1
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
2
|
Li Y, Jiang S, Li J, Yin M, Yan F, Chen Y, Chen Y, Wu T, Cheng M, He Y, Liang H, Yu H, Qiao Q, Guo Z, Xu Y, Zhang Y, Xiang Z, Yin Z. Phenotypic Changes of Peripheral γδ T Cell and Its Subsets in Patients With Coronary Artery Disease. Front Immunol 2022; 13:900334. [PMID: 35874761 PMCID: PMC9304556 DOI: 10.3389/fimmu.2022.900334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary atherosclerotic heart disease (CAD) is a chronic inflammatory cardiovascular disease with high morbidity and mortality. Growing data indicate that many immune cells are involved in the development of atherosclerosis. However, the immunological roles of γδ T cells in the initiation and progression of CAD are not fully understood. Here, we used flow cytometry to determine phenotypical changes of γδ T cells and their subpopulations in peripheral blood samples collected from 37 CAD patients. The Pearson correlation coefficient was used to analyze the relationship between the clinical parameter (serum LDL-C level) and the changes of immunophenotypes of γδ T cells. Our results demonstrated that the frequencies and absolute numbers of total γδ T cells and Vδ2+ T cells were significantly decreased in CAD patients when compared to healthy individuals. However, the proportion of Vδ1+ T cells was much lower in CAD patients than that of healthy individuals. Most importantly, a significant alteration of the Vδ1/Vδ2 ratio was found in CAD patients. In addition, a series of surface markers that are associated with costimulatory signals (CD28, CD40L, CD80, CD86), activation levels (CD69, CD25, HLA-DR), activating NK cell receptors (NKp30, NKp46, NKG2D) and inhibitory receptors (PD-1, CTLA-4, PD-1, Tim-3) were determined and then analyzed in the total γδ T cells, Vδ2+T cells and Vδ2-T cells of CAD patients and healthy individuals. The data demonstrated that immunological activities of total γδ T cells, Vδ2+T cells, and Vδ2-T cells of CAD patients were much lower than those in healthy individuals. Moreover, we found that there were positive correlations between the serum LDL-C levels and frequencies of CD3+γδ+ T cells, CD69+Vδ2+T cells, NKG2D+Vδ2+T cells, and NKp46+Vδ2+T cells. By contrast, there was an inverse correlation between the levels of serum LDL-C and the frequencies of CD69+Vδ2-T cells and NKp46+Vδ2-T cells. Accordingly, these findings could help us to better understand the roles of γδ T cells in the CAD, and shed light on the development of novel diagnostic techniques and therapeutic strategies by targeting γδ T cells for CAD patients.
Collapse
Affiliation(s)
- Yan Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Silin Jiang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Mengzhuo Yin
- Department of Geriatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fuxin Yan
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyuan Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Tongwei Wu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengliang Cheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Qingqing Qiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| | - Yanan Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| | - Zheng Xiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| | - Zhinan Yin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| |
Collapse
|
3
|
Chen YJ, Liu SC, Lai KL, Tang KT, Lin CH, Chen YM, Tseng CW, Chang YM, Gotcher DF, Chiou CC, Weng SJ, Chen HH. Factors associated with risk of major adverse cardiovascular events in patients with rheumatoid arthritis: a nationwide, population-based, case-control study. Ther Adv Musculoskelet Dis 2021; 13:1759720X211030809. [PMID: 34471426 PMCID: PMC8404647 DOI: 10.1177/1759720x211030809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate factors associated with major adverse cardiovascular events (MACEs) in patients with rheumatoid arthritis (RA). Methods We conducted a nationwide, population-based, case-control study using Taiwan's National Health Insurance Research Database for 2003-2013. From 2004 to 2012, we identified 108,319 newly diagnosed RA patients without previous MACEs, of whom 7,580 patients (7.0%) developed MACEs during follow-up. From these incident RA patients, we included 5,994 MACE cases and 1:4 matched 23,976 non-MACE controls for analysis. The associations of MACEs with comorbidities and use of anti-rheumatic medications within 1 year before the index date were examined using conditional logistic regression analyses. Results Using multivariable conditional logistic regression analysis, the risk of MACE in RA patients was associated with use of golimumab [odd's ratio (OR), 0.09; 95% confidence interval (CI), 0.01-0.67], abatacept (OR, 0.13; 95% CI, 0.02-0.93), hydroxychloroquine (OR, 0.90; 95% CI, 0.82-0.99), methotrexate (OR, 0.72; 95% CI, 0.64-0.81), cyclosporin (OR, 1.43; 95% CI, 1.07-1.91), nonsteroidal anti-inflammation drugs (NSAIDs) (OR, 1.36; 95% CI, 1.27-1.46), antiplatelet agent (OR, 2.47; 95% CI, 2.31-2.63), hypertension (without anti-hypertensive agents: OR, 1.04; 95% CI, 0.96-1.12; with anti-hypertensive agents: OR, 1.47; 95% CI, 1.36-1.59), diabetes (OR, 1.27; 95% CI, 1.18-1.37), hyperlipidemia without lipid-lowering agents (OR, 1.09; 95% CI, 1.01-1.17), ischemic heart disease (OR, 1.20; 95% CI, 1.10-1.31), and chronic obstructive pulmonary disease (COPD) (OR, 1.12; 95% CI, 1.03-1.23) in the parsimonious model. The risk of MACE in RA patients also increased markedly in participants younger than 65 years with some comorbidities. Conclusions This population-based case-control study revealed that the use of golimumab, abatacept, hydroxychloroquine, and methotrexate were associated with a decreased risk of MACE development in newly diagnosed RA patients, while the use of cyclosporin, NSAIDs, and antiplatelet agents, and comorbidities, including hypertension, diabetes, hyperlipidemia without lipid-lowering agent therapy, ischemic heart disease, and COPD, were associated with an increased risk of MACE development in RA patients.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung
| | - Shih-Chia Liu
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung
| | - Yi-Ming Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung
| | - Chih-Wei Tseng
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung
| | - Yu-Mei Chang
- Department of Statistics, Tunghai University, Taichung
| | - Donald F Gotcher
- Department of International Business, Tunghai University, Taichung
| | - Chuang-Chun Chiou
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung
| | - Shao-Jen Weng
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung
| |
Collapse
|
4
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
5
|
Meester EJ, de Blois E, Krenning BJ, van der Steen AFW, Norenberg JP, van Gaalen K, Bernsen MR, de Jong M, van der Heiden K. Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: potential for plaque phenotype identification. EJNMMI Res 2021; 11:27. [PMID: 33730311 PMCID: PMC7969682 DOI: 10.1186/s13550-021-00772-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Many radioligands have been developed for the visualization of atherosclerosis by targeting inflammation. However, interpretation of in vivo signals is often limited to plaque identification. We evaluated binding of some promising radioligands in an in vitro approach in atherosclerotic plaques with different phenotypes. METHODS Tissue sections of carotid endarterectomy tissue were characterized as early plaque, fibro-calcific plaque, or phenotypically vulnerable plaque. In vitro binding assays for the radioligands [111In]In-DOTATATE; [111In]In-DOTA-JR11; [67Ga]Ga-Pentixafor; [111In]In-DANBIRT; and [111In]In-EC0800 were conducted, the expression of the radioligand targets was assessed via immunohistochemistry. Radioligand binding and expression of radioligand targets was investigated and compared. RESULTS In sections characterized as vulnerable plaque, binding was highest for [111In]In-EC0800; followed by [111In]In-DANBIRT; [67Ga]Ga-Pentixafor; [111In]In-DOTA-JR11; and [111In]In-DOTATATE (0.064 ± 0.036; 0.052 ± 0.029; 0.011 ± 0.003; 0.0066 ± 0.0021; 0.00064 ± 0.00014 %Added activity/mm2, respectively). Binding of [111In]In-DANBIRT and [111In]In-EC0800 was highest across plaque phenotypes, binding of [111In]In-DOTA-JR11 and [67Ga]Ga-Pentixafor differed most between plaque phenotypes. Binding of [111In]In-DOTATATE was the lowest across plaque phenotypes. The areas positive for cells expressing the radioligand's target differed between plaque phenotypes for all targets, with lowest percentage area of expression in early plaque sections and highest in phenotypically vulnerable plaque sections. CONCLUSIONS Radioligands targeting inflammatory cell markers showed different levels of binding in atherosclerotic plaques and among plaque phenotypes. Different radioligands might be used for plaque detection and discerning early from vulnerable plaque. [111In]In-EC0800 and [111In]In-DANBIRT appear most suitable for plaque detection, while [67Ga]Ga-Pentixafor and [111In]In-DOTA-JR11 might be best suited for differentiation between plaque phenotypes.
Collapse
Affiliation(s)
- Eric J Meester
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Jeff P Norenberg
- Radiopharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Kim van Gaalen
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Monique R Bernsen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Lutgens E, Atzler D, Döring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur Heart J 2020; 40:3937-3946. [PMID: 31121017 DOI: 10.1093/eurheartj/ehz283] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
The outcomes of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial have unequivocally proven that inflammation is a key driver of atherosclerosis and that targeting inflammation, in this case by using an anti-interleukin-1β antibody, improves cardiovascular disease (CVD) outcomes. This is especially true for CVD patients with a pro-inflammatory constitution. Although CANTOS has epitomized the importance of targeting inflammation in atherosclerosis, treatment with canakinumab did not improve CVD mortality, and caused an increase in infections. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways and exhibit limited immune-suppressive side effects, as pursued in our collaborative research centre, are required to optimize immunotherapy for CVD. In this review, we will highlight the potential of novel immunotherapeutic targets that are currently considered to become a future treatment for CVD.
Collapse
Affiliation(s)
- Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Goethestraße 33, Munich 80336, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitsingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
7
|
Affiliation(s)
- Neil Ruparelia
- Hammersmith Hospital, London, UK.,Imperial College London, London, UK
| | - Robin Choudhury
- John Radcliffe Hospital, Oxford, Oxfordshire, UK .,Radcliffe Department of Medicine Division of Cardiovascular Medicine, Oxford University, Oxford, Oxfordshire, UK
| |
Collapse
|
8
|
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci 2020; 21:ijms21082992. [PMID: 32340284 PMCID: PMC7216001 DOI: 10.3390/ijms21082992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a lipoprotein-driven inflammatory disorder leading to a plaque formation at specific sites of the arterial tree. After decades of slow progression, atherosclerotic plaque rupture and formation of thrombi are the major factors responsible for the development of acute coronary syndromes (ACSs). In this regard, the detection of high-risk (vulnerable) plaques is an ultimate goal in the management of atherosclerosis and cardiovascular diseases (CVDs). Vulnerable plaques have specific morphological features that make their detection possible, hence allowing for identification of high-risk patients and the tailoring of therapy. Plaque ruptures predominantly occur amongst lesions characterized as thin-cap fibroatheromas (TCFA). Plaques without a rupture, such as plaque erosions, are also thrombi-forming lesions on the most frequent pathological intimal thickening or fibroatheromas. Many attempts to comprehensively identify vulnerable plaque constituents with different invasive and non-invasive imaging technologies have been made. In this review, advantages and limitations of invasive and non-invasive imaging modalities currently available for the identification of plaque components and morphologic features associated with plaque vulnerability, as well as their clinical diagnostic and prognostic value, were discussed.
Collapse
|
9
|
Oppi S, Nusser-Stein S, Blyszczuk P, Wang X, Jomard A, Marzolla V, Yang K, Velagapudi S, Ward LJ, Yuan XM, Geiger MA, Guillaumon AT, Othman A, Hornemann T, Rancic Z, Ryu D, Oosterveer MH, Osto E, Lüscher TF, Stein S. Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARγ signature. Eur Heart J 2020; 41:995-1005. [PMID: 31529020 DOI: 10.1093/eurheartj/ehz667] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/28/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules. However, the role of nuclear receptor corepressors in atherogenesis is unknown. METHODS AND RESULTS We generated myeloid cell-specific Ncor1 knockout mice and crossbred them with low-density lipoprotein receptor (Ldlr) knockouts to study the role of macrophage NCOR1 in atherosclerosis. We demonstrate that myeloid cell-specific deletion of nuclear receptor corepressor 1 (NCOR1) aggravates atherosclerosis development in mice. Macrophage Ncor1-deficiency leads to increased foam cell formation, enhanced expression of pro-inflammatory cytokines, and atherosclerotic lesions characterized by larger necrotic cores and thinner fibrous caps. The immunometabolic effects of NCOR1 are mediated via suppression of peroxisome proliferator-activated receptor gamma (PPARγ) target genes in mouse and human macrophages, which lead to an enhanced expression of the CD36 scavenger receptor and subsequent increase in oxidized low-density lipoprotein uptake in the absence of NCOR1. Interestingly, in human atherosclerotic plaques, the expression of NCOR1 is reduced whereas the PPARγ signature is increased, and this signature is more pronounced in ruptured compared with non-ruptured carotid plaques. CONCLUSIONS Our findings show that macrophage NCOR1 blocks the pro-atherogenic functions of PPARγ in atherosclerosis and suggest that stabilizing the NCOR1-PPARγ binding could be a promising strategy to block the pro-atherogenic functions of plaque macrophages and lesion progression in atherosclerotic patients.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Przemyslaw Blyszczuk
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Clinical Immunology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Xu Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Anne Jomard
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Vincenzo Marzolla
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Kangmin Yang
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Srividya Velagapudi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Liam J Ward
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Xi-Ming Yuan
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Martin A Geiger
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zoran Rancic
- Clinic for Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419 Suwon, Republic of Korea
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Elena Osto
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, Royal Brompton & Harefield Hospital Trust, London, SW3 6NP, UK
- Imperial College London, London, SW7 2AZ, UK
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
10
|
Abstract
The role of inflammation in cardiovascular disease (CVD) is now widely accepted. Immune cells, including T cells, are influenced by inflammatory signals and contribute to the onset and progression of CVD. T cell activation is modulated by T cell co-stimulation and co-inhibition pathways. Immune checkpoint inhibitors (ICIs) targeting T cell inhibition pathways have revolutionized cancer treatment and improved survival in patients with cancer. However, ICIs might induce cardiovascular toxicity via T cell re-invigoration. With the rising use of ICIs for cancer treatment, a timely overview of the role of T cell co-stimulation and inhibition molecules in CVD is desirable. In this Review, the importance of these molecules in the pathogenesis of CVD is highlighted in preclinical studies on models of CVD such as vein graft disease, myocarditis, graft arterial disease, post-ischaemic neovascularization and atherosclerosis. This Review also discusses the therapeutic potential of targeting T cell co-stimulation and inhibition pathways to treat CVD, as well as the possible cardiovascular benefits and adverse events after treatment. Finally, the Review emphasizes that patients with cancer who are treated with ICIs should be monitored for CVD given the reported association between the use of ICIs and the risk of cardiovascular toxicity.
Collapse
|
11
|
Hsieh MJ, Lee CH, Tsai ML, Kao CF, Lan WC, Huang YT, Tseng WY, Wen MS, Chang SH. Biologic Agents Reduce Cardiovascular Events in Rheumatoid Arthritis Not Responsive to Tumour Necrosis Factor Inhibitors: A National Cohort Study. Can J Cardiol 2020; 36:1739-1746. [PMID: 32603700 DOI: 10.1016/j.cjca.2020.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumour necrosis factor inhibitors (TNFis) improve joints outcomes and reduce cardiovascular (CV) risk in patients with rheumatoid arthritis (RA). However, 20%-45% of RA patients are TNFi poor responders and have a significantly higher risk of CV events. In these TNFi nonresponders, the use of second-line biologic agents to improve synovial outcomes is supported by clinical trials and real-world experience. However, it remains unknown what kind of immune-mediated agent has the best CV prevention effect in this high-risk population. METHODS A nationwide RA cohort obtained from Taiwan's National Health Insurance claims database was constructed. RA patients first treated with TNFis who then received either rituximab, tocilizumab, or abatacept were enrolled and followed for 2 years. RESULTS A total of 89,973 RA patients were screened and 1,584 patients ultimately included. The incidences of major adverse cardiac events (MACE) at 2 years in the rituximab, tocilizumab, and abatacept groups were 7.17%, 2.75% and 2.38%, respectively. Multivariate adjusted Cox analysis showed that tocilizumab had significantly lower risk than rituximab in myocardial infarction (hazard ratio [HR] 0.12, 95% confidence interval [CI] 0.02-0.56; P = 0.008), and MACE (HR 0.41, 95% CI 0.23-0.72; P = 0.002). In addition, abatacept also had significant lower adjusted risk than rituximab in stroke (HR 0.18, 95% CI 0.05-0.64; P = 0.008), heart failure (HR 0.20, 95% CI 0.05-0.83; P = 0.027), and MACE (HR 0.25, 95% CI 0.11-0.55; P < 0.001) in multivariate analysis. CONCLUSIONS TNFi-nonresponder patients with RA who received second-line tocilizumab or abatacept had more benefit on CV events prevention compared with those who received rituximab.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Lung Tsai
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Fu Kao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Ching Lan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wen-Yi Tseng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung Branch, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Graduate Institute of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharm Chem 2019; 4:29. [PMID: 31696402 PMCID: PMC6834817 DOI: 10.1186/s41181-019-0078-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract Immunotherapy with checkpoint inhibitors demonstrates impressive improvements in the treatment of several types of cancer. Unfortunately, not all patients respond to therapy while severe immune-related adverse effects are prevalent. Currently, patient stratification is based on immunotherapy marker expression through immunohistochemical analysis on biopsied material. However, expression can be heterogeneous within and between tumor lesions, amplifying the sampling limitations of biopsies. Analysis of immunotherapy target expression by non-invasive quantitative molecular imaging with PET or SPECT may overcome this issue. In this review, an overview of tracers that have been developed for preclinical and clinical imaging of key immunotherapy targets, such as programmed cell death-1, programmed cell death ligand-1, IDO1 and cytotoxic T lymphocyte-associated antigen-4 is presented. We discuss important aspects to consider when developing such tracers and outline the future perspectives of molecular imaging of immunotherapy markers. Graphical abstract Current techniques in immune checkpoint imaging and its potential for future applications ![]()
Collapse
|
13
|
Taddio MF, Mu L, Castro Jaramillo CA, Bollmann T, Schmid DM, Muskalla LP, Gruene T, Chiotellis A, Ametamey SM, Schibli R, Krämer SD. Synthesis and Structure-Affinity Relationship of Small Molecules for Imaging Human CD80 by Positron Emission Tomography. J Med Chem 2019; 62:8090-8100. [PMID: 31430137 DOI: 10.1021/acs.jmedchem.9b00858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The costimulatory molecule CD80 is an early marker for immune activation. It is upregulated on activated antigen-presenting cells. We aimed at developing a tracer for imaging CD80 by positron emission tomography (PET). Novel CD80 ligands were synthesized and tested by SPR for affinity to human CD80 (hCD80) and displacement of endogenous ligands. Several compounds bound with one-digit nanomolar affinity to hCD80 and displaced CTLA-4 and CD28 at nanomolar concentrations. A structure-affinity relationship study revealed relevant moieties for strong affinity to hCD80 and positions for further modifications. Lead compound MT107 (7f) was radiolabeled with carbon-11. In vitro, [11C]MT107 showed specific binding to hCD80-positive tissue and high plasma protein binding. In vivo, [11C]MT107 accumulated in liver, gall bladder, and intestines but only scarcely in hCD80-positive xenografts. The unfavorable in vivo performance may result from high plasma protein binding and extensive biliary excretion.
Collapse
Affiliation(s)
- Marco F Taddio
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland.,Department of Nuclear Medicine , University Hospital Zurich , CH-8091 Zurich , Switzerland
| | - Claudia A Castro Jaramillo
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Tanja Bollmann
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Dominik M Schmid
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Lukas P Muskalla
- Laboratory for Catalysis and Sustainable Chemistry , Paul Scherrer Institute , CH-5232 Villigen PSI , Switzerland
| | - Tim Gruene
- Laboratory for Catalysis and Sustainable Chemistry , Paul Scherrer Institute , CH-5232 Villigen PSI , Switzerland.,X-ray Structure Analysis Centre, Faculty of Chemistry , University of Vienna , A-1090 Vienna , Austria
| | - Aristeidis Chiotellis
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| |
Collapse
|
14
|
Abstract
Innate and adaptive immune effector mechanisms, in conjunction with hyperlipidemia, are important drivers of atherosclerosis. The interaction between the different immune cells and the secretion of cytokines and chemokines determine the progression of atherosclerosis. The activation or dampening of the immune response is tightly controlled by immune checkpoints. Costimulatory and coinhibitory immune checkpoints represent potential targets for immune modulatory therapies for atherosclerosis. This review will discuss the current knowledge on immune checkpoints in atherosclerosis and the clinical potential of immune checkpoint targeted therapy for atherosclerosis.
Collapse
Affiliation(s)
- Ellen Rouwet
- From the Department of Surgery and Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands (E.R.)
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology Laboratory, Academic Medical Center, Amsterdam, The Netherlands (E.L.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany (E.L.)
| |
Collapse
|
15
|
Jiemy WF, Heeringa P, Kamps JA, van der Laken CJ, Slart RH, Brouwer E. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: Current status and future prospects. Autoimmun Rev 2018; 17:715-726. [DOI: 10.1016/j.autrev.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
16
|
Taddio MF, Mu L, Keller C, Schibli R, Krämer SD. Physiologically Based Pharmacokinetic Modelling with Dynamic PET Data to Study the In Vivo Effects of Transporter Inhibition on Hepatobiliary Clearance in Mice. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5849047. [PMID: 29967572 PMCID: PMC6008768 DOI: 10.1155/2018/5849047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
Abstract
Physiologically based pharmacokinetic modelling (PBPK) is a powerful tool to predict in vivo pharmacokinetics based on physiological parameters and data from in vivo studies and in vitro assays. In vivo PBPK modelling in laboratory animals by noninvasive imaging could help to improve the in vivo-in vivo translation towards human pharmacokinetics modelling. We evaluated the feasibility of PBPK modelling with PET data from mice. We used data from two of our PET tracers under development, [11C]AM7 and [11C]MT107. PET images suggested hepatobiliary excretion which was reduced after cyclosporine administration. We fitted the time-activity curves of blood, liver, gallbladder/intestine, kidney, and peripheral tissue to a compartment model and compared the resulting pharmacokinetic parameters under control conditions ([11C]AM7 n = 2; [11C]MT107, n = 4) and after administration of cyclosporine ([11C]MT107, n = 4). The modelling revealed a significant reduction in [11C]MT107 hepatobiliary clearance from 35.2 ± 10.9 to 17.1 ± 5.6 μl/min after cyclosporine administration. The excretion profile of [11C]MT107 was shifted from predominantly hepatobiliary (CLH/CLR = 3.8 ± 3.0) to equal hepatobiliary and renal clearance (CLH/CLR = 0.9 ± 0.2). Our results show the potential of PBPK modelling for characterizing the in vivo effects of transporter inhibition on whole-body and organ-specific pharmacokinetics.
Collapse
Affiliation(s)
- Marco F. Taddio
- Radiopharmaceutical Science and Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, Switzerland
| | - Claudia Keller
- Radiopharmaceutical Science and Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Radiopharmaceutical Science and Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Stefanie D. Krämer
- Radiopharmaceutical Science and Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Haider A, Spinelli F, Herde AM, Mu B, Keller C, Margelisch M, Weber M, Schibli R, Mu L, Ametamey SM. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue. Eur J Med Chem 2018; 145:746-759. [DOI: 10.1016/j.ejmech.2017.12.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023]
|
18
|
Anwaier G, Chen C, Cao Y, Qi R. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomedicine 2017; 12:7681-7693. [PMID: 29089763 PMCID: PMC5656339 DOI: 10.2147/ijn.s142385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that technological advancements have been made in diagnosis and treatment, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity worldwide. Early detection of atherosclerosis (AS), especially vulnerable plaques, plays a crucial role in the prevention of acute coronary syndrome (ACS). Targeting the critical cytokines and molecules that are upregulated during the biological process of AS by in vivo molecular imaging has been widely used in plaque imaging. With their three-dimensional architecture, composition, and abundant terminal functional groups, dendrimers provide a platform for multitargeting and multimodal imaging. Thus, modified dendrimers with the key molecules upregulated in AS plaques will be an innovative attempt to achieve targeted imaging of AS plaques specifically and efficiently. This review was aimed to address some recent works on imaging of AS plaques using various types of image technology and further discuss the applications of dendrimers, an innovative yet seldom used method in imaging of AS plaques due to some limitations and challenges, and we highlight the bright future of the modified dendrimers in characterizing AS plaques.
Collapse
Affiliation(s)
- Gulinigaer Anwaier
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|
19
|
CD80 Is Upregulated in a Mouse Model with Shear Stress-Induced Atherosclerosis and Allows for Evaluating CD80-Targeting PET Tracers. Mol Imaging Biol 2017; 19:90-99. [PMID: 27430577 DOI: 10.1007/s11307-016-0987-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE A shear stress-induced atherosclerosis mouse model was characterized for its expression of inflammation markers with focus on CD80. With this model, we evaluated two positron emission tomography (PET) radiotracers targeting CD80 as well as 2-deoxy-2-[18F]fluoro-D-mannose ([18F]FDM) in comparison with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). PROCEDURE A flow constrictive cuff implanted around the common carotid artery in apolipoprotein E knockout mice resulted in plaque formation. CD80 expression levels and plaque histopathology were evaluated. Serial PET/X-ray computed tomography scans were performed to follow inflammation. RESULTS Plaque formation with increased levels of CD80 was observed. Histologically, plaques presented macrophage-rich and large necrotic areas covered by a thin fibrous cap. Of the CD80-specific tracers, one displayed an increased uptake in plaques by PET. Both [18F]FDG and [18F]FDM accumulated in atherosclerotic plaques. CONCLUSION This mouse model presented, similar to humans, an increased expression of CD80 which renders it suitable for non-invasively targeting CD80-positive immune cells and evaluating CD80-specific radiotracers.
Collapse
|
20
|
Ley K, Gerdes N, Winkels H. ATVB Distinguished Scientist Award: How Costimulatory and Coinhibitory Pathways Shape Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:764-777. [PMID: 28360089 PMCID: PMC5424816 DOI: 10.1161/atvbaha.117.308611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Immune cells play a critical role in atherosclerosis. Costimulatory and coinhibitory molecules of the tumor necrosis factor receptor and CD28 immunoglobulin superfamilies not only shape T-cell and B-cell responses but also have a major effect on antigen-presenting cells and nonimmune cells. APPROACH AND RESULTS Pharmacological inhibition or activation of costimulatory and coinhibitory molecules and genetic deletion demonstrated their involvement in atherosclerosis. This review highlights recent advances in understanding how costimulatory and coinhibitory pathways shape the immune response in atherosclerosis. CONCLUSIONS Insights gained from costimulatory and coinhibitory molecule function in atherosclerosis may inform future therapeutic approaches.
Collapse
Affiliation(s)
- Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.).
| | - Norbert Gerdes
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| | - Holger Winkels
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| |
Collapse
|
21
|
Meletta R, Slavik R, Mu L, Rancic Z, Borel N, Schibli R, Ametamey SM, Krämer SD, Müller Herde A. Cannabinoid receptor type 2 (CB2) as one of the candidate genes in human carotid plaque imaging: Evaluation of the novel radiotracer [ 11 C]RS-016 targeting CB2 in atherosclerosis. Nucl Med Biol 2017; 47:31-43. [DOI: 10.1016/j.nucmedbio.2017.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
|
22
|
Hayakawa N, Yamane T, Arias-Loza AP, Shinaji T, Wakabayashi H, Lapa C, Werner RA, Javadi MS, Pelzer T, Higuchi T. Impact of tissue photon attenuation in small animal cardiac PET imaging. Int J Cardiol 2017; 227:257-260. [PMID: 27839818 DOI: 10.1016/j.ijcard.2016.11.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Tissue photon attenuation is one of the essential artifacts requiring correction in clinical cardiac positron emission tomography (PET) imaging. However, due to small body size its impact on diagnostic accuracy in small rodents is considered to be limited or even ignorable. The present cardiac PET study compares lean and obese rats to determine the influence of tissue attenuation on quantitative assessment as well as regional tracer distribution. METHODS A dedicated small animal PET system equipped with a 57Co rotating source for transmission was used. To assess the impact of tissue attenuation in rats with different body sizes, cardiac 18F-FDG -PET studies for Zucker diabetic fatty rats (obese rats) and Zucker lean rats (lean rats) were performed. The radiotracer activity reduction by attenuation was compared between the two groups. Regional tracer distribution calculated with and without attenuation correction was also assessed. RESULTS The chest diameter was significantly longer in obese than in lean rats (5.6±0.3cm in obese and 4.5±0.2cm in lean rats, p<0.0001). Whereas the activity reduction by attenuation was significantly greater in obese than in lean rats (44.1±2.5% and 5.1±3.1%, p<0.0001), the regional variation of tissue attenuation among the ventricular walls was minimal in both lean (p=0.73) and obese rats (p=0.65). CONCLUSION Attenuation correction is indispensable for accurate comparison of cardiac tracer activity between animals with different body size, whereas it can be omitted for evaluation of regional tracer distribution.
Collapse
Affiliation(s)
- Nobuyuki Hayakawa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Tomohiko Yamane
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Anahi-Paula Arias-Loza
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Tetsuya Shinaji
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Mehrbod S Javadi
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Theo Pelzer
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
23
|
Zirlik A, Lutgens E. An inflammatory link in atherosclerosis and obesity. Co-stimulatory molecules. Hamostaseologie 2016. [PMID: 26225729 DOI: 10.5482/hamo-14-12-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis and obesity-induced metabolic dysfunction are lipid-driven inflammatory pathologies responsible for a major part of cardiovascular complications. Immune cell activation as well as interactions between the different immune cells is dependent on and controlled by a variety of co-stimulatory signals. These co-stimulatory signals can either aggravate or ameliorate the disease depending on the stage of the disease, the cell-types involved and the signal transduction cascades initiated. This review focuses on the diverse roles of the most established co-stimulatory molecules of the B7 and Tumor Necrosis Factor Receptor (TNFR) families, ie the CD28/CTLA4-CD80/CD86 and CD40L/CD40 dyads in the pathogenesis of atherosclerosis and obesity. In addition, we will explore their potential as therapeutic targets in both atherosclerosis and obesity.
Collapse
Affiliation(s)
- A Zirlik
- Prof. Andreas Zirlik, Atherogenesis Research Group, Heart Center Freiburg University, Cardiology and Angiology I, University of Freiburg, Germany, E-mail:
| | | |
Collapse
|
24
|
Meletta R, Müller Herde A, Dennler P, Fischer E, Schibli R, Krämer SD. Preclinical imaging of the co-stimulatory molecules CD80 and CD86 with indium-111-labeled belatacept in atherosclerosis. EJNMMI Res 2016; 6:1. [PMID: 26728358 PMCID: PMC4700042 DOI: 10.1186/s13550-015-0157-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
Background The inflammatory nature of atherosclerosis provides a broad range of potential molecular targets for atherosclerosis imaging. Growing interest is focused on targets related to plaque vulnerability such as the co-stimulatory molecules CD80 and CD86. We investigated in this preclinical proof-of-concept study the applicability of the CD80/CD86-binding fusion protein belatacept as a probe for atherosclerosis imaging. Methods Belatacept was labeled with indium-111, and the binding affinity was determined with CD80/CD86-positive Raji cells. In vivo distribution was investigated in Raji xenograft-bearing mice in single-photon emission computed tomography (SPECT)/CT scans, biodistribution, and ex vivo autoradiography studies. Ex vivo SPECT/CT experiments were performed with aortas and carotids of ApoE KO mice. Accumulation in human carotid atherosclerotic plaques was investigated by in vitro autoradiography. Results 111In-DOTA-belatacept was obtained in >70 % yield, >99 % radiochemical purity, and ~40 GBq/μmol specific activity. The labeled belatacept bound with high affinity to Raji cells. In vivo, 111In-DOTA-belatacept accumulated specifically in Raji xenografts, lymph nodes, and salivary glands. Ex vivo SPECT experiments revealed displaceable accumulation in atherosclerotic plaques of ApoE KO mice fed an atherosclerosis-promoting diet. In human plaques, binding correlated with the infiltration by immune cells and the presence of a large lipid and necrotic core. Conclusions 111In-DOTA-belatacept accumulates in CD80/CD86-positive tissues in vivo and in vitro rendering it a research tool for the assessment of inflammatory activity in atherosclerosis and possibly other diseases. The tracer is suitable for preclinical imaging of co-stimulatory molecules of both human and murine origin. Radiolabeled belatacept could serve as a benchmark for future CD80/CD86-specific imaging agents. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0157-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Romana Meletta
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland
| | - Adrienne Müller Herde
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland
| | - Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232, Villigen-PSI, Switzerland
| | - Eliane Fischer
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232, Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland.,Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232, Villigen-PSI, Switzerland
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland.
| |
Collapse
|
25
|
Abstract
The immune reactions that regulate atherosclerotic plaque inflammation involve chemokines, lipid mediators and costimulatory molecules. Chemokines are a family of chemotactic cytokines that mediate immune cell recruitment and control cell homeostasis and activation of different immune cell types and subsets. Chemokine production and activation of chemokine receptors form a positive feedback mechanism to recruit monocytes, neutrophils and lymphocytes into the atherosclerotic plaque. In addition, chemokine signalling affects immune cell mobilization from the bone marrow. Targeting several of the chemokines and/or chemokine receptors reduces experimental atherosclerosis, whereas specific chemokine pathways appear to be involved in plaque regression. Leukotrienes are lipid mediators that are formed locally in atherosclerotic lesions from arachidonic acid. Leukotrienes mediate immune cell recruitment and activation within the plaque as well as smooth muscle cell proliferation and endothelial dysfunction. Antileukotrienes decrease experimental atherosclerosis, and recent observational data suggest beneficial clinical effects of leukotriene receptor antagonism in cardiovascular disease prevention. By contrast, other lipid mediators, such as lipoxins and metabolites of omega-3 fatty acids, have been associated with the resolution of inflammation. Costimulatory molecules play a central role in fine-tuning immunological reactions and mediate crosstalk between innate and adaptive immunity in atherosclerosis. Targeting these interactions is a promising approach for the treatment of atherosclerosis, but immunological side effects are still a concern. In summary, targeting chemokines, leukotriene receptors and costimulatory molecules could represent potential therapeutic strategies to control atherosclerotic plaque inflammation.
Collapse
Affiliation(s)
- M Bäck
- Translational Cardiology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - C Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - E Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Meletta R, Borel N, Stolzmann P, Astolfo A, Klohs J, Stampanoni M, Rudin M, Schibli R, Krämer SD, Müller Herde A. Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques. Int J Cardiovasc Imaging 2015; 31:1425-34. [DOI: 10.1007/s10554-015-0706-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022]
|
27
|
Slavik R, Herde AM, Bieri D, Weber M, Schibli R, Krämer SD, Ametamey SM, Mu L. Synthesis, radiolabeling and evaluation of novel 4-oxo-quinoline derivatives as PET tracers for imaging cannabinoid type 2 receptor. Eur J Med Chem 2015; 92:554-64. [DOI: 10.1016/j.ejmech.2015.01.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
|
28
|
Meletta R, Müller Herde A, Chiotellis A, Isa M, Rancic Z, Borel N, Ametamey SM, Krämer SD, Schibli R. Evaluation of the radiolabeled boronic acid-based FAP inhibitor MIP-1232 for atherosclerotic plaque imaging. Molecules 2015; 20:2081-99. [PMID: 25633335 PMCID: PMC6272135 DOI: 10.3390/molecules20022081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
Research towards the non-invasive imaging of atherosclerotic plaques is of high clinical priority as early recognition of vulnerable plaques may reduce the incidence of cardiovascular events. The fibroblast activation protein alpha (FAP) was recently proposed as inflammation-induced protease involved in the process of plaque vulnerability. In this study, FAP mRNA and protein levels were investigated by quantitative polymerase chain reaction and immunohistochemistry, respectively, in human endarterectomized carotid plaques. A published boronic-acid based FAP inhibitor, MIP-1232, was synthetized and radiolabeled with iodine-125. The potential of this radiotracer to image plaques was evaluated by in vitro autoradiography with human carotid plaques. Specificity was assessed with a xenograft with high and one with low FAP level, grown in mice. Target expression analyses revealed a moderately higher protein level in atherosclerotic plaques than normal arteries correlating with plaque vulnerability. No difference in expression was determined on mRNA level. The radiotracer was successfully produced and accumulated strongly in the FAP-positive SK-Mel-187 melanoma xenograft in vitro while accumulation was negligible in an NCI-H69 xenograft with low FAP levels. Binding of the tracer to endarterectomized tissue was similar in plaques and normal arteries, hampering its use for atherosclerosis imaging.
Collapse
Affiliation(s)
- Romana Meletta
- Department of Chemistry and Applied Bioscience of ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Adrienne Müller Herde
- Department of Chemistry and Applied Bioscience of ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Aristeidis Chiotellis
- Department of Chemistry and Applied Bioscience of ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Malsor Isa
- Department of Chemistry and Applied Bioscience of ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Zoran Rancic
- Division of Cardiovascular Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland.
| | - Simon M Ametamey
- Department of Chemistry and Applied Bioscience of ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Stefanie D Krämer
- Department of Chemistry and Applied Bioscience of ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Roger Schibli
- Department of Chemistry and Applied Bioscience of ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
29
|
Müller A, Krämer SD, Meletta R, Beck K, Selivanova SV, Rancic Z, Kaufmann PA, Vos B, Meding J, Stellfeld T, Heinrich TK, Bauser M, Hütter J, Dinkelborg LM, Schibli R, Ametamey SM. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability. Nucl Med Biol 2014; 41:562-9. [PMID: 24853402 DOI: 10.1016/j.nucmedbio.2014.04.085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Atherosclerotic plaque rupture is the primary cause for myocardial infarction and stroke. During plaque progression macrophages and mast cells secrete matrix-degrading proteolytic enzymes, such as matrix metalloproteinases (MMPs). We studied levels of MMPs and tissue inhibitor of metalloproteinases-3 (TIMP-3) in relation to the characteristics of carotid plaques. We evaluated in vitro two radiolabeled probes targeting active MMPs towards non-invasive imaging of rupture-prone plaques. METHODS Human carotid plaques obtained from endarterectomy were classified into stable and vulnerable by visual and histological analysis. MMP-1, MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MMP-14, TIMP-3, and CD68 levels were investigated by quantitative polymerase chain reaction. Immunohistochemistry was used to localize MMP-2 and MMP-9 with respect to CD68-expressing macrophages. Western blotting was applied to detect their active forms. A fluorine-18-labeled MMP-2/MMP-9 inhibitor and a tritiated selective MMP-9 inhibitor were evaluated by in vitro autoradiography as potential lead structures for non-invasive imaging. RESULTS Gene expression levels of all MMPs and CD68 were elevated in plaques. MMP-1, MMP-9, MMP-12 and MMP-14 were significantly higher in vulnerable than stable plaques. TIMP-3 expression was highest in stable and low in vulnerable plaques. Immunohistochemistry revealed intensive staining of MMP-9 in vulnerable plaques. Western blotting confirmed presence of the active form in plaque lysates. In vitro autoradiography showed binding of both inhibitors to stable and vulnerable plaques. CONCLUSIONS MMPs differed in their expression patterns among plaque phenotypes, providing possible imaging targets. The two tested MMP-2/MMP-9 and MMP-9 inhibitors may be useful to detect atherosclerotic plaques, but not the vulnerable lesions selectively.
Collapse
Affiliation(s)
- Adrienne Müller
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Romana Meletta
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Katharina Beck
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Zoran Rancic
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Bernhard Vos
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | - Jörg Meding
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | - Timo Stellfeld
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | | | - Marcus Bauser
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | - Joachim Hütter
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | | | - Roger Schibli
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|