1
|
Sun P, Wu X, Sun Q, Zhao Q, Mu G, Kong F. Optimizing β-Lactoglobulin antigenicity through single enzyme hydrolysis: Exploring structural changes and effects on linear epitopes. Food Chem 2025; 464:141770. [PMID: 39476587 DOI: 10.1016/j.foodchem.2024.141770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
β-lactoglobulin (β-LG) is the major allergen in dairy products, but research on the optimal conditions for antigen reduction in β-LG using different enzymes remains limited. Therefore, this study aims to investigate the antigenicity, structural characteristics, and peptide distribution of advantageous protease hydrolysates capable of eliminating the allergenic epitopes of β-LG selected via bioinformatics tools. The results showed that under optimal enzymatic hydrolysis conditions, the antigen reduction rates for the four advantageous proteases acting on β-LG were 47.37 % (pepsin), 33.54 % (chymotrypsin A), 38.71 % (papain), and 45.91 % (stem bromelain), respectively. The four proteases effectively degraded β-LG, causing shorter peptide chain formation, reduced content of highly ordered α-helix, decreased fluorescence intensity, and lower surface hydrophobicity. Furthermore, they cleaved the linear epitopes of β-LG into peptides of varying sizes, leading to different antigen reduction rates among the hydrolysates. These findings provide a theoretical basis for developing targeted enzymatic hydrolysis technologies and low-allergenicity dairy-based materials.
Collapse
Affiliation(s)
- Peng Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Qi Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Qing Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Fanhua Kong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China.
| |
Collapse
|
2
|
Freitas AN, Remonatto D, Miotti Junior RH, do Nascimento JFC, da Silva Moura AC, de Carvalho Santos Ebinuma V, de Paula AV. Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach. Bioprocess Biosyst Eng 2024; 47:1735-1749. [PMID: 39102121 DOI: 10.1007/s00449-024-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
Collapse
Affiliation(s)
- Amanda Noli Freitas
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Daniela Remonatto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Rodney Helder Miotti Junior
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - João Francisco Cabral do Nascimento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Adriana Candido da Silva Moura
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Valéria de Carvalho Santos Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Ariela Veloso de Paula
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
3
|
Zhu H, Gao L, Liang J, Erihemu, Li G, Song X, Qi W. Applications and characterization of anti-browning enzymatically modified potato starch (EPS) film associated with chitosan (CTS)/L-Cys/citric acid (CA) on fresh-cut potato slices. Food Chem 2024; 452:139424. [PMID: 38754167 DOI: 10.1016/j.foodchem.2024.139424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
This study explores the influence of incorporating L-cysteine (L-Cys), chitosan (CTS), and citric acid (CA) on the enzymatic modification of potato starch (EPS) films to enhance anti-browning properties. Four types of EPS composite films were evaluated for preserving fresh-cut potato slices at low temperatures to inhibit browning. Their thermal, physiochemical, mechanical, and digestibility properties were assessed. Results indicate that the addition of CTS, CA, and L-Cys improved the anti-browning activity of the EPS films by increasing film thickness and reducing water vapor permeability (WVP), oxygen transmission rate (OTR), ultraviolet (UV) transmittance, and tensile strength (TS). Furthermore, these additives improved the film's microstructure, resulting in reinforced intermolecular interactions, increased elongation at break, heightened crystallinity, enhanced thermal stability, and favorable gastrointestinal digestibility. Overall, EPS/CTS/L-Cys/CA composite films show promise as edible packaging materials with effective anti-browning properties.
Collapse
Affiliation(s)
- Hongmei Zhu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Lan Gao
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jingyi Liang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Erihemu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Gongqin Li
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xiaoqing Song
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Wenliang Qi
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
4
|
Majithiya VR, Gohel SD. Agro-industrial Waste Utilization, Medium Optimization, and Immobilization of Economically Feasible Halo-Alkaline Protease Produced by Nocardiopsis dassonvillei Strain VCS-4. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05057-4. [PMID: 39207678 DOI: 10.1007/s12010-024-05057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The oceanic actinobacteria have strong potential to secrete novel enzymes with unique properties useful for biotechnological applications. The Nocardiopsis dassonvillei strain VCS-4, associated with seaweed Caulerpa scalpeliformis, was a halo-alkaline protease producer. Further investigation focuses on medium optimization and the use of agro-industrial waste for economically feasible, high-yield protease production. A total of 12 experimental runs were designed using Minitab-20 software and Placket-Burman design. Among the 7 physicochemical parameters analyzed, incubation time and gelatin were detected as significant factors responsible for higher protease production. Incubation time and gelatin were further analyzed using OVATs. Optimal protease production was achieved with 2% gelatin, 0.1% yeast extract, 0.1% bacteriological peptone, 7% NaCl, pH 8, 5% inoculum, and a 7-day incubation period, resulting in a maximum protease activity (Pmax) of 363.97 U/mL, generation time of 11.9 h, specific growth rate of 0.161 g/mL/h, and protease productivity (Qp) of 61.65 U/mL/h. Moreover, utilizing groundnut cake as an agro-industrial waste led to enhanced production parameters: Pmax of 408.42 U/mL, generation time of 9.74 h, specific growth rate of 0.361 g/mL/h, and Qp of 68.07 U/mL/h. The immobilization of crude protease was achieved using Seralite SRC 120 as a support matrix resulting in 470.38 U/g immobilization, 88.20% immobilization yield, and 28.90% recovery activity. Characterization of both crude and immobilized proteases revealed optimal activity at pH 10 and 70 °C. Immobilization enhanced the shelf-life, reusability, and stability of VCS-4 protease under extreme conditions.
Collapse
Affiliation(s)
- Vaishali R Majithiya
- Department of Biosciences, Saurashtra University, Rajkot, 360005, Gujarat, India
| | - Sangeeta D Gohel
- Department of Biosciences, Saurashtra University, Rajkot, 360005, Gujarat, India.
| |
Collapse
|
5
|
IŞIK C. An Alternative Approach to Plastic Recycling: Fabrication and Characterization of rPET/CA Nanofiber Carriers to Enhance Porcine Pancreatic Lipase Stability Properties. ACS OMEGA 2024; 9:31313-31327. [PMID: 39072091 PMCID: PMC11270705 DOI: 10.1021/acsomega.3c07227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 07/30/2024]
Abstract
In response to the increasing demand for sustainable technologies, this study presents a novel approach to plastic recycling. In this study, a method was presented to produce nanofiber carriers by electrospinning using recycled poly(ethylene terephthalate) (rPET) obtained from wastewater bottles and cellulose acetate (CA). These carriers serve as a platform for immobilized porcine pancreatic lipase (PPL), aiming to enhance its stability. The production parameters for the rPET/CA nanofibers were found to be an rPET concentration of 15% (v/v), a CA concentration of 6% (v/v), an electrical voltage of 13 kV, a needle-collector distance of 18 cm, and an injection speed of 0.1 mL/h. The nanofiber structure and morphology were assessed by using attenuated total reflectance-infrared Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) analyses. Then, PPL was immobilized onto the nanofibers through adsorption and cross-linking methods. The optimum temperature for free PPL was determined to be 30 °C, and the optimum temperature for PPL immobilized on rPET/CA was determined to be 40 °C. It was observed that, especially under acidic conditions, after the immobilization process, PPL immobilized rPET/CA nanofibers became more resistant to pH changes than free PLL. Furthermore, the immobilized PPL exhibited improved pH stability, reusability, and thermal stability compared to its free counterpart. This innovative approach not only contributes to plastic waste reduction but also opens new avenues for enzyme immobilization with potential applications in biocatalysis and wastewater treatment.
Collapse
Affiliation(s)
- Ceyhun IŞIK
- Faculty of Science, Chemistry
Department, Muğla Sıtkı
Koçman University, Muğla 48000, Türkiye
| |
Collapse
|
6
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
7
|
Dong Z, Jin J, Wei W, Wang X, Wu G, Wang X, Jin Q. Fabrication of immobilized lipases from Candida rugosa on hierarchical mesoporous silica for enzymatic enrichment of ω-3 polyunsaturated fatty acids by selective hydrolysis. Food Chem X 2024; 22:101434. [PMID: 38779499 PMCID: PMC11108833 DOI: 10.1016/j.fochx.2024.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, lipase from Candida rugosa was immobilized on hydrophobic hierarchical porous hollow silica microsphere (HPHSM-C3) via adsorption. The prepared biocatalyst HPHSM-C3@CRL exhibited higher activity, thermal and pH stability. HPHSM-C3@CRL remained 70.2% of initial activity after 30 days of storage at 24 °C and 50.4% of initial activity after 10 cycles. Moreover, HPHSM-C3@CRL was utilized in enzymatic enrichment of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in glycerides, achieving ω-3 PUFAs content of 53.42% with the hydrolysis rate of 48.78% under optimal condition. The Km and Vmax value of HPHSM-C3@CRL was 42.2% lower and 63.5% higher than those of CRL, respectively. The 3D structure analysis of CRL, substrates and pore structure of HPHSM-C3 suggested that the hierarchical pore improved activity and selectivity of immobilized lipase. This result demonstrated that HPHSM-C3@CRL may be an effective biocatalyst for the enzymatic enrichment of ω-3 PUFAs in food industries.
Collapse
Affiliation(s)
- Zhe Dong
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaosan Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Abedi E, Kaveh S, Mohammad Bagher Hashemi S. Structure-based modification of a-amylase by conventional and emerging technologies: Comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chem 2024; 437:137903. [PMID: 37931423 DOI: 10.1016/j.foodchem.2023.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
α-Amylase is an endo-enzyme that catalyzes the hydrolysis of starch into shorter oligosaccharides. α-Amylase plays a crucial role in various industries. Manipulated α-amylases are of particular interest due to their remarkable amylolysis efficiency and thermostability for large-scale biotechnological processes. The retained catalytic activity of enzymes is decreased according to extreme pH, temperature, pressure, and chemical reagents. Broad industrial applications of α-amylases need special properties such as stability against temperature, pH, and chelators, and also attain reusability, desirable enzymatic activity, efficiency, and selectivity. Considering the biotechnological importance of α-amylase, its high stability is the most critical challenge for its economic viability. Therefore, improving its functionality and stability recently gained much interest. To achieve this purpose, various emerging technologies in combination with conventional methods on α-Amylases with different sources have been conducted. The present review is an attempt to summarize the effect of various conventional methods and emerging technologies employed to date on α-amylase secondary structure, thermal stability, and performance.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Shima Kaveh
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
9
|
Srivastava N, Shiburaj S, Khare SK. Improved production of alkaline and solvent-stable proteases from a halotolerant Exiguobacterium isolate through heterologous expression. Int J Biol Macromol 2024; 260:129507. [PMID: 38244731 DOI: 10.1016/j.ijbiomac.2024.129507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Halophiles are excellent sources of detergent proteases that are attributed to stability in alkaline pH, salts, surfactants, and hydrophobic solvents. The lower enzymatic yields and tedious downstream processes necessitate the search for newer halophilic sources. We have previously reported a halotolerant Exiguobacterium sp. TBG-PICH-001, which secretes solvent-tolerant alkaline protease/s. The present study describes the heterologous expression of two protease genes, namely, rsep metalloprotease (WP_195864791, 1.23 Kb) and tpa serine protease (WP_195864453, 0.879 Kb) genes. These were cloned into the pET 22b + plasmid vector and expressed in Escherichia coli BL21(DE3). The recombinant proteases rsep and tpa showed respective yields of 6.3 and 6.7 IU/mg, 11 and 12-fold higher than the crude native protease/s from TBG-PICH-001. These showed soluble expression at 46 and 32 KDa, respectively. These were purified to homogeneity through Ni-NTA-affinity chromatography. The purified proteases were characterized for properties like pH & temperature optima and stability, substrate specificity, kinetic parameters, and detergent attributes. They showed affinity towards various substrates with a respective Km of 392 and 301 μM towards casein. The recombinant proteases exhibited stability in the alkaline pH (7-10), surfactants, metal ions, detergents, and hydrophobic solvents, rendering their suitability as detergent additives.
Collapse
Affiliation(s)
- Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sugathan Shiburaj
- Department of Botany, University of Kerala, Palayam, Thiruvananthapuram, Kerala 695034, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Zhang X, Shi Y, Wu D, Fan L, Liu J, Wu Y, Li G. A bifunctional core-shell gold@Prussian blue nanozyme enabling dual-readout microfluidic immunoassay of food allergic protein. Food Chem 2024; 434:137455. [PMID: 37741244 DOI: 10.1016/j.foodchem.2023.137455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
Food allergy has posed a great threat for public health due to its rising prevalence worldwide, and thus sensitive and reliable food allergen monitoring methods is of great significance. In this study, we prepared a bifunctional core-shell gold@Prussian blue nanoparticles (Au@PBNP) nanozyme, which not only could serve as an alternative to natural peroxidase for colorimetric immunoassay, but also act as a unique Raman label in Raman-silent region (1800-2800 cm-1) for SERS analysis. By combining microfluidic device, smartphone, and portable Raman spectrometer, a new smartphone/SERS dual-readout microfluidic immunoassay platform was established for portable detection of food allergic protein (i.e., alpha-lactalbumin (α-LA)). The established method for detection of α-LA showed a LOD of 0.011 ng/mL in a liner range of 0.2-600 ng/mL. Furthermore, this method was also challenged in spiked food samples with good average recoveries, showing a great potential in practical applications.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Lihua Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
11
|
Boteva E, Doychev K, Kirilov K, Handzhiyski Y, Tsekovska R, Gatev E, Mironova R. Deglycation activity of the Escherichia coli glycolytic enzyme phosphoglucose isomerase. Int J Biol Macromol 2024; 257:128541. [PMID: 38056730 DOI: 10.1016/j.ijbiomac.2023.128541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Glycation is a spontaneous chemical reaction, which affects the structure and function of proteins under normal physiological conditions. Therefore, organisms have evolved diverse mechanisms to combat glycation. In this study, we show that the Escherichia coli glycolytic enzyme phosphoglucose isomerase (Pgi) exhibits deglycation activity. We found that E. coli Pgi catalyzes the breakdown of glucose 6-phosphate (G6P)-derived Amadori products (APs) in chicken lysozyme. The affinity of Pgi to the glycated lysozyme (Km, 1.1 mM) was ten times lower than the affinity to its native substrate, fructose 6-phosphate (Km, 0.1 mM). However, the high kinetic constants of the enzyme with the glycated lysozyme (kcat, 396 s-1 and kcat/Km, 3.6 × 105 M-1 s-1) indicated that the Pgi amadoriase activity may have physiological implications. Indeed, when using total E. coli protein (20 mg/mL) as a substrate in the deglycation reaction, we observed a release of G6P from the bacterial protein at a Pgi specific activity of 33 μmol/min/mg. Further, we detected 11.4 % lower APs concentration in protein extracts from Pgi-proficient vs. deficient cells (p = 0.0006) under conditions where the G6P concentration in Pgi-proficient cells was four times higher than in Pgi-deficient cells (p = 0.0001). Altogether, these data point to physiological relevance of the Pgi deglycation activity.
Collapse
Affiliation(s)
- Elitsa Boteva
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Konstantin Doychev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kiril Kirilov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Yordan Handzhiyski
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rositsa Tsekovska
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Evan Gatev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Roumyana Mironova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
12
|
Zhang CL, Wang C, Dong YS, Sun YQ, Xiu ZL. Dynamic immobilization of bacterial cells on biofilm in a polyester nonwoven chemostat. BIORESOUR BIOPROCESS 2024; 11:17. [PMID: 38647810 PMCID: PMC10992621 DOI: 10.1186/s40643-024-00732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 04/25/2024] Open
Abstract
Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.
Collapse
Affiliation(s)
- Chao-Lei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
- Public Security Management Department, Liaoning Police College, Yingping Road 260, Dalian, 116024, People's Republic of China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yue-Sheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ya-Qin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| |
Collapse
|
13
|
Zhang H, Nie M, Gu Z, Xin Y, Zhang L, Li Y, Shi G. Preparation of water-insoluble lignin nanoparticles by deep eutectic solvent and its application as a versatile and biocompatible support for the immobilization of α-amylase. Int J Biol Macromol 2023; 249:125975. [PMID: 37494993 DOI: 10.1016/j.ijbiomac.2023.125975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As one of the most abundant biopolymers, lignin is a widely available resource. However, its potential largely remains untapped, with most of it ending up as waste from industries like paper production, pulp processing, and bio-refining. The research undertaken in this study focused on the extraction of lignin from agroforestry waste using a deep eutectic solvent (DES) as a carrier for α-amylase immobilization, resulting in high stability and reusability. Several techniques, including Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and the Brunauer-Emmett-Teller (BET) method were employed to examine the structure and morphology of both the extracted lignin and the immobilized enzyme. The temperature used to recover lignin by DES would affect immobilization efficiency and enzyme loading by influencing its specific surface area, pore size, and volume distribution. Investigations using Nuclear Overhauser Effect Spectroscopy (NOESY) uncovered that the hydroxyl groups in G, H, and S units and the β-O-4 structure of lignin primarily serve as binding sites for enzyme molecules. Immobilized α-amylase demonstrated a higher pH and thermal stability level, with an optimal pH of 7.0 and temperature of 100 °C, compared to the free enzyme, which exhibited optimal activity at a pH of 6.5 and temperature of 90 °C. Importantly, immobilized α-amylase retained >80 % of its initial activity even after 28 days at room temperature, and it maintained 70 % of its activity after being reused 12 times. These findings strongly suggest that lignin derived from agroforestry residues holds promising potential as a future versatile immobilization material, a prospect integral to society's sustainable development.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Mingfu Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Yu Xin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China.
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| |
Collapse
|
14
|
dos Santos LN, Perna RF, Vieira AC, de Almeida AF, Ferreira NR. Trends in the Use of Lipases: A Systematic Review and Bibliometric Analysis. Foods 2023; 12:3058. [PMID: 37628057 PMCID: PMC10453403 DOI: 10.3390/foods12163058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Scientific mapping using bibliometric data network analysis was applied to analyze research works related to lipases and their industrial applications, evaluating the current state of research, challenges, and opportunities in the use of these biocatalysts, based on the evaluation of a large number of publications on the topic, allowing a comprehensive systematic data analysis, which had not yet been conducted in relation to studies specifically covering lipases and their industrial applications. Thus, studies involving lipase enzymes published from 2018 to 2022 were accessed from the Web of Science database. The extracted records result in the analysis of terms of bibliographic compatibility among the articles, co-occurrence of keywords, and co-citation of journals using the VOSviewer algorithm in the construction of bibliometric maps. This systematic review analysis of 357 documents, including original and review articles, revealed studies inspired by lipase enzymes in the research period, showing that the development of research, together with different areas of knowledge, presents good results related to the applications of lipases, due to information synchronization. Furthermore, this review showed the main challenges in lipase applications regarding increased production and operational stability; establishing well-defined evaluation criteria, such as cultivation conditions, activity, biocatalyst stability, type of support and reactor; thermodynamic studies; reuse cycles; and it can assist in defining goals for the development of successful large-scale applications, showing several points for improvement of future studies on lipase enzymes.
Collapse
Affiliation(s)
- Lucely Nogueira dos Santos
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas 37715-400, Brazil; (R.F.P.); (A.C.V.)
| | - Ana Carolina Vieira
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas 37715-400, Brazil; (R.F.P.); (A.C.V.)
| | - Alex Fernando de Almeida
- Engineering of Bioprocesses and Biotechnology, Federal University of Tocantins (UFT-TO), Gurupi 77402-970, Brazil;
| | - Nelson Rosa Ferreira
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| |
Collapse
|
15
|
Saleem F, Haider M, Khan KM, Özil M, Baltaş N, Ul-Haq Z, Qureshi U, Salar U, Taha M, Hameed S, Ullah N. Regioselective syntheses of 2-oxopyridine carbonitrile derivatives and evaluation for antihyperglycemic and antioxidant potential. Int J Biol Macromol 2023; 241:124589. [PMID: 37116840 DOI: 10.1016/j.ijbiomac.2023.124589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
A library of 2-oxopyridine carbonitriles 1-34 was synthesized by regioselective nucleophilic substitution reactions. In the first step, a one-pot multicomponent reaction yield pyridone intermediates. The resulting pyridone intermediates were then reacted with phenacyl halides in DMF and stirred at 100 °C for an hour to afford the desired compounds in good yields. Structures of synthetic molecules were characterized by EI-MS, HREI-MS, 1H NMR, and 13C NMR, and all thirty-four (34) compounds were found to be new. All synthetic compounds were examined for antidiabetic and antioxidant potential. The compounds exhibited α-glucosidase inhibitory potential in the range of IC50 = 3.00 ± 0.11-43.35 ± 0.67 μM and α-amylase inhibition potential in the range of IC50 = 9.20 ± 0.14-65.56 ± 1.05 μM. Among the tested compounds, 1 showed the most significant α-glucosidase inhibitory activity, with an IC50 value of 3.00 ± 0.11 μM, while the most active compound against α-amylase was 6, with an IC50 value = 9.20 ± 0.14 μM. The kinetic studies and analysis indicated that the compounds followed the competitive mode of inhibition. In addition, the molecular docking studies showed the interaction profile of all molecules with the binding site residues of α-glucosidase and α-amylase enzymes.
Collapse
Affiliation(s)
- Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maham Haider
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam, Saudi Arabia.
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam, Saudi Arabia
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
16
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Ye M, Xu Z, Tan H, Yang F, Yuan J, Wu Y, Wu Z, Yang A, Chen H, Li X. Allergenicity reduction of cow milk treated by alkaline protease combined with Lactobacillus Plantarum and Lactobacillus helveticus based on epitopes. Food Chem 2023; 421:136180. [PMID: 37105121 DOI: 10.1016/j.foodchem.2023.136180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
This paper has investigated the residual allergenicity of cow's milk treated by enzymatic hydrolysis combined with Lactobacillus fermentation (Lb. Plantarum and Lb. helveticus). The treated products were comprehensively evaluated by SDS-PAGE, RP-HPLC, ELISA, and Caco-2 models. And the allergenic changes of residual allergenic peptides were explored by DC-T co-culture. The results showed that alkaline protease was the most suitable protease that targeted to destroy epitopes of milk major allergen than trypsin, pepsin, and papain by prediction. And the residual epitopes were reduced to four which was treated by alkaline protease combined with Lb. helveticus. The transport absorption capacity of treated products was almost twice than milk. Meanwhile, the seven residual allergenic peptides were obtained from treated products. Among them, αs1-casein (AA84-90) can be used as an immune tolerance peptide for further study. Lb. helveticus combined with alkaline protease treatment may be considered promising strategy of protect from cow's milk allergy.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Zihao Xu
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hongkai Tan
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Fan Yang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Juanli Yuan
- School of Pharmacy Science, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Yong Wu
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Zhihua Wu
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Anshu Yang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Hongbing Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Xin Li
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
18
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol 2023; 232:123440. [PMID: 36708895 DOI: 10.1016/j.ijbiomac.2023.123440] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Engineered thermostable microbial enzymes are widely employed to catalyze chemical reactions in numerous industrial sectors. Although high thermostability is a prerequisite of industrial applications, enzyme activity is usually sacrificed during thermostability improvement. Therefore, it is vital to select the common and compatible strategies between thermostability and activity improvement to reduce mutants̕ libraries and screening time. Three functional protein engineering approaches, including directed evolution, rational design, and semi-rational design, are employed to manipulate protein structure on a genetic basis. From a structural standpoint, integrative strategies such as increasing substrate affinity; introducing electrostatic interaction; removing steric hindrance; increasing flexibility of the active site; N- and C-terminal engineering; and increasing intramolecular and intermolecular hydrophobic interactions are well-known to improve simultaneous activity and thermostability. The current review aims to analyze relevant strategies to improve thermostability and activity simultaneously to circumvent the thermostability and activity trade-off of industrial enzymes.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, Singh SP. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int J Biol Macromol 2023; 238:124051. [PMID: 36933597 DOI: 10.1016/j.ijbiomac.2023.124051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.
Collapse
Affiliation(s)
- Bhavtosh Kikani
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395 007, Gujarat, India
| | - Jignasha Thumar
- Government Science College, Gandhinagar 382 016, Gujarat, India
| | - Hitarth Bhatt
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Microbiology, Faculty of Science, Atmiya University, Rajkot 360005, Gujarat, India
| | - Dalip Singh Rathore
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Gujarat Biotechnology Research Centre, Gandhinagar 382 010, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
20
|
Zaman U, Khan SU, Hendi AA, Rehman KU, Badshah S, Refat MS, Alsuhaibani AM, Ullah K, Wahab A. Kinetic and thermodynamic studies of novel acid phosphatase isolated and purified from Carthamus oxyacantha seedlings. Int J Biol Macromol 2022; 224:20-31. [PMID: 36481331 DOI: 10.1016/j.ijbiomac.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Acid phosphatase (ACP) is a key enzyme in the regulation of phosphate feeding in plants. In this study, a new ACP from C. oxyacantha was isolated to homogeneity and biochemically described for the first time. Specific activity (283 nkat/mg) was found after 2573 times purification fold and (17 %) yield. Using SDS-PAGE under denaturing and nondenaturing conditions, ACP was isolated as a monomer with a molecular weight of 36 kDa. LC-MS/MS confirmed the presence of this band, suggesting that C. oxycantha ACP is a monomer. The enzyme could also hydrolyze orthophosphate monoester with an optimal pH of 5.0 and a temperature of 50 °C. Thermodynamic parameters were also determined (Ea, ΔH°, ΔG°, and ΔS°). ACP activity was further studied in the presence of cysteine, DTT, SDS, EDTA, β-ME, Triton-X-100 H2O2, and PMSF. The enzyme had a Km of 0.167 mM and an Ea of 9 kcal/mol for p-nitrophenyl phosphate. The biochemical properties of the C. oxyacantha enzyme distinguish it from other plant acid phosphatases and give a basic understanding of ACP in C. oxyacantha. The results of this investigation also advance our knowledge about the biochemical significance of ACP in C. oxyacantha. Thermal stability over a wide pH and temperature range make it more suitable for use in harsh industrial environments. However, further structural and physiological studies are anticipated to completely comprehend its important aspects in oxyacantha species.
Collapse
Affiliation(s)
- Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan; National Key Laboratory of Crops Genetics and Improvement, PR China
| | - Awatif A Hendi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan.
| | - Syed Badshah
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
21
|
Germano de Sousa I, Valério Chaves A, de Oliveira ALB, da Silva Moreira K, Gonçalves de Sousa Junior P, Simão Neto F, Cristina Freitas de Carvalho S, Bussons Rodrigues Valério R, Vieira Lima G, Sanders Lopes AA, Martins de Souza MC, da Fonseca AM, Fechine PBA, de Mattos MC, dos Santos JCS. A novel hybrid biocatalyst from immobilized Eversa ® Transform 2.0 lipase and its application in biolubricant synthesis. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2144263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Anderson Valério Chaves
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | | | - Francisco Simão Neto
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Simone Cristina Freitas de Carvalho
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | | | - Gledson Vieira Lima
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ada Amélia Sanders Lopes
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis – MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | | | - Marcos Carlos de Mattos
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| |
Collapse
|
22
|
Bijoy G, Rajeev R, Benny L, Jose S, Varghese A. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications. CHEMOSPHERE 2022; 307:135759. [PMID: 35870606 DOI: 10.1016/j.chemosphere.2022.135759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Enzymes with their environment-friendly nature and versatility have become highly important 'green tools' with a wide range of applications. Enzyme immobilization has further increased the utility and efficiency of these enzymes by improving their stability, reusability, and recyclability. Biomass-derived matrices when used for enzyme immobilization offer a sustainable solution to environmental pollution and fuel depletion at low costs. Biochar and other biomass-derived carbon materials obtained are suitable for the immobilization of enzymes through different immobilization strategies. Environmental pollution has become an utmost topic of research interest due to an ever-increasing trend being observed in anthropogenic activities. This has widely contributed to the release of various toxic effluents into the environment in their native or metabolized forms. Therefore, more focus is being directed toward the utilization of immobilized enzymes in the bioremediation of water and soil, biofuel production, and other environmental applications. In this review, up-to-date literature concerning the immobilization and potential uses of enzymes immobilized on biomass-derived carbon materials has been presented.
Collapse
Affiliation(s)
- Geethanjali Bijoy
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Rijo Rajeev
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Libina Benny
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Sandra Jose
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
23
|
Immobilization of α-Amylase onto Quantum Dots Prepared from Hypericum perforatum L. Flowers and Hypericum capitatum Seeds: Its Physicochemical and Biochemical Characterization. Top Catal 2022. [DOI: 10.1007/s11244-022-01699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Wang Q, Li R, Li N, Jia Y, Wang Y, Chen Y, Panichayupakaranant P, Chen H. The antioxidant activities, inhibitory effects, kinetics, and mechanisms of artocarpin and α-mangostin on α-glucosidase and α-amylase. Int J Biol Macromol 2022; 213:880-891. [PMID: 35688278 DOI: 10.1016/j.ijbiomac.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
Abstract
This study investigated the antioxidant activities, enzyme inhibitory activities and the interaction mechanisms of artocarpin and α-mangostin on α-amylase and α-glucosidase. Results showed that artocarpin and α-mangostin had obvious antioxidant activities and inhibitory activities on α-glucosidase and α-amylase. The inhibitions of the two compounds on α-glucosidase were reversible and non-competitive according to the kinetics studies. Fluorescence intensity measurements indicated that the interaction mechanisms between the inhibitors and the two enzymes were static processes. Isothermal titration calorimetry (ITC) analysis showed that the bindings between the inhibitors and the enzymes complex were all spontaneous. The main driving forces between α-mangostin and artocarpin with α-glucosidase might be hydrogen bonds and electrostatic interactions, respectively. While the forces between the two inhibitors and α-amylase might be hydrophobic interactions. Furthermore, molecular docking results showed that artocarpin and α-mangostin could bind to the allosteric site of the two enzymes, except for artocarpin in the active site pocket of α-amylase. All the results indicated that artocarpin and α-mangostin might be promising candidates for hypoglycemic functional products.
Collapse
Affiliation(s)
- Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
25
|
Kikani BA, Suthar S, Joshi D. Nanomaterials: An efficient support to immobilize microbial α–amylases for improved starch hydrolysis. STARCH-STARKE 2022. [DOI: 10.1002/star.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhavtosh A. Kikani
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Sadikhusain Suthar
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Disha Joshi
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| |
Collapse
|
26
|
Jaafar NR, Jailani N, Rahman RA, Öner ET, Murad AMA, Illias RM. Protein surface engineering and interaction studies of maltogenic amylase towards improved enzyme immobilisation. Int J Biol Macromol 2022; 213:70-82. [DOI: 10.1016/j.ijbiomac.2022.05.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
|
27
|
Jin C, Li N, Lin E, Chen X, Wang T, Wang Y, Yang M, Liu W, Yu J, Zhang Z, Chen Y. Enzyme Immobilization in Porphyrinic Covalent Organic Frameworks for Photoenzymatic Asymmetric Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chaonan Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - En Lin
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuepeng Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ting Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mingfang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Wansheng Liu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiangyue Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
- National Institute for Advanced Materials, Nankai University, Tianjin 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Zhao J, Ma M, Yan X, Zhang G, Xia J, Zeng Z, Yu P, Deng Q, Gong D. Green synthesis of polydopamine functionalized magnetic mesoporous biochar for lipase immobilization and its application in interesterification for novel structured lipids production. Food Chem 2022; 379:132148. [PMID: 35074745 DOI: 10.1016/j.foodchem.2022.132148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/04/2022]
Abstract
In this study, the polydopamine functionalized magnetic mesoporous biochar (MPCB-DA) was prepared for immobilization of Bacillus licheniformis lipase via covalent immobilization. Under optimized immobilization conditions, the maximum immobilization yield, efficiency and immobilized lipase amount were found to be 45%, 54% and 36.9 mg/g, respectively. The immobilized lipase, MPCB-DA-Lipase showed good thermal stability and alkali resistance. The MPCB-DA-Lipase retained 56% initial activity after 10 reuse cycles, with more than 85% relative activity after 70 days' storage at 4 or 25 °C. The MPCB-DA-Lipase was efficiently applied in the interesterification of Cinnamomum camphora seed kernel oil and perilla seed oil, with maximum interesterification efficiency of 46%. The produced structured lipids belong to the S2U and U2S triacylglycerols, a novel medium-and long-chain triacylglycerol. These results demonstrated that the MPCB-DA-Lipase may be used as an efficient biocatalyst in lipid processing applications of food industries.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Guohua Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Qiang Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| |
Collapse
|
29
|
Shet SM, Bharadwaj P, Bisht M, Pereira MM, Thayallath SK, Lokesh V, Franklin G, Kotrappanavar NS, Mondal D. Presenting B-DNA as macromolecular crowding agent to improve efficacy of cytochrome c under various stresses. Int J Biol Macromol 2022; 215:184-191. [PMID: 35716795 DOI: 10.1016/j.ijbiomac.2022.06.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
Existence of numerous biomolecules results in biological fluids to be extremely crowded. Thus, Macromolecular crowding is an essential phenomenon to sustain active conformation of proteins in biological systems. Herein, double helical deoxyribonucleic acid (B-DNA) is presented for the first time as a biomacromolecular crowding system for sustainable packaging of cytochrome c (Cyt C). The peroxidase activity of Cyt C was investigated in the presence of various concentrations of B-DNA (from salmon milt). At an optimized concentration of 0.125 mg/mL B-DNA, an 11-fold higher catalytic activity was found than in native Cyt C with improved stability. Molecular docking and spectroscopic analyses revealed that electrostatic and H-bonding are the main interactions between DNA and Cyt C that affect the structural stability and activity of the protein. Moreover, the catalytic activity and stability of the protein were further investigated in the presence of severe process conditions by UV-visible, circular dichroism, and Fourier-transform infrared spectroscopies. Molecularly crowded Cyt C showed significantly higher activity and stability under severe environments such as high temperature (110 °C), oxidative stress, high pH (pH 10) and biological (trypsin) and chemical denaturants (urea) compared to bare Cyt C. The observed results support the suitability of DNA-based macromolecular crowding media as a viable and effective stabilizer of proteins against multiple stresses.
Collapse
Affiliation(s)
- Sachin M Shet
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, India
| | - Pranav Bharadwaj
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, India
| | - Meena Bisht
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Matheus M Pereira
- Departamento de Química, CICECO, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | | | - Veeresh Lokesh
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Gregory Franklin
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | | | - Dibyendu Mondal
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, India; Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
30
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A designed experiment for CdS-AgBr photocatalyst toward methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33013-33032. [PMID: 35018594 DOI: 10.1007/s11356-021-17569-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
A boosted photocatalytic activity was observed for the CdS-AgBr nanocomposite in the degradation of methylene blue (MB). The experimental design method based on the response surface methodology (RSM) approach used to study the simultaneous interaction effects between the influencing variables. Analysis of variance (ANOVA) of the results confirmed a significant model for processing the data because an F value of 32.34 for the suggested model was higher than that of the critical value of F0.05, 14, 13 = 2.55 at 95% confidence interval. This analysis also showed a non-significant lack of fit (LOF) (as a measure of the randomness of the deviations around the obtained data) because the LOF F value of 8.27 was smaller than that of the critical value of F0.05, 10, 3 = 8.79. R2 values near to unity were achieved (the multiple correlation coefficients R2 (R2 = 0.9627), adjusted R2 (adj-R2 = 0.9226), and predicted R2 (pred-R2 = 0.7423)). Six center points suggested by the model included the following conditions: pH, 6.1; CMB, 3.5 mg/L; a dose of the catalyst, 0.68 g/L; and irradiation time, 40.5 min. During the center point runs, the degradation efficiencies were obtained in the range of 38 to 43%. The optimal run included pH, 9; catalyst dosage, 1 g/L; irradiation time, 60 min; and CMB, 2 mg/L, and the best removal efficiency of 98% was achieved during these conditions.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
31
|
Ali F, Manzoor U, Khan FI, Lai D, Khan MKA, Chandrashekharaiah KS, Singh LR, Dar TA. Effect of polyol osmolytes on the structure-function integrity and aggregation propensity of catalase: A comprehensive study based on spectroscopic and molecular dynamic simulation measurements. Int J Biol Macromol 2022; 209:198-210. [PMID: 35395280 DOI: 10.1016/j.ijbiomac.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
Abstract
Owing to the ability of catalase to function under oxidative stress vis-à-vis its industrial importance, the structure-function integrity of the enzyme is of prime concern. In the present study, polyols (glycerol, sorbitol, sucrose, xylitol), were evaluated for their ability to modulate structure, activity and aggregation of catalase using in vitro and in silico approaches. All polyols increased catalase activity by decreasing Km and increasing Vmax resulting in enhanced catalytic efficiency (kcat/Km) of the enzyme, with glycerol being the most efficient with a kcat/Km increase from 4.38 × 104 mM-1 S-1 (control) to 5.8 × 105 mM-1 S-1. Correlatively with this, enhanced secondary structure with reduced hydrophobic exposure was observed in all polyols. Furthermore, increased stability, with an increase in melting temperature by 15.2 °C, and almost no aggregation was observed in glycerol. Overall, ability to regulate structure-function integrity and aggregation propensity was highest for glycerol and lowest for xylitol. Simulation studies were performed involving structural dynamics measurements, principal component analysis and free energy landscape analysis. Altogether, all polyols were stabilizing in nature and glycerol, in particular, has potential to efficiently prevent not only the antioxidant defense system but also might serve as a stability aid during industrial processing of catalase.
Collapse
Affiliation(s)
- Fasil Ali
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | - Usma Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600 048, Tamil Nadu, India
| | - K S Chandrashekharaiah
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | | | - Tanveer Ali Dar
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Aghaei H, Mohammadbagheri Z, Hemasi A, Taghizadeh A. Efficient hydrolysis of starch by α-amylase immobilized on cloisite 30B and modified forms of cloisite 30B by adsorption and covalent methods. Food Chem 2022; 373:131425. [PMID: 34710686 DOI: 10.1016/j.foodchem.2021.131425] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
In this paper, α-amylase from Bacillus subtilis was successfully immobilized on three supports. First, α-amylase was immobilized on cloisite 30B via the adsorption method. Then cloisite 30B was activated with tosyl chloride and epichlorohydrin. These activated supports were used for covalent immobilization of α-amylase, and their enzymatic activities were effectively tested in the starch hydrolysis. The results demonstrated that the specific activity of α-amylase immobilized on cloisite 30B was 2.39 ± 0.03, for α-amylase immobilized on activated cloisite 30B with epichlorohydrin was 1.96 ± 0.05 and for α-amylase immobilized on activated cloisite 30B with tosyl chloride was 2.17 ± 0.05 U mg-1. The optimum pH for the activity of free α-amylase was 7, but for α-amylase immobilized on cloisite 30B was 8, and for α-amylase immobilized on activated supports was 7.5. The immobilized enzymes had better thermal resistance and storage stability than free α-amylase, and they also showed excellent reusability.
Collapse
Affiliation(s)
- Hamidreza Aghaei
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Zahra Mohammadbagheri
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Amineh Hemasi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Ameneh Taghizadeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
33
|
β-cyclodextrin based electrospun nanofibers for arginase immobilization and its application in the production of L-ornithine. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Cross-linked enzyme aggregates (CLEAs) of cellulase with improved catalytic activity, adaptability and reusability. Bioprocess Biosyst Eng 2022; 45:865-875. [DOI: 10.1007/s00449-022-02704-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
|
35
|
Hosseini A, Ramezani S, Tabibiazar M, Mohammadi M, Golchinfar Z, Mahmoudzadeh M, Jahanban-Esfahlan A. Immobilization of α-amylase in ethylcellulose electrospun fibers using emulsion-electrospinning method. Carbohydr Polym 2022; 278:118919. [PMID: 34973738 DOI: 10.1016/j.carbpol.2021.118919] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022]
Abstract
α-Amylase encapsulated in water in oil (W/O) emulsion was prepared using poly ethylene glycol (PEG 10000) (2%w/v) as water phase and ethylcellulose (EC) in ethyl acetate as oil phase at the ratio of 10:90 v/v. Next, the electrospun fibers were prepared by mixing enzyme loaded emulsion with EC solution (20%w/v) in acetic acid/ethyl acetate (20:80 v/v) at the 2:1 ratio. The emulsion showed good physical stability. The immobilized enzyme showed high activity across a board range of pHs and temperatures. The storage stability of the immobilized enzyme was 2 fold of free enzyme activity after 45 days. The residual activity of immobilized α-amylase onto of fibers after 10 and 15 repeated cycles, was approximately 100% and 50%, respectively. The results of this study indicated that the α-amylase loaded EC fibers have acceptable activity against harsh conditions and excellent reusability.
Collapse
Affiliation(s)
- Asad Hosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Soghra Ramezani
- Trita Nanomedicine Research Center, Trita Pharmaceuticals, Zanjan, Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Golchinfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
36
|
Pouyan S, Lagzian M, Sangtarash MH. Enhancing thermostabilization of a newly discovered α-amylase from Bacillus cereus GL96 by combining computer-aided directed evolution and site-directed mutagenesis. Int J Biol Macromol 2022; 197:12-22. [PMID: 34920075 DOI: 10.1016/j.ijbiomac.2021.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
This study has described the characterization of a new a-amylase from the recently isolated Bacillus cereus GL96. Subsequently, an in-silico approach was taken into account to redesign the enzyme to meet higher thermal stability. Finally, the engineered enzyme was constructed experimentally using side-directed mutagenesis (SDM) and characterized accordingly. The enzyme was stable over pH 4-11, with the highest activity at 9.5. The temperature profile of the wild-type enzyme showed optimum activity at 50 °C plus 40% of stability at temperatures up to 70 °C. The in-silico result was indicated D162W, D162R, and D162K as the three stabilizing mutations. Among them, D162K showed better results, especially in the molecular dynamics simulation, and therefore, it was constructed by SDM. This variant was shown 5 °C higher optimum temperature (55 °C) with increasing activity than the native enzyme. In addition, it was significantly more stable than the native form. For example, while the latter almost wholly lost its function at a temperature above 70 °C, the D162K can retain more than 40% of its initial activity up to 80 °C. Considering the promising properties that the mutant enzyme showed, it can be considered for further investigation to meet the industrial requirement completely.
Collapse
Affiliation(s)
- Soroosh Pouyan
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
37
|
Deng Y, Ouyang J, Liu H, Wang J, Zhu Y, Chen Z, Yang C, Li D, Ma K. An effective immobilization of β-glucosidases by partly cross-linking enzyme aggregates. Prep Biochem Biotechnol 2022; 52:1035-1043. [PMID: 35015605 DOI: 10.1080/10826068.2021.2024848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enzyme immobilization provides ideal operating conditions for enzymes stabilization and sustainable recycling. In this work, as a kind of clay material, montmorillonite (MTL) was chosen for immobilizing the β-glucosidase extracted from Agrocybe aegirit. The immobilized β-glucosidase via partly cross-linking enzyme aggregates (pCLEAs) formed by self-catalysis provided biocatalysts with satisfactory thermal and pH stability. Compared to the glutaraldehyde cross-linked, the immobilized β-glucosidase (β-G-pCLEAs@MTL) exhibited significantly higher immobilization efficiency (IE) and immobilization yield (IY), which were 80.6% and 76.9%, respectively. The β-G-pCLEAs@MTL also showed better stability and preferable reusability. And the activity of the β-G-pCLEAs@MTL remained 85.0% after 5 cycles and 74.7% after 10 cycles. Therefore, the method based on the pre- crosslinking to form pCLEAs and after-immobilization can effectively improve IY and IE. In addition, MTL seems to be a good alternative carrier to immobilize other enzymes for industrial application.
Collapse
Affiliation(s)
- Yuefeng Deng
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Ouyang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Hu Liu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianjun Wang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yihui Zhu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ziqian Chen
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chengli Yang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Dali Li
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kefeng Ma
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
38
|
El-Kady K, Raslan M, Zaki AH. Effect of Different TiO 2 Morphologies on the Activity of Immobilized Lipase for Biodiesel Production. ACS OMEGA 2021; 6:35484-35493. [PMID: 34984280 PMCID: PMC8717535 DOI: 10.1021/acsomega.1c04942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Lipase catalytic activity is greatly influenced by immobilization on nanoparticles. In this study, lipase from Aspergillus niger was immobilized on TiO2 nanoparticles with different morphologies: microspheres, nanotubes, and nanosheets. All TiO2 samples were prepared by a hydrothermal method. Lipase/TiO2 nanocomposites were prepared by a physical adsorption method through hydrophobic interactions. The prepared composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The catalytic activity of free and immobilized lipases was tested using sunflower oil in the presence of methanol to produce biodiesel at 40 °C for 90 min. The lipase immobilized on TiO2 microspheres showed the highest activity compared to the lipase immobilized on TiO2 nanotubes and nanosheets. To optimize the lipase-to-microsphere ratio, lipase was immobilized on TiO2 microspheres in different microspheres/lipase, w/w, (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25. It was noticed that the hydrolytic activity follows the order 1:0.25 > 1:0.5 > 1:75 > 1:1. The immobilization yield activities were found to be 113, 123, 125, and 130% for the microspheres/lipase (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25, respectively.
Collapse
Affiliation(s)
- Kholoud El-Kady
- Biotechnology
& Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mai Raslan
- Biotechnology
& Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ayman H. Zaki
- Materials
Science and Nanotechnology Department, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
39
|
Kujawa J, Głodek M, Li G, Al-Gharabli S, Knozowska K, Kujawski W. Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149647. [PMID: 34467928 DOI: 10.1016/j.scitotenv.2021.149647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Enzyme immobilization is a well-known method for the improvement of enzyme reusability and stability. To achieve very high effectiveness of the enzyme immobilization, not only does the method of attachment need to be optimized, but the appropriate support must be chosen. The essential necessities addressed to the support applied for enzyme immobilization can be focused on the material features as well as on the stability and resistances in certain conditions. Ceramic membranes and nanoparticles are the most widespread supports for enzyme immobilization. Hence, the immobilization of enzymes on ceramic membrane and nanoparticles are summarized and discussed. The important properties of the supports are particle size, pore structure, active surface area, volume to surface ratio, type and number of reactive available groups, as well as thermal, mechanical, and chemical stability. The modifiers and the crosslinkers are crucial to the enzyme loading amount, the chemical and physical stability, and the reusability and catalytical activity of the immobilized enzymes. Therefore, the chemical and physical methods of modification of ceramic materials are presented. The most popular and used modifiers (e.g. APTES, CPTES, VTES) as well as activating agents (GA, gelatin, EDC and/or NHS) applied to the grafting process are discussed. Moreover, functional groups of enzymes are presented and discussed since they play important roles in the enzyme immobilization via covalent bonding. The enhanced physical, chemical, and catalytical properties of immobilized enzymes are discussed revealing the positive balance between the effectiveness of the immobilization process, preservation of high enzyme activity, its good stability, and relatively low cost.
Collapse
Affiliation(s)
- Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Marta Głodek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German-Jordanian University, Amman 11180, Jordan
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
40
|
Luo Y, Jin D, He W, Huang J, Chen A, Qi F. A SiO 2 Microcarrier with an Opal-like Structure for Cross-Linked Enzyme Immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14147-14156. [PMID: 34793174 DOI: 10.1021/acs.langmuir.1c02389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The opal-like SiO2 microcarriers with different pore diameters named opal-SiO2I and opal-SiO2II were synthesized and utilized as microcarriers to immobilize Rhizopus oryzae lipase (ROL) and Aspergillus oryzae α-amylases (AOA). ROL and AOA can be more stably immobilized on the cross-linked SiO2 opals by neopentyl glycol diglycidyl ether (NGDE), which is the first attempt to use it as a cross-linking agent compared with glutaraldehyde. According to the morphology analysis, multiple layers of SiO2 monodisperse microspheres were regularly packed and formed an opal-like structure, and enzymes were well scattered and immobilized throughout the SiO2 opals. The results showed that the performance of enzymes immobilized on opal-SiO2II with a larger specific surface area was much better than that of opal-SiO2I. The enzyme activity of ROL@opal-SiO2II and AOA@opal-SiO2II cross-linked with 1% NGDE increased 5.32 and 9.32 times compared with their free counterpart, respectively. Furthermore, pH and thermal stability and reusability of ROL/AOA@opal-SiO2II were significantly improved and higher than those of ROL/AOA@opal-SiO2I and free enzymes. This study provides an easily obtained microcarrier opal-SiO2II, which shows potential for efficient different enzyme immobilizations and further industrial applications.
Collapse
Affiliation(s)
- Yixian Luo
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Dou Jin
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Wenjin He
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Aicheng Chen
- Fujian Province University Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| |
Collapse
|
41
|
Davoodi E, Tahanpesar E, Massah AR. Dual Copper (II) Complex Supported on Diatomite as a Novel and Green Catalyst for the Synthesis of Dihydropyrano[3;2‐b]Chromenediones and Aminopyranopyrans. ChemistrySelect 2021. [DOI: 10.1002/slct.202101771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Elham Davoodi
- Department of Chemistry Ahvaz Branch Islamic Azad University Ahvaz Iran
- Department of Chemistry Khuzestan Science and Research Branch Islamic Azad University Ahvaz Iran
| | - Elham Tahanpesar
- Department of Chemistry Ahvaz Branch Islamic Azad University Ahvaz Iran
| | - Ahmad Reza Massah
- Department of Chemistry Shahreza Branch Islamic Azad University Shahreza, Isfahan 86145-311 Iran
| |
Collapse
|
42
|
FeO-Clinoptilolite nanoparticles: Brief characterization and its photocatalytic kinetics towards 2,4-dichloroaniline. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Ousaadi MI, Merouane F, Berkani M, Almomani F, Vasseghian Y, Kitouni M. Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic Streptomyces sp. ENVIRONMENTAL RESEARCH 2021; 201:111494. [PMID: 34171373 DOI: 10.1016/j.envres.2021.111494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
This study underlines the biotechnical valorization of the accumulated and unusable remains of agro-industrial orange fruit peel waste to produce α-amylase under submerged conditions by Streptomyces sp. KP314280 (20r). The response surface methodology based on central composite design (RSM-CCD) and artificial neural network coupled with a genetic algorithm (ANN-GA) were used to model and optimize the conditions for the α-amylase production. Four independent variables were evaluated for α-amylase activity including substrate concentration, inoculum size, sodium chloride powder (NaCl), and pH. A ten-fold cross-validation indicated that the ANN has a greater ability than the RSM to predict the α-amylase activity (R2ANN = 0.884 and R2RSM = 0.725). The analysis of variance indicated that the aforementioned four factors significantly affected the α-amylase activity. Additionally, the α-amylase production experiments were conducted according to the optimal conditions generated by the GA. The results indicated that the amylase yield increased by 4-fold. Moreover, the α-amylase production (12.19 U/mL) in the optimized medium was compatible with the predicted conditions outlined by the ANN-GA model (12.62 U/mL). As such, the ANN and GA combination is optimizable for α-amylase production and exhibits an accurate prediction which provides an alternative to other biological applications.
Collapse
Affiliation(s)
- Mouna Imene Ousaadi
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Fateh Merouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mahmoud Kitouni
- Laboratoire de Génie Microbiologie et Applications, Université des Frères Mentouri Constantine 1, Route Ain El Bey, 25000 Constantine, Algeria
| |
Collapse
|
44
|
Iazdani F, Nezamzadeh-Ejhieh A. The photocatalytic rate of ZnO supported onto natural zeolite nanoparticles in the photodegradation of an aromatic amine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53314-53327. [PMID: 34031830 DOI: 10.1007/s11356-021-14544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Aniline and its derivate are critical environmental pollutants, and thus, the introduction of an eco-friendly catalyst for removing them is an important research future. The ZnO supported on the ball-mill prepared clinoptilolite nanoparticles (CNPs) was prepared via an ion-exchange process followed by the calcination process. The amount of loaded ZnO in the ZnO-CNP (CZ) samples varied as 0.54, 0.63, 0.72, and 0.86 meq/g as the Zn(II) concentration in the ion-exchange solution varied from 0.1 to 0.5 M. The ZnO-CNP catalyst was briefly characterized by XRD, FTIR, and DRS techniques. The pHpzc value for the various ZnO-CNPs was about 7.1 that had no change with the ZnO loading. By applying the Scherrer equation on the XRD results, a nano-dimension of about 50 nm was obtained for the catalyst. Bandgap energy of the ZnO-CNP samples was estimated by applying the Kubelka-Munk equation on the DRS reflectance spectra. The value for the CZ2 catalyst was about 3.64 eV. The supported ZnO-CNP sample was then used in the photodegradation of 2,4-dichloroaniline (DCA). Raw zeolite showed a relatively low photocatalytic activity. The degradation efficiency was followed by recording the absorbance of the DCA solution by UV-Vis spectrophotometer. The effects of the essential critical operating factors on the degradation efficiency were kinetically studied by applying the Hinshelwood equation to the results. The ZnO-CNP catalyst with 2 w% ZnO showed the best photocatalytic rate in the optimal conditions of 0.75 g/L, CDCA: 15 ppm, and the initial pH: 5.8. Finally, HPLC analysis of the blank and the photodegraded DCA solutions at 180 and 300 min confirmed 74 and 87% of DCA molecules were degraded during these times. The results confirm that supported ZnO onto clinoptilolite caused enhanced photocatalytic activity because the zeolite internal electrical field prevents the e-/h+ recombination.
Collapse
Affiliation(s)
- Fereshteh Iazdani
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
45
|
Li S, Zhong L, Wang H, Li J, Cheng H, Ma Q. Process optimization of polyphenol oxidase immobilization: Isotherm, kinetic, thermodynamic and removal of phenolic compounds. Int J Biol Macromol 2021; 185:792-803. [PMID: 34229015 DOI: 10.1016/j.ijbiomac.2021.06.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023]
Abstract
Chitosan/montmorillonite (CTS/MMT) and chitosan‑gold nanoparticles/montmorillonite (CTS-Au/MMT) composites were prepared, characterized through Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM), and utilized as support for immobilization of polyphenol oxidase (PPO). PPO was immobilized on CTS/MMT (IPPO) and CTS-Au/MMT (IPPO-Au) by physical adsorption, respectively. In order to achieve simultaneous maximization of immobilization efficiency and enzyme activity, the immobilization process parameters were optimized by Taguchi-Grey relational analysis (TGRA) approach. Under the optimal immobilization condition, the immobilization efficiency and enzyme activity reached at 50.16% and 1.46 × 104 U/mg for IPPO, and 63.35% and 3.01 × 104 U/mg for IPPO-Au, respectively. The isotherm, kinetic and thermodynamics of PPO adsorption were investigated in detail. The adsorption process was better explained by Toth isotherm and Fractal-like pseudo second order model, respectively. Intra-particle diffusion and film diffusion were involved in the adsorption process and intra-particle diffusion was not the only rate-controlling step. The adsorption of PPO was exothermic, physical and spontaneous at the investigated temperature range. The immobilized PPO were used to oxidize phenolic compounds. All investigated phenolic compounds showed the higher conversion as catalyzed by IPPO-Au. For both IPPO and IPPO-Au, the conversion of substituted phenols was higher than that of phenol.
Collapse
Affiliation(s)
- Shiqian Li
- College of Ocean and Bio-chemical Engineering, Fujian provincial Key Laboratory of Coastal Basin Environment, Fuqing Branch of Fujian Normal University, Fuqing 350300, China
| | - Lian Zhong
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Han Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Huali Cheng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qimin Ma
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
46
|
Devi N, Patel SKS, Kumar P, Singh A, Thakur N, Lata J, Pandey D, Thakur V, Chand D. Bioprocess Scale-up for Acetohydroxamic Acid Production by Hyperactive Acyltransferase of Immobilized Rhodococcus Pyridinivorans. Catal Letters 2021. [DOI: 10.1007/s10562-021-03696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Immobilization of α-amylase on modified magnetic zeolite (MAZE) coated with carboxymethyl cellulose (CMC) composite and its properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Preparation and Characterization of Amino-Functionalized Zeolite/SiO2 Materials for Trypsin–Chymotrypsin Co-immobilization. Catal Letters 2021. [DOI: 10.1007/s10562-021-03636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
50
|
Iazdani F, Nezamzadeh-Ejhieh A. Supported cuprous oxide-clinoptilolite nanoparticles: Brief identification and the catalytic kinetics in the photodegradation of dichloroaniline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119348. [PMID: 33401177 DOI: 10.1016/j.saa.2020.119348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The supported CuO onto the ball-mill prepared clinoptilolite nanoparticles (CNPs) was prepared via an ion exchange process in Cu(II) aqueous solution followed by the calcination process. The CuO-CNP samples with various CuO loading were briefly characterized by XRD, FTIR, and DRS. pHpzc was varied in the range of 6.3 to 6.8 depending on the amount of loaded CuO in the samples. The band gap energy was estimated by applying the Kubelka-Munk equation on the DRS results that varied from 2.41 to 2.50 eV depending on the CuO loading. Based on the Scherrer equation nano-sized CuO-CNP at about 50 nm was estimated. The CuO-CNP contained 3.9% CuO showed the highest photocatalytic activity toward dichloroaniline (DCA). The effects of the experimental variables on DCA photodegradation were studied by using the Hinshelwood model. The optimal conditions for obtaining a higher rate for DCA photodegradation were the catalyst dose of 0.5 g/L, CDCA: 5 ppm, and the initial pH: 3. HPLC analysis of the photodegraded DCA solutions for 180 and 300 min gave the degradation extents 71% and 90%, respectively.
Collapse
Affiliation(s)
- Fereshteh Iazdani
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Shahreza, Iran; Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|