1
|
Li N, Jiang D, Zhou Z, Lu Y, Lei-Zhong, Law WC, Tang CY. Development of carboxymethyl cellulose/starch films enriched with ZnO-NPs and anthocyanins for antimicrobial and pH-indicating food packaging. Int J Biol Macromol 2024; 282:136814. [PMID: 39454908 DOI: 10.1016/j.ijbiomac.2024.136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Active packaging, which can monitor food freshness and extend the shelf life, has gained significant attention in recent years. This study aims to develop a novel carboxymethyl cellulose (CMC)/starch/anthocyanins/ZnO active films with enhanced properties and specific functionalities. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that the addition of anthocyanins and nano-ZnO particles (ZnO-NPs) led to heterogeneous microstructures and a slight decrease in the crystallinity. Fourier transform infrared spectroscopy (FTIR) indicated that there were no chemical interactions among film components. Active films containing ZnO-NPs exhibited improved ductility, as well as enhanced light barrier and water resistance properties. Notably, a shift from hydrophilic to hydrophobic behavior of the films was observed with high ZnO-NP content, as evidenced by a significant increase in the water contact angle (from 63.44° to 114.22°). Furthermore, the presence of only 1 % ZnO-NPs resulted in efficient inhibition of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth. Moreover, active films containing both anthocyanins and ZnO-NPs were highly sensitive to pH changes in buffer solutions (pH 2-11). Based on the results, a recommended film formulation for future active packaging applications is a 80:20 CMC/starch blend with 3 % ZnO-NPs and 0.1 g anthocyanins.
Collapse
Affiliation(s)
- Nannan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Dongyang Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Zeguang Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Yanyue Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Lei-Zhong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Wing Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chak Yin Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Li M, Liu Y, Wang Y, Liu T, Li Z, Jiang L. Development, characterization and application of chitosan/locust bean gum based multifunctional green food packaging containing Koelreuteria paniculata Laxm. bracts extract and Ti-carbon dots. Int J Biol Macromol 2024; 278:134610. [PMID: 39128737 DOI: 10.1016/j.ijbiomac.2024.134610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Multifunctional green food packaging films were developed by incorporating Koelreuteria paniculata Laxm. bract extract (KBE) and bio-waste-derived Ti-doped carbon dots (Ti-CDs) into a chitosan/locust bean gum (CG) matrix for the first time. Results from FTIR and XRD demonstrated the precise bonding of Ti-CDs to CG through a Schiff base reaction and hydrogen bonding, while KBE was effectively immobilized within the film matrix via hydrogen bonding. SEM and TGA analysis demonstrated enhanced thermal stability and density of the films. Addition of Ti-CDs synergistically improved the barrier properties and mechanical strength of the films through enhanced hydrogen bonding and Schiff base reactions. Specifically, the incorporation of 3 wt% Ti-CDs increased the oxygen barrier properties, tensile strength, water resistance, and vapor permeability of CG films by approximately 1.18, 0.75, and 1.51 times, respectively. Furthermore, the antimicrobial and antioxidant capabilities were significantly improved with the addition of KBE to films. The CG-3%CDs-KBE film coating effectively prolonged the shelf life of strawberries. Additionally, these films exhibited superior pH responsiveness and ammonia-sensitivity, enabling visual monitoring of shrimp freshness during storage. Importantly, CG-3%CDs-KBE films exhibited biodegradability in soil and displayed good biosafety. Overall, these findings underscore the promising potential of CG-3%CDs-KBE films as multifunctional green food packaging materials.
Collapse
Affiliation(s)
- Mei Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yingzhu Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yanyan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ziao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Longwei Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Su J, Zhang W, Moradi Z, Rouhi M, Parandi E, Garavand F. Recent functionality developments of carboxymethyl chitosan as an active food packaging film material. Food Chem 2024; 463:141356. [PMID: 39316899 DOI: 10.1016/j.foodchem.2024.141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
In recent years, environmental concerns regarding the persistence of petroleum-based plastic food packaging have increased, prompting the exploration of biopolymer alternatives. Carboxymethyl chitosan (CMCS), a derivative of chitosan, exhibits superior water-soluble film properties, making it an ideal material for degradable food packaging applications. This study comprehensively examines the synthesis methods and properties of CMCS, with a particular emphasis on recent advancements in CMCS-based food packaging films. Various functionalized CMCS-based food packaging films, including coblended, nanoparticle composite, plant extract composite, and cross-linked films, were reviewed. The practical applications of CMCS-based food packaging films and edible coatings in food preservation are also showcased. This study emphasizes that the notable compatibility of CMCC with a range of polymers and additives has facilitated the development of multifunctional packaging films. These innovations, including antibacterial, antioxidant, and smart-indicating variants, have demonstrated remarkable efficacy in preserving fruits, aquatic products, poultry, and other perishable goods.
Collapse
Affiliation(s)
- Jiaqi Su
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Zahra Moradi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Rouhi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Center, Fermoy, Ireland
| |
Collapse
|
4
|
He K, Sheng W, Yang L, Yang Y, Tang T, Wang C, Jiang G, Tian Y. Novel Carboxymethyl Cellulose/Gelatin-Based Film Incorporated with Zein-Stabilized Lemon Essential Oil Pickering Emulsion for the Preservation of Cherries. Foods 2024; 13:2602. [PMID: 39200529 PMCID: PMC11353400 DOI: 10.3390/foods13162602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
In this study, a zein-stabilized lemon essential oil Pickering emulsion (ZLPE) was incorporated into a carboxymethyl cellulose/gelatin (CMC/GL) composite film to develop a bio-based packaging material with bioactive properties. The average droplet size of the ZLPE was measured at 3.62 ± 0.08 μm, with a zeta potential of -31.33 ± 0.32 mV, highlighting its excellent stability. The image results of confocal laser microscopy and scanning electron microscopy validated the uniform distribution of ZLPE in the film. The incorporation of ZLPE reduced the water solubility of films by 45.90% and decreased its water vapor permeability by 22.61%, thereby enhancing its hydrophobicity. Additionally, the ZLPE-loaded film improved mechanical properties, enhanced UV-blocking capabilities, and increased thermal stability. The introduction of ZLPE led to the antioxidant activity of the CMC/GL film increasing by six times the original level and endowed it with outstanding antibacterial properties. As a result, cherries packaged with the ZLPE film demonstrated superior preservation performance and extended shelf life in the preservation experiment, exhibiting the film's potential as a food packaging material.
Collapse
Affiliation(s)
- Kaiwen He
- College of Biomass Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China; (K.H.); (W.S.); (L.Y.); (Y.Y.); (Y.T.)
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
| | - Wenyang Sheng
- College of Biomass Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China; (K.H.); (W.S.); (L.Y.); (Y.Y.); (Y.T.)
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China; (K.H.); (W.S.); (L.Y.); (Y.Y.); (Y.T.)
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
| | - Yicheng Yang
- College of Biomass Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China; (K.H.); (W.S.); (L.Y.); (Y.Y.); (Y.T.)
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
| | - Tingting Tang
- College of Agriculture and Forestry Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404160, China;
| | - Chenzhi Wang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China; (K.H.); (W.S.); (L.Y.); (Y.Y.); (Y.T.)
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China; (K.H.); (W.S.); (L.Y.); (Y.Y.); (Y.T.)
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
| |
Collapse
|
5
|
Li C, Song A, Wu Y, Gao Y, Li C. Intelligent double-layer film based on gellan gum/modified anthocyanin/curcumin/sodium alginate/zinc oxide for monitoring shrimp freshness. Int J Biol Macromol 2024; 274:132724. [PMID: 38815946 DOI: 10.1016/j.ijbiomac.2024.132724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this study, intelligent double-layer films were prepared using modified black rice anthocyanin (MBRA)-curcumin (CUR)-gellan gum (GG) as the inner indicator layer and sodium alginate (ALG)‑zinc oxide (ZnO) as the outer antimicrobial layer. The bilayer films were successfully prepared, as revealed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction measurements. The mechanical characteristics, moisture content, and water vapor resistance of GG-MBRA/CUR1@ALG-ZnO, GG-MBRA/CUR2@ALG-ZnO, and GG-MBRA/CUR3@ALG-ZnO films showed significant enhancement compared to GG-MBRA/CUR3 and ALG-ZnO films. The bilayer films exhibited excellent pH responsiveness and reacted effectively to ammonia. The outer layer significantly improved the antioxidant and antibacterial properties of the inner layer. When the films were applied to shrimp, it was found that the double-layer films not only monitored the freshness of the shrimp in real-time but also were influential in extending the shelf life of the shrimp by about 1 d. Therefore, the double-layer film demonstrated potential as a smart packaging material for real-time monitoring of meat product freshness.
Collapse
Affiliation(s)
- Chenyu Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Anning Song
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan Gao
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
6
|
Wang Z, Zheng Y, Hu Y, Yang L, Liu X, Zhao R, Gao M, Li Z, Feng Y, Xu Y, Li N, Yang J, Wang Q, An L. Improvement of antibacterial activity of polysaccharides via chemical modification: A review. Int J Biol Macromol 2024; 269:132163. [PMID: 38729490 DOI: 10.1016/j.ijbiomac.2024.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| | - Xirui Liu
- School of Foreign Languages, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
7
|
Han Lyn F, Ismail-Fitry MR, Noranizan MA, Tan TB, Nur Hanani ZA. Recent advances in extruded polylactic acid-based composites for food packaging: A review. Int J Biol Macromol 2024; 266:131340. [PMID: 38574927 DOI: 10.1016/j.ijbiomac.2024.131340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
This review article provides a comprehensive overview of recent progress in polylactic acid (PLA) extrusion, emphasizing its applications in food packaging. PLA has witnessed a significant rise in demand, particularly within the food packaging sector. A notable increase in research publications has been observed in recent years, exploring the extrusion of PLA and PLA-based composite films. In comparison to conventional techniques such as solvent casting, extrusion offers advantages in scalability and environmental sustainability, especially for industrial-scale production. The benefits of this method include faster drying times, enhanced flexibility, consistent film thickness, and less structural defects. Extensive research has focused on the effect of various PLA blends on film properties, including flexibility, elongation, and barrier properties against water vapour and gases. Furthermore, the incorporation of compounds such as antioxidants, antimicrobials, and natural pigments has enabled the development of active and intelligent PLA-based packaging. This article summarizes the types of additives employed to enhance the physicochemical properties of extruded PLA and film performance. Additionally, this article explores the diverse applications of extruded PLA in active and intelligent packaging for various food products.
Collapse
Affiliation(s)
- F Han Lyn
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - M R Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - M A Noranizan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Tai Boon Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Z A Nur Hanani
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
Tie S, Zhang Q, Zhao Y, Wu Y, Liu D, Zhao L, Gu S. Design and preparation of novel antioxidant and antibacterial films containing procyanidins and phycocyanin for food packaging. RSC Adv 2024; 14:7572-7581. [PMID: 38440267 PMCID: PMC10910461 DOI: 10.1039/d3ra08653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
The purpose of this study was to design a novel antioxidant and antibacterial film for food packaging using food-grade raw materials. The films were designed and fabricated based on carboxymethyl chitosan and pectin incorporated with procyanidins (PCs) and phycocyanin (Phy) by the tape casting method. The effects of different proportions of PCs and Phy on the properties and functions of the prepared films were studied. The results showed that the thickness of films could range from 55 to 70 μm, with dense network structure and uniform distribution of elements. Compared with C-Film group, the film loaded with PCs and Phy had lower water solubility and swelling rate, and higher tensile strength and elongation at break. FITR and XRD spectra revealed the molecular interaction mechanism among carboxymethyl chitosan, pectin, PCs and Phy, which could effectively endow the films with ultraviolet barrier properties. Moreover, the addition of PCs and Phy could effectively improve the antioxidant capacity and antibacterial effect of films, for example, the free radical scavenging abilities of most films were above 80% when the concentration of PCs was 40 μg mL-1. In view of these functional properties, the prepared film containing PCs and Phy have been successfully used in food packaging, which was proved by the preservation experiment of grapes. This study can provide theoretical and technical guidance for the preparation of biodegradable antibacterial films, and their application in the food packaging field.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Qing Zhang
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Yixuan Zhao
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Dasu Liu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| |
Collapse
|
9
|
Primo LMDG, Roque-Borda CA, Carnero Canales CS, Caruso IP, de Lourenço IO, Colturato VMM, Sábio RM, de Melo FA, Vicente EF, Chorilli M, da Silva Barud H, Barbugli PA, Franzyk H, Hansen PR, Pavan FR. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym 2024; 323:121449. [PMID: 37940311 DOI: 10.1016/j.carbpol.2023.121449] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs. An interesting approach is to graft antimicrobial peptides (AMPs) to antibiotic-loaded nanoparticles. The objective of the present work was to determine the anti-MTB activity of rifampicin-loaded N-acetylcysteine-chitosan-based nanoparticles (NPs), conjugated with the AMP Ctx(Ile21)-Ha; against clinical isolates (multi- and extensively-drug resistant) and the H37Rv strain. The modified chitosan and drug-loaded NPs were characterized with respect to their physicochemical stability and their antimycobacterial profile, which showed potent inhibition (MIC values <0.977 μg/mL) by the latter. Furthermore, their accumulation within macrophages and cytotoxicity were determined. To understand the possible mechanisms of action, an in silico study of the peptide against MTB membrane receptors was performed. The results presented herein demonstrate that antibiotic-loaded NPs grafted with an AMP can be a powerful tool for revitalizing drugs against multidrug-resistant M. tuberculosis strains, by launching multiple attacks against MTB. This approach could potentially serve as a novel treatment strategy for various long-term diseases requiring extended treatment periods.
Collapse
Affiliation(s)
- Laura Maria Duran Gleriani Primo
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Shleider Carnero Canales
- Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas bioquímicas y biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | - Icaro Putinhon Caruso
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Isabella Ottenio de Lourenço
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Vitória Maria Medalha Colturato
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Fernando Alves de Melo
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
10
|
Eze FN, Jayeoye TJ, Eze RC, Ovatlarnporn C. Construction of carboxymethyl chitosan/PVA/chitin nanowhiskers multicomponent film activated with Cotylelobium lanceolatum phenolics and in situ SeNP for enhanced packaging application. Int J Biol Macromol 2024; 255:128073. [PMID: 37972834 DOI: 10.1016/j.ijbiomac.2023.128073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/28/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
This work focused on the construction of bioactive packaging films based on carboxymethyl chitosan and poly(vinyl alcohol) (CMP) as polymeric matrix and fortified with chitin nanowhiskers, Cotylelobium lanceolatum phenolic extract (CL) and in situ synthesized nano selenium. Extensive morphological, microstructural, physical and mechanical analysis revealed that the nanofillers were well-dispersed and integrated into CMP matrix. Incorporation of the extract and nano selenium produced excellent UV blocking properties without seriously compromising the transparency of the composite (CMP/CNW/CLNS1) film. Moreover, blending of CMP with the filler materials significantly elevated (p < 0.05) the surface hydrophobicity (WCA by 35.4°), water barrier (by 53.86 %), tensile strength (from 29.35 to 33.09 MPa), elongation at break (from 64.28 to 96.48 %), and thermal properties of the resultant CMP/CNW/CLNS1 film, with concomitant reduction in water solubility and swellability. Furthermore, the CMP/CNW/CLNS films exhibited remarkable improvement in antioxidant properties. When used for packaging of peeled fresh garlic cloves, the CMP/CNW/CLNS1 film pouch, not the plain CMP or CMP/CNW film pouches, inhibited weight loss, oxidative browning, and the emergence of black mold on the packaged cloves. The developed CMP/CNW/CLNS1 film demonstrated enhanced capacity to safeguard the quality of packaged food and improved shelf life. Therefore, the present study suggests that incorporation of CNW/CLNS into carboxymethyl chitosan/PVA films is a suitable and facile strategy for the fabrication of films with improved mechanical, physico-chemical and functional properties with great potential for application as a sustainable active packaging material in the food industry.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya District, Nakhon Pathom 73170, Thailand
| | - Chitchamai Ovatlarnporn
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
11
|
He S, Wu Y, Zhang Y, Luo X, Gibson CT, Gao J, Jellicoe M, Wang H, Young DJ, Raston CL. Enhanced mechanical strength of vortex fluidic mediated biomass-based biodegradable films composed from agar, alginate and kombucha cellulose hydrolysates. Int J Biol Macromol 2023; 253:127076. [PMID: 37769780 DOI: 10.1016/j.ijbiomac.2023.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Biodegradable, biomass derived kombucha cellulose films with increased mechanical strength from 9.98 MPa to 18.18 MPa were prepared by vortex fluidic device (VFD) processing. VFD processing not only reduced the particle size of kombucha cellulose from approximate 2 μm to 1 μm, but also reshaped its structure from irregular to round. The increased mechanical strength of these polysaccharide-derived films is the result of intensive micromixing and high shear stress of a liquid thin film in a VFD. This arises from the incorporation at the micro-structural level of uniform, unidirectional strings of kombucha cellulose hydrolysates, which resulted from the topological fluid flow in the VFD. The biodegradability of the VFD generated polymer films was not compromised relative to traditionally generated films. Both films were biodegraded within 5 days.
Collapse
Affiliation(s)
- Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, China; College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia; Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Yixiao Wu
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia
| | - Yang Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, China
| | - Xuan Luo
- Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Christopher T Gibson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, China; Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Matt Jellicoe
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Hao Wang
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia.
| | - David J Young
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT, Australia.
| | - Colin L Raston
- Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
| |
Collapse
|
12
|
Wu W, Zhou Y, Pan J, Wu Y, Goksen G, Shao P. Multibranched flower-like ZnO anchored on pectin/cellulose nanofiber aerogel skeleton for enhanced comprehensive antibacterial capabilities. Carbohydr Polym 2023; 322:121320. [PMID: 37839838 DOI: 10.1016/j.carbpol.2023.121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 10/17/2023]
Abstract
In this study, F-ZnO NPs were used as antibacterial agents, mussel bionic dopamine exerted its adhesive action to immobilize F-ZnO NPs on the pectin/CNF aerogel skeleton. Fruit and vegetable antimicrobial mats with safety, long duration of action and high efficiency were prepared and its potential application has been investigated. The results showed that a dopamine layer was deposited on the surface of the CNF, which promoted the tight adhesion of the F-ZnO NPs to the aerogel skeleton. The F-ZnO@D-CNF aerogel exhibited a slow release of zinc ions, with the first two days being 0.40 ± 0.16 and 1.01 ± 0.13 mg/mL. The aerogel was light, can stand on the petals without collapsing, has regular and uniform pore structure, good tensile/compressive properties and high antibacterial/anti-fungal properties. Strawberries packaged with F-ZnO@D-CNF aerogel exhibited an extended shelf life of 5 days. Additionally, the strawberries maintained a soluble solid content of 6.9 ± 0.82 % and a Vc content of 44.67 ± 3.51 mg/100 g. The weight loss, color and firmness were also notably superior to the other four groups. The final concentration of zinc ions in strawberries was 3.71 ± 0.28 μg/g, which is far below the recommended dietary intake.
Collapse
Affiliation(s)
- Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Jiefeng Pan
- Department of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| |
Collapse
|
13
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
14
|
Shahid-Ul-Islam, Jaiswal V, Butola BS, Majumdar A. Production of PVA-chitosan films using green synthesized ZnO NPs enriched with dragon fruit extract envisaging food packaging applications. Int J Biol Macromol 2023; 252:126457. [PMID: 37611684 DOI: 10.1016/j.ijbiomac.2023.126457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In this work, the PVA-chitosan composite packaging films doped with biomass-fabricated zinc oxide nanoparticles (ZnO NPs) and dragon fruit waste extract (DFE) were developed for potential use in food packaging applications. ZnO NPs were synthesized using a sustainable method employing C. sinensis waste extract as a reducing agent. Chitosan and PVA were blended in a specific ratio (1: 1 w/w) to obtain a film-forming solution, into which the ZnO NPs and dragon fruit waste extract were incorporated. The resulting solution was cast into films, which were characterized using various analytical techniques. Mechanical properties, water solubility, and thermal stability of the films were also evaluated. The results demonstrated that the incorporation of green ZnO NPs and dragon fruit waste extract enhanced the mechanical strength and thermal stability of the films while reducing water vapor permeability. Moreover, the films exhibited biocidal and excellent 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging properties, indicating their use in the food packaging sector. The production of these films offers a practical approach to produce bioactive food packaging materials. The use of plant extract and waste material as reducing agents can reduce the overall cost of production while providing added benefits, such as antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Shahid-Ul-Islam
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vivek Jaiswal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - B S Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Abhijit Majumdar
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
15
|
Cheng C, Peng X, Luo Y, Shi S, Wang L, Wang Y, Yu X. A photocrosslinked methacrylated carboxymethyl chitosan/oxidized locust bean gum double network hydrogel for cartilage repair. J Mater Chem B 2023; 11:10464-10481. [PMID: 37901956 DOI: 10.1039/d3tb01701j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Repairing articular cartilage defects is a great challenge due to the poor self-regenerative capability of cartilage. Inspired by active substances found in the natural cartilage extracellular matrix, we used methacrylated carboxymethyl chitosan (MA-CMCS) and oxidized locust bean gum (OLBG) as the hydrogel backbone, and prepared a photocrosslinked dual network hydrogel containing allicin and decellularized cartilage powder (DCP). The rheological, swelling and water retention capacities of MA-CMCS@OLBG-Allicin/DCP (MCOAC) hydrogels were investigated to confirm the successful preparation of hydrogels suitable for cartilage repair. The MCOAC hydrogels showed good antibacterial ability to kill S. aureus and E. coli and anti-inflammatory properties due to the introduction of allicin. Furthermore, MA-CMCS@OLBG-Allicin/DCP hydrogels presented good cytocompatibility due to the addition of DCP, which could promote chondrocyte proliferation and promote the differentiation of BMSCs to chondrocytes. Further studies in vivo demonstrated that the DCP-contained MCOAC hydrogel exhibited superior performance in promoting cartilage tissue growth and wound healing in articular cartilage defects. Thus, the MCOAC hydrogel is a promising cartilage repair hydrogel with potential for clinical use.
Collapse
Affiliation(s)
- Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ling Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuhang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
16
|
Bu N, Wang L, Zhang D, Xiao H, Liu X, Chen X, Pang J, Ma C, Mu R. Highly Hydrophobic Gelatin Nanocomposite Film Assisted by Nano-ZnO/(3-Aminopropyl) Triethoxysilane/Stearic Acid Coating for Liquid Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37881864 DOI: 10.1021/acsami.3c10757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Biodegradable gelatin (G) food packaging films are in increasing demand as the substitution of petroleum-based preservative materials. However, G packaging films universally suffer from weak hydrophobicity in practical applications. Constructing a hydrophobic micro/nanocoating with low surface energy is an effective countermeasure. However, the poor compatibility with the hydrophilic G substrate often leads to the weak interfacial adhesion and poor durability of the hydrophobic coating. To overcome this obstacle, we used (3-aminopropyl) triethoxysilane (APS) as an interfacial bridging agent to prepare a highly hydrophobic, versatile G nanocomposite film. Specifically, tannic acid (TA)-modified nanohydroxyapatite (n-HA) particles (THA) were introduced in G matrix (G-THA) to improve the mechanical properties. Micro/nanostructure with low surface energy composed of nanozinc oxide (Nano-ZnO)/APS/stearic acid (SA) (NAS) was constructed on the surface of G-THA film (G-THA/NAS) through one-step spray treatment. Consequently, as-prepared G-THA/NAS film presented excellent mechanics (tensile strength: 7.6 MPa, elongation at break: 292.7%), water resistance ability (water contact angle: 150.4°), high UV-shielding (0% transmittance at 200 nm), degradability (100% degradation rate after buried in the natural soil for 15 days), antioxidant (78.8% of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and antimicrobial (inhibition zone against Escherichia coli: 15.0 mm and Staphylococcus aureus: 16.5 mm) properties. It should be emphasized that the bridging function of APS significantly improves the interfacial adhesion ability of the NAS coating with more than 95% remaining area after the cross-cut adhesion test. Meanwhile, the G-THA/NAS film could maintain stable and long-lasting hydrophobic surfaces against UV radiation, high temperature, and abrasion. Based on these multifunctional properties, the G-THA/NAS film was successfully applied as a liquid packaging material. To sum up, we provide a feasible and effective method to prepare high-performance green packaging films.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoman Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Trodtfeld F, Tölke T, Wiegand C. Developing a Prolamin-Based Gel for Food Packaging: In-Vitro Assessment of Cytocompatibility. Gels 2023; 9:740. [PMID: 37754421 PMCID: PMC10531018 DOI: 10.3390/gels9090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
Growing environmental concerns drive efforts to reduce packaging waste by adopting biodegradable polymers, coatings, and films. However, biodegradable materials used in packaging face challenges related to barrier properties, mechanical strength, and processing compatibility. A composite gel was developed using biodegradable compounds (prolamin, d-mannose, citric acid), as a coating to increase the oxygen barrier of food packaging materials. To improve gel stability and mechanical properties, the gels were physically cross-linked with particles synthesized from tetraethyl orthosilicate and tetramethyl orthosilicate precursors. Additionally, biocompatibility assessments were performed on human keratinocytes and fibroblasts, demonstrating the safety of the gels for consumer contact. The gel properties were characterized, including molecular structure, morphology, and topography. Biocompatibility of the gels was assessed using bioluminescent ATP assay to detect cell viability, lactate dehydrogenase assay to determine cell cytotoxicity, and a leukocyte stimulation test to detect inflammatory potential. A composite gel with strong oxygen barrier properties in low-humidity environments was prepared. Increasing the silane precursor to 50 wt% during gel preparation slowed degradation in water. The addition of citric acid decreased gel solubility. However, higher precursor amounts increased surface roughness, making the gel more brittle yet mechanically resistant. The increase of precursor in the gel also increased gel viscosity. Importantly, the gels showed no cytotoxicity on human keratinocytes or fibroblasts and had no inflammatory effects on leukocytes. This composite gel holds promise for oxygen barrier food packaging and is safe for consumer contact. Further research should focus on optimizing the stability of the oxygen barrier in humid environments and investigate the potential sensitizing effects of biodegradable materials on consumers.
Collapse
Affiliation(s)
- Franziska Trodtfeld
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany
- INNOVENT e.V., Prüssingstraße 27 B, D-07745 Jena, Germany;
| | - Tina Tölke
- INNOVENT e.V., Prüssingstraße 27 B, D-07745 Jena, Germany;
| | - Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|
18
|
Fang M, Wang J, Fang S, Zuo X. Fabrication of carboxymethyl chitosan films for cheese packaging containing gliadin-carboxymethyl chitosan nanoparticles co-encapsulating natamycin and theaflavins. Int J Biol Macromol 2023; 246:125685. [PMID: 37406906 DOI: 10.1016/j.ijbiomac.2023.125685] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, gliadin-carboxymethyl chitosan composite nanoparticles (GC NPs) co-encapsulated natamycin (Nata) and theaflavins (TFs) were constructed and added as an antioxidant, antifungal, and structural enhancer to carboxymethyl chitosan (CMCS) films. The stabilized GC NPs with a particle size of 160.7 ± 2.8 nm, a zeta potential of -29.0 ± 0.9 mV, and a protein content in the supernatant of 96 ± 1 % could be fabricated. Tests of pH and salt ions showed that the stability of NPs dispersion was based on electrostatic repulsion. Co-encapsulation of TFs enhanced the photostability of Nata and the antioxidant activity of the NPs dispersion. The interactions between gliadin with Nata and TFs were studied by molecular simulations. As a functional additive, the addition of Nata/TFs-GC NPs could improve the optical properties, mechanical properties, water-blocking capability, and antifungal and antioxidant activities of the CMCS films. The in-vivo test showed that the functional film could be used to inhibit the growth of Aspergillus niger on cheese.
Collapse
Affiliation(s)
- Meihan Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jialu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xiaobo Zuo
- Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou Tea Research Institute, CHINA COOP, Hangzhou 310016, China.
| |
Collapse
|
19
|
Almajidi YQ, Abdullaev SS, Alani BG, Saleh EAM, Ahmad I, Ramadan MF, Al-Hasnawi SS, Romero-Parra RM. Chitosan-gelatin hydrogel incorporating polyvinyl alcohol and MnFe double-layered hydroxide nanocomposites with biological activity. Int J Biol Macromol 2023; 246:125566. [PMID: 37392927 DOI: 10.1016/j.ijbiomac.2023.125566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
In this research, a novel nanocomposite scaffold was developed based on a natural chitosan-gelatin (CS-Ge) hydrogel by incorporating synthetic polyvinyl alcohol (PVA) and MnFe layered double hydroxides (LDHs). The CS-Ge/PVP/MnFe LDH nanocomposite hydrogels was characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive X-Ray (EDX), vibrating-sample magnetometer (VSM), and Thermal gravimetric analysis (TGA). The biological tests conducted showed cell viability of the healthy cell line exceeding 95 % after 48 and 72 h. Additionally, the nanocomposite demonstrated high antibacterial activity against P. aeruginosa bacteria biofilm, as confirmed through Anti-biofilm assays. Furthermore, mechanical tests revealed that the storage modulus was greater than the loss modulus (G'/G" > 1), confirming the appropriate elastic state of the nanocomposite.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Baghdad College of Medical Sciences, Department of Pharmacy (Pharmaceutics), Baghdad, Iraq
| | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Science and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan.
| | - Baraa G Alani
- College of Pharmacy, Al-Bayan University, Baghdad, Iraq
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | |
Collapse
|
20
|
Priyanka S, Raja Namasivayam SK, Bharani RSA, John A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. CHEMOSPHERE 2023; 336:139240. [PMID: 37348611 DOI: 10.1016/j.chemosphere.2023.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Biocompatible, eco-friendly, highly economical packaging methods should be needed as conventional packaging is known to cause undesirable effects. As food packaging is the major determining factor of food safety, the selection or methods of packaging materials plays a pioneering role. With this scope, modern food technology seeks unique sustainable approaches for the fabrication of package materials with notable desired properties. The principles, features, and fabrication methodology of modern food packaging are briefly covered in this review. We extensively revealed improved packaging (nanocoating, nanolaminates, and nano clay), active packaging (antimicrobial, oxygen scavenging, and UV barrier packaging), and intelligent/smart packaging (O2 indicator, CO2 indicator, Time Temperature Indicator, freshness indicator, and pH indicator). In particular, we described the role of nanomaterials in the fabrication of packaging material. Methods for the evaluation of mechanical, barrier properties, and anti-microbial assays have been featured. The present studies suggest the possible utilization of materials in the fabrication of food packaging for the production, utilization, and distribution of safe foods without affecting nutritional values.
Collapse
Affiliation(s)
- S Priyanka
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | | | - Arun John
- Department of Molecular Analytics, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
21
|
Xie C, Wang F, He Z, Tang H, Li H, Hou J, Liu Y, Jiang L. Development and characterization of active packaging based on chitosan/chitin nanofibers incorporated with scallion flower extract and its preservation in fresh-cut bananas. Int J Biol Macromol 2023; 242:125045. [PMID: 37230454 DOI: 10.1016/j.ijbiomac.2023.125045] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study was to develop a novel active packaging using chitosan (CS) and esterified chitin nanofibers (CF) combined with different contents (1, 2 and 4 wt% on CS basis) of scallion flower extract (SFE) to protect banana samples. The addition of CF significantly improved the barrier and mechanical properties of the CS films (p < 0.05) due to hydrogen bonds and electrostatic interactions. Moreover, the addition of SFE not only improved the physical properties of the CS film but also improved the CS film biological activity. The oxygen barrier property and antibacterial ability of CF-4%SFE were approximately 5.3 and 1.9 times higher than those of the CS film, respectively. In addition, CF-4%SFE had strong DPPH radical scavenging activity (74.8 ± 2.3 %) and ABTS radical scavenging activity (84.06 ± 2.08 %). Fresh-cut bananas stored in CF-4%SFE showed less weight loss, starch loss, color and appearance change than those stored in traditional polyethylene film, which indicated that CF-4%SFE was much better at storing fresh-cut bananas than conventional plastic packaging. For these reasons, CF-SFE films have great potential as a candidate to replace traditional plastic packaging and extend the shelf life of packaged foods.
Collapse
Affiliation(s)
- Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zichuan He
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
23
|
Wang Y, Yang L, Zhou X, Wang Y, Liang Y, Luo B, Dai Y, Wei Z, Li S, He R, Ding W. Molecular mechanism of plant elicitor daphnetin-carboxymethyl chitosan nanoparticles against Ralstonia solanacearum by activating plant system resistance. Int J Biol Macromol 2023; 241:124580. [PMID: 37100321 DOI: 10.1016/j.ijbiomac.2023.124580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
The exploration of biopolymer-based materials to avoid hazardous chemicals in agriculture has gained enormous importance for sustainable crop protection. Due to its good biocompatibility and water solubility, carboxymethyl chitosan (CMCS) has been widely applied as a pesticide carrier biomaterial. However, the mechanism by which carboxymethyl chitosan-grafted natural product nanoparticles induce tobacco systemic resistance against bacterial wilt remains largely unknown. In this study, water-soluble CMCS-grafted daphnetin (DA) nanoparticles (DA@CMCS-NPs) were successfully synthesized, characterized, and assessed for the first time. The grafting rate of DA in CMCS was 10.05 %, and the water solubility was increased. In addition, DA@CMCS-NPs significantly increased the activities of CAT, PPO and SOD defense enzymes, activated the expression of PR1 and NPR1, and suppressed the expression of JAZ3. DA@CMCS-NPs could induce immune responses against R. solanacearum in tobacco, including increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. The application of DA@CMCS-NPs effectively suppressed the development of tobacco bacterial wilt in pot experiments, and the control efficiency was as high as 74.23 %, 67.80 %, 61.67 % at 8, 10, and 12 days after inoculation. Additionally, DA@CMCS-NPs has excellent biosafety. Therefore, this study highlighted the application of DA@CMCS-NPs in manipulating tobacco to generate defense responses against R. solanacearum, which can be attributed to systemic resistance.
Collapse
Affiliation(s)
- Yao Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiao Zhou
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ye Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yijia Liang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binshao Luo
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuhao Dai
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhouling Wei
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Rong He
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China.
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023; 305:120555. [PMID: 36737218 DOI: 10.1016/j.carbpol.2023.120555] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Chitosan (CS) and its derivatives have been applied extensively in the biomedical field owing to advantageous characteristics including biodegradability, biocompatibility, antibacterial activity and adhesive properties. The low solubility of CS at physiological pH limits its use in systems requiring higher dissolving ability and a suitable drug release rate. Besides, CS can result in fast drug release because of its high swelling degree and rapid water absorption in aqueous media. As a water-soluble derivative of CS, carboxymethyl chitosan (CMC) has certain improved properties, rendering it a more suitable candidate for wound healing, drug delivery and tissue engineering applications. This review will focus on the antibacterial, anticancer and antitumor, antioxidant and antifungal bioactivities of CMC and the most recently described applications of CMC in wound healing, drug delivery, tissue engineering, bioimaging and cosmetics.
Collapse
|
25
|
Farazin A, Zhang C, Ghasemi AH. Preparation and identification of new antibacterial and biocompatible dressings based on gelatin/polyvinyl alcohol and castor oil. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
26
|
Zhang W, Sani MA, Zhang Z, McClements DJ, Jafari SM. High performance biopolymeric packaging films containing zinc oxide nanoparticles for fresh food preservation: A review. Int J Biol Macromol 2023; 230:123188. [PMID: 36627033 DOI: 10.1016/j.ijbiomac.2023.123188] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Biodegradable food packaging films (FPFs) assembled from sustainable biopolymeric materials are of increasing interest to the food industry due to pollution and health risks resulting from the use of conventional plastic packaging. However, the functional performance of these FPFs is often poorer than that of plastic films, which limits their commercial application. This problem may be partly overcome by incorporating nano-additives like zinc oxide nanoparticles (ZNPs) into the films. The incorporation of ZNPs into FPFs can improve their functional performance. The properties of these films depends on the concentration, dispersion state, and interactions of ZNPs with the biopolymeric matrix in the films. ZNPs-loaded films and coatings are highly effective at preserving a variety of fresh foods. Studies of ZNPs migration through FPFs have shown that the zinc is mainly transported in an ionic form and the amount entering foods is below safety standards. This article reviews recent developments in the design, fabrication, and application of ZNPs-loaded FPFs based on biopolymers, focusing on the impacts of ZNPs on the optical, barrier, mechanical, water sensitivity, and antimicrobial properties of the films. The potential applications of ZNPs-loaded FPFs for fresh food preservation is also discussed.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
27
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
28
|
Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Recent Reports on Polysaccharide-Based Materials for Drug Delivery. Polymers (Basel) 2022; 14:polym14194189. [PMID: 36236137 PMCID: PMC9572459 DOI: 10.3390/polym14194189] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides constitute one of the most important families of biopolymers. Natural polysaccharide-based drug delivery systems are of constant interest to the scientific community due to their unique properties: biocompatibility, non-toxicity, biodegradability, and high availability. These promising biomaterials protect sensitive active agents and provide their controlled release in targeted sites. The application of natural polysaccharides as drug delivery systems is also intensively developed by Polish scientists. The present review focuses on case studies from the last few years authored or co-authored by research centers in Poland. A particular emphasis was placed on the diversity of the formulations in terms of the active substance carried, the drug delivery route, the composition of the material, and its preparation method.
Collapse
|
30
|
Hu Y, Zhang S, Wen Z, Fu H, Hu J, Ye X, Kang L, Li X, Yang X. Oral delivery of curcumin via multi-bioresponsive polyvinyl alcohol and guar gum based double-membrane microgels for ulcerative colitis therapy. Int J Biol Macromol 2022; 221:806-820. [PMID: 36099999 DOI: 10.1016/j.ijbiomac.2022.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Anti-inflammatory drugs for ulcerative colitis (UC) treatment should specifically penetrate and accumulate in the colon tissue. Herein, a multi-bioresponsive anti-inflammatory drug (curcumin, CUR)-loaded heterogeneous double-membrane microgels (CUR@microgels) for oral administration was fabricated in this study, in which the inner core was derived from polyvinyl alcohol (PVA) and guar gum (GG) and the outer gel was decoration with alginate and chitosan by polyelectrolyte interactions. The structure and morphology of microgels were characterized. In vitro, the formulation exhibited good bio-responses at different pH conditions and sustained-release properties in simulated colon fluid with a drug-release rate of 84.6 % over 34 h. With the assistance of the outlayer gels, the microgels effectively delayed the premature drug release of CUR in the upper gastrointestinal tract. In vivo studies revealed that CUR@microgels specifically accumulated in the colon tissue for 24 h, which suggest that the interlayer gels were apt to reach colon lesion. As expected, the oral administration of microgels remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. The above results indicated that these facilely fabricated microgels which exhibited excellent biocompatibility and multi-bioresponsive drug release, had an apparent effect on the treatment of UC, which represents a promising drug delivery strategy for CUR in a clinical application.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|