1
|
Japri NF, Majid ZA, Ghoshal SK, Danial WH, See HH, Othman MZ. On the versatility of graphene-cellulose composites: An overview and bibliometric assessment. Carbohydr Polym 2024; 337:121969. [PMID: 38710542 DOI: 10.1016/j.carbpol.2024.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 05/08/2024]
Abstract
Practical benefits of graphene-cellulose composites (GCC) are categorical. Diverse salient features like thermal and electrical conductivity, mechanical strength, and durability make GCC advantageous for widespread applications. Despite extensive studies the basic understanding of various fundamental aspects of this novel complex remains deficient. Based on this fact, a critical overview and bibliometric analysis involving the overall prospects of GCC was made wherein a total of 1245 research articles from the Scopus database published during the year 2002 to 2020 were used. For the bibliometric assessment, various criteria including the publication outputs, co-authorships, affiliated countries, and co-occurrences of the authors' keywords were explored. Environmental amiability, sustainability, economy, and energy efficiency of GCC were emphasized. In addition, the recent trends, upcoming challenges, and applied interests of GCC were highlighted. The findings revealed that the studies on GCC related to the energy storage, adsorption, sensing, and printing are ever-increasing, indicating the global research drifts on GCC. The bibliometric map analysis displayed that among the researchers from 61 countries/territories, China alone contributed about 50 % of the international publications. It is asserted that the current article may offer taxonomy to navigate into the field of GCC wherein stronger collaboration networks can be established worldwide through integrated research activities desirable for sustainable development.
Collapse
Affiliation(s)
- Nur Faraliana Japri
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - S K Ghoshal
- Physics Department & Laser Center, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | |
Collapse
|
2
|
Eltaweil AS, Al Harby N, El Batouti M, Abd El-Monaem EM. Engineering a sustainable cadmium sulfide/polyethyleneimine-functionalized biochar/chitosan composite for effective chromium adsorption: optimization, co-interfering anions, and mechanisms. RSC Adv 2024; 14:22266-22279. [PMID: 39010926 PMCID: PMC11247309 DOI: 10.1039/d4ra03479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
A novel eco-friendly adsorbent was fabricated by mixing mushroom-derived cadmium sulfide and polyethyleneimine-functionalized biochar that was fabricated from coffee waste with a chitosan biopolymer. The green-synthesized CdS/PEI-BC/CTS composite was analyzed using several characterization methods to identify its morphological, compositional, and structural characteristics. In addition, the adsorption property of the composite was investigated for hexavalent chromium as a model for anionic heavy metals. The best adsorption conditions to efficiently adsorb Cr(vi) onto CdS/PEI-BC/CTS were scrutinized in the batch mode. The experimental results elucidated that the higher adsorption efficacy for Cr(vi) was 97.89% at pH = 3, Cr(vi) concentration = 50 mg L-1, CdS/PEI-BC/CTS dose = 0.01 g, and temperature = 20 °C. The impact of co-interfering anionic species on Cr(vi) adsorption was identified in simulated wastewater. The recycling property of the CdS/PEI-BC/CTS composite was assessed for ten runs to ensure the applicability of the green composite. The adsorption mechanism and interaction types were proposed on the basis of kinetic and isotherm studies, along with analysis tools. The mechanistic study proposed that the Cr(vi) adsorption onto CdS/PEI-BC/CTS occurred via chemical and physical pathways, including protonation, electrostatic interactions, reduction, and coordination bonds.
Collapse
Affiliation(s)
- Abdelazeem S Eltaweil
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences Sultanate of Oman
- Department of Chemistry, Faculty of Science, Alexandria University 21934 Alexandria Egypt Mervette.elbatouti@.alexu.edu.eg
| | - Nouf Al Harby
- Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia
| | - Mervette El Batouti
- Department of Chemistry, Faculty of Science, Alexandria University 21934 Alexandria Egypt Mervette.elbatouti@.alexu.edu.eg
| | - Eman M Abd El-Monaem
- Department of Chemistry, Faculty of Science, Alexandria University 21934 Alexandria Egypt Mervette.elbatouti@.alexu.edu.eg
| |
Collapse
|
3
|
Qin Y, Chai B, Sun Y, Zhang X, Fan G, Song G. Amino-functionalized cellulose composite for efficient simultaneous adsorption of tetracycline and copper ions: Performance, mechanism and DFT study. Carbohydr Polym 2024; 332:121935. [PMID: 38431402 DOI: 10.1016/j.carbpol.2024.121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
A novel cellulose composite (denoted as PEI@MMA-1) with porous interconnected structure was prepared by adsorbing methyl cellulose (MC) onto microcrystalline cellulose (MCC) and cross-linking polyethyleneimine (PEI) with MCC by the action of epichlorohydrin, which had the excellent adsorption property, wettability and elasticity. The performances of PEI@MMA-1 composite for removing tetracycline (TC), Cu2+ and coexistent pollutant (TC and Cu2+ mixture) were systematically explored. For single TC or Cu2+ contaminant, the maximum adsorption capacities were 75.53 and 562.23 mg/g at 30 °C, respectively, while in the dual contaminant system, they would form complexes and Cu2+ could play a "bridge" role to remarkably promote the adsorption of TC with the maximum adsorption capacities of 281.66 and 253.58 mg/g for TC and Cu2+. In addition, the adsorption kinetics, isotherms and adsorption mechanisms of single-pollutant and dual-pollutant systems have been thoroughly investigated. Theoretical calculations indicated that the amide group of TC molecule with the assistance of Cu2+ interacted with the hydroxyl group of PEI@MMA-1 composite to enhance the TC adsorption capacity. Cycle regeneration and fixed bed column experiments revealed that the PEI@MMA-1 possessed the excellent stability and utility. Current PEI@MMA-1 cellulose composite exhibited a promising application for remediation of heavy metals and antibiotics coexistence wastewater.
Collapse
Affiliation(s)
- Yi Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Bo Chai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Ya Sun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Xiaohu Zhang
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
4
|
El-Monaem EMA, Gomaa H, Omer AM, El-Subruiti GM, Eltaweil AS. Sequestration of Pb(II) using channel-like porous spheres of carboxylated graphene oxide-incorporated cellulose acetate@iminodiacetic acid: optimization and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32664-32679. [PMID: 38658512 PMCID: PMC11133213 DOI: 10.1007/s11356-024-33185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
The adsorption property of the costless green cellulose acetate (CA) was boosted by the dual modifications: inner modification by incorporating carboxylated graphene oxide (COOH-GO) into the CA spheres and outer modification by the surface modification of the COOH-GO@CA spheres by iminodiacetic acid (IDA) for removing Pb(II). The adsorption experiments of the Pb(II) proceeded in a batch mode to evaluate the adsorption property of the COOH-GO@CA@IDA spheres. The maximal Pb(II) adsorption capacity attained 613.30 mg/g within 90 min at pH = 5. The removal of Pb(II) reached its equilibrium within 20 min, and the removal % was almost 100% after 30 min at the low Pb(II) concentration. The Pb(II) adsorption mechanism was proposed according to the kinetics and isotherms studies; in addition, the zeta potential (ZP) measurements and X-ray Photoelectron Spectroscopy (XPS) analysis defined the adsorption pathways. By comparing the XPS spectra of the authentic and used COOH-GO@CA@IDA, it was deduced that the contributed chemical adsorption pathways are Lewis acid-base, precipitation, and complexation. The zeta potential (ZP) measurements demonstrated the electrostatic interaction participation in adsorbing the cationic Pb(II) species onto the negatively charged spheres (ZP = 14.2 mV at pH = 5). The unique channel-like pores of the COOH-GO@CA@IDA spheres suggested the pore-filling mechanism of Pb(II). The promising adsorption results and the superb recyclability character of COOH-GO@CA@IDA enable it to extend of the bench scale to the industrial scale.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelazeem S Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Ibra, Sultanate of Oman
| |
Collapse
|
5
|
Zabermawi NM, Bestawy EE. Effective treatment of petroleum oil-contaminated wastewater using activated sludge modified with magnetite/silicon nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17634-17650. [PMID: 37126170 PMCID: PMC11289328 DOI: 10.1007/s11356-023-26557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The study aimed to optimize the treatment of oil refinery-contaminated wastewater through modification of the well-established activated sludge process with new nanocomposite (NC) materials to produce high-quality treated effluents for potential reuse. Refinery wastewater samples were collected from one of the major oil refineries, Alexandria, Egypt, where the operation, performance, and efficiency of the current activated sludge (AS) unit were evaluated for 6 consecutive months. Two AS bench scale PVC basins were constructed. Magnetite nanoparticles (Fe3O4 NPs) and magnetite silica (Fe3O4/silica) nanocomposite (NC) were prepared and characterized. Bioremediation trials were carried out in a sequential batch mode using Fe3O4/silica NC-modified AS and control (unmodified AS). The proposed treatment produced high-quality effluents in a very short time (2 h) despite the very high initial pollutant concentration accompanied with a reduction in the produced sludge. The highest removal of TSS, TDS, BOD, COD, and OG from raw industrial wastewater recorded 78.33, 3.6, 87.65, 85.17, and 92.92% compared to 55.3, 12.6, 50.0, 40.22, and 56.84%, respectively, achieved by the unmodified AS unit. The results confirmed that integration of the AS treatment with nanomaterial composite is highly effective, promising, and economic for the treatment of highly toxic and complicated industrial wastewater such as petroleum refinery effluents.
Collapse
Affiliation(s)
- Nidal M Zabermawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah, 21551, Kingdom of Saudi Arabia
| | - Ebtesam El Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| |
Collapse
|
6
|
Omer AM, El-Sayed M, Abd El-Monaem EM, El-Subruiti GM, Eltaweil AS. Graphene oxide@Fe 3O 4-decorated iota-carrageenan composite for ultra-fast and highly efficient adsorption of lead (II) from water. Int J Biol Macromol 2023; 253:127437. [PMID: 37839607 DOI: 10.1016/j.ijbiomac.2023.127437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
The aggravated problem of lead pollution, especially in aquatic environments, necessitates the development of eminent adsorbents that could radically solve this environmental problem. Hence, a new composite was constructed based on iota carrageenan (i.Carr), graphene oxide (GO) and magnetite (Fe3O4) for removing noxious Pb2+ ions. The GO@Fe3O4-i.Carr composite was characterized by VSM, SEM, XPS, XRD, FTIR and Zeta potential. The removal of Pb2+ ions attained a quick equilibrium of almost 30 min with a removal efficiency reaching 93.68 %. The removal of Pb2+ was boosted significantly, in the order of GO@Fe3O4-i.Carr(1:1) > GO@Fe3O4-i.Carr(1:3) > GO@Fe3O4-i.Carr(3:1). Moreover, acquired experimental data fitted the pseudo 2nd order kinetic model and Freundlich isotherm model with a maximal monolayer adsorption capacity reached 440.05 mg/g. Notably, after five adsorption runs, the composite maintained its removal efficiency exceeding 74 %. The assumed adsorption mechanisms of Pb2+ onto GO@Fe3O4-i.Carr were complexation, precipitation, Lewis acid-base, and electrostatic attraction forces. Overall, the GO@Fe3O4-i.Carr composite elucidated the auspicious adsorbent criteria, comprising fast adsorption with high performance, ease-separation and tolerable recyclability, advising its feasible use to decontaminate water bodies from hazardous heavy metals.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research an d Technological Applications (SRTA - City), New Borg El -Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Mohamed El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; The Egyptian Ethylene and Derivatives Company (ETHYDCO), Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
7
|
Naren T, Jiang R, Qing P, Huang S, Ling C, Lin J, Wei W, Ji X, Chen Y, Zhang Q, Kuang GC, Chen L. Stabilizing Lithium Metal Batteries by Synergistic Effect of High Ionic Transfer Separator and Lithium-Boron Composite Material Anode. ACS NANO 2023; 17:20315-20324. [PMID: 37787661 DOI: 10.1021/acsnano.3c06336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The development of lithium (Li) metal batteries (LMBs) has been limited by problems, such as severe dendrite growth, drastic interfacial reactions, and large volume change. Herein, an LMB (8AP@LiB) combining agraphene oxide-poly(ethylene oxide) (PEO) functionalized polypropylene separator (8AP) with a lithium-boron (LiB) anode is designed to overcome these problems. Raman results demonstrate that the PEO chain on 8AP can influence the Li+ solvation structure in the electrolyte, resulting in Li+ homogeneous diffusion and Li+ deposition barrier reduction. 8AP exhibits good ionic conductivity (4.9 × 10-4 S cm-1), a high Li+ migration number (0.88), and a significant electrolyte uptake (293%). The 3D LiB skeleton can significantly reduce the anode volume changes and local current density during the charging/discharging process. Therefore, 8AP@LiB effectively regulates the Li+ flux and promotes the uniform Li deposition without dendrites. The Li||Li symmetrical cells of 8AP@LiB exhibit a high electrochemical stability of up to 1000 h at 1 mA cm-2 and 5 mAh cm-2. Importantly, the Li||LiFePO4 full cells of 8AP@LiB achieve an impressive 2000 cycles at 2C, while maintaining a high-capacity retention of 86%. The synergistic effect of the functionalized separator and LiB anode might provide a direction for the development of high-performance LMBs.
Collapse
Affiliation(s)
- Tuoya Naren
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
- Department of Materials Science and Engineering, City Universityof Hong Kong, Hong Kong, SAR 999077, People's Republic of China
| | - Ruheng Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Piao Qing
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Shaozhen Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Canhui Ling
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Jialin Lin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Weifeng Wei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yuejiao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City Universityof Hong Kong, Hong Kong, SAR 999077, People's Republic of China
| | - Gui-Chao Kuang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
8
|
Naggar AH, Seaf-Elnasr TA, Thabet M, El-Monaem EMA, Chong KF, Bakr ZH, Alsohaimi IH, Ali HM, El-Nasser KS, Gomaa H. A hybrid mesoporous composite of SnO 2 and MgO for adsorption and photocatalytic degradation of anionic dye from a real industrial effluent water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108247-108262. [PMID: 37747604 DOI: 10.1007/s11356-023-29649-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Water pollution by synthetic anionic dyes is one of the most critical ecological concerns and challenges. Therefore, there is an urgent need to find an efficient adsorbent and photocatalyst for dye removal. In the present study, we aimed to fabricate a hybrid mesoporous composite of spongy sphere-like SnO2 and three-dimensional (3D) cubic-like MgO (SnO2/MgO) as a promising adsorbent/photocatalyst to remove the anionic sunset yellow (SSY) dye from real wastewater at neutral pH conditions. The as-synthesized SnO2 and MgO composite was investigated using XRD, SEM, EDX, TEM, XPS, BET, and zeta potential. The experimental study of the SSY removal using SnO2/MgO composite was performed at different conditions, such as pH, stirring time, dose, and temperature. More than 99% of 10 mg/L SSY was effectively adsorbed from aqueous solution using 40 mg of SnO2/MgO composite at pH 7 and a stirring time of 60 min. The SSY adsorption behavior was well fitted by pseudo-second order and the Langmuir model, indicating that the SSY was chemisorbed to the composite-active sites as a monolayer. On the other hand, photocatalytic degradation process exhibited better results in terms of speed of removal and used quantity of photocatalyst, where 20 mg of SnO2/MgO composite can be used to remove > 99% of SSY dye within 30 min. Mechanism of SSY adsorption and photocatalytic degradation was discussed. In addition, elution experiments demonstrated that the SnO2/MgO composite as an SSY adsorbent could be reused for nine cycles without considerable reduction in the SSY adsorption efficiency. Therefore, this work exhibited that the mesoporous SnO2/MgO composite can be considered an effective adsorbent/photocatalyst to remove SSY dye from real industrial effluent water at neutral pH conditions.
Collapse
Affiliation(s)
- Ahmed H Naggar
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
| | - Tarek A Seaf-Elnasr
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia.
| | - Mahmoud Thabet
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Kwok F Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Gambang, Malaysia
| | - Zinab H Bakr
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
| | - Hazim M Ali
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Forensic Chemistry Department, Forensic Medicine Authority, Cairo, Egypt
| | - Karam S El-Nasser
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
9
|
Qin X, Cheng S, Xing B, Qu X, Shi C, Meng W, Zhang C, Xia H. Preparation of pyrolysis products by catalytic pyrolysis of poplar: Application of biochar in antibiotic wastewater treatment. CHEMOSPHERE 2023; 338:139519. [PMID: 37459927 DOI: 10.1016/j.chemosphere.2023.139519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Poplar waste is acted as feedstock to produce renewable biofuel and green chemical by catalytic pyrolysis using ferric nitrate and zinc chloride as additive. The additive contributes to the generation of furfural in bio-oil. Additive promotes the generation of H2 and inhibits the generation of CO with bio-gas heating value of 12.16 MJ (Nm3)-1. Biochar exists ZnO and Fe3O4 with large surface area, which could be used as absorbent and photocatalyst for tetracycline and ciprofloxacin removal. The tetracycline and ciprofloxacin adsorption amount of biochar are 316.41 and 255.23 mg g-1 respectively. While the photocatalytic degradation removal of the tetracycline and ciprofloxacin is close to 100%. The adsorption and photocatalytic degradation mechanism are investigate and analyzed using the density functional theory and electron paramagnetic resonance analysis. Biochar can be quickly recycled and regenerated after use. Besides, biochar can be used in lithium ion battery industry for energy storage, which specific capacity is 535 mAh g-1.
Collapse
Affiliation(s)
- Xiaojing Qin
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Song Cheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China.
| | - Baolin Xing
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China.
| | - XiaoXaio Qu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Changliang Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China
| | - Weibo Meng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China
| | - Hongying Xia
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
| |
Collapse
|
10
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. Functionally-designed floatable amino-modified ZnLa layered double hydroxides/cellulose acetate beads for tetracycline removal: Performance and mechanism. Carbohydr Polym 2023; 311:120752. [PMID: 37028855 DOI: 10.1016/j.carbpol.2023.120752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Eltaweil AS, Abd El-Monaem EM, El-Subruiti GM, Ali BM, Abd El-Latif MM, Omer AM. Graphene oxide incorporated cellulose acetate beads for efficient removal of methylene blue dye; isotherms, kinetic, mechanism and co-existing ions studies. JOURNAL OF POROUS MATERIALS 2023; 30:607-618. [DOI: 10.1007/s10934-022-01347-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 09/01/2023]
Abstract
AbstractIn this investigation, new porous adsorbent beads were formulated via the incorporation of graphene oxide (GO) into cellulose acetate beads (CA) for the adsorptive removal of methylene blue (MB) dye. The experimental results signified that the adsorption of MB dye increased with the increase in the GO ratio from 10 to 25%. In addition, the adsorption process obeyed PSO kinetic model and Langmuir isotherm model with a maximum adsorption capacity reaching 369.85 mg/g. More importantly, it was proposed that the adsorption mechanism of MB dye onto GO@CA proceeded via electrostatic interactions, H-bonding, van der Waals forces, n-π and π -π interactions. Besides, the fabricated beads exhibited an excellent ability to recycle and reuse after five successive cycles. In addition, there was a high selectivity of GO@CA beads towards MB molecules in the presence of co-existing cations such as Fe2+, Zn2+, Cu2+ and Ni2+.
Collapse
|
12
|
Wang C, Feng X, Shang S, Liu H, Song Z, Zhang H. Lignin/sodium alginate hydrogel for efficient removal of methylene blue. Int J Biol Macromol 2023; 237:124200. [PMID: 36972829 DOI: 10.1016/j.ijbiomac.2023.124200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
In this work, a class of bio-based hydrogels (LN-NH-SA hydrogel) were prepared from aminated lignin and sodium alginate. The physical and chemical properties of the LN-NH-SA hydrogel were fully characterized using field emission scanning electron microscopy, thermogravimetric analysis, fourier transform infrared spectroscopy, N2 adsorption-desorption isotherms, and other techniques. LN-NH-SA hydrogels were tested for the adsorption of dyes (methyl orange and methylene blue). The LN-NH-SA@3 hydrogel showed better adsorption efficiency for MB with a maximum adsorption capacity of 388.81 mg·g-1, a bio-based adsorbent with a high adsorption capacity. The adsorption process followed the pseudo-second-order model and fitted to the Freundlich isotherm equation. More importantly, LN-NH-SA@3 hydrogel maintained 87.64 % adsorption efficiency after 5 cycles. Overall, the proposed hydrogel with environmentally friendly and low cost is promising for the absorption of dye contamination.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| |
Collapse
|
13
|
Construction of efficient Ni-FeLDH@MWCNT@Cellulose acetate floatable microbeads for Cr(VI) removal: Performance and mechanism. Carbohydr Polym 2023; 311:120771. [PMID: 37028881 DOI: 10.1016/j.carbpol.2023.120771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Water pollution is an aggravating dilemma that is extending around the world, threatening human survival. Strikingly, the notorious heavy metals like hexavalent chromium ions (Cr6+) cause environmental problems raising awareness of the essentials for finding feasible solutions. For this purpose, the self-floating Ni-FeLDH@MWCNT@CA microbeads were prepared for removing Cr6+. The morphological, thermal, and composition characteristics of Ni-FeLDH@MWCNT@CA microbeads were analyzed using XRD, FTIR, TGA, SEM, XPS, and zeta potential. Notably, the adsorption aptitude of Cr6+ was enhanced by raising the MWCNTs proportion to 5 wt% in microbeads. The Cr6+ adsorption onto Ni-FeLDH@MWCNT@CA fitted Langmuir and Freundlich isotherm models with qm of 384.62 mg/g at pH 3 and 298 K. The adsorption process was described kinetically by the pseudo-2nd order model. More importantly, the adsorption of Cr6+ onto Ni-FeLDH@MWCNT@CA occurred via electrostatic interactions, inner/outer sphere complexations, ion exchange, and reduction mechanisms. Besides, the cycling test showed the remarkable reusability of Ni-FeLDH@MWCNT@CA floatable microbeads for five subsequent cycles. The self-floating Ni-FeLDH@MWCNT@CA microbeads in this work provide essential support for the potential applications for the remediation of heavy metals-containing wastewater.
Collapse
|
14
|
Zhang X, Zhu D, Wang S, Zhang J, Zhou S, Wang W. Efficient adsorption and degradation of dyes from water using magnetic covalent organic frameworks with a pyridinic structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34669-34683. [PMID: 36515876 DOI: 10.1007/s11356-022-24688-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) have promising applications in environmental remediation owing to their precise directional synthesis and superior adsorption ability. However, magnetic COFs with pyridinic N have not been studied as bifunctional materials for the adsorption and catalytic degradation of dyes. Therefore, in this study, a magnetic COF with a pyridinic structure (BiPy-MCOF) was successfully synthesized using a solvothermal method, which exhibited higher methyl orange (MO) removal than other common adsorbents. The best degradation efficiency via the Fenton-like reaction was obtained by pre-adsorbing MO for 3 h at pH 3.1. Both adsorption and catalytic degradation resulted in better removal of MO under acidic conditions. The introduction of pyridinic N improved MO adsorption and degradation on BiPy-MCOF. The electrostatic potential (ESP) showed that pyridinic N had a strong affinity for MO adsorption. Density functional theory calculations confirmed the potential sites on MO molecules that may be attacked by free radicals. Possible degradation pathways were proposed based on the experimental results. Moreover, BiPy-MCOF could effectively degrade MO at least four times, and a high degradation efficiency was obtained in other dyes applications. The coupling of adsorption and degradation demonstrated that the as-prepared BiPy-MCOF was an effective material for organic dyes removal from water.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shiyi Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Jinwen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China.
| |
Collapse
|
15
|
Yang P, Zhao J, Gong D, Jia X. Zwitterionic ammonium-sulfonato grafted cellulose for efficient thallium removal and adsorption mechanism study. Int J Biol Macromol 2023; 227:1059-1069. [PMID: 36460245 DOI: 10.1016/j.ijbiomac.2022.11.282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Thallium (Tl) has posed serious impacts on human being concerning increasingly serious pollution in aqueous environments. However, little information on removal method than conventional heavy metals have been available. In the present work, zwitterionic N-(3-sulfonato-1-propyl)-N,N-dimethylammonium grafted cellulose fibre (DMAE-PS) has been fabricated. The chemical component, thermal stability and surface properties of as-prepared materials are identified by FT-IR, elemental analysis, TGA, XRD, BET and SEM. DMAE-PS is shown to be very efficient for removing Tl(I) from water samples with a loading capacity of 274.7 mg (Tl(I))·g-1 (DMAE-PS), representing one of the best performances among bio-mass derived materials. The adsorption is consistent with the Freundlich model following a pseudo-second order (K2 = 4.36 × 10-4 g·mg-1·min-1, R2 = 0.999) and two-step intra-particle diffusion kinetics. The selectivity towards Tl(I) is also remarkably, 1-2 orders (distribution ratio KTl/M = 14.85-289.29) of magnitude larger than competing metals (Zn2+, Cr3+, Mn2+, Cu2+ and Cd2+). The SEM, XPS and UV-visible spectrum collectively reveal that -SO3--Tl(I) ionic interaction is probably the main driving force for specific adsorption, which shows a high stability against pH variation. The fabricated DMAE-PS is a sustainable bio-adsorbent with synthetic availability, high removing capacity and strong selectivity, therefore, potentially feasible in treatment of Tl(I) polluted environmental samples.
Collapse
Affiliation(s)
- Panpan Yang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Junyi Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799, Jimei Road, Xiamen, Fujian 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315830, PR China
| | - Dirong Gong
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Xiaoyu Jia
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799, Jimei Road, Xiamen, Fujian 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315830, PR China.
| |
Collapse
|
16
|
Enhanced Photoredox Activity of BiVO4/Prussian Blue Nanocomposites for Efficient Pollutant Removal from Aqueous Media under Low-Cost LEDs Illumination. Catalysts 2022. [DOI: 10.3390/catal12121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bismuth vanadate (BiVO4, BV) is a widely explored photocatalyst for photo(electro)chemical applications, but its full photocatalytic potential is hindered by the fast recombination and low mobility of photogenerated charge carriers. Herein, we propose the photodeposition of different amounts of Prussian blue (PB) cocatalysts on the surface of monoclinic BV to obtain BV-PB composite photocatalysts with increased photoactivity. The as-prepared BV and BV-PB composites were characterized by an array of analytic techniques such scanning eletron microscopy (SEM), transmission eletron microscopy (TEM), X-day diffraction (XRD), and spectroscopic techniques including Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photoluminescence (PL), and Raman spectroscopy. The addition of PB not only increases the absorption of visible light, as indicated by DRS, but also improves the charge carriers’ transfer across the photocatalysts/solution interface and hence reduces electron-hole (e−-h+) recombination, as confirmed by EIS and PL measurements. Resultantly, the BV-PB composite photocatalysts with optimum PB loading exhibited enhanced Cr(VI) photoreduction efficiency as compared to pristine BV under visible light illumination from low-power blue light-emitting diodes (LEDs), thanks to the cocatalyst role of PB which mediates the transfer of photoexcited conduction band (CB) electrons from BV to Cr(VI) species in solution. Moreover, as compared to pristine BV and BV + H2O2, a drastic increase in the methylene blue (MB) photo-oxidation efficiency was observed for BV-PB in the presence of a minute quantity of H2O2 due to a synergic effect between the photocatalytic and Fenton-like processes. While pure BV photodegraded around 70% of MB dye within 120 min, the BV-PB/H2O2 and BV/H2O2 system could degrade almost 100% of the dye within 20 min (kobs. = 0.375 min−1) and 40 min (kobs. = 0.055 min−1), respectively. The practical approach employed in this work may pioneer new prospects for synthesizing new BV-based photocatalytic systems with low production costs and high photoredox efficiencies.
Collapse
|
17
|
Alginate-based foam filled with nano-zeolite for effective adsorptive removal of methylene blue from water: performance and effect of operating conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
A cyclophosphazene-derived porous organic polymer with P-N linkage for environmental adsorption applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Zhang X, Zhang X, Zhao S, Cai Y, Wang S. Sulfurized bimetallic biochar as adsorbent and catalyst for selective co-removal of cadmium and PAHs from soil washing effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120333. [PMID: 36208826 DOI: 10.1016/j.envpol.2022.120333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Although biosurfactant enhanced soil washing is effective to remediate Polycyclic Aromatic Hydrocarbons (PAHs)-Heavy metals (HMs) co-contaminated soil, the treatment of soil washing effluents containing pollutant and biosurfactant remains a critical challenge. In this study, the sulfurized Fe-Mn bimetallic biochar, named FMSBC was prepared, which exhibited excellent performance in activating sodium percarbonate (SPC) to degrade phenanthrene and the good adsorption capacity of cadmium. A simple system using FMSBC adsorption and SPC oxidation (FMSBC/SPC) is thus developed to remove phenanthrene and cadmium from soil washing effluents. Although there was antagonistic behavior between PAHs and HMs in the FMSBC/SPC system, over 80% phenanthrene and cadmium can be simultaneously removed from soil washing effluents. Adsorption of cadmium was mainly driven by complexation and precipitation. Free radical quenching studies and electron paramagnetic resonance (EPR) analyses verified that the dominant radical in the FMSBC/SPC system was hydroxyl radical (·OH). The performances of adsorption and catalyst were stable across a wide pH range and in the presence of competitive metal ions or natural organic matters. The recovered biosurfactants could be further reused for three washing cycles. This study has suggested biosurfactant enhanced soil washing coupled with FMSBC/SPC system is a promising method for remediation of HMs-PAHs co-contaminated soil.
Collapse
Affiliation(s)
- Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
20
|
Abdelfatah AM, El-Maghrabi N, Mahmoud AED, Fawzy M. Synergetic effect of green synthesized reduced graphene oxide and nano-zero valent iron composite for the removal of doxycycline antibiotic from water. Sci Rep 2022; 12:19372. [PMID: 36371519 PMCID: PMC9652592 DOI: 10.1038/s41598-022-23684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, the synthesis of an rGO/nZVI composite was achieved for the first time using a simple and green procedure via Atriplex halimus leaves extract as a reducing and stabilizing agent to uphold the green chemistry principles such as less hazardous chemical synthesis. Several tools have been used to confirm the successful synthesis of the composite such as SEM, EDX, XPS, XRD, FTIR, and zeta potential which indicated the successful fabrication of the composite. The novel composite was compared with pristine nZVI for the removal aptitude of a doxycycline antibiotic with different initial concentrations to study the synergistic effect between rGO and nZVI. The adsorptive removal of bare nZVI was 90% using the removal conditions of 25 mg L-1, 25 °C, and 0.05 g, whereas the adsorptive removal of doxycycline by the rGO/nZVI composite reached 94.6% confirming the synergistic effect between nZVI and rGO. The adsorption process followed the pseudo-second order and was well-fitted to Freundlich models with a maximum adsorption capacity of 31.61 mg g-1 at 25 °C and pH 7. A plausible mechanism for the removal of DC was suggested. Besides, the reusability of the rGO/nZVI composite was confirmed by having an efficacy of 60% after six successive cycles of regeneration.
Collapse
Affiliation(s)
- Ahmed M Abdelfatah
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Nourhan El-Maghrabi
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
21
|
Joya-Cárdenas DR, Rodríguez-Caicedo JP, Gallegos-Muñoz A, Zanor GA, Caycedo-García MS, Damian-Ascencio CE, Saldaña-Robles A. Graphene-Based Adsorbents for Arsenic, Fluoride, and Chromium Adsorption: Synthesis Methods Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3942. [PMID: 36432228 PMCID: PMC9698471 DOI: 10.3390/nano12223942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Water contamination around the world is an increasing problem due to the presence of contaminants such as arsenic, fluoride, and chromium. The presence of such contaminants is related to either natural or anthropogenic processes. The above-mentioned problem has motivated the search for strategies to explore and develop technologies to remove these contaminants in water. Adsorption is a common process employed for such proposals due to its versatility, high adsorption capacity, and lower cost. In particular, graphene oxide is a material that is of special interest due to its physical and chemical properties such as surface area, porosity, pore size as well as removal efficiency for several contaminants. This review shows the advances, development, and perspectives of materials based on GO employed for the adsorption of contaminants such as arsenite, arsenate, fluoride, and hexavalent chromium. We provided a detailed discussion of the synthesis techniques and their relationship with the adsorption capacities and other physical properties as well as pH ranges employed to remove the contaminants. It is concluded that the adsorption capacity is not proportional to the surface area in all the cases; instead, the synthesis method, as well as the functional groups, play an important role. In particular, the sol-gel synthesis method shows better adsorption capacities.
Collapse
Affiliation(s)
| | | | | | - Gabriela A. Zanor
- Graduate Program in Biosciences, University of Guanajuato, Irapuato 36500, Mexico
- Department of Environmental Engineering, University of Guanajuato, Irapuato 36500, Mexico
| | - Maya S. Caycedo-García
- Facultad de Ingenierías y Tecnologías, Instituto de Investigación Xerira, Universidad de Santander, Bucaramanga 680003, Colombia
| | | | - Adriana Saldaña-Robles
- Graduate Program in Biosciences, University of Guanajuato, Irapuato 36500, Mexico
- Department of Agricultural Engineering, University of Guanajuato, Irapuato 36500, Mexico
| |
Collapse
|
22
|
Study on the synthesis and properties of an environmentally friendly water treatment agent. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Efficient removal of noxious methylene blue and crystal violet dyes at neutral conditions by reusable montmorillonite/NiFe2O4@amine-functionalized chitosan composite. Sci Rep 2022; 12:15499. [PMID: 36109538 PMCID: PMC9478098 DOI: 10.1038/s41598-022-19570-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
The jeopardy of the synthetic dyes effluents on human health and the environment has swiftly aggravated, threatening human survival. Hence, sustained studies have figured out the most acceptable way to eliminate this poisonous contaminant. Thereby, our investigation aimed to fabricate montmorillonite/magnetic NiFe2O4@amine-functionalized chitosan (MMT-mAmCs) composite as a promising green adsorbent to remove the cationic methylene blue (MB) and crystal violet (CV) dyes from the wastewater in neutral conditions. Interestingly, MMT-mAmCs composite carries high negative charges at a wide pH range from 4 to 11 as clarified from zeta potential measurements, asserting its suitability to adsorb the cationic contaminants. In addition, the experimental study confirmed that the optimum pH to adsorb both MB and CV was pH 7, inferring the ability of MMT-mAmCs to adsorb both cationic dyes in simple process conditions. Furthermore, the ferromagnetic behavior of the MMT-mAmCs composite is additional merit to our adsorbent that provides facile, fast, and flawless separation. Notably, the as-fabricated composite revealed an auspicious adsorbability towards the adsorptive removal of MB and CV, since the maximum adsorption capacity of MB and CV were 137 and 118 mg/g, respectively. Moreover, the isotherm and kinetic investigatins depicted that the adsorption of both cationic dyes fitted Langmuir and Pseudo 2nd order models, respectively. Besides, the advanced adsorbent preserved satisfactory adsorption characteristics with maximal removal efficacy exceeding 87% after reuse for ten consecutive cycles. More importantly, MMT-mAmCs efficiently adsorbed MB and CV from real agricultural water, Nile river water and wastewater samples at the neutral pH medium, reflecting its potentiality to be a superb reusable candidate for adsorptive removal cationic pollutants from their aquatic media.
Collapse
|
24
|
Eltaweil AS, Hashem OA, Abdel-Hamid H, Abd El-Monaem EM, Ayoup MS. Synthesis of a new magnetic Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base for Cr(VI) removal. Int J Biol Macromol 2022; 222:1465-1475. [PMID: 36113599 DOI: 10.1016/j.ijbiomac.2022.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
In this study, a novel magnetic organic-inorganic composite was fabricated. Where, Chitosan, sulfacetamide and ethylacetoacetae were used to prepare a new Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base (SEH-CSB) with a variety of active sites that capable of forming coordinate covalent bonds with Cr(VI). This was followed by modification of the formed SHE-CSB with NiFe2O4 to obtain the magnetic Chitosan-Schiff-base (NiFe2O4@SEH-CSB). NiFe2O4@SEH-CSB was characterized using FTIR, zeta potential, SEM, VSM and XPS. Results clarified that SHE played a crucial role in the removal of Cr(VI). The removal of Cr(VI) on NiFe2O4@SEH-CSB was found to be more fitted to pseudo-2nd order kinetics model and Freundlich isotherm. Besides, the maximum adsorption capacity of NiFe2O4@SEH-CSB for Cr(VI) was found to be 373.61 mg/g. The plausible mechanism for the removal of Cr(VI) on NiFe2O4@SEH-CSB composite suggested coulombic interaction, outer-sphere complexation, ion-exchange, surface complexation and coordinate-covalent bond pathways. The magnetic property enabled easy recycling of NiFe2O4@SEH-CSB composite.
Collapse
Affiliation(s)
| | - Omar A Hashem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
25
|
Bat-Amgalan M, Miyamoto N, Kano N, Yunden G, Kim HJ. Preparation and Characterization of Low-Cost Ceramic Membrane Coated with Chitosan: Application to the Ultrafine Filtration of Cr(VI). MEMBRANES 2022; 12:membranes12090835. [PMID: 36135854 PMCID: PMC9504684 DOI: 10.3390/membranes12090835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 05/12/2023]
Abstract
In this work, low-cost ceramic membranes (CMs) were prepared from ultrafine starting powders such as kaolin, clay, and starch by a dry compaction method. The ceramic membranes were sintered at different temperatures and times and were characterized by XRD, XRF, TG-DTA, SEM-EDS, N2-BET, water absorption, compressive strength, and pure water flux. The optimal membrane, sintered at 1000 °C for 3 h, possessed water absorption of 27.27%, a compressive strength of 31.05 MPa, and pure water flux of 20.74 L/h m2. Furthermore, chitosan crosslinked with glutaraldehyde was coated on the surface of the ceramic membrane by the dip coating method, and the pore size of the chitosan-coated ceramic membrane (CCCM) was 16.24 nm. Eventually, the separation performance of this membrane was assessed for the removal of chromium(VI) from aqueous solution. The ultrafine filtration of Cr(VI) was studied in the pH range of 2-7. The maximum removal of Cr(VI) was observed to be 71.25% with a pH of 3. The prepared CCCM showed good membrane properties such as mechanical stability and ultrafine structure, which have important applications for the treatment of wastewater including such heavy metals.
Collapse
Affiliation(s)
- Munkhpurev Bat-Amgalan
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Sciences and Technology, Ulaanbaatar 14191, Mongolia
| | - Naoto Miyamoto
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
- Correspondence: ; Tel.: +81-025-262-7218
| | - Ganchimeg Yunden
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Sciences and Technology, Ulaanbaatar 14191, Mongolia
| | - Hee-Joon Kim
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, Hachioji 192-0015, Japan
| |
Collapse
|
26
|
Farooq S, Aziz H, Ali S, Murtaza G, Rizwan M, Saleem MH, Mahboob S, Al-Ghanim KA, Riaz MN, Murtaza B. Synthesis of Functionalized Carboxylated Graphene Oxide for the Remediation of Pb and Cr Contaminated Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710610. [PMID: 36078326 PMCID: PMC9518387 DOI: 10.3390/ijerph191710610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 05/03/2023]
Abstract
With the growing scarcity of water, the remediation of water polluted with heavy metals is the need of hour. The present research work is aimed to address this problem by adsorbing heavy metals ions (Pb (II) and Cr (VI)) on modified graphene oxide having an excess of carboxylic acid groups. For this, graphene oxide (GO) was modified with chloroacetic acid to produce carboxylated graphene oxide (GO-COOH). The successful synthesis of graphene oxide and its modification has been confirmed using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray Diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and Transmission electron microscopy (TEM). The increase in surface area of graphene oxide after treatment with chloroacetic acid characterized by BET indicated its successful modification. A batch experiment was conducted to optimize the different factors affecting adsorption of both heavy metals on GO-COOH. After functionalization, we achieved maximum adsorption capacities of 588.23 mg g-1 and 370.37 mg g-1 for Pb and Cr, respectively, by GO-COOH which were high compared to the previously reported adsorbents of this kind. The Langmuir model (R2 = 0.998) and Pseudo-second-order kinetic model (R2 = 0.999) confirmed the monolayer adsorption of Pb and Cr on GO-COOH and the chemisorption as the dominant process governing adsorption mechanism. The present work shows that the carboxylation of GO can enhance its adsorption capacity efficiently and may be applicable for the treatment of wastewater.
Collapse
Affiliation(s)
- Sana Farooq
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38040, Pakistan
| | - Humera Aziz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38040, Pakistan
- Correspondence: (H.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38040, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (H.A.); (S.A.)
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mian N. Riaz
- 2476 TAMU, Texas A&M University, College Station, TX 778, USA
| | - Behzad Murtaza
- Department of Environmental Sciences, Vehari-Campus, COMSATS University Islamabad, Vehari 61100, Pakistan
| |
Collapse
|
27
|
Mohd Ramli MR, Shoparwe NF, Ahmad MA. Methylene Blue Removal Using Activated Carbon Adsorbent from Jengkol Peel: Kinetic and Mass Transfer Studies. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07141-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Floatable cellulose acetate beads embedded with flower-like zwitterionic binary MOF/PDA for efficient removal of tetracycline. J Colloid Interface Sci 2022; 620:333-345. [DOI: 10.1016/j.jcis.2022.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
|
29
|
Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: optimization using response surface methodology. Sci Rep 2022; 12:9339. [PMID: 35660768 PMCID: PMC9167308 DOI: 10.1038/s41598-022-13105-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
New multi-featured adsorbent beads were fabricated through impregnation of sulfonated graphene (SGO) oxide into cellulose acetate (CA) beads for fast adsorption of cationic methylene blue (MB) dye. The formulated SGO@CA composite beads were thoroughly characterized by several tools including FTIR, TGA, SEM, XRD, XPS and zeta potential. The optimal levels of the most significant identified variables affecting the adsorption process were sequential determined by the response surface methodology (RSM) using Plackett–Burman and Box–Behnken designs. The gained results denoted that the surface of SGO@CA beads displayed the higher negative charges (− 42.2 mV) compared to − 35.7 and − 38.7 mV for pristine CA and SGO, respectively. In addition, the floated SGO@CA beads demonstrated excellent floating property, fast adsorption and easy separation. The adsorption performance was accomplished rapidly, since the adsorption equilibrium was closely gotten within 30 min. Furthermore, the adsorption capacity was greatly improved with increasing SGO content from 10 to 30%. The obtained data were followed the pseudo-second order kinetic model and agreed with Langmuir adsorption isotherm model with a maximum adsorption capacity reached 234.74 mg g−1. The thermodynamic studies designated the spontaneity and endothermic nature of MB dye adsorption. Besides, the floated beads exposed acceptable adsorption characteristics for six successive reuse cycles, in addition to their better adsorption selectivity towards MB dye compared to cationic crystal violet and anionic Congo red dyes. These findings assume that the formulated SGO@CA floated beads could be used effectively as highly efficient, easy separable and reusable adsorbents for the fast removal of toxic cationic dyes.
Collapse
|