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Sensitive and selective determination of protein biomarkers with high accuracy often remains a great challenge due to their existence in the human body at an exceptionally low concentration level. Therefore, sensing mechanisms that are easy to use, simple, and capable of accurate quantification of analyte are still in development to detect biomarkers at a low concentration level. To meet this end, we demonstrated a methodology to detect thrombin in serum at low concentration levels using polypyrrole (PPy)-palladium (Pd)nanoparticle-based hybrid transducers using liposomes encapsulated redox marker as a label. The morphology of Ppy-Pd composites was characterized by scanning electron microscopy, and the hybrid structure provided excellent binding and detection platform for thrombin detection in both buffer and serum solutions. For quantitative measurement of thrombin in PBS and serum, the change in current was monitored using differential pulse voltammetry, and the calculated limit of quantification (LOQ) and limit of detection (LOD) for the linear segment (0.1-1000 nM of thrombin) were 1.1 pM and 0.3 pM, in serum, respectively. The sensors also exhibited good stability and excellent selectivity towards the detection of thrombin, and thus make it a strong candidate for adopting its sensing applications in biomarker detection technologies.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Arne Behrent
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Vanessa Tomanek
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Sung Ryul Park
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Zhengzhi Jin
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Li B, Feng D, Miao Y, Liang X, Gu L, Lan H, Gao S, Zhang Y, Deng Y, Geng L. The systemic characterization of aptamer cocktail for bacterial detection studied by graphene oxide-based fluorescence resonance energy transfer aptasensor. J Mol Recognit 2021; 34:e2934. [PMID: 34553439 DOI: 10.1002/jmr.2934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Aptamers have gained significant attention as the molecular recognition element to replace antibodies in sensor development and target delivery. Nevertheless, it is noteworthy that unlike the wide application of polyvalent antibodies, existing researches on the combined use of heterologous aptamers with similar recognition affinity and specificity for target detection were sporadic. Herein, first, the wide existence of polyaptamer for bacteria was revealed through the summary of existing literature. Furthermore, based on the establishment of a sensitive aptamer cocktail/graphene oxide fluorescence resonance energy transfer polyaptasensor with a detection limit as low as 10 CFU/ml, the systemic characterization of aptamer cocktails in bacterial detection was carried out by taking E. coli, Vi. parahemolyticus, S. typhimurium, and C. sakazakii as the assay targets. It was turned out that the polyaptasensors for C. sakazakii and S. typhimurium owned prevalence in the broader concentration range of target bacteria. While the polyaptasensors for E. coli and V. parahemolyticus outperformed monoaptasensor mainly in the lower concentration of target bacteria. The linear relationships between fluorescence recovery and the concentration of bacteria were also discussed. The different characteristics of the bacterial cellular membrane, including the binding affinity and the robustness to variation, are analyzed to be the main reason for the diverse detection performance of aptasensors. The study here enhances a sensor detection strategy with super sensitivity. More importantly, this systemic study on the aptamer cocktail in reference to antibodies will advance the in-depth understanding and rational design of aptamer based biological recognition, detection, and targeting.
Collapse
Affiliation(s)
- Baichang Li
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Dongwei Feng
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Yunfei Miao
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Xuewang Liang
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Le Gu
- Biological Detection Department, BOE Technology Group Co., Ltd., Beijing, China
| | - Hongying Lan
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Shimeng Gao
- College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yaxi Zhang
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Lina Geng
- Department of Life, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
45
|
Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Anal Biochem 2021; 630:114334. [PMID: 34384745 DOI: 10.1016/j.ab.2021.114334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Lysozyme (Lyz) is a naturally occurring enzyme that operates against Gram-positive bacteria and leads to cell death. This antimicrobial enzyme forms the part of the innate defense system of nearly all animals and exists in their somatic discharges such as milk, tears, saliva and urine. Increased Lyz level in serum is an important indication of several severe diseases and so, precise diagnosis of Lyz is an urgent need in biosensing assays. Up to know, various traditional and modern techniques have been introduced for Lyz determination. Although the traditional methods suffer from some significant limitations such as time-consuming, arduous, biochemical screening, bacterial colony isolation, selective enrichment and requiring sophisticated instrumentation or isotope labeling, some new modern approaches like aptamer-based biosensors (aptasensors) and quantum dot (QD) nanomaterials are the main goal in Lyz detection. Electrochemical and optical sensors have been highlighted because of their adaptability and capability to decrease the drawbacks of common methods. Using an aptamer-based biosensor, sensor selectivity is enhanced due to the specific recognition of the analyte. Thereby, in this review article, the recent advances and achievements in electrochemical and optical aptasensing detection of Lyz based on different QD nanomaterials and detection methods have been discussed in detail.
Collapse
|
46
|
Lin J, Shi A, Zheng Z, Huang L, Wang Y, Lin H, Lin X. Simultaneous Quantification of Ampicillin and Kanamycin in Water Samples Based on Lateral Flow Aptasensor Strip with an Internal Line. Molecules 2021; 26:molecules26133806. [PMID: 34206584 PMCID: PMC8270245 DOI: 10.3390/molecules26133806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
In this work, a simple and rapid method based on the lateral flow assay (LFA) has been developed for the detection of dual antibiotics. To achieve the quantitative assay and to reduce the non-specific adsorption, an internal system has been developed. A non-specific DNA was exploited as an internal standard and could be recognized by the DNA marker that was coated at the internal line. Two different kinds of aptamers were applied to recognize ampicillin (AMP) and kanamycin (KAM), and the distance between the detection line and conjugate pad was then optimized. Under the optimum conditions, the quantitative assays of AMP (R2 = 0.984) and KAM (R2 = 0.990) were achieved with dynamic ranges of 0.50 to 500.0 ng/L, and of 0.50 to 1000.0 ng/L, respectively. The LOQs of AMP and KAM were 0.06 ng/L and 0.015 ng/L, respectively. Finally, the proposed method has been successfully applied to analyze aquaculture water, tap water, and lake water, and hospital wastewater, indicating the established method could be used to monitor the environment.
Collapse
Affiliation(s)
- Jinbiao Lin
- Provincial Key Laboratory of Naval Architecture & Ocean Engineering, Marine Engineering College, Jimei University, Xiamen 361021, China; (J.L.); (A.S.); (Z.Z.); (H.L.)
| | - Ang Shi
- Provincial Key Laboratory of Naval Architecture & Ocean Engineering, Marine Engineering College, Jimei University, Xiamen 361021, China; (J.L.); (A.S.); (Z.Z.); (H.L.)
| | - Ziwu Zheng
- Provincial Key Laboratory of Naval Architecture & Ocean Engineering, Marine Engineering College, Jimei University, Xiamen 361021, China; (J.L.); (A.S.); (Z.Z.); (H.L.)
| | - Long Huang
- CNTAC Testing Services Co., Ltd., Quanzhou 362700, China
- Correspondence: (L.H.); (X.L.)
| | - Yixin Wang
- Shanghai WEIPU Chemical Technology Service Co., Ltd., Shanghai 200000, China;
| | - Honggui Lin
- Provincial Key Laboratory of Naval Architecture & Ocean Engineering, Marine Engineering College, Jimei University, Xiamen 361021, China; (J.L.); (A.S.); (Z.Z.); (H.L.)
| | - Xuexia Lin
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Correspondence: (L.H.); (X.L.)
| |
Collapse
|
47
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
48
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|
49
|
Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N. An ultra-sensitive optical aptasensor based on gold nanoparticles/poly vinyl alcohol hydrogel as acceptor/emitter pair for fluorometric detection of digoxin with on/off/on strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119345. [PMID: 33465528 DOI: 10.1016/j.saa.2020.119345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A novel nanobiosensor was prepared by aptamer and gold nanoparticles conjugate in poly vinyl alcohol hydrogel for sensitive detection of digoxin in human plasma samples. The developed nanobiosensor was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering instrument. In this sensor the hydrogel acted as a fluorescent probe. The fluorescence intensity of the hydrogel was quenched by aptamer stabilized gold nanoparticles as energy acceptor. Upon addition of digoxin, the aptamer/drug complex was formed and the fluorescence of the hydrogel was restored because of destabilization and aggregation of gold nanoparticles in the presence of salt. The affecting parameters on the nanobiosensor performance were assessed and under the optimized conditions the external and in plasma calibration curves were linear in the 10-1000 ng L-1 digoxin concentration range with detection limits of 2.9 and 3.1 ng L-1, respectively. The relative standard deviations for 5 replicate determinations of 50, 250, and 500 ng L-1 of digoxin, were 7.3, 5.1, and 3.8%, respectively. This nanofluoroprobe was successfully applied for determination of digoxin in spiked plasma samples without any pretreatment procedure.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
50
|
Renu, Komal, Kaur R, Kaur J, Jyoti, Kumar V, Tikoo K, Rana S, Kaushik A, Singhal S. Unfolding the electrocatalytic efficacy of highly conducting NiFe2O4-rGO nanocomposites on the road to rapid and sensitive detection of hazardous p-Nitrophenol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|