1
|
Palaniyandi T, Ravi M, Sivaji A, Baskar G, Viswanathan S, Wahab MRA, Surendran H, Nedunchezhian S, Ahmad I, Veettil VN. Recent advances in microfluidic chip technologies for applications as preclinical testing devices for the diagnosis and treatment of triple-negative breast cancers. Pathol Res Pract 2024; 264:155711. [PMID: 39536540 DOI: 10.1016/j.prp.2024.155711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The leading cause of cancer-related death among female patients is breast cancer. Among all the types of breast cancer, triple-negative breast cancer (TNBC) is the most dangerous molecular subtype of breast cancer characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression. Since there is no particular therapeutic strategy for TNBC that has been shown to worsen the disease prognosis, 3D models are superior to 2D models as a predictive tool for drug discovery because they more accurately reflect the in vivo biological components of humans. Importantly, all 3D models struggle to gather many high-quality tumour cells from clinical tumours. Physicians may not get huge tumour tissues from patients, and clinical tumours may have necrosis, fat, and blood vessel components. Therefore, there is an immediate need to find an efficient method to consistently and quickly produce a large number of homogeneous tumour models for individual treatment without cell wastage. Microfluidic technologies, which are specifically engineered to manipulate small quantities of fluids, have been utilised to produce particles for drug delivery applications. This development is indicative of a recent trend, as it provides the ability to regulate particle size and material composition. This review focuses on the topic of tumor-on-a-chip, microfluidic chip manufacturing, and drug screening for triple-negative breast cancer. Particular emphasis is placed on cancer biomarker diagnostics, 3D preclinical model development, and treatment strategies for triple-negative breast cancer.
Collapse
Affiliation(s)
- Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Maduravoyal, Chennai 600095, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600 116, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Sandhya Nedunchezhian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Health and Medical Research Center, King Khalid University, AlQura'a, Abha, Saudi Arabia
| | - Vajid Nettoor Veettil
- Iqraa Centre for Research and Development, IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India
| |
Collapse
|
2
|
Mei S, Roopashree R, Altalbawy FMA, Hamid JA, Ahmed HH, Naser BK, Rizaev J, AbdulHussein AH, Saud A, Hammoodi HA, Muzammil K, Al-Abdeen SHZ, Alhadrawi M. Synthesis, characterization, and applications of starch-based nano drug delivery systems for breast cancer therapy: A review. Int J Biol Macromol 2024; 280:136058. [PMID: 39341308 DOI: 10.1016/j.ijbiomac.2024.136058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The review examined the potential of starch-based drug delivery systems for managing breast cancer efficiently. It covered the background of breast cancer and the significance of drug delivery systems in treatment enhancement. Starch, known for its versatile physicochemical properties, was explored as a promising biopolymer for drug delivery. The review detailed the properties of starch relevant to drug delivery, synthesis methods, and characterization approaches. It discussed the application of starch-based systems in breast cancer treatment, focusing on their role in improving chemotherapy delivery. The advantages and limitations of these systems, such as biocompatibility and drug loading capacity, were evaluated, along with future research directions in starch modification and emerging technologies. The review concluded by emphasizing the potential of starch-based drug delivery systems in improving breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shijuan Mei
- Department of Oncology Surgery II, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | | | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | | | - Abdulnaser Saud
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad 10011, Iraq.
| | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62561, Saudi Arabia.
| | - Salah Hassan Zain Al-Abdeen
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| | - Merwa Alhadrawi
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, the Islamic University, Najaf, Iraq; Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
3
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024; 282:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
4
|
Kim KJ, Hwang MJ, Choe SW, Jeong KC, Yoon SD. Drug release profile of phenytoin-loaded starch-based biomaterials incorporating hierarchical microparticles with photothermal effects. Int J Biol Macromol 2024; 282:136803. [PMID: 39461633 DOI: 10.1016/j.ijbiomac.2024.136803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
This study aimed to synthesize phenytoin (PHT)-loaded water chestnut starch-based biomaterials and evaluate their drug release kinetics for use in transdermal drug delivery systems for antiepileptic therapy. Hierarchical microparticles (HMPs) extracted from human hair were also used to improve the PHT release efficiency. The physicochemical characteristics of PHT, HMPs, and the prepared biomaterials were evaluated by physical properties, antimicrobial activities, FE-SEM, FT-IR, XRD, 1H NMR, and 13C CPMAS solid-state NMR. The photothermal effect and the PHT release profile were confirmed through 808 nm NIR laser irradiation. After 30 min of the laser exposure, the temperature of the HMP-added biomaterials increased by 1.50-1.59 times compared to that of without the HMPs. PHT release in buffers and artificial skin test under NIR laser irradiation enhanced by 1.20-1.85 times owing to the photothermal effect. The release kinetics in pH buffer and artificial skin were determined using the Fickian diffusion and Korsmeyer-Peppas models. Additionally, to verify the transdermal penetration of PHT, drug-release simulations were conducted using rhodamine B in agar blocks and pig ears. The results implied that the photothermal effect of the HMPs enhanced the penetration of the drug.
Collapse
Affiliation(s)
- Kyeong-Jung Kim
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jin Hwang
- Department of Environmental System Engineering, Chonnam National University, Jeonnam 59626, Republic of Korea
| | - Se-Woon Choe
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea; Emerging Pathogens Institute, Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States.
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu 59626, Republic of Korea; Emerging Pathogens Institute, Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
5
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Duan M, Ren K, Chen X, Chang Y, Lv Z, Wang Z, Wu S, Duan N. Discovery and design of an aptamer that inhibits Shiga toxin type 2 activity by blocking Stx2 B subunit-Gb3 interaction. Int J Biol Macromol 2024; 277:134365. [PMID: 39089540 DOI: 10.1016/j.ijbiomac.2024.134365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Shiga toxin (Stx) is the definitive virulence factor of Stx-producing Escherichia coli. This bacterial pathogen can contaminate food and threaten human health. Binding of the B subunit of Stx to the specific receptor globotriaosylceramide (Gb3) on the cell membrane is a key step for Stx to enter cells and exert its toxicity. In this work, we aimed to screen for aptamers targeting the Stx 2 B subunit, to interfere with the interaction of Stx2 B subunit and Gb3, thereby blocking Stx2 from entering cells. The results of molecular simulation docking, competitive ELISA, flow cytometry, and laser confocal microscopy confirmed that aptamers S4, S5, and S6 can mediate the interaction between Stx2 B subunit and Gb3. To further improve the inhibition effect, multiple aptamer sequences were tailored and were fused. The bivalent modification aptamer B2 inhibited Stx2 toxicity to Vero cells with inhibition rate of 53 %. Furthermore, the aptamer B2 reduced Stx2 damage to the mice, indicating that it has great potential to interfere with Stx2 binding to Gb3 receptors in vivo and in vitro. This work provides a theoretical and experimental basis for the application of aptamers in the inhibition of Stx2 toxicity and control of food hazards.
Collapse
Affiliation(s)
- Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kexin Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaowan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ziyu Lv
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Wang X, Huang H, Xu W, Gong Y, Shi S, Wan X, Li P. TGF-β1 and FOXM1 siRNA co-loaded nanoparticles by disulfide crosslinked PEG-PDMAEMA for the treatment of triple-negative breast cancer and its bone metastases in vitro. Drug Dev Ind Pharm 2024:1-12. [PMID: 39286903 DOI: 10.1080/03639045.2024.2404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is characterized by higher malignancy and mortality and is prone to distant metastasis, among which bone is the most common site. It's urgent to explore new strategies for the treatment of TNBC and its bone metastases. METHODS A tumor environment responsive vector, poly-(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly-(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA), was constructed to co-delivery transforming growth factor-β1 (TGF-β1) siRNA and forkhead box M1 (FOXM1) siRNA in MDA-MB-231 cells. The preparation, characterization, in vitro release, stability, and transfection efficiency of nanoparticles were measured. Cell viability, migration, and invasion of MDA-MB-231 cells were determined. Cell chemotactic migration and cell heterogeneity adhesion of MDA-MB-231 cells to the human osteoblast-like cell line MG-63 were determined. RESULTS PDMAEMA-SS-PEG-SS-PDMAEMA self-assembled with siRNA at N/P of 15:1 into nanoparticles with a particle size of 122 nm. In vitro release exhibited redox and pH sensitivity, and the nanoparticles protected siRNA from degradation by RNase and serum protein, remaining stable at 4 °C with similar transfection efficiency with lipo2000. Nanoparticles co-loaded with TGF-β1 siRNA and FOXM1 siRNA inhibited the cell viability, migration and invasion of MDA-MB-231 cells, as well as chemotactic migration and heterogeneous adhesion of MDA-MB-231 cells to MG-63 cells, showing a synergetic effect. After gene silencing on TGF-β1 and FOXM1, the epithelial to mesenchymal transition (EMT) related molecules vimentin mRNA expression decreased while E-cadherin increased. CONCLUSIONS PDMAEMA-SS-PEG-SS-PDMAEMA was suitable for TGF-β1 siRNA and FOXM1 siRNA delivery, exhibiting a synergetic inhibition effect on TNBC and its bone metastases, which might be related to its synergetic inhibition on EMT.
Collapse
Affiliation(s)
- Xingbo Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Hong Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenxiu Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Songbo Shi
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Xu Wan
- Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China Shanghai
| | - Pengbiao Li
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
8
|
Geszke-Moritz M, Moritz M. Biodegradable Polymeric Nanoparticle-Based Drug Delivery Systems: Comprehensive Overview, Perspectives and Challenges. Polymers (Basel) 2024; 16:2536. [PMID: 39274168 PMCID: PMC11397980 DOI: 10.3390/polym16172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In the last few decades, there has been a growing interest in the use of biodegradable polymeric nanoparticles (BPNPs) as the carriers for various therapeutic agents in drug delivery systems. BPNPs have the potential to improve the efficacy of numerous active agents by facilitating targeted delivery to a desired site in the body. Biodegradable polymers are especially promising nanocarriers for therapeutic substances characterized by poor solubility, instability, rapid metabolism, and rapid system elimination. Such molecules can be efficiently encapsulated and subsequently released from nanoparticles, which greatly improves their stability and bioavailability. Biopolymers seem to be the most suitable candidates to be used as the nanocarriers in various delivery platforms, especially due to their biocompatibility and biodegradability. Other unique properties of the polymeric nanocarriers include low cost, flexibility, stability, minimal side effects, low toxicity, good entrapment potential, and long-term and controlled drug release. An overview summarizing the research results from the last years in the field of the successful fabrication of BPNPs loaded with various therapeutic agents is provided. The possible challenges involving nanoparticle stability under physiological conditions and the possibility of scaling up production while maintaining quality, as well as the future possibilities of employing BPNPs, are also reviewed.
Collapse
Affiliation(s)
- Małgorzata Geszke-Moritz
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| | - Michał Moritz
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| |
Collapse
|
9
|
Ndongwe T, Zhou AA, Ganga NP, Matawo N, Sibanda U, Chidziwa TV, Witika BA, Krause RWM, Matlou GG, Siwe-Noundou X. The use of nanomaterials as drug delivery systems and anticancer agents in the treatment of triple-negative breast cancer: an updated review (year 2005 to date). DISCOVER NANO 2024; 19:138. [PMID: 39225730 PMCID: PMC11372008 DOI: 10.1186/s11671-024-04089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterised by the lack or low expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. TNBC has a high recurrence rate, swiftly metastasizes, and has a high mortality rate. Subsequently, the increase in cases of TNBC has signaled the need for treatment strategies with improved drug delivery systems. New diagnostic approaches, chemical entities, formulations particular those in the nanometric range have emerged after extensive scientific research as alternative strategies for TNBC treatment. As compared to contemporary cancer therapy, nanoparticles offer peculiar tunable features namely small size, shape, electrical charge, magnetic and fluorescent properties. Specifically in targeted drug delivery, nanoparticles have been demonstrated to be highly efficient in encapsulating, functionalization, and conjugation. Presently, nanoparticles have ignited and transformed the approach in photodynamic therapy, bioimaging, use of theranostics and precision medicine delivery in breast cancer. Correspondingly, recent years have witnessed a drastic rise in literature pertaining to treatment of TNBC using nanomaterials. Subsequently, this manuscript aims to present a state-of-the-art of nanomaterials advance on TNBC treatment; the ubiquitous utility use of nanomaterials such as liposomes, dendrimers, solid lipid nanomaterials, gold nanomaterials and quantum dots as anticancer agents and drug delivery systems in TNBC.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Angel-Alberta Zhou
- Department of Pharmacy, School of Health Science, University of KwaZulu Natal, Durban, South Africa
| | - Nelisa Paidamwoyo Ganga
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyaradzo Matawo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Unami Sibanda
- Pharmaceutics Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Tinotenda Vanessa Chidziwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Rui W M Krause
- Chemistry Department, Faculty of Science, Rhodes University, Grahamstown, South Africa
| | - Gauta Gold Matlou
- Electron Microscopy Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| |
Collapse
|
10
|
Alneghery LM, Al-Zharani M, Nasr FA, Eldin ZE, Al Hujran TA, Tawfeek HM, Fayed MH, Elbeltagi S. Fabrication and optimization of naringin-loaded MOF-5 encapsulated by liponiosomes as smart drug delivery, cytotoxicity, and apoptotic on breast cancer cells. Drug Dev Ind Pharm 2024:1-14. [PMID: 39101770 DOI: 10.1080/03639045.2024.2388786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Cancers are regarded as hazardous due to their high worldwide death rate, with breast cancer (BC), which affects practically all cancer patients globally, playing a significant role in this statistic. The therapeutic approach for BC has not advanced using standard techniques, such as specialized naringin (NG) chemotherapy. Instead, a novel strategy has been utilized to enhance smart drug delivery (SDD) to tumors. SIGNIFICANCE Herein, we established NG-loaded zinc metal-organic framework-5 (NG-MOF-5) coated with liponiosomes (LNs) to manufacture NG-MOF-5@LNs nanoparticles (NPs) for antibacterial and cancer treatment. METHODS MOF-5, NG, and NG-MOF-5@LNs were evaluated with XRD, thermogravimetric analysis (TGA), FTIR, SEM, TEM, PDI, ZP, encapsulation efficiency (EE), loading efficiency (LE), and drug release (DR) kinetics. We examined the antibacterial activity involving minimum inhibitory concentration (MIC) and zone of inhibition by NG, MOF-5, and NG-MOF-5@LNs. The cell viability, necrosis, and total apoptosis (late and early) were evaluated for anti-cancer activity against MCF-7 BC cells. RESULTS TEM results demonstrated that NG-MOF-5@LNs formed monodispersed spherical-like particles with a size of 122.5 nm, PDI of 0.139, and ZP of +21 mV. The anti-microbial activity results indicated that NG-MOF-5@LNs exhibited potent antibacterial effects, as evidenced by inhibition zones and MIC values. The Higuchi model indicates an excellent fit (R2 = 0.9988). The MTT assay revealed anti-tumor activity against MCF-7 BC cells, with IC50 of 21 µg/mL for NG-MOF-5@LNs and demonstrating a total apoptosis effect of 68.2% on MCF-7 cells. CONCLUSION NG-MOF-5@LNs is anticipated to show as an effective antimicrobial and novel long-term-release antitumor agent and might be more suitable for MCF-7 cell therapy.
Collapse
Affiliation(s)
- Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, Egypt
- Department of Material Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Tayel A Al Hujran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed H Fayed
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Shehab Elbeltagi
- Department of Physics, Faculty of Science, New Valley University, Kharga, Egypt
| |
Collapse
|
11
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
12
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
13
|
Wehbe N, Badran A, Baydoun S, Al-Sawalmih A, Maresca M, Baydoun E, Mesmar JE. The Antioxidant Potential and Anticancer Activity of Halodule uninervis Ethanolic Extract against Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2024; 13:726. [PMID: 38929164 PMCID: PMC11200955 DOI: 10.3390/antiox13060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Natural remedies have been indispensable to traditional medicine practices for generations, offering therapeutic solutions for various ailments. In modern times, these natural products continue to play a pivotal role in the discovery of new drugs, especially for cancer treatment. The marine ecosystem offers a wide range of plants with potential anticancer activities due to their distinct biochemical diversity and adaptation to extreme situations. The seagrass Halodule uninervis is rich in diverse bioactive metabolites that bestow the plant with various pharmacological properties. However, its anticancer activity against invasive triple-negative breast cancer (TNBC) is still poorly investigated. In the present study, the phytochemical composition of an ethanolic extract of H. uninervis (HUE) was screened, and its antioxidant potential was evaluated. Moreover, the anticancer potential of HUE against MDA-MB-231 cells was investigated along with the possible underlying mechanisms of action. Our results showed that HUE is rich in diverse phytochemicals that are known for their antioxidant and anticancer effects. In MDA-MB-231 cells, HUE targeted the hallmarks of cancer, including cell proliferation, adhesion, migration, invasion, and angiogenesis. The HUE-mediated anti-proliferative and anti-metastatic effects were associated with the downregulation of the proto-oncogenic STAT3 signaling pathway. Taken together, H. uninervis could serve as a valuable source for developing novel drugs targeting TNBC.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Adnan Badran
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Joelle Edward Mesmar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| |
Collapse
|
14
|
Chen X, Chang Y, Ye M, Wang Z, Wu S, Duan N. Rational Design of a Robust G-Quadruplex Aptamer as an Inhibitor to Alleviate Listeria monocytogenes Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15946-15958. [PMID: 38519414 DOI: 10.1021/acsami.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Listeria monocytogenes (LM) is one of the most invasive foodborne pathogens that cause listeriosis, making it imperative to explore novel inhibiting strategies for alleviating its infection. The adhesion and invasion of LM within host cells are partly orchestrated by an invasin protein internalin A (InlA), which facilitates bacterial passage by interacting with the host cell E-cadherin (E-Cad). Hence, in this work, we proposed an aptamer blocking strategy by binding to the region on InlA that directly mediated E-Cad receptor engagement, thereby alleviating LM infection. An aptamer GA8 with a robust G-quadruplex (G4) structural feature was designed through truncation and base mutation from the original aptamer A8. The molecular docking and dynamics analysis showed that the InlA/aptamer GA8 binding interface was highly overlapping with the natural InlA/E-Cad binding interface, which confirmed that GA8 can tightly and stably bind InlA and block more distinct epitopes on InlA that involved the interaction with E-Cad. On the cellular level, it was confirmed that GA8 effectively blocked LM adhesion with an inhibition rate of 78%. Overall, the robust G4 aptamer-mediated design provides a new direction for the development of inhibitors against other wide-ranging and emerging pathogens.
Collapse
Affiliation(s)
- Xiaowan Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingyue Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Rehman G, Umar M, Shah N, Hamayun M, Ali A, Khan W, Khan A, Ahmad S, Alrefaei AF, Almutairi MH, Moon YS, Ali S. Green Synthesis and Characterization of Silver Nanoparticles Using Azadirachta indica Seeds Extract: In Vitro and In Vivo Evaluation of Anti-Diabetic Activity. Pharmaceuticals (Basel) 2023; 16:1677. [PMID: 38139804 PMCID: PMC10748007 DOI: 10.3390/ph16121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. OBJECTIVE In the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. METHODS These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD). The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and alpha-amylase inhibitory assays. RESULTS Al-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-AgNPs (10 to 40 mg/kg b.w) for 30 days. CONCLUSIONS The results showed a considerable drop in blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs have strong anti-diabetic potential.
Collapse
Affiliation(s)
- Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Muhammad Umar
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Arif Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Sajjad Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
16
|
Rodrigues DM, Portapilla GB, de Sicco GS, da Silva IFR, de Albuquerque S, Bastos JK, Campo VL. Novel synthetic derivatives of cinnamic and p-coumaric acids with antiproliferative effect on breast MCF-7 tumor cells. Nat Prod Res 2023; 37:4210-4220. [PMID: 36799539 DOI: 10.1080/14786419.2023.2177992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
p-Coumaric acid is derived from cinnamic acid and is one of the major compounds in the Brazilian green propolis extract. Studies have shown that both p-coumaric acid and cinnamic acid have promising antiproliferative effects. In this context, aiming to increase the complexity of these active natural products and their activities, we performed coupling reactions with propargylamine and benzylamine, as well as with threonine, phenylalanine and lysine amino acids, aiming to enhance their antiproliferative effects towards the hormone-dependent breast cancer MCF-7 cells. Overall, the p-coumaric acid coupling with L-threonine amino acid (compound 15) had the best selectivity index (SI = 5.1), with half-maximal inhibitory concentration of 39.6 ± 1 μM, showing a high selectivity against hormone-dependent breast cancer cell lines MCF-7 and low cytotoxicity against the normal breast cell lines MCF-10A. Thus, this new natural product derivative may represent a prototype for the future development of antiproliferative agents, especially against hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Débora Munhoz Rodrigues
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gisele Bulhões Portapilla
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Sergio de Albuquerque
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vanessa Leiria Campo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Medical Sciences, Barão de Mauá University Center, Ribeirão Preto, SP, Brazil
| |
Collapse
|
17
|
Gogde K, Paul S, Pujari AK, Yadav AK, Bhaumik J. Synthesis of Metallo-Chromone Porphyrin Nano-Starch Sensitizers as Photodynamic Therapeutics for the Eradication of Enterococci Dental Pathogens. J Med Chem 2023; 66:13058-13071. [PMID: 37671975 DOI: 10.1021/acs.jmedchem.3c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Photodynamic therapy (PDT), as an advanced, alternative, and promising treatment, can inhibit dental pathogens. PDT employs the activation of photosensitizers via the light of a particular wavelength and molecular oxygen to inhibit dental pathogens. Herein, we present a comprehensive study on the synthesis and characterization of three chromone-porphyrins [Zn(II)-5-[4-chromone]-15-(4-phenyl)porphyrin (ZnCP), 5-[4-chromone]-15-(4-12 phenyl)porphyrin (DMCP), and Pd(II)-5-[4-chromone]-15-(4-phenyl)porphyrin (PdCP)]. Next, the computational study was also performed to establish the correlation between photophysical properties and theoretical calculations for those chromone-porphyrins using density functional theory and time-dependent density functional theory. Furthermore, chromone-porphyrins were encapsulated in starch nanoparticles to develop soluble nano-starch sensitizers (ZnCP-SNPs, DMCP-SNPs, and PdCP-SNPs) via the nanoprecipitation technique. Upon green light exposure, these nano-starch sensitizers exhibited excellent singlet oxygen generation ability. Moreover, final nanoformulations have been explored for pH responsiveness. Based on our intriguing findings, the chromone-porphyrin-loaded nano-starch sensitizers displayed great potential as prospective PDT to treat enterococci dental pathogens.
Collapse
Affiliation(s)
- Kunal Gogde
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Shatabdi Paul
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Jayeeta Bhaumik
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
| |
Collapse
|
18
|
Pleiko K, Haugas M, Parfejevs V, Pantelejevs T, Parisini E, Teesalu T, Riekstina U. Targeting triple-negative breast cancer cells with a β1-integrin binding aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:871-884. [PMID: 37680989 PMCID: PMC10481362 DOI: 10.1016/j.omtn.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Targeted therapies have increased the treatment options for triple-negative breast cancer patients. However, the paucity of targetable biomarkers and tumor heterogeneity have limited the ability of precision-guided interventions to live up to their full potential. As affinity-targeting ligands, aptamers show high selectivity toward target molecules. Compared with antibodies, aptamers have lower molecular weight, increased stability during transportation, reduced immunogenicity, and increased tissue uptake. Recently, we reported discovery of the GreenB1 aptamer, which is internalized in cultured triple-negative MDA-MB-231 human breast cancer cells. We show that the GreenB1 aptamer specifically targets β1-integrin, a protein linked previously to breast cancer cell invasiveness and migration. Aptamer binds to β1-integrin with low nanomolar affinity. Our findings suggest potential applications for GreenB1-guided precision agents for diagnosis and therapy of cancers overexpressing β1-integrin.
Collapse
Affiliation(s)
- Karlis Pleiko
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
| | | | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
| |
Collapse
|
19
|
Tajik S, Sharifi F, Aflatoonian B, Mohammadi SZ. An Efficient Electrochemical Sensor Based on NiCo 2O 4 Nanoplates and Ionic Liquid for Determination of Favipiravir in the Presence of Acetaminophen. BIOSENSORS 2023; 13:814. [PMID: 37622900 PMCID: PMC10452330 DOI: 10.3390/bios13080814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Based on the modification of carbon paste electrode with NiCo2O4 nanoplates and 1-hexyl-3-methylimidazolium tetrafluoroborate, a new electrochemical sensing platform for the sensing of favipiravir (a drug with potential therapeutic efficacy in treating COVID-19 patients) in the presence of acetaminophen was prepared. For determining the electrochemical behavior of favipiravir, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry have been utilized. When compared to the unmodified carbon paste electrode, the results of the cyclic voltammetry showed that the proposed NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had excellent catalytic activity for the oxidation of the favipiravir in phosphate buffer solution (pH = 7.0). This was due to the synergistic influence of 1-hexyl-3-methylimidazolium tetrafluoroborate (ionic liquid) and NiCo2O4 nanoplates. In the optimized conditions of favipiravir measurement, NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had several benefits, such as a wide dynamic linear between 0.004 and 115.0 µM, a high sensitivity of 0.1672 µA/µM, and a small limit of detection of 1.0 nM. Furthermore, the NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode sensor presented a good capability to investigate the favipiravir and acetaminophen levels in real samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran;
| |
Collapse
|
20
|
Narmani A, Ganji S, Amirishoar M, Jahedi R, Kharazmi MS, Jafari SM. Smart chitosan-PLGA nanocarriers functionalized with surface folic acid ligands against lung cancer cells. Int J Biol Macromol 2023:125554. [PMID: 37356696 DOI: 10.1016/j.ijbiomac.2023.125554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Lung cancer is the second most prevalent and first killer cancer worldwide, and conventional approaches do not have enough ability to suppress it. Therefore, a novel targeted chitosan (CS)-poly lactic-co-glycolic acid (PLGA)-folic acid (FA) nanocarrier was developed for delivery of sorafenib (Sor) to lung cancer cells. The nanocarrier (CPSF) had a size of 30-40 nm with globular shapes. Surface charge and drug content of CPSF were ascertained at about 1.1 mV and 15 %, respectively. Controlled (4 % within 2 h) and pH-sensitive (18 % within 2 h at pH = 5.0) Sor release were observed for the nanocarrier. The MTT assay demonstrated a cell viability of 13 % after 24 h treatment with 400 nM CPSF in A549 cancer cells while it was 78 % in MSC normal cells. The qRT-PCR revealed >8 folds and 11 folds increase for Caspase9 and P53 genes after 5 h treatment with 100 nM (IC50) CPSF; but a reduction of 5 folds was observed for the Bcl2 gene. Besides, 57 % and 20 % apoptosis were attained in cell cycle arrest and apoptosis assays for CPSF, respectively. CPF indicated about 88 % internalization in cancer cells. These data prove that CPSF is a promising nanodelivery system for lung cancer suppression.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Amirishoar
- Department of Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
21
|
Roszkowski S. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules 2023; 28:molecules28104080. [PMID: 37241819 DOI: 10.3390/molecules28104080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The use of naturally derived drugs in anti-cancer therapies has grown exponentially in recent years. Among natural compounds, polyphenols have shown potential therapeutic applications in treatment due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties, resulting in beneficial effects on human health. Building more efficient cancer therapies with fewer side effects on human health can be achieved by combining natural compounds with conventional drugs, which are typically more aggressive than natural chemicals with polyphenols. This article reviews a wide variety of studies where polyphenolic compounds can play a key role as anticancer drugs, alone or in combination with other drugs. Moreover, the future directions of applications of various polyphenols in cancer therapy are shown.
Collapse
Affiliation(s)
- Szymon Roszkowski
- Department of Geriatrics, Collegium Medicum, Nicolaus Copernicus University, Debowa St. 3, 85-626 Bydgoszcz, Poland
| |
Collapse
|
22
|
Prasher P, Sharma M. Dialdehyde starch nanoparticles: an emerging material for anticancer drug delivery. Nanomedicine (Lond) 2023; 18:849-854. [PMID: 37449452 DOI: 10.2217/nnm-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
23
|
Novel amphiphilic hydroxyethyl starch-based nanoparticles loading camptothecin exhibit high anticancer activity in HepG2 cells and zebrafish. Colloids Surf B Biointerfaces 2023; 224:113215. [PMID: 36841205 DOI: 10.1016/j.colsurfb.2023.113215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Camptothecin is a naturally occurred anticancer drug but exhibits limitations including poor aqueous solubility, low bioavailability, and high level of adverse drug reactions on normal organs. To overcome these problems, this paper developed a novel amphiphilic Lau-Leu-HES carrier using hydroxyethyl starch, lauric acid, and L-leucine as starting materials. The carrier was successfully applied to prepare Lau-Leu-HES nanoparticles loading camptothecin. The drug loading efficiency and encapsulation efficiency of the nanoparticles were calculated to be 29.04% and 81.85%, respectively. The nanoparticles exhibited high zeta potential (-15.51 mV) and small hydrodynamic diameter (105.4 nm). Camptothecin in nanoparticles could be rapidly released under acidic condition (pH = 4.5), thereby indicating the high sensitivity under cancer microenvironments. Anticancer investigation revealed that the nanoparticles could inhibit the proliferation of HepG2 cells in vitro. Compared with commercial available drug doxorubicin, the nanoparticles could significantly inhibit the expression of krasv12 oncogene in transgenic Tg (EGFP-krasV12) zebrafish. These results indicate that the camptothecin-loaded Lau-Leu-HES nanoparticles are expected to be a potential candidate for cancer therapy.
Collapse
|
24
|
He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol 2023; 238:124173. [PMID: 36965552 DOI: 10.1016/j.ijbiomac.2023.124173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Aptamers with high affinity and specificity for certain targets have rapidly become a novel class of targeted ligands applicated in drug delivery. Based on the excellent characteristics of aptamers, different aptamer-mediated drug delivery systems have been developed, including aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalized nanoparticle systems for the effective treatment of cancer, which can reduce potential toxicity and improve therapeutic efficacy. In this review, we summarize the recent progress of aptamer-mediated delivery systems in cancer therapy, and discuss the application prospects and existing problems of innovative approaches based on aptamer therapy. Overall, this review aims to better understand the current aptamer-based targeted delivery applications through in-depth analysis to improve efficacy and develop new therapeutic methods which can ultimately improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
25
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
26
|
Gangwar C, Yaseen B, Kumar I, Nayak R, Sarkar J, Baker A, Kumar A, Ojha H, Kumar Singh N, Mohan Naik R. Nano palladium/palladium oxide formulation using Ricinus communis plant leaves for antioxidant and cytotoxic activities. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Wu C, Sun C, Han X, Ye Y, Qin Y, Liu S. Sanyin Formula Enhances the Therapeutic Efficacy of Paclitaxel in Triple-Negative Breast Cancer Metastases through the JAK/STAT3 Pathway in Mice. Pharmaceuticals (Basel) 2022; 16:9. [PMID: 36678509 PMCID: PMC9867389 DOI: 10.3390/ph16010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sanyin formula (SYF) is used as a complementary treatment for triple-negative breast cancer (TNBC). The purpose of this study was to identify the potential functional components and clarify the underlying molecular mechanisms of SYF in TNBC. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to identify the main components of SYF extracts. Network pharmacology and bioinformatic analyses were carried out to identify potential candidate targets of SYF in TNBC. Cell proliferation was determined with a Celigo imaging cytometer. Wound-healing and Transwell assays were adopted to evaluate cell migration. A Transwell cell-invasion assay was performed with Matrigel-coated membranes. In vivo bioluminescence imaging (BLI) and pathological analyses illustrated the effect of SYF on cancer cell metastasis in tumour-bearing mice. The inhibitory mechanism of SYF was investigated via quantitative PCR (qPCR) and Western blotting. We found that 3,4-dihydroxyphenyllactic acid, kaempferol, p-coumaric acid, and vanillic acid may be the active components of SYF. Molecular docking confirmed that kaempferol, p-coumaric acid, vanillic acid, and 3,4-dihydroxyphenyllactic acid bound stably to proteins such as AKR1C3, MMPs, and STAT3. SYF extract suppressed TNBC cell proliferation, migration, invasion, and metastasis by inhibiting JAK/STAT3 signalling and then regulating downstream genes, such as MMP-2/MMP-9. SYF regulates the expression of genes involved in cell proliferation, migration, and invasion by regulating the JAK/STAT3 signalling pathway and finally inhibits tumour cell metastasis in TNBC. The present study clarifies the mechanism by which SYF inhibits TNBC metastasis and lays an experimental foundation for the continued clinical development of SYF targeting the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Chenping Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Xianghui Han
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yiyi Ye
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Sheng Liu
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| |
Collapse
|
28
|
Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex F.H.Wigg from Călimani Mountains, Romania. Pharmaceuticals (Basel) 2022; 15:ph15070829. [PMID: 35890128 PMCID: PMC9322614 DOI: 10.3390/ph15070829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Phenolic compounds represent an essential bioactive metabolites group with numerous pharmaceutical applications. Our study aims to identify and quantify phenolic constituents of various liquid and dry extracts of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from Calimani Mountains, Romania, and investigate their bioactivities. The extracts in acetone, 96% ethanol, and water with the same dried lichen/solvent ratio (w/v) were obtained through two conventional techniques: maceration (mUBA, mUBE, and mUBW) and Soxhlet extraction (dUBA, dUBE, and dUBW). High-performance liquid chromatography with diode-array detection (HPLC-DAD) was performed for usnic acid (UA) and different polyphenols quantification. Then, the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity (AA) were determined through spectrophotometric methods. Using the disc diffusion method (DDM), the antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria known for their pathogenicity: Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Pseudomonas aeruginosa (ATCC 27853), and Klebsiella pneumoniae (ATCC 13883). All extracts contain phenolic compounds expressed as TPC values. Five lichen extracts display various UA contents; this significant metabolite was not detected in dUBW. Six polyphenols from the standards mixture were quantified only in ethanol and water extracts; mUBE has all individual polyphenols, while dUBE shows only two. Three polyphenols were detected in mUBW, but none was found in dUBW. All U. barbata extracts had antiradical activity; however, only ethanol and acetone extracts proved inhibitory activity against P. aeruginosa, S. pneumoniae, and S. aureus. In contrast, K. pneumoniae was strongly resistant (IZD = 0). Data analysis evidenced a high positive correlation between the phenolic constituents and bioactivities of each U. barbata extract. Associating these extracts’ properties with both conventional techniques used for their preparation revealed the extraction conditions’ significant influence on lichen extracts metabolites profiling, with a powerful impact on their pharmacological potential.
Collapse
|
29
|
Gamboa-Carvajal L, Jara-Gutiérrez C, Villena J, Taborga L, Martínez JR, Espinoza L, Stashenko EE. Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec. Molecules 2022; 27:molecules27134186. [PMID: 35807442 PMCID: PMC9268250 DOI: 10.3390/molecules27134186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, the antioxidant activity of the hydro-ethanolic extracts of the leaves, flowers, and aerial parts of Steiractinia aspera Cuatrec, both fresh and post-distillation, was evaluated by ABTS+·, FRAP, H2O2 and DPPH assays. The cytotoxic activity was evaluated in MCF-7, MCF-10A and HT-29 cell lines. The hydro-ethanolic extracts were obtained by matrix solid-phase dispersion (MSPD) and ultrasound-assisted solvent extraction (SE). The fresh-leaf MSPD extract had the highest antioxidant activity, and the post-distillation leaf ultrasound-assisted SE extract had the highest cytotoxicity in the MCF-7 breast cancer cell line, although not selective, which was evaluated by sulforhodamine B assay. On the other hand, ROS was evaluated by flow cytometry which showed that post-distillation leaf extract is pro-oxidant. Chlorogenic acid, kaempferol-3-glucoside and quercetin were found in the fresh leaves’ extracts, according to HPLC-DAD. PLC-DAD permitted the isolation of p-coumaric acid, E-3-(4-(((E)-3-(3,4-dihydroxyphenyl) acryloyl) oxy)-3-hydroxyphenyl) acrylic acid and a diglucosylated derivative of ursolic acid, which were analyzed by 1H and 13C NMR. Our results suggest that the fresh leaf extract of Steiractinia aspera Cuatrec has potential use for antioxidant applications.
Collapse
Affiliation(s)
- Laura Gamboa-Carvajal
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 224000, Chile; (L.G.-C.); (L.T.)
| | - Carlos Jara-Gutiérrez
- Laboratorio de Bioensayos, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2340000, Chile; (C.J.-G.); (J.V.)
| | - Joan Villena
- Laboratorio de Bioensayos, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2340000, Chile; (C.J.-G.); (J.V.)
| | - Lautaro Taborga
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 224000, Chile; (L.G.-C.); (L.T.)
| | - Jairo René Martínez
- Center for Chromatography and Mass Spectrometry CROM-MASS, Universidad Industrial de Santander, Bucaramanga 68000, Colombia;
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 224000, Chile; (L.G.-C.); (L.T.)
- Correspondence: (L.E.); (E.E.S.)
| | - Elena E. Stashenko
- Center for Chromatography and Mass Spectrometry CROM-MASS, Universidad Industrial de Santander, Bucaramanga 68000, Colombia;
- Correspondence: (L.E.); (E.E.S.)
| |
Collapse
|
30
|
Insights into pH-modulated interactions between native potato starch and cyanidin-3-O-glucoside: Electrostatic interaction-dependent binding. Food Res Int 2022; 156:111129. [DOI: 10.1016/j.foodres.2022.111129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
|
31
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
32
|
Yu XD, Zhang D, Xiao CL, Zhou Y, Li X, Wang L, He Z, Reilly J, Xiao ZY, Shu X. P-Coumaric Acid Reverses Depression-Like Behavior and Memory Deficit Via Inhibiting AGE-RAGE-Mediated Neuroinflammation. Cells 2022; 11:cells11101594. [PMID: 35626632 PMCID: PMC9139330 DOI: 10.3390/cells11101594] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Depression, a mood disorder, affects one in fifteen adults, has multiple risk factors and is associated with complicated underlying pathological mechanisms. P-coumaric acid (p-CA), a phenolic acid, is widely distributed in vegetables, fruits and mushrooms. P-CA has demonstrated a protective role against oxidative stress and inflammation in various diseases, including cardiovascular disease, diabetes and cancer. In the current study, we investigated the protection of p-CA against depression and memory impairment in a corticosterone (CORT)-induced chronic depressive mouse model. CORT administration resulted in depression-like behaviors and memory impairment. P-CA treatment alleviated CORT-induced depression-related behaviors and memory impairment. Network pharmacology predicted that p-CA had multiple targets and mediated various signaling pathways, of which inflammation-associated targets and signaling pathways are predominant. Western blotting showed CORT-induced activation of the advanced glycation end product (AGE)-receptor of AGE (RAGE) (AGE-RAGE) signaling and increased expression of the proinflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNFα) in the hippocampus, while p-CA treatment inactivated AGE-RAGE signaling and decreased the levels of IL-1β and TNFα, suggesting that protection against depression and memory impairment by p-CA is mediated by the inhibition of inflammation, mainly via the AGE-RAGE signaling pathway. Our data suggest that p-CA treatment will benefit patients with depression.
Collapse
Affiliation(s)
- Xu-Dong Yu
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
- Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang 422000, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dan Zhang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
- Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang 422000, China
| | - Chu-Li Xiao
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
- Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang 422000, China
| | - Yu Zhou
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
| | - Xing Li
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
| | - Le Wang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
| | - Zhiming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
- Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang 422000, China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhi-Yong Xiao
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: authors: (Z.-Y.X.); (X.S.)
| | - Xinhua Shu
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.-D.Y.); (D.Z.); (C.-L.X.); (Y.Z.); (X.L.); (L.W.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Correspondence: authors: (Z.-Y.X.); (X.S.)
| |
Collapse
|
33
|
Harun Z, Arsad A, Pang AL, Zaini MAA, Abdurrahman M, Awang N, Junin R, Mohsin R. Acid Hydrolysis and Optimization Techniques for Nanoparticles Preparation: Current Review. Appl Biochem Biotechnol 2022; 194:3779-3801. [PMID: 35488954 DOI: 10.1007/s12010-022-03932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nanostarch is unique in that it is highly soluble, thermally stable, non-toxic and inexpensive. Hence, it is utilized in numerous well-established applications, including drug delivery, cosmetics, textiles, foods, and enhanced oil recovery (EOR). These applications take advantage of the special functions that can be achieved through modifications to the structure and properties of native starch. The most common method for the preparation of nanostarch with a relatively higher crystallinity and stability is acid hydrolysis. Technically, the properties of nanostarch are highly dependent on several factors during the hydrolysis process, such as the acid, concentration of acid, reaction time, reaction temperature, and source of starch. The production of nanostarch with desired properties requires a detailed understanding on each of the factors as they are inevitably affected the physical and chemical properties of nanostarch. Hence, it is vital to incorporate optimization technique into the production process to achieve the full potential of nanostarch. Therefore, the current review comprehensively elaborates on the factors that affect acid hydrolysis as well as the optimization techniques used in the preparation of nanostarch.
Collapse
Affiliation(s)
- Zakiah Harun
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| | - Agus Arsad
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia.
| | - Ai Ling Pang
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| | - Mohd Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| | - Muslim Abdurrahman
- Fakultas Teknik - Universitas Islam Riau, Jalan Kaharuddin Nasution, Workshop Gedung B, Lantai 2, Pekan Baru, 28284, Indonesia
| | - Nuha Awang
- Plant Engineering Technology (PETech), Universiti Kuala Lumpur - Malaysian Institute of Industrial Technology (UniKL MITEC), Jalan Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750, Masai, Johor, Malaysia
| | - Radzuan Junin
- Department of Petroleum Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
| | - Rahmat Mohsin
- UTM-MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| |
Collapse
|
34
|
Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microb Pathog 2022; 167:105544. [DOI: 10.1016/j.micpath.2022.105544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
35
|
Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats. Mol Biol Rep 2022; 49:3237-3245. [PMID: 35064410 DOI: 10.1007/s11033-022-07158-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Methotrexate (MTX), a chemotherapeutic agent, is known to cause oral mucositis. Chitosan has been shown to have a protective effect in inflammatory animal models. This research aimed to examine the protective effect of chitosan against oral mucositis caused by MTX. METHODS AND RESULTS Wistar albino rats were randomly divided into three groups. Control (n = 8), (saline via oral gavage for 5 days), MTX (n = 8), (60 mg/kg single dose MTX intraperitoneally on the 1st day and for the following 4 days saline via oral gavage), and MTX + chitosan (n = 8), (1st day single dose 60 mg/kg MTX intraperitoneally and followed with 200 mg/kg chitosan via oral gavage for 4 days). After 24 h of the last dose, the animals were euthanised. Blood, tongue, buccal and palatal mucosa tissues were collected. Serum interleukin 1-beta (IL1-β), tumour necrosis factor-alpha (TNF-α), matrix metalloproteinase (MMP-1, and MMP-2) activities, tissue bcl-2/bax ratio and the expression of caspase-3 (casp-3), and casp-9 were detected. The tissues were also examined histologically. Serum TNF-α, IL1-β, MMP-1 and MMP-2 activities and tissue casp-3 and casp-9 activities significantly increased but the bcl-2/bax ratio significantly decreased in the MTX group compared those of the control group. Histologically, diffuse inflammatory cells were observed in MTX group. However, In the MTX + chitosan group, all the values were close to those of the control group. CONCLUSION It was demonstrated that chitosan has a protective effect against oral mucosal damage caused by MTX. Thus, it may be a candidate agent against MTX induced oral mucositis.
Collapse
|