1
|
Renny A, Sidhic J, Tom A, Kuttithodi AM, Job JT, Rajagopal R, Alfarhan A, Narayanankutty A. Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice. Molecules 2024; 29:4800. [PMID: 39459169 PMCID: PMC11510445 DOI: 10.3390/molecules29204800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation is a physiological condition that when unattended causes serious health concerns over the long term. Several phytocompounds have emerged as promising sources of anti-inflammatory agents. Thottea siliquosa is a traditional medicine for inflammatory and toxicity insults; however, this has not been scientifically confirmed. The purpose of this study is to evaluate the anti-inflammatory properties of T. siliquosa methanol leaf extract in a mouse model. This study investigates the anti-inflammatory activities of a plant extract obtained from leaves of T. siliquosa (TSE) with a focus on carrageenan- and formalin-induced paw oedema in mice. The extract's efficacy was assessed using well-established inflammation models, and the results showed a considerable reduction in paw edema in both cases. In the case of carrageenan model TSE at 50 mg/kg showed a 53.0 ± 2.5% reduction in edema, while those treated with TSM at 100 mg/kg exhibited a 60.0 ± 1.8% reduction (p < 0.01). In the case of a formalin model when a higher dose of TSE (100 mg/kg) was given, paw thickness decreased by 47.04 ± 1.9% on the fifth day and by 64.72 ± 2.2% on the tenth day. LC-MS analysis reported the presence of gallic acid, quinic acid, quercetin, clitorin, myricitrin, retronecine, batatasin II, gingerol, and coumaric acid in the extract. Overall, this study confirms that T. siliquosa extract exerts anti-inflammatory effects in animals and is possibly mediated through the combined effects of these phytochemicals.
Collapse
Affiliation(s)
- Aneeta Renny
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Jameema Sidhic
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India;
| | - Alby Tom
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| |
Collapse
|
2
|
Zhang W, Lee PCW, Jin JO. Anti-Inflammatory Effect of Fucoidan from Costaria costata Inhibited Lipopolysaccharide-Induced Inflammation in Mice. Mar Drugs 2024; 22:401. [PMID: 39330282 PMCID: PMC11433612 DOI: 10.3390/md22090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Seaweed extracts, especially fucoidan, are well known for their immune-modulating abilities. In this current study, we extracted fucoidan from Costaria costata, a seaweed commonly found in coastal Asia, and examined its anti-inflammatory effect. Fucoidan was extracted from dried C. costata (FCC) using an alcohol extraction method at an extraction rate of 4.5 ± 0.21%. The extracted FCC comprised the highest proportion of carbohydrates, along with sulfate and uronic acid. The immune regulatory effect of FCC was examined using bone marrow-derived dendritic cells (BMDCs). Pretreatment with FCC dose-dependently decreased the lipopolysaccharide (LPS)-induced upregulation of co-stimulatory molecules and major histocompatibility complex. In addition, FCC prevented morphological changes in LPS-induced BMDCs. Moreover, treatment of LPS-induced BMDCs with FCC suppressed the secretion of pro-inflammatory cytokines. In C57BL/6 mice, oral administration of FCC suppressed LPS-induced lung inflammation, reducing the secretion of pro-inflammatory cytokines in the bronchoalveolar lavage fluid. Finally, the administration of FCC suppressed LPS-induced sepsis. Therefore, FCC could be developed as a health supplement based on the observed anti-inflammatory effects.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China;
| | - Peter C. W. Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
3
|
Lakhrem M, Eleroui M, Boujhoud Z, Feki A, Dghim A, Essayagh S, Hilali S, Bouhamed M, Kallel C, Deschamps N, de Toffol B, Pujo JM, Badraoui R, Kallel H, Ben Amara I. Anti-Vasculogenic, Antioxidant, and Anti-Inflammatory Activities of Sulfated Polysaccharide Derived from Codium tomentosum: Pharmacokinetic Assay. Pharmaceuticals (Basel) 2024; 17:672. [PMID: 38931340 PMCID: PMC11207104 DOI: 10.3390/ph17060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this paper was to investigate the anti-inflammatory and anti-angiogenic activities of sulfated polysaccharide from C. tomentosum (PCT) using carrageenan (CARR)-induced paw edema in a rat model and anti-vasculogenic activity on a chorioallantoic membrane assay (CAM) model. Based on in vitro tests of anti-radical, total antioxidant, and reducing power activities, PCT presents a real interest via its antioxidant activity and ability to scavenge radical species. The in vivo pharmacological tests suggest that PCT possesses anti-inflammatory action by reducing paw edema and leukocyte migration, maintaining the redox equilibrium, and stabilizing the cellular level of several pro-/antioxidant system markers. It could significantly decrease the malondialdehyde levels and increase superoxide dismutase, glutathione peroxidase, and glutathione activities in local paw edema and erythrocytes during the acute inflammatory reaction of CARR. PCT pretreatment was effective against DNA alterations in the blood lymphocytes of inflamed rats and reduced the hematological alteration by restoring blood parameters to normal levels. The anti-angiogenic activity results revealed that CAM neovascularization, defined as the formation of new vessel numbers and branching patterns, was decreased by PCT in a dose-dependent manner, which supported the in silico bioavailability and pharmacokinetic findings. These results indicated the therapeutic effects of polysaccharides from C. tomentosum and their possible use as anti-proliferative molecules based on their antioxidant, anti-inflammatory, and anti-angiogenic activities.
Collapse
Affiliation(s)
- Marwa Lakhrem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Settat 26000, Morocco;
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Sanah Essayagh
- Laboratory Agrifood and Health, Faculty of Science and Technology, Hasan First University of Settat, Settat 26000, Morocco; (S.E.); (S.H.)
| | - Said Hilali
- Laboratory Agrifood and Health, Faculty of Science and Technology, Hasan First University of Settat, Settat 26000, Morocco; (S.E.); (S.H.)
| | - Marwa Bouhamed
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Choumous Kallel
- Laboratory of Hematology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Nathalie Deschamps
- Neurology Department, Cayenne General Hospital, Cayenne 97300, French Guiana; (N.D.); (B.d.T.)
- Clinical Investigation Center, CIC INSERM 142, Cayenne General Hospital Andrée Rosemon, Guiana University, Cayenne 97300, French Guiana
| | - Bertrand de Toffol
- Neurology Department, Cayenne General Hospital, Cayenne 97300, French Guiana; (N.D.); (B.d.T.)
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne 97300, French Guiana;
| | - Riadh Badraoui
- Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia;
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunisia
| | - Hatem Kallel
- Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne 97300, French Guiana;
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
- Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne 97300, French Guiana;
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana
| |
Collapse
|
4
|
Chiang YF, Huang KC, Wang KL, Huang YJ, Chen HY, Ali M, Shieh TM, Hsia SM. Protective Effects of an Oligo-Fucoidan-Based Formula against Osteoarthritis Development via iNOS and COX-2 Suppression following Monosodium Iodoacetate Injection. Mar Drugs 2024; 22:211. [PMID: 38786602 PMCID: PMC11123468 DOI: 10.3390/md22050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Deh Yu College of Nursing and Health, Keelung 203301, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710301, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
6
|
Tai MR, Ji HW, Chen JP, Liu XF, Song BB, Zhong SY, Rifai A, Nisbet DR, Barrow CJ, Williams RJ, Li R. Biomimetic triumvirate nanogel complexes via peptide-polysaccharide-polyphenol self-assembly. Int J Biol Macromol 2023; 251:126232. [PMID: 37562478 DOI: 10.1016/j.ijbiomac.2023.126232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Self-assembled peptide and polysaccharide nanogels are excellent candidates for bioactive delivery vectors. However, there are still significant challenges in the application of nanogels as delivery tools for bioactive elements. This study aims to deliver, and control the release of a hydrophobic bioactive flavonoid hesperidin. Using the self-assembling peptide (SAP) Fmoc-FRGDF, extracellular matrix mimicking nanofibrils were fabricated, which were decorated and bolstered with immunomodulatory polysaccharide strands of fucoidan and infused with hesperidin. The mechanical properties, secondary structure, and microscopic morphologies of the composite hydrogels were characterized using rheometer, FTIR, XRD, and TEM, etc. The encapsulation efficiency (EE) and release behavior of hesperidin were determined. Coassembly of the SAP with fucoidan improved the mechanical properties (from 9.54 Pa of Fmoc-FRGDF hydrogel to 7735 Pa of coassembly hydrogel at 6 mg/mL fucoidan concentration), formed thicker nanofibril bundles at 4 and 6 mg/mL fucoidan concentration, improved the EE of hesperidin from 72.86 % of Fmoc-FRGDF hydrogel to over 90 % of coassembly hydrogels, and showed effectively controlled release of hesperidin in vitro. Intriguingly, the first order kinetic model predicted an enhanced hydrogel retention and release of hesperidin. This study revealed a new approach for bioengineered nanogels that could be used to stabilize and release hydrophobic payloads.
Collapse
Affiliation(s)
- Min-Rui Tai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Hong-Wu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Jian-Ping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Bing-Bing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Aaqil Rifai
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia; IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia; The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia; Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Richard J Williams
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia; IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia; The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|
7
|
Silva AKA, Souza CRDM, Silva HMD, Jales JT, Gomez LADS, da Silveira EJD, Rocha HAO, Souto JT. Anti-Inflammatory Activity of Fucan from Spatoglossum schröederi in a Murine Model of Generalized Inflammation Induced by Zymosan. Mar Drugs 2023; 21:557. [PMID: 37999381 PMCID: PMC10672204 DOI: 10.3390/md21110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Fucans from marine algae have been the object of many studies that demonstrated a broad spectrum of biological activities, including anti-inflammatory effects. The aim of this study was to verify the protective effects of a fucan extracted from the brown algae Spatoglossum schröederi in animals submitted to a generalized inflammation model induced by zymosan (ZIGI). BALB/c mice were first submitted to zymosan-induced peritonitis to evaluate the treatment dose capable of inhibiting the induced cellular migration in a simple model of inflammation. Mice were treated by the intravenous route with three doses (20, 10, and 5 mg/kg) of our fucan and, 1 h later, were inoculated with an intraperitoneal dose of zymosan (40 mg/kg). Peritoneal exudate was collected 24 h later for the evaluation of leukocyte migration. Doses of the fucan of Spatoglossum schröederi at 20 and 10 mg/kg reduced peritoneal cellular migration and were selected to perform ZIGI experiments. In the ZIGI model, treatment was administered 1 h before and 6 h after the zymosan inoculation (500 mg/kg). Treatments and challenges were administered via intravenous and intraperitoneal routes, respectively. Systemic toxicity was assessed 6 h after inoculation, based on three clinical signs (bristly hair, prostration, and diarrhea). The peritoneal exudate was collected to assess cellular migration and IL-6 levels, while blood samples were collected to determine IL-6, ALT, and AST levels. Liver tissue was collected for histopathological analysis. In another experimental series, weight loss was evaluated for 15 days after zymosan inoculation and fucan treatment. The fucan treatment did not present any effect on ZIGI systemic toxicity; however, a fucan dose of 20 mg/kg was capable of reducing the weight loss in treated mice. The treatment with both doses also reduced the cellular migration and reduced IL-6 levels in peritoneal exudate and serum in doses of 20 and 10 mg/kg, respectively. They also presented a protective effect in the liver, with a reduction in hepatic transaminase levels in both doses of treatment and attenuated histological damage in the liver at a dose of 10 mg/kg. Fucan from S. schröederi presented a promising pharmacological activity upon the murine model of ZIGI, with potential anti-inflammatory and hepatic protective effects, and should be the target of profound and elucidative studies.
Collapse
Affiliation(s)
- Ana Katarina Andrade Silva
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, EBSERH, Natal 59078-900, Brazil
| | - Cássio Ricardo de Medeiros Souza
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Biochemistry and Molecular Biology Post-Graduation Program, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil
| | - Hylarina Montenegro Diniz Silva
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, EBSERH, Natal 59078-900, Brazil
| | - Jéssica Teixeira Jales
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Lucas Alves de Souza Gomez
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Ericka Janine Dantas da Silveira
- Department of Dentistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, 1787, Lagoa Nova, Natal 59056-000, Brazil;
| | - Hugo Alexandre Oliveira Rocha
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Janeusa Trindade Souto
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| |
Collapse
|
8
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
9
|
Lukova P, Apostolova E, Baldzhieva A, Murdjeva M, Kokova V. Fucoidan from Ericaria crinita Alleviates Inflammation in Rat Paw Edema, Downregulates Pro-Inflammatory Cytokine Levels, and Shows Antioxidant Activity. Biomedicines 2023; 11:2511. [PMID: 37760952 PMCID: PMC10526391 DOI: 10.3390/biomedicines11092511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Fucoidans are sulfated polysaccharides detected mainly in the cell walls of brown seaweeds. Here, we examined the effects of single doses of fucoidan derived from Ericaria crinita (formerly Cystoseira crinita) on carrageenan-induced paw inflammation in rats. The serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment were also evaluated. Subchronic treatment with fucoidan from E. crinita attenuated the inflammation during the late phase of the degraded carrageenan-induced paw edema (3rd to 5th hour after carrageenan injection) with peak activity at the 3rd hour after the application. Both doses of fucoidan from E. crinita (25 and 50 mg/kg bw) significantly decreased the levels of all tested pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) in the serum of rats with a model of system inflammation but had no effect on the anti-inflammatory cytokine IL-10. The results showed that the repeated application of fucoidan has a more prominent effect on the levels of some pro-inflammatory cytokines in serum in comparison to a single dose of the sulfated polysaccharide. This reveals the potential of E. crinita fucoidan as an anti-inflammatory agent. Furthermore, E. crinita fucoidan exhibited in vitro antioxidant capacity, determined by 2,2-diphenyl-1-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays as follows: IC50 = 412 µg/mL and 118.72 μM Trolox equivalent/g, respectively.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
10
|
Sanniyasi E, Gopal RK, Damodharan R, Arumugam A, Sampath Kumar M, Senthilkumar N, Anbalagan M. In vitro anticancer potential of laminarin and fucoidan from Brown seaweeds. Sci Rep 2023; 13:14452. [PMID: 37660108 PMCID: PMC10475116 DOI: 10.1038/s41598-023-41327-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Marine seaweeds are rich source of polysaccharides present in their cell wall and are cultivated and consumed in China, Japan, Korea, and South Asian countries. Brown seaweeds (Phaeophyta) are rich source of polysaccharides such as Laminarin and Fucoidan. In present study, both the laminarin and fucoidan were isolated was yielded higher in PP (Padina pavonica) (4.36%) and STM (Stoechospermum marginatum) (2.32%), respectively. The carbohydrate content in laminarin and fucoidan was 86.91% and 87.36%, whereas the sulphate content in fucoidan was 20.68%. Glucose and mannose were the major monosaccharide units in laminarin (PP), however, fucose, galactose, and xylose in fucoidan (STM). FT-IR down peaks represent the carbohydrate of laminarin and fucoidan except, for 1219 cm-1, and 843 cm-1, illustrating the sulphate groups of fucoidan. The molecular weight of laminarin was 3-5 kDa, and the same for fucoidan was 2-6 kDa, respectively. Both the Fucoidan and Laminarin showed null cytotoxicity on Vero cells. Contrastingly, the fucoidan possess cytotoxic activity on human liver cancer cells (HepG2) (IC50-24.4 ± 1.5 µg/mL). Simultaneously, laminarin also shown cytotoxicity on human colon cancer cells (HT-29) (IC50-57 ± 1.2 µg/mL). The AO/EB (Acriding Orange/Ethidium Bromide) assay significantly resulted in apoptosis and necrosis upon laminarin and fucoidan treatments, respectively. The DNA fragmentation results support necrotic cancer cell death. Therefore, laminarin and fucoidan from PP and STM were potential bioactive compounds for anticancer therapy.
Collapse
Affiliation(s)
- Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| | - Rajesh Damodharan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Arthi Arumugam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | | | | - Monisha Anbalagan
- Department of Biotechnology, Jeppiar Engineering College, Chennai, 600119, India
| |
Collapse
|
11
|
Zahariev N, Katsarov P, Lukova P, Pilicheva B. Novel Fucoidan Pharmaceutical Formulations and Their Potential Application in Oncology-A Review. Polymers (Basel) 2023; 15:3242. [PMID: 37571136 PMCID: PMC10421178 DOI: 10.3390/polym15153242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Fucoidan belongs to the family of marine sulfated, L-fucose-rich polysaccharides found in the cell wall matrix of various brown algae species. In the last few years, sulfated polysaccharides have attracted the attention of researchers due to their broad biological activities such as anticoagulant, antithrombotic, antidiabetic, immunomodulatory, anticancer and antiproliferative effects. Recently the application of fucoidan in the field of pharmaceutical technology has been widely investigated. Due to its low toxicity, biocompatibility and biodegradability, fucoidan plays an important role as a drug carrier for the formulation of various drug delivery systems, especially as a biopolymer with anticancer activity, used for targeted delivery of chemotherapeutics in oncology. Furthermore, the presence of sulfate residues with negative charge in its structure enables fucoidan to form ionic complexes with oppositely charged molecules, providing relatively easy structure-forming properties in combination with other polymers. The aim of the present study was to overview essential fucoidan characteristics, related to its application in the development of pharmaceutical formulations as a single drug carrier or in combinations with other polymers. Special focus was placed on micro- and nanosized drug delivery systems with polysaccharides and their application in the field of oncology.
Collapse
Affiliation(s)
- Nikolay Zahariev
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria;
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| |
Collapse
|
12
|
Flores-Contreras EA, Araújo RG, Rodríguez-Aguayo AA, Guzmán-Román M, García-Venegas JC, Nájera-Martínez EF, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldivar R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2445. [PMID: 37447006 DOI: 10.3390/plants12132445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.
Collapse
Affiliation(s)
- Elda A Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Muriel Guzmán-Román
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Erik Francisco Nájera-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
13
|
Chakraborty K, Thambi A, Dhara S. Sulfated polygalactofucan from triangular sea bell Turbinaria decurrens attenuates inflammatory cytokines on THP-1 human monocytic macrophages. Int J Biol Macromol 2023; 231:123220. [PMID: 36634794 DOI: 10.1016/j.ijbiomac.2023.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/31/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Inflammation is one of the most significant causes of several chronic diseases, which includes the expression of cytokines activating immune cells to up-regulate the inflammatory cascade. Polysaccharides from marine macroalgae are promising anti-inflammatory agents because of their potential to attenuate inflammatory cytokines. The triangular sea bell Turbinaria decurrens (Sargassaceae) among marine macroalgae is ubiquitous in oceanic waters, and a sulfated polygalactofucan SPTd-2 [→3-(α-L-fucp-(2-OSO3-)-(1 → 4)-α-L-fucp-(3-OAc)-(1 → 4)-β-D-galp-(1→] was purified from the species. The studied polygalactofucan SPTd-2 exhibited anti-inflammatory activities against cyclooxygenase-2 (IC50 10.56 μM) and 5-lipoxygenase (IC50 3.36 μM) with a greater selectivity index (2.35) than ibuprofen (0.44), besides attenuating pro-inflammatory cytokine production, including tumor necrosis factor-α, transforming growth factor-β, interleukin-2, 1β, and interferon-γ. Quantitative real-time polymerase chain reaction displayed that SPTd-2 blocked the mRNA of interferon-γ and interleukin-2, in the human monocytic cell line THP-1. The results showed the potential of SPTd-2 to attenuate inflammation-associated disorders.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| | - Anjaly Thambi
- Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India; Department of Applied Chemistry, Cochin University of Science and Technology, South Kalamassery, Kochi 682022, Kerala State, India
| | - Shubhajit Dhara
- Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| |
Collapse
|
14
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
15
|
Feofanova NA, Bets VD, Borisova MA, Litvinova EA. L-fucose reduces gut inflammation due to T-regulatory response in Muc2 null mice. PLoS One 2022; 17:e0278714. [PMID: 36584066 PMCID: PMC9803192 DOI: 10.1371/journal.pone.0278714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fucose, the terminal glycan of the intestinal glycoprotein Mucin2, was shown to have an anti-inflammatory effect in mouse colitis models and modulate immune response due to macrophage polarization changes. In this study we evaluated the effect of 0.05% L-fucose supplementation of drinking water on immune parameters in the intestine of homozygous mutant Muc2-/-, compared to Muc2+/+ mice. To get into innate and adaptive immunity mechanisms of gut inflammation, we tested PrkdcSCIDMuc2-/- strain, Muc2 knockout on SCID background, that is characterized by lack of lymphocytes, in comparison with PrkdcSCID mice. We evaluated intestinal cytokine profiling, macrophage and eosinophil infiltration, and expression of Nos2 and Arg1 markers of macrophage activation in all strains. Markers of Th1, Treg and Th17 cells (Tbx21, Foxp3, and Rorc expression) were evaluated in Muc2-/- and Muc2+/+ mice. Both Muc2-/- and PrkdcSCIDMuc2-/- mice demonstrated increased numbers of macrophages, eosinophils, elevated levels of TNFa, GM-CSF, and IL-10 cytokines. In Muc2-/- mice we observed a wide range of pro-inflammatory cytokines elevated, such as IFN-gamma, IL-1b, IL-12p70, IL-6, M-CSF, G-CSF, IL-17, MCP-1, RANTES, MIP1b, MIP2. Muc2-/- mice demonstrated increase of Nos2, Tbx21 and Foxp3 genes mRNA, while in PrkdcSCIDMuc2-/- mice Arg1 expression was increased. We found that in Muc2-/- mice L-fucose reduced macrophage infiltration and IL-1a, TNFa, IFNgamma, IL-6, MCP-1, RANTES, MIP1b levels, decreased Nos2 expression, and induced the expression of Treg marker Foxp3 gene. On the contrary, in PrkdcSCIDMuc2-/- mice L-fucose had no effect on macrophage and eosinophil numbers, but increased TNFa, GM-CSF, IL-12p70, IL-6, IL-15, IL-10, MCP1, G-CSF, IL-3 levels and Nos2 gene expression, and decreased Arg1 gene expression. We demonstrated that anti-inflammatory effect of L-fucose observed in Muc2-/- mice is not reproduced in PrkdcSCIDMuc2-/-, which lack lymphocytes. We conclude that activation of Treg cells is a key event that leads to resolution of inflammation upon L-fucose supplementation in Muc2-/- mice.
Collapse
Affiliation(s)
- Natalia A. Feofanova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Victoria D. Bets
- Faculty of Physical Engineering, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Mariya A. Borisova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A. Litvinova
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Faculty of Physical Engineering, Novosibirsk State Technical University, Novosibirsk, Russia
| |
Collapse
|
16
|
Puhari SSM, Yuvaraj S, Vasudevan V, Ramprasath T, Rajkumar P, Arunkumar K, Amutha C, Selvam GS. Isolation and characterization of fucoidan from four brown algae and study of the cardioprotective effect of fucoidan from Sargassum wightii against high glucose-induced oxidative stress in H9c2 cardiomyoblast cells. J Food Biochem 2022; 46:e14412. [PMID: 36121745 DOI: 10.1111/jfbc.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays a vital role in the initiation and progression of diabetic cardiomyopathy (DCM). Increased cardiac dysfunction and apoptosis in DCM are independent factors associated with hypertension or coronary artery disease. Fucoidan, a class of sulfated polysaccharides, is widely used as food supplements and reported to have various pharmacological properties. However, the pharmacological property of Indian seaweeds remains unexplored. The present study is focused on isolating and characterizing the fucoidan from four brown seaweeds such as Sargassum wightii (SwF), Sargassum swartzii (SsF), Sargassum polycystum (SpF), Turbinaria ornata (ToF), and aimed to investigate cardioprotective effect of fucoidan against High Glucose (HG) induced oxidative stress in H9c2 cells. The mild acid hydrolysis method was used to isolate crude fucoidan from four brown seaweeds purified by the FPLC system. The biochemical composition analysis showed that SwF had a high content of fucoidan and sulfate, followed by SsF, SpF, and ToF. Further, FTIR, XRD, NMR, and SEM analysis confirmed the isolated fucoidan structures. SwF showed higher DPPH activity compared to another isolated fucoidan. In vitro studies with SwF revealed significantly decreased cytotoxicity, prevented the loss of MMP, reduced lipid peroxidation, and increased cellular enzymatic and non-enzymatic activity. qRT-PCR results showed SwF significantly upregulated the Nrf2, HO-1, NQO1, and Bcl2 and down-regulated the Bax and Caspase-3 mRNA expression compared to HG-treated cells. In conclusion, SwF could be used to develop functional foods for diabetic-mediated CVD complications compared to another isolated fucoidan. PRACTICAL APPLICATIONS: Bioactive carbohydrates have gained significant interest among researchers to improve human health. The biomedical field showed great interest in seaweed research in managing various diseases. In particular, seaweeds contain many bioactive compounds because of their chemical and biological diversity. Despite the various beneficial effects of fucoidan in CVD, the therapeutic potential of Indian seaweeds remains largely unexplored. Hence, this study isolated fucoidan from four brown seaweeds and studied their bioactive properties. Results revealed that SwF showed higher free radical scavenging activity compared to another isolated fucoidan. Therefore, SwF was selected for the in vitro study. SwF increased the cytoprotection through increasing antioxidant levels against oxidative stress in H9c2 cells. Staining analysis showed SwF increased cellular protection via inhibiting ROS protection and increasing MMP. Overall, fucoidan from SwF could be developed as a functional food for CVD.
Collapse
Affiliation(s)
- Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Prabhakaran Rajkumar
- Department of Animal Sciences, Manonmanium Sundaranar University, Tirunelveli, India
| | - Kulanthaiyesu Arunkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Chinnaiah Amutha
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
17
|
Apostolova E, Lukova P, Baldzhieva A, Delattre C, Molinié R, Petit E, Elboutachfaiti R, Nikolova M, Iliev I, Murdjeva M, Kokova V. Structural Characterization and In Vivo Anti-Inflammatory Activity of Fucoidan from Cystoseira crinita (Desf.) Borry. Mar Drugs 2022; 20:714. [PMID: 36421993 PMCID: PMC9693085 DOI: 10.3390/md20110714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effects of fucoidan isolated from C. crinita on histamine-induced paw inflammation in rats, and on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 in rats during systemic inflammation response. The levels of TNF-α in a model of acute peritonitis in rats were also investigated. The isolated crude fucoidan was identified as a sulfated xylogalactofucan with high, medium, and low molecular weight fractions and a content of fucose of 39.74%, xylose of 20.75%, and galactose of 15.51%. Fucoidan from C. crinita showed better anti-inflammatory effects in the rat paw edema model, and this effect was present during all stages of the experiment. When compared to controls, a commercial fucoidan from F. vesiculosus, the results also displayed anti-inflammatory activity on the 60th, 90th, and 120th minute of the experiment. A significant decrease in serum levels of IL-1β in rats treated with both doses of C. crinita fucoidan was observed in comparison to controls, whereas TNF-α concentrations were reduced only in the group treated with fucoidan from C. crinita at the dose of 25 mg/kg bw. In the model of carrageenan-induced peritonitis, we observed a tendency of decrease in the levels of the pro-inflammatory cytokine TNF-α in peritoneal fluid after a single dose of C. crinita fucoidan, but this did not reach the statistical significance margin. Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory cytokine IL-10 in animals with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
18
|
Devi G.V. Y, Nagendra AH, Shenoy P. S, Chatterjee K, Venkatesan J. Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Mar Drugs 2022; 20:589. [PMID: 36286414 PMCID: PMC9604642 DOI: 10.3390/md20100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, millions of bone graft procedures are being performed by clinicians annually to treat the rising prevalence of bone defects. Here, the study designed a fucoidan from Sargassum ilicifolium incorporated in an osteo-inductive scaffold comprising calcium crosslinked sodium alginate-nano hydroxyapatite-nano graphene oxide (Alg-HA-GO-F), which tends to serve as a bone graft substitute. The physiochemical characterization that includes FT-IR, XRD, and TGA confirms the structural integration between the materials. The SEM and AFM reveal highly suitable surface properties, such as porosity and nanoscale roughness. The incorporation of GO enhanced the mechanical strength of the Alg-HA-GO-F. The findings demonstrate the slower degradation and improved protein adsorption in the fucoidan-loaded scaffolds. The slow and sustained release of fucoidan in PBS for 120 h provides the developed system with an added advantage. The apatite formation ability of Alg-HA-GO-F in the SBF solution predicts the scaffold's osteointegration and bone-bonding capability. In vitro studies using C3H10T1/2 revealed a 1.5X times greater cell proliferation in the fucoidan-loaded scaffold than in the control. Further, the results determined the augmented alkaline phosphatase and mineralization activity. The physical, structural, and enriching osteogenic potential results of Alg-HA-GO-F indicate that it can be a potential bone graft substitute for orthopedic applications.
Collapse
Affiliation(s)
- Yashaswini Devi G.V.
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Apoorva H Nagendra
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Departmental of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
19
|
Wu S, Liu J, Zhang Y, Song J, Zhang Z, Yang Y, Wu M, Tong H. Structural characterization and antagonistic effect against P-selectin-mediated function of SFF-32, a fucoidan fraction from Sargassum fusiforme. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115408. [PMID: 35659565 DOI: 10.1016/j.jep.2022.115408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum fusiforme (Harvey) Setchell, or Haizao, has been used in traditional Chinese medicine (TCM) since at least the eighth century a.d. S. fusiforme is an essential component of several Chinese formulas, including Haizao Yuhu Decoction, used to treat goiter, and Neixiao Lei Li Wan used to treat scrofuloderma. The pharmacological efficacy of S. fusiforme may be related to its anti-inflammatory effect. AIM OF THE STUDY To determine the structural characteristics of SFF-32, a fucoidan fraction from S. fusiforme, and its antagonistic effect against P-selectin mediated function. MATERIALS AND METHODS The primary structure of SFF-32 was determined using methylation/GC-MS and NMR analysis. Surface morphology and solution conformation of SFF-32 were determined by scanning electron microscopy (SEM), Congo red test, and circular dichroic (CD) chromatography, respectively. The inhibitory effects of SFF-32 against the binding of P-selectin to HL-60 cells were evaluated using flow cytometry, static adhesion assay, and parallel-plate flow chamber assay. Furthermore, the blocking effect of SFF-32 on the interaction between P-selectin and PSGL-1 was evaluated using an in vitro protein binding assay. RESULTS The main linkage types of SFF-32 were proven to →[3)-α-l-Fucp-(1→3,4)-α-l-Fucp-(1]2→[4)-β-d-Manp-(1→3)-d-GlcAp-(1]2→4)-β-d-Manp-(1→3)-β-d-Glcp-(1→4)-β-d-Manp-(1→2,3)-β-d-Galp-(1→4)-β-d-Manp-(1→[4)-α-l-Rhap-(1]3→. The sulfated unit or terminal xylose residues were attached to the backbone through the C-3 of some fucose residues and terminal xylose residues were attached to C-3 of galactose residues. Moreover, SFF-32 disrupted P-selectin-mediated cell adhesion and rolling as well as blocked the interaction between P-selectin and its physiological ligand PSGL-1 in a dose-dependent manner. CONCLUSIONS Blocking the binding between P-selectin and PSGL-1 is the possible underlying mechanism by which SFF-32 inhibits P-selectin-mediated function, which demonstrated that SFF-32 may be a potential anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jianxi Song
- Analytical and Testing Center, Beihua University, Jilin, 132013, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Cent Hosp, Huzhou, 313000, PR China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
20
|
Devi G.V Y, Nagendra AH, Shenoy P S, Chatterjee K, Venkatesan J. Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Huang H, Guo F, Deng X, Yan M, Wang D, Sun Z, Yuan C, Zhou Q. Modulation of T Cell Responses by Fucoidan to Inhibit Osteogenesis. Front Immunol 2022; 13:911390. [PMID: 35812368 PMCID: PMC9260855 DOI: 10.3389/fimmu.2022.911390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Fucoidan has sparked considerable interest in biomedical applications because of its inherent (bio)physicochemical characteristics, particularly immunomodulatory effects on macrophages, neutrophils, and natural killer cells. However, the effect of fucoidan on T cells and the following regulatory interaction on cellular function has not been reported. In this work, the effect of sterile fucoidan on the T-cell response and the subsequent modulation of osteogenesis is investigated. The physicochemical features of fucoidan treated by high-temperature autoclave sterilization are characterized by UV–visible spectroscopy, X-ray diffraction, Fourier transform infrared and nuclear magnetic resonance analysis. It is demonstrated that high-temperature autoclave treatment resulted in fucoidan depolymerization, with no change in its key bioactive groups. Further, sterile fucoidan promotes T cells proliferation and the proportion of differentiated T cells decreases with increasing concentration of fucoidan. In addition, the supernatant of T cells co-cultured with fucoidan greatly suppresses the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with fucoidan. Therefore, our work offers new insight into the fucoidan-mediated T cell and osteoblast interplay.
Collapse
Affiliation(s)
- Hailin Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xuyang Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Mingzhe Yan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- *Correspondence: Changqing Yuan, ; Qihui Zhou,
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
22
|
Zhang X, Zhu Y, Fan L, Ling J, Yang LY, Wang N, Ouyang XK. Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: Fabrication, characterization, and in vitro release performance. Int J Biol Macromol 2022; 211:368-379. [PMID: 35577185 DOI: 10.1016/j.ijbiomac.2022.05.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSN) are effective drug delivery carriers because of their adjustable large pore size and high porosity. In this study, complex nanoparticles containing disulfide bonds (SS) were designed and prepared as curcumin (Cur) carriers by using fucoidan (FUC) and MSN as the polymer matrix. The product was characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, and an N2 adsorption and desorption test. When the mass ratio of MSN to FUC was 2:1, the nanospheres particle size was the smallest (295.6 ± 0.98 nm, -35.2 ± 0.8 mV). Furthermore, the curcumin encapsulation rate by MSN-Cur-SS-FUC was over 90%, and the cumulative release rate in 24 h was over 80% due to the combined effect of weak acidity and high glutathione concentration in the tumor site microenvironment. When the Cur concentration was 50 μg/mL, the cell viability of free Cur was 63.8%, the cell viability of MSN-Cur-SS-FUC was 14.5%, and the cell viability of MSN-SS-FUC at the same concentration remained above 74.6%. MSN-SS-FUC composite nanoparticles showed a good delivery of Cur, a lipid-soluble active compound, and provides a new delivery route for other lipid-soluble and poorly bioavailable active compounds.
Collapse
Affiliation(s)
- Xu Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yanfei Zhu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Li-Ye Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
23
|
Abstract
Marine-derived natural products are rich source of secondary metabolites with huge potentials including novel therapeutic agents. Marine algae are considered to be a good source of secondary metabolites with versatile bioactivities. During the last few decades, researches related to natural products obtained from brown algae have remarkably escalated as they contain active compounds with varied biologically activities like antimicrobial, anticancer, antioxidant, anti-inflammatory, antidiabetic, and antiparasitic properties. The main bioactive components such as phlorotannin, fucoxanthin, alginic acid, fucoidan, and laminarin have been briefly discussed here, together with their composition and biological activities. In this review, the biological function of extracts and the metabolites of brown algae as well as their pharmacological impacts with the description of the possible mechanism of their action are described and discussed. Also, this study is expected to examine the multifunctional properties of brown algae that facilitate natural algal products, including the ability to integrate these functional properties in a variety of applications.
Collapse
|
24
|
Huang W, Tan H, Nie S. Beneficial effects of seaweed-derived dietary fiber: Highlights of the sulfated polysaccharides. Food Chem 2022; 373:131608. [PMID: 34815114 DOI: 10.1016/j.foodchem.2021.131608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds and their derivatives are important bioresources of natural bioactive compounds. Nutritional studies indicate that dietary fibers derived from seaweeds have great beneficial potentials in human health and can be developed as functional food. Moreover, sulfated polysaccharides are more likely to be the main bioactive components which are widely distributed in various species of seaweeds including Phaeophyceae, Rhodophyceae and Chlorophyceae. The catabolism by gut microbiota of the seaweeds-derived dietary fibers (DFs) may be one of the pivotal pathways of their physiological functions. Therefore, in this review, we summarized the latest results of the physiological characteristics of seaweed-derived dietary fiber and highlighted the roles of sulfated polysaccharides in the potential regulatory mechanisms against disorders. Meanwhile, the effects of different types of seaweed-derived dietary fiber on gut microbiota were discussed. The analysis of the structure-function correlations and gut microbiota related mechanisms and will contribute to further better applications in food and biotherapeutics.
Collapse
Affiliation(s)
- Wenqi Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
25
|
Abdel-Latif HMR, Dawood MAO, Alagawany M, Faggio C, Nowosad J, Kucharczyk D. Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. FISH & SHELLFISH IMMUNOLOGY 2022; 122:115-130. [PMID: 35093524 DOI: 10.1016/j.fsi.2022.01.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the application of immunomodulators in aquaculture has become of an urgent need because of high incidence of fish and shrimp diseases. For a long time, researchers have paid great interest to find suitable, relatively economical, and environmentally safe immunostimulant products to be used either as feed or water additives to boost immunity and increase the resistance of fish and shrimp against the challenging pathogens. Probiotics, prebiotics, synbiotics, phytobiotics, herbal extracts, microalgae, macroalgae, and essential oils have been extensively evaluated. Brown seaweeds (Phaeophyceae) are a large group of multi-cellular macroalgae that are widely distributed in marine aquatic environments. They are abundant in several bioactive sulfated polysaccharides known as fucoidan (FCD). Research studies demonstrated the beneficial functions of FCD in human medicine because of its immunomodulating, antioxidant, anti-allergic, antitumor, antiviral, anti-inflammatory, and hepatoprotective effects. In aquaculture, several researchers have tested the benefits and potential applications of FCD in aquafeed. This literature review provides an updated information and key references of research studies that focused principally on using FCD in aquaculture. Its effects on growth, intestinal health, antioxidant capacity, and immune responses of several finfish and shellfish species will be discussed. This review paper will also highlight the potential efficacy and mechanisms of FCD in the modulation of toxicity signs and increasing the resistance of fish and shrimp against bacterial and viral infections. Hence, this contribution will be valuable to maintain aquaculture sustainability and to improve the health and welfare of farmed fish and shrimp.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S.Agata-Messina, Italy
| | - Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
26
|
Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong ACY, Hsieh YSY, Wang D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar Drugs 2021; 19:620. [PMID: 34822491 PMCID: PMC8623139 DOI: 10.3390/md19110620] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Balázs Imre
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Ann C. Y. Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| |
Collapse
|
27
|
Otero P, Carpena M, Garcia-Oliveira P, Echave J, Soria-Lopez A, Garcia-Perez P, Fraga-Corral M, Cao H, Nie S, Xiao J, Simal-Gandara J, Prieto MA. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit Rev Food Sci Nutr 2021; 63:1901-1929. [PMID: 34463176 DOI: 10.1080/10408398.2021.1969534] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, consumers are increasingly aware of the relationship between diet and health, showing a greater preference of products from natural origin. In the last decade, seaweeds have outlined as one of the natural sources with more potential to obtain bioactive carbohydrates. Numerous seaweed polysaccharides have aroused the interest of the scientific community, due to their biological activities and their high potential on biomedical, functional food and technological applications. To obtain polysaccharides from seaweeds, it is necessary to find methodologies that improve both yield and quality and that they are profitable. Nowadays, environmentally friendly extraction technologies are a viable alternative to conventional methods for obtaining these products, providing several advantages like reduced number of solvents, energy and time. On the other hand, chemical modification of their structure is a useful approach to improve their solubility and biological properties, and thus enhance the extent of their potential applications since some uses of polysaccharides are still limited. The present review aimed to compile current information about the most relevant seaweed polysaccharides, available extraction and modification methods, as well as a summary of their biological activities, to evaluate knowledge gaps and future trends for the industrial applications of these compounds.Key teaching pointsStructure and biological functions of main seaweed polysaccharides.Emerging extraction methods for sulfate polysaccharides.Chemical modification of seaweeds polysaccharides.Potential industrial applications of seaweed polysaccharides.Biological activities, knowledge gaps and future trends of seaweed polysaccharides.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - J Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - A Soria-Lopez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Hui Cao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
28
|
Zou P, Yang X, Yuan Y, Jing C, Cao J, Wang Y, Zhang L, Zhang C, Li Y. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. Int J Biol Macromol 2021; 180:547-558. [PMID: 33741372 DOI: 10.1016/j.ijbiomac.2021.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
A fuciodan (Mw = 11.1 kDa) was obtained and purified from Macrocystis pyrifera (MPF). MPF was an acid heteropolysaccharide including fucose, mannose, xylose, galactose, rhamnose, glucuronic acid, and glucose in a molar ratio of 3.1:1.0:0.86:0.63:0.25:0.33:0.11. Sulfate content in MPF was 28.6%, and the molar ratio of fucose to sulfate (Fuc:SO42-) was 1.0:0.58. The structure of MPF was mainly consist of repeating →3)-β-L-Fucp (2SO3-)-(1→ and →4)-β-D-Xylp-(1→3)-β-L-Fucp(2SO3-)-(1→ and with α-L-Fucp-(1→ and →6)-α-D-Galp-(1→ in branches. Moreover, the effects of different MPF concentrations on plant salt tolerance were investigated. The results indicated that MPF could improve the salt tolerance of wheat seedlings. Among the five concentrations (0.05, 0.1, 0.5, 1, and 2 mg/ml), 0.5 and 1 mg/ml MPF were optimal for effective plant salt-resistance activity. These results suggested that MPF extracted from brown seaweed show potential as plant stimulators that may be used to improve salt resistance of plants.
Collapse
Affiliation(s)
- Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jianmin Cao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Wang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266000, China
| | - Lin Zhang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266000, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
29
|
Jin JO, Chauhan PS, Arukha AP, Chavda V, Dubey A, Yadav D. The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar Drugs 2021; 19:265. [PMID: 34068561 PMCID: PMC8151601 DOI: 10.3390/md19050265] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
Collapse
Affiliation(s)
- Jun-O. Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior 474005, India;
| | - Ananta Prasad Arukha
- Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Vishal Chavda
- Division of Anaesthesia, Sardar Women’s Hospital, Ahmedabad 380004, Gujarat, India;
| | - Anuj Dubey
- Department of Chemistry, ITM Group of Institutions, Gwalior 475005, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
30
|
Yao HYY, Wang JQ, Yin JY, Nie SP, Xie MY. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res Int 2021; 143:110290. [PMID: 33992390 DOI: 10.1016/j.foodres.2021.110290] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/31/2022]
Abstract
Nuclear magnetic resonance (NMR) has been widely used as an analytical chemistry technique to investigate the molecular structure and conformation of polysaccharides. Combined with 1D spectra, chemical shifts and coupling constants in both homo- and heteronuclear 2D NMR spectra are able to infer the linkage and sequence of sugar residues. Besides, NMR has also been applied in conformation, quantitative analysis, cell wall in situ, degradation, polysaccharide mixture interaction analysis, as well as carbohydrates impurities profiling. This review summarizes the principle and development of NMR in polysaccharides analysis, and provides NMR spectra data collections of some common polysaccharides. It will help to promote the application of NMR in complex polysaccharides of biochemical interest, and provide valuable information on commercial polysaccharide products.
Collapse
Affiliation(s)
- Hao-Ying-Ye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
31
|
Park SK, Kang JY, Kim JM, Kim HJ, Heo HJ. Ecklonia cava Attenuates PM 2.5-Induced Cognitive Decline through Mitochondrial Activation and Anti-Inflammatory Effect. Mar Drugs 2021; 19:131. [PMID: 33673531 PMCID: PMC7997322 DOI: 10.3390/md19030131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
To evaluate the effects of Ecklonia cava (E. cava) on ambient-pollution-induced neurotoxicity, we used a mouse model exposed to particulate matter smaller than 2.5 µm in aerodynamic diameter (PM2.5). The intake of water extract from E. cava (WEE) effectively prevented the learning and memory decline. After a behavioral test, the toll-like receptor (TLR)-4-initiated inflammatory response was confirmed by PM2.5 exposure in the lung and brain tissues, and the WEE was regulated through the inhibition of nuclear factor-kappa B (NF-κB)/inflammasome formation signaling pathway and pro-inflammatory cytokines (IL-6 and IFN-γ). The WEE also effectively improved the PM2.5-induced oxidative damage of the lungs and brain through the inhibition of malondialdehyde (MDA) production and the activation of mitochondrial activity (mitochondrial ROS content, mitochondria membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic molecules). In particular, the WEE regulated the cognition-related proteins (a decreased amyloid precursor protein (APP) and p-Tau, and an increased brain-derived neurotrophic factor (BDNF)) associated with PM2.5-induced cognitive dysfunction. Additionally, the WEE prevented the inactivation of acetylcholine (ACh) synthesis and release as a neurotransmitter by regulating the acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT), and ACh receptor (AChR)-α3 in the brain tissue. The bioactive compounds of the WEE were detected as the polysaccharide (average Mw; 160.13 kDa) and phenolic compounds including 2'-phloroeckol.
Collapse
Affiliation(s)
| | | | | | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.K.P.); (J.Y.K.); (J.M.K.); (H.-J.K.)
| |
Collapse
|
32
|
Current developments in the oral drug delivery of fucoidan. Int J Pharm 2021; 598:120371. [PMID: 33581274 DOI: 10.1016/j.ijpharm.2021.120371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Fucoidan is well known to have various biological functions and is often investigated for pharmaceutical applications. Several studies have been conducted on clinical applications of fucoidan in recent years, especially regarding its oral drug delivery. Although fucoidan has shown promising results in various dosage forms, its potential applications as a dietary supplement have been demonstrated, and recent studies show that oral administration of fucoidan is preferred. However, the focus on the oral delivery of fucoidan in recent studies has caused its potency in therapy to be understudied. This review aims to provide results on the promising fucoidan activity by oral administration with in vivo studies. In addition to using it as an active ingredient, the utilization of fucoidan as an excipient in oral drug delivery systems will be discussed. An overview of fucoidan administration by oral delivery in recent promising studies will provide a direction for further investigations in clinical applications, particularly for fucoidan, which has a broad spectrum of bioactive properties.
Collapse
|
33
|
Fan L, Lu Y, Ouyang XK, Ling J. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation. Int J Biol Macromol 2021; 169:194-205. [PMID: 33340634 DOI: 10.1016/j.ijbiomac.2020.12.086] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023]
Abstract
Curcumin (Cur) is a natural polyphenol with beneficial biological and pharmacological activities; however, it has limited applications owing to its low solubility and light sensitivity. The protein-polysaccharide complex can effectively embed lipid-soluble drugs to increase their stability and dispensability in aqueous solutions. Soybean protein isolate (Spi) and fucoidan (Fuc) were used as a polymer matrix, and core-shell nanoparticles were prepared to encapsulate Cur via electrostatic interaction under acidic and neutral conditions. The structure of the Spi-Fuc nanoparticles was studied via Fourier-transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Concurrently, we evaluated the efficacy of the nanoparticles based on stability, drug loading rate, and simulated release. Our results showed that the Spi-Fuc nanoparticles (size, approximately 236.56 nm) had a spherical, core-shell structure and that they could effectively load Cur with an embedding efficiency of >95%; moreover, the system had long-term dispersion stability. Thus, we provide a simple method for Cur delivery, which can also be potentially used for delivering lipid-soluble active ingredients.
Collapse
Affiliation(s)
- Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yuqing Lu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
34
|
Jayawardena TU, Sanjeewa KKA, Nagahawatta DP, Lee HG, Lu YA, Vaas APJP, Abeytunga DTU, Nanayakkara CM, Lee DS, Jeon YJ. Anti-Inflammatory Effects of Sulfated Polysaccharide from Sargassum Swartzii in Macrophages via Blocking TLR/NF-Κb Signal Transduction. Mar Drugs 2020; 18:E601. [PMID: 33260666 PMCID: PMC7760840 DOI: 10.3390/md18120601] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
This study involves enzymatic extraction of fucoidan from Sargassum swartzii and further purification via ion-exchange chromatography. The chemical and molecular characteristics of isolated fucoidan is evaluated concerning its anti-inflammatory potential in RAW 264.7 macrophages under LPS induced conditions. Structural properties of fucoidan were assessed via FTIR and NMR spectroscopy. NO production stimulated by LPS was significantly declined by fucoidan. This was witnessed to be achieved via fucoidan acting on mediators such as iNOS and COX-2 including pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), with dose dependent down-regulation. Further, the effect is exhibited by the suppression of TLR mediated MyD88, IKK complex, ultimately hindering NF-κB and MAPK activation, proposing its therapeutic applications in inflammation related disorders. The research findings provide an insight in relation to the sustainable utilization of fucoidan from marine brown algae S. swartzii as a potent anti-inflammatory agent in the nutritional, pharmaceutical, and cosmeceutical sectors.
Collapse
Affiliation(s)
- Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - K. K. Asanka Sanjeewa
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - Yu-An Lu
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - A. P. J. P. Vaas
- Department of Chemistry, University of Colombo, Colombo 3, Sri Lanka; (A.P.J.P.V.); (D.T.U.A.)
| | - D. T. U. Abeytunga
- Department of Chemistry, University of Colombo, Colombo 3, Sri Lanka; (A.P.J.P.V.); (D.T.U.A.)
| | - C. M. Nanayakkara
- Department of Plant Sciences, University of Colombo, Colombo 3, Sri Lanka;
| | - Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33362, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea
| |
Collapse
|
35
|
Human Peripheral Blood Dendritic Cell and T Cell Activation by Codium fragile Polysaccharide. Mar Drugs 2020; 18:md18110535. [PMID: 33120897 PMCID: PMC7692045 DOI: 10.3390/md18110535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/11/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Natural polysaccharides exhibit an immunostimulatory effect with low toxicity in humans and animals. It has shown that polysaccharide extracted from Codium fragile (CFP) induces anti-cancer immunity by dendritic cell (DC) activation, while the effect of CFP has not examined in the human immune cells. In this study, we found that CFP promoted the upregulation of CD80, CD83 and CD86 and major histocompatibility complex (MHC) class I and II in human monocyte-derived dendritic cells (MDDCs). In addition, CFP induced the production of proinflammatory cytokines in MDDCs. Moreover, CFP directly induced the activation of Blood Dendritic Cell Antigen (BDCA)1+ and BDCA3+ subsets of human peripheral blood DCs (PBDCs). The CFP-stimulated BDCA1+ PBDCs further promoted activation and proliferation of syngeneic CD4 T cells. The CFP-activated BDCA3+ PBDCs activated syngeneic CD8 T cells, which produced cytotoxic mediators, namely, cytotoxic T lymphocytes. These results suggest that CFP may be a candidate molecule for enhancing immune activation in humans.
Collapse
|
36
|
Apostolova E, Lukova P, Baldzhieva A, Katsarov P, Nikolova M, Iliev I, Peychev L, Trica B, Oancea F, Delattre C, Kokova V. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers (Basel) 2020; 12:polym12102338. [PMID: 33066186 PMCID: PMC7602053 DOI: 10.3390/polym12102338] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is the initial response of the immune system to potentially harmful stimuli (e.g., injury, stress, and infections). The process involves activation of macrophages and neutrophils, which produce mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), pro-inflammatory and anti-inflammatory cytokines. The pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) are considered as biomarkers of inflammation. Even though it occurs as a physiological defense mechanism, its involvement in the pathogenesis of various diseases is reported. Rheumatoid arthritis, inflammatory bowel disease, Alzheimer's disease, and cardiovascular diseases are only a part of the diseases, in which pathogenesis the chronic inflammation is involved. Fucoidans are complex polysaccharides from brown seaweeds and some marine invertebrates, composed mainly of L-fucose and sulfate ester groups and minor amounts of neutral monosaccharides and uronic acids. Algae-derived fucoidans are studied intensively during the last years regarding their multiple biological activities and possible therapeutic potential. However, the source, species, molecular weight, composition, and structure of the polysaccharides, as well as the route of administration of fucoidans, could be crucial for their effects. Fucoidan is reported to act on different stages of the inflammatory process: (i) blocking of lymphocyte adhesion and invasion, (ii) inhibition of multiple enzymes, and (iii) induction of apoptosis. In this review, we focused on the immunemodulating and anti-inflammatory effects of fucoidans derived from macroalgae and the models used for their evaluation. Additional insights on the molecular structure of the compound are included.
Collapse
Affiliation(s)
- Elisaveta Apostolova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (E.A.); (L.P.); (V.K.)
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-884978727
| | - Alexandra Baldzhieva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria; (M.N.); (I.I.)
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria; (M.N.); (I.I.)
| | - Lyudmil Peychev
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (E.A.); (L.P.); (V.K.)
| | - Bogdan Trica
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, Splaiul Independenței 202, 060021 Bucharest, Romania; (B.T.); (F.O.)
| | - Florin Oancea
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, Splaiul Independenței 202, 060021 Bucharest, Romania; (B.T.); (F.O.)
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Vesela Kokova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (E.A.); (L.P.); (V.K.)
| |
Collapse
|