1
|
Folkestad L, Prakash SK, Nagamani SCS, Andersen NH, Carter E, Hald JD, Johnson RJ, Langdahl B, Perfetto EM, Raggio C, Ralston SH, Sandhaus RA, Semler O, Tosi L, Orwoll E. Cardiovascular disease in adults with osteogenesis imperfecta: clinical characteristics, care recommendations, and research priorities identified using a modified Delphi technique. J Bone Miner Res 2025; 40:211-221. [PMID: 39665364 PMCID: PMC11789389 DOI: 10.1093/jbmr/zjae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Osteogenesis imperfecta (OI) is a multisystem disorder most often caused by pathogenic variants in genes that encode type I collagen. Type I collagen is abundant not only in bone but also in multiple tissues including skin, tendons, cornea, blood vessels, and heart. Thus, OI can be expected to affect cardiovascular system, and there are numerous reports of cardiovascular disease (CVD) in people with OI. However, there is no consensus on how CVD in OI should be assessed or managed. To fill this gap, a multidisciplinary group was convened to develop clinical guidance. The work included a systematic review of the available literature and, using a modified Delphi approach, the development of a series of statements summarizing current knowledge. Fourteen clinical recommendations were developed to guide clinicians, patients, and stakeholders about an approach for CVD in adults with OI. This paper describes how the work was conducted and provides the background and rationale for each recommendation. Furthermore, we highlight knowledge gaps and suggest research priorities for the future study of CVD in OI.
Collapse
Affiliation(s)
- Lars Folkestad
- Department of Endocrinology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Siddharth K Prakash
- Department of Internal Medicine, John P and Kathrine G McGovern Medical School, University of Texas Health Science Center at Houston, Houston, 77030 TX, United States
| | - Sandesh C S Nagamani
- Molecular and Human Genetics and Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, TX 77030, United States
| | | | - Erin Carter
- Kathryn O. & Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, 10021 NY, United States
| | - Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Centre for Rare Diseases, Pediatric and Adolescent Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Riley J Johnson
- Department of Medicine, Oregon Health and Science University, Portland, 97239 OR, United States
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Eleanor M Perfetto
- Practice, Science, and Health Outcomes Research, University of Maryland School of Pharmacy, Baltimore, 21201 MD, United States
| | - Cathleen Raggio
- Kathryn O. & Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, 10021 NY, United States
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH 2XU, United Kingdom
| | - Robert A Sandhaus
- National Jewish Health, Denver, 80206 CO, United States
- Alpha-1 Foundation and AlphaNet, Coral Gables, 33134 FL, United States
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine at the University of Cologne, University Hospital Cologne, 50937 Cologne, Germany
| | - Laura Tosi
- Division of Orthopedics and Sports Medicine, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, 20010 DC, United States
| | - Eric Orwoll
- Department of Medicine, Oregon Health and Science University, Portland, 97239 OR, United States
| |
Collapse
|
2
|
Hald JD, Langdahl B, Folkestad L, Wekre LL, Johnson R, Nagamani SCS, Raggio C, Ralston SH, Semler O, Tosi L, Orwoll E. Osteogenesis Imperfecta: Skeletal and Non-skeletal Challenges in Adulthood. Calcif Tissue Int 2024; 115:863-872. [PMID: 38836890 PMCID: PMC11606788 DOI: 10.1007/s00223-024-01236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a Mendelian connective tissue disorder associated with increased bone fragility and other clinical manifestations most commonly due to abnormalities in production, structure, or post-translational modification of type I collagen. Until recently, most research in OI has focused on the pediatric population and much less attention has been directed at the effects of OI in the adult population. This is a narrative review of the literature focusing on the skeletal as well as non-skeletal manifestations in adults with OI that may affect the aging individual. We found evidence to suggest that OI is a systemic disease which involves not only the skeleton, but also the cardiopulmonary and gastrointestinal system, soft tissues, tendons, muscle, and joints, hearing, eyesight, dental health, and women's health in OI and potentially adds negative affect to health-related quality of life. We aim to guide clinicians as well as draw attention to obvious knowledge gaps and the need for further research in adult OI.
Collapse
Affiliation(s)
- Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Centre for Rare Diseases, Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Folkestad
- Bone and Mineral Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lena Lande Wekre
- TRS National Resource Center for Rare Disorders, Sunnaas Rehabilitation Hospital, Oslo, Norway
| | - Riley Johnson
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Cathleen Raggio
- Department of Orthopedics, Hospital for Special Surgery, New York, NY, USA
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, EH 2XU, UK
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Laura Tosi
- Division of Orthopaedics & Sports Medicine, Children's National Hospital, Washington, DC, 20010, USA
| | - Eric Orwoll
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, USA
| |
Collapse
|
3
|
Crawford TK, Lafaver BN, Phillips CL. Extra-Skeletal Manifestations in Osteogenesis Imperfecta Mouse Models. Calcif Tissue Int 2024; 115:847-862. [PMID: 38641703 DOI: 10.1007/s00223-024-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder of skeletal fragility with an incidence of roughly 1:15,000. Approximately 85% of the pathogenic variants responsible for OI are in the type I collagen genes, COL1A1 and COL1A2, with the remaining pathogenic OI variants spanning at least 20 additional genetic loci that often involve type I collagen post-translational modification, folding, and intracellular transport as well as matrix incorporation and mineralization. In addition to being the most abundant collagen in the body, type I collagen is an important structural and extracellular matrix signaling molecule in multiple organ systems and tissues. Thus, OI disease-causing variants result not only in skeletal fragility, decreased bone mineral density (BMD), kyphoscoliosis, and short stature, but can also result in hearing loss, dentinogenesis imperfecta, blue gray sclera, cardiopulmonary abnormalities, and muscle weakness. The extensive genetic and clinical heterogeneity in OI has necessitated the generation of multiple mouse models, the growing awareness of non-skeletal organ and tissue involvement, and OI being more broadly recognized as a type I collagenopathy.This has driven the investigation of mutation-specific skeletal and extra-skeletal manifestations and broadened the search of potential mechanistic therapeutic strategies. The purpose of this review is to outline several of the extra-skeletal manifestations that have recently been characterized through the use of genetically and phenotypically heterogeneous mouse models of osteogenesis imperfecta, demonstrating the significant potential impact of OI disease-causing variants as a collagenopathy (affecting multiple organ systems and tissues), and its implications to overall health.
Collapse
Affiliation(s)
- Tara K Crawford
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Brittany N Lafaver
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Charlotte L Phillips
- Departments of Biochemistry and Child Health, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena HI, De Backer J, Mosquera LM, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications. Am J Hum Genet 2024; 111:2219-2231. [PMID: 39226896 PMCID: PMC11480851 DOI: 10.1016/j.ajhg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, NE, USA
| | - Malenka M Bissell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Julie De Backer
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Laura Muiño Mosquera
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodolfo Citro
- Cardiothoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Lim AYL, Kevat A. Respiratory insufficiency in an infant with osteogenesis imperfecta. Respir Med Case Rep 2024; 52:102107. [PMID: 39350960 PMCID: PMC11440314 DOI: 10.1016/j.rmcr.2024.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a rare presentation in the pediatric population. Whilst orthopedic manifestations are well-publicised, the multiple respiratory complications and mechanisms of respiratory failure in more severe cases are less well described. We report the clinical, radiological and histopathological details of the case of an infant with genetically-confirmed OI (Type 2) and associated respiratory insufficiency, as well as summarise the relevant existing literature. This case highlights the importance of the recognition of clinical challenges associated with the management of respiratory complications in a patient with OI.
Collapse
Affiliation(s)
- Adeline Yi Ling Lim
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, 501 Stanley Street, South Brisbane, Queensland, 4101, Australia
| | - Ajay Kevat
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, 501 Stanley Street, South Brisbane, Queensland, 4101, Australia
| |
Collapse
|
6
|
Xiaohui T, Wang L, Yang X, Jiang H, Zhang N, Zhang H, Li D, Li X, Zhang Y, Wang S, Zhong C, Yu S, Ren M, Sun M, Li N, Chen T, Ma Y, Li F, Liu J, Yu Y, Yue H, Zhang Z, Zhang G. Sclerostin inhibition in rare bone diseases: Molecular understanding and therapeutic perspectives. J Orthop Translat 2024; 47:39-49. [PMID: 39007037 PMCID: PMC11245887 DOI: 10.1016/j.jot.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Sclerostin emerges as a novel target for bone anabolic therapy in bone diseases. Osteogenesis imperfecta (OI) and X-linked hypophosphatemia (XLH) are rare bone diseases in which therapeutic potential of sclerostin inhibition cannot be ignored. In OI, genetic/pharmacologic sclerostin inhibition promoted bone formation of mice, but responses varied by genotype and age. Serum sclerostin levels were higher in young OI-I patients, while lower in adult OI-I/III/IV. It's worth investigating whether therapeutic response of OI to sclerostin inhibition could be clinically predicted by genotype and age. In XLH, preclinical/clinical data suggested factors other than identified FGF23 contributing to XLH. Higher levels of circulating sclerostin were detected in XLH. Sclerostin inhibition promoted bone formation in Hyp mice, while restored phosphate homeostasis in age-/gender-dependent manner. The role of sclerostin in regulating phosphate metabolism deserves investigation. Sclerostin/FGF23 levels of XLH patients with/without response to FGF23-antibody warrants study to develop precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy. Notably, OI patients were associated with cardiovascular abnormalities, so were XLH patients receiving conventional therapy. Targeting sclerostin loop3 promoted bone formation without cardiovascular risks. Further, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety. The Translational Potential of this Article. Preclinical data on the molecular understanding of sclerostin inhibition in OI and therapeutic efficacy in mouse models of different genotypes, as well as clinical data on serum sclerostin levels in patients with different phenotypes of OI, were reviewed and discussed. Translationally, it would facilitate to develop clinical prediction strategies (e.g. based on genotype and age, not just phenotype) for OI patients responsive to sclerostin inhibition. Both preclinical and clinical data suggested sclerostin as another factor contributing to XLH, in addition to the identified FGF23. The molecular understanding and therapeutic effects of sclerostin inhibition on both promoting bone anabolism and improving phosphate homostasis in Hyp mice were reviewed and discussed. Translationaly, it would facilitate the development of precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy for the treatment of XLH. Cardiovascular risk could not be ruled out during sclerostin inhibition treatment, especially for OI and XLH patients with cardiovascular diseases history and cardiovascular abnormalities. Studies on the role of sclerostin in inhiting bone formation and protecting cardiovascular system were reviewed and discussed. Translationaly, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety.
Collapse
Affiliation(s)
- Tao Xiaohui
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaofei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shenghang Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meishen Ren
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
7
|
Mei Y, Jiang Y, Shen L, Meng Z, Zhang Z, Zhang H. Echocardiographic abnormalities and joint hypermobility in Chinese patients with Osteogenesis imperfecta. Orphanet J Rare Dis 2024; 19:116. [PMID: 38475860 DOI: 10.1186/s13023-024-03089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Very little is known about the characteristics of echocardiographic abnormalities and joint hypermobility in Chinese patients with osteogenesis imperfecta (OI). The aim of our study was to investigate the characteristics, prevalence and correlation of echocardiographic abnormalities and joint hypermobility in Chinese patients with OI. METHODS A cross-sectional comparative study was conducted in pediatric and adult OI patients who were matched in age and sex with healthy controls. Transthoracic echocardiography was performed in all patients and controls, and parameters were indexed for body surface area (BSA). The Beighton score was used to evaluate the degree of joint hypermobility. RESULTS A total of 48 patients with OI (25 juveniles and 23 adults) and 129 age- and sex-matched healthy controls (79 juveniles and 50 adults) were studied. Four genes (COL1A1, COL1A2, IFITM5, and WNT1) and 39 different mutation loci were identified in our study. Mild valvular regurgitation was the most common cardiac abnormality: mild mitral and tricuspid regurgitation was found in 12% and 36% of pediatric OI patients, respectively; among 23 OI adults, 13% and 17% of patients had mild mitral and tricuspid regurgitation, respectively, and 4% had mild aortic regurgitation. In multiple regression analysis, OI was the key predictor of left atrium diameter (LAD) (β=-3.670, P < 0.001) and fractional shortening (FS) (β = 3.005, P = 0.037) in juveniles, whereas for adults, OI was a significant predictor of LAD (β=-3.621, P < 0.001) and left ventricular mass (LVM) (β = 58.928, P < 0.001). The percentages of generalized joint hypermobility in OI juveniles and adults were 56% and 20%, respectively. Additionally, only in the OI juvenile group did the results of the Mann‒Whitney U test show that the degree of joint hypermobility was significantly different between the echocardiographic normal and abnormal groups (P = 0.004). CONCLUSIONS Mild valvular regurgitation was the most common cardiac abnormality in both OI juveniles and adults. Compared with OI adults, OI juveniles had more prevalent and wider joint hypermobility. Echocardiographic abnormalities may imply that the impairment of type I collagen is more serious in OI. Baseline echocardiography should be performed in OI patients as early as possible.
Collapse
Affiliation(s)
- Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yunyi Jiang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Li Shen
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Zheying Meng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
8
|
Verdonk SJE, Storoni S, Micha D, van den Aardweg JG, Versacci P, Celli L, de Vries R, Zhytnik L, Kamp O, Bugiani M, Eekhoff EMW. Is Osteogenesis Imperfecta Associated with Cardiovascular Abnormalities? A Systematic Review of the Literature. Calcif Tissue Int 2024; 114:210-221. [PMID: 38243143 PMCID: PMC10902066 DOI: 10.1007/s00223-023-01171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder caused by abnormal collagen type I production. While OI is primarily characterized by bone fragility and deformities, patients also have extraskeletal manifestations, including an increased risk of cardiovascular disease. This review provides a comprehensive overview of the literature on cardiovascular diseases in OI patients in order to raise awareness of this understudied clinical aspect of OI and support clinical guidelines. In accordance with the PRISMA guidelines, a systematic literature search in PubMed, Embase, Web of Science and Scopus was conducted that included articles from the inception of these databases to April 2023. Valvular disease, heart failure, atrial fibrillation, and hypertension appear to be more prevalent in OI than in control individuals. Moreover, a larger aortic root was observed in OI compared to controls. Various cardiovascular diseases appear to be more prevalent in OI than in controls. These cardiovascular abnormalities are observed in all types of OI and at all ages, including young children. As there are insufficient longitudinal studies, it is unknown whether these abnormalities are progressive in nature in OI patients. Based on these findings, we would recommend referring individuals with OI to a cardiologist with a low-threshold.
Collapse
Affiliation(s)
- Sara J E Verdonk
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Dimitra Micha
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Joost G van den Aardweg
- Department of Respiratory Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Paolo Versacci
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Celli
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lidiia Zhytnik
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Traumatology and Orthopeadics, University of Tartu, Tartu, Estonia
| | - Otto Kamp
- Department of Cardiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Elisabeth M W Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Rare Bone Disease Center, Amsterdam, The Netherlands.
- Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena H, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole Exome Sequencing Uncovers the Genetic Complexity of Bicuspid Aortic Valve in Families with Early Onset Complications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302406. [PMID: 38370698 PMCID: PMC10871469 DOI: 10.1101/2024.02.07.24302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bicuspid Aortic Valve (BAV) is the most common adult congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that early onset complications of BAV (EBAV) are driven by specific impactful genetic variants. We analyzed whole exome sequences (WES) to identify rare coding variants that contribute to BAV disease in 215 EBAV families. Predicted pathogenic variants of causal genes were present in 111 EBAV families (51% of total), including genes that cause BAV (8%) or heritable thoracic aortic disease (HTAD, 17%). After appropriate filtration, we also identified 93 variants in 26 novel genes that are associated with autosomal dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants contribute to early onset complications of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
10
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
11
|
Mordenti M, Boarini M, Banchelli F, Antonioli D, Corsini S, Gnoli M, Locatelli M, Pedrini E, Staals E, Trisolino G, Lanza M, Sangiorgi L. Osteogenesis imperfecta: a cross-sectional study of skeletal and extraskeletal features in a large cohort of Italian patients. Front Endocrinol (Lausanne) 2024; 14:1299232. [PMID: 38274230 PMCID: PMC10809148 DOI: 10.3389/fendo.2023.1299232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The present study aims to describe a large cohort of Italian patients affected by osteogenesis imperfecta, providing a picture of the clinical bony and non-bony features and the molecular background to improve knowledge of the disease to inform appropriate management in clinical practice. Methods A total of 568 subjects (from 446 unrelated Italian families) affected by osteogenesis imperfecta who received outpatient care at Istituto Ortopedico Rizzoli from 2006 to 2021 were considered in the present study. Results Skeletal and extraskeletal features were analyzed showing a lower height (mean z-scores equal to -1.54 for male patients and -1.47 for female patients) compared with the general Italian population. Half of the patient population showed one or more deformities, and most of the patients had suffered a relatively low number of fractures (<10). An alteration in the sclera color was identified in 447 patients. Similarly, several extraskeletal features, like deafness, dental abnormalities, and cardiac problems, were investigated. Additionally, inheritance and genetic background were evaluated, showing that most of the patients have a positive family history and the majority of pathogenic variants detected were on collagen genes, as per literature. Conclusion This study supports the definition of a clear picture of the heterogeneous clinical manifestations leading to variable severity in terms of skeletal and extra-skeletal traits and of the genetic background of an Italian population of osteogenesis imperfecta patients. In this perspective, this clearly highlights the crucial role of standardized and structured collection of high-quality data in disease registries particularly in rare disease scenarios, helping clinicians in disease monitoring and follow-up to improve clinical practice.
Collapse
Affiliation(s)
- Marina Mordenti
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manila Boarini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Federico Banchelli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Diego Antonioli
- Unit of Pediatrics Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Serena Corsini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Gnoli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Locatelli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Pedrini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Eric Staals
- 3Orthopedic and Traumatological Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Trisolino
- Unit of Pediatrics Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marcella Lanza
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Sangiorgi
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
12
|
Evin F, Aydın D, Levent E, Özen S, Darcan Ş, Gökşen D. A case-control study of early-stage radiological markers of endothelial dysfunction and cardiovascular findings in patients with osteogenesis imperfecta: genotype-phenotype correlations. J Pediatr Endocrinol Metab 2023; 36:1161-1168. [PMID: 37859607 DOI: 10.1515/jpem-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Osteogenesis imperfecta (OI) is a disease caused by defective collagen synthesis. Collagen type 1 is found in many structures in the cardiovascular system. Endothelial dysfunction, which develops prior to the emergence of structural and clinical signs of atherosclerosis, is believed to play a key role in atherogenesis. Endothelial dysfunction may be detected presymptomatically by non-invasive radiologic methods, such as flow-mediated dilatation (FMD) and carotid intima-media thickness (CIMT). These modalities may provide early indicators of endothelial dysfunction. This cross-sectional comparative study aimed to investigate early-stage radiological markers of endothelial dysfunction and cardiovascular diseases in OI patients and healthy controls and to investigate the correlation of findings with OI genotype. METHODS Thirty patients diagnosed with OI were paired with thirty healthy age- and gender-matched controls and echocardiogram findings were compared. RESULTS None of the patients had known underlying cardiovascular disease. The mean age was 13.18 ± 2.91 years. According to Sillence classification, 15 patients had type 1 OI, 10 had type III, and 5 had type IV. Mean CIMT in the OI group was higher in the control group (OI group: 0.42 ± 0.06 vs. healthy controls: 0.34 ± 0.04 mm, p<0.01), and mean FMD percent was lower in the patient group (p<0.01). Left ventricular ejection fraction was 78.97 ± 10.32 vs. 77.56 ± 8.50 %, (OI group: 7.00 ± 3.06 vs. healthy controls: 12.14 ± 1.99, p=0.56), and fractional shortening was 42.68 ± 11.94 vs. 40.23 ± 7.99 %, (p=0.35), in OI patients and controls, respectively. CONCLUSIONS Pediatric patients with OI without clinical signs of cardiovascular abnormality had significantly worse CIMT and FMD findings than healthy controls. However, no difference was determined when comparing left ventricular ejection fraction or fractional shortening. OI patients may need to be screened for cardiovascular system complications starting from an early age.
Collapse
Affiliation(s)
- Ferda Evin
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Derya Aydın
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Ertürk Levent
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Samim Özen
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Şükran Darcan
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Damla Gökşen
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| |
Collapse
|
13
|
Omosule CL, Joseph D, Weiler B, Gremminger VL, Silvey S, Lafaver BN, Jeong Y, Kleiner S, Phillips CL. Whole-Body Metabolism and the Musculoskeletal Impacts of Targeting Activin A and Myostatin in Severe Osteogenesis Imperfecta. JBMR Plus 2023; 7:e10753. [PMID: 37457877 PMCID: PMC10339096 DOI: 10.1002/jbm4.10753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
Mutations in the COL1A1 and COL1A2 genes, which encode type I collagen, are present in around 85%-90% of osteogenesis imperfecta (OI) patients. Because type I collagen is the principal protein composition of bones, any changes in its gene sequences or synthesis can severely affect bone structure. As a result, skeletal deformity and bone frailty are defining characteristics of OI. Homozygous oim/oim mice are utilized as models of severe progressive type III OI. Bone adapts to external forces by altering its mass and architecture. Previous attempts to leverage the relationship between muscle and bone involved using a soluble activin receptor type IIB-mFc (sActRIIB-mFc) fusion protein to lower circulating concentrations of activin A and myostatin. These two proteins are part of the TGF-β superfamily that regulate muscle and bone function. While this approach resulted in increased muscle masses and enhanced bone properties, adverse effects emerged due to ligand promiscuity, limiting clinical efficacy and obscuring the precise contributions of myostatin and activin A. In this study, we investigated the musculoskeletal and whole-body metabolism effect of treating 5-week-old wildtype (Wt) and oim/oim mice for 11 weeks with either control antibody (Ctrl-Ab) or monoclonal anti-activin A antibody (ActA-Ab), anti-myostatin antibody (Mstn-Ab), or a combination of ActA-Ab and Mstn-Ab (Combo). We demonstrated that ActA-Ab treatment minimally impacts muscle mass in oim/oim mice, whereas Mstn-Ab and Combo treatments substantially increased muscle mass and overall lean mass regardless of genotype and sex. Further, while no improvements in cortical bone microarchitecture were observed with all treatments, minimal improvements in trabecular bone microarchitecture were observed with the Combo treatment in oim/oim mice. Our findings suggest that individual or combinatorial inhibition of myostatin and activin A alone is insufficient to robustly improve femoral biomechanical and microarchitectural properties in severely affected OI mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Dominique Joseph
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Brooke Weiler
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | | | - Spencer Silvey
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | | | - Youngjae Jeong
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | | | - Charlotte L. Phillips
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
- Department of Child HealthUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
14
|
Rapoport M, Bober MB, Raggio C, Wekre LL, Rauch F, Westerheim I, Hart T, van Welzenis T, Mistry A, Clancy J, Booth L, Prince S, Semler O. The patient clinical journey and socioeconomic impact of osteogenesis imperfecta: a systematic scoping review. Orphanet J Rare Dis 2023; 18:34. [PMID: 36814274 PMCID: PMC9945474 DOI: 10.1186/s13023-023-02627-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder primarily characterised by skeletal deformity and fragility, and an array of secondary features. The purpose of this review was to capture and quantify the published evidence relating specifically to the clinical, humanistic, and economic impact of OI on individuals, their families, and wider society. METHODS A systematic scoping review of 11 databases (MEDLINE, MEDLINE in-progress, EMBASE, CENTRAL, PsycINFO, NHS EED, CEA Registry, PEDE, ScHARRHUd, Orphanet and Google Scholar), supplemented by hand searches of grey literature, was conducted to identify OI literature published 1st January 1995-18th December 2021. Searches were restricted to English language but without geographical limitations. The quality of included records was assessed using the AGREE II checklist and an adapted version of the JBI cross-sectional study checklist. RESULTS Of the identified 7,850 records, 271 records of 245 unique studies met the inclusion criteria; overall, 168 included records examined clinical aspects of OI, 67 provided humanistic data, 6 reported on the economic impact of OI, and 30 provided data on mixed outcomes. Bone conditions, anthropometric measurements, oral conditions, diagnostic techniques, use of pharmacotherapy, and physical functioning of adults and children with OI were well described. However, few records included current care practice, diagnosis and monitoring, interactions with the healthcare system, or transition of care across life stages. Limited data on wider health concerns beyond bone health, how these concerns may impact health-related quality of life, in particular that of adult men and other family members, were identified. Few records described fatigue in children or adults. Markedly few records provided data on the socioeconomic impact of OI on patients and their caregivers, and associated costs to healthcare systems, and wider society. Most included records had qualitative limitations. CONCLUSION Despite the rarity of OI, the volume of recently published literature highlights the breadth of interest in the OI field from the research community. However, significant data gaps describing the experience of OI for individuals, their families, and wider society warrant further research to capture and quantify the full impact of OI.
Collapse
Affiliation(s)
| | | | | | - Lena Lande Wekre
- TRS National Resource Center for Rare Disorders, Sunnaas Rehabilitation Hospital, Bjørnemyr, Nesodden, Norway
| | | | | | - Tracy Hart
- Osteogenesis Imperfecta Foundation, Gaithersburg, MD, USA
| | | | | | | | - Lucy Booth
- Wickenstones Ltd, Abingdon, Oxfordshire, UK
| | | | | |
Collapse
|
15
|
From Genetics to Clinical Implications: A Study of 675 Dutch Osteogenesis Imperfecta Patients. Biomolecules 2023; 13:biom13020281. [PMID: 36830650 PMCID: PMC9953243 DOI: 10.3390/biom13020281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that causes bone fragility due to pathogenic variants in genes responsible for the synthesis of type I collagen. Efforts to classify the high clinical variability in OI led to the Sillence classification. However, this classification only partially takes into account extraskeletal manifestations and the high genetic variability. Little is known about the relation between genetic variants and phenotype as of yet. The aim of the study was to create a clinically relevant genetic stratification of a cohort of 675 Dutch OI patients based on their pathogenic variant types and to provide an overview of their respective medical care demands. The clinical records of 675 OI patients were extracted from the Amsterdam UMC Genome Database and matched with the records from Statistics Netherlands (CBS). The patients were categorized based on their harbored pathogenic variant. The information on hospital admissions, outpatient clinic visits, medication, and diagnosis-treatment combinations (DTCs) was compared between the variant groups. OI patients in the Netherlands appear to have a higher number of DTCs, outpatient clinic visits, and hospital admissions when compared to the general Dutch population. Furthermore, medication usage seems higher in the OI cohort in comparison to the general population. The patients with a COL1A1 or COL1A2 dominant negative missense non-glycine substitution appear to have a lower health care need compared to the other groups, and even lower than patients with COL1A1 or COL1A2 haploinsufficiency. It would be useful to include the variant type in addition to the Sillence classification when categorizing a patient's phenotype.
Collapse
|
16
|
Zhao D, Liu Y, Liu J, Hu J, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Cardiovascular abnormalities and its correlation with genotypes of children with osteogenesis imperfecta. Front Endocrinol (Lausanne) 2022; 13:1004946. [PMID: 36339400 PMCID: PMC9632612 DOI: 10.3389/fendo.2022.1004946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Osteogenesis imperfecta (OI) is a rare disorder of abnormal production or modification of type I collagen, which is caused by mutations in COL1A1, COL1A2 or other genes. We investigate the cardiac abnormalities and its correlation with pathogenic mutations in OI children. METHODS A cross-sectional comparative study was completed in a relatively large sample of OI children, who were matched in body surface area (BSA) with healthy controls. All echocardiography was performed by experienced cardiologists using Vivid 7 equipment (GE Medical Systems, Horton, Norway). The resting standard 12-lead electrocardiogram (ECG) were obtained in OI patients by FX-8600 machine. Skeletal phenotypes of OI patients were evaluated, including information of bone fractures, deformities, motility, and bone mineral density (BMD). Pathogenic mutations of OI were detected by a next-generation sequencing panel and confirmed by Sanger sequencing. RESULTS A total of 69 OI children and 42 healthy children matched in BSA were enrolled. Abnormalities of echocardiography were found in 6 OI children, including enlarged left atrium (n=5), increased internal diameter of the left ventricle (n=1), who all carried the COL1A1 mutation. Mild regurgitation of mitral or tricuspid valves was observed in 26 OI patients. Abnormal ECG manifestations were found in 8 OI children, including deep Q wave, T wave change, premature ventricular complexes, short P-R interval, incomplete bundle branch block and high voltage of left ventricular. Compared with healthy controls, OI children had significant larger values in the main pulmonary artery (1.84 vs 1.60 cm, P < 0.01), left atrial diameter (2.58 vs 2.11 cm, P < 0.001), left ventricular internal dimension at end-diastolic (LVEDd) (3.85 vs 3.50 cm, P < 0.05) and lower left ventricular ejection fraction (LVEF) (68.40% vs 71.74%, P < 0.01). Moreover, OI patients with COL1A1 mutation tended to have greater main pulmonary artery, larger diameters of left atrial and LVEDd, and lower LVEF than healthy controls. COL1A1 mutation was correlated to dilated MPA (β = 1.557, P < 0.01), LAD (β = 3.915, P < 0.001), and LVEDd (β = 2.714, P < 0.01), and decreased LVEF (β = -3.249, P < 0.01). CONCLUSIONS Cardiovascular alterations were identified in OI children, including increased dimensions of the main pulmonary artery and left chamber, and low LVEF. The cardiovascular abnormalities seemed to be correlated to COL1A1 mutation and defects of type I collagen, which expanded our understandings of the cardiac phenotypes of OI children.
Collapse
Affiliation(s)
- Dichen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongtai Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jidong Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Mei Li,
| |
Collapse
|
17
|
Andersen JD, Folkestad L, Hald JD, Harsløf T, Langdahl BL, Abrahamsen B. Osteoarthritis in osteogenesis imperfecta: A nationwide register-based cohort study. Bone 2022; 154:116222. [PMID: 34597857 DOI: 10.1016/j.bone.2021.116222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Osteogenesis Imperfecta (OI) is a genetic disease characterized by skeletal fragility. Collagen type 1 is found in many tissues and collagen abnormalities may result in organ specific symptomatology. Musculoskeletal pain is a known issue for patients with OI, osteoarthritis (OA) can be a likely cause. Only few studies have investigated the relationship between OI and OA but demonstrated a greater propensity in OI patients to develop rapidly progressing OA. Therefore, we wanted to investigate if OA is more frequent in patients with OI compared to the general population. OBJECTIVE To evaluate the risk of osteoarthritis in patients with OI. DESIGN A Danish nationwide, population-based and register-based longitudinal open cohort study. PARTICIPANTS From 1977 to 2019, all patients registered with an OI diagnosis and a reference population matched on age and sex 5:1. MEASUREMENTS Sub-hazard ratios for any, hip, and knee osteoarthritis comparing the OI cohort to the reference population. RESULTS We identified 907 patients with OI (493 women) and included 4535 patients in the reference population (2465 women). The Sub Hazard Ratio was 2.20 [95% CI 1.73-2.79] for any osteoarthritis with 11.4% of the OI population and 5.4% of the reference population being registered. We found lower incidences of upper extremity joint OA compared to lower joint OA, but upper extremity joint OA was significantly more frequent in the OI population 2.1% vs 0.6%, SHR 3.19 [95% CI 1.78-5.70]. CONCLUSION Patients with OI have a higher risk of OA than the reference population. MINIABSTRACT Osteogenesis Imperfecta (OI) is a hereditary connective tissue disorder with skeletal fragility and extraskeletal manifestations. Osteoarthritis is a frequent joint disease and the incidence increases with age. In a population-register-based study, the risk of osteoarthritis was higher in patients with OI at an earlier age compared to a reference population.
Collapse
Affiliation(s)
- Jane Dahl Andersen
- Department of Internal Medicine, Lillebaelt Hospital, Kolding, Sygehusvej 24, 6000 Kolding, Denmark
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, JB Winsløvsvej 19, 5000 Odense C, Denmark.
| | - Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Bente Lomholt Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensen Boulevard 82, 8200 Aarhus N, Denmark
| | - Bo Abrahamsen
- Department of Internal Medicine, Lillebaelt Hospital, Kolding, Sygehusvej 24, 6000 Kolding, Denmark; Department of Medicine, Holbæk Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark; Odense Patient Data Explorative Network, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, Bravenboer N, Maugeri A, Micha D. Collagen transport and related pathways in Osteogenesis Imperfecta. Hum Genet 2021; 140:1121-1141. [PMID: 34169326 PMCID: PMC8263409 DOI: 10.1007/s00439-021-02302-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Osteogenesis Imperfecta (OI) comprises a heterogeneous group of patients who share bone fragility and deformities as the main characteristics, albeit with different degrees of severity. Phenotypic variation also exists in other connective tissue aspects of the disease, complicating disease classification and disease course prediction. Although collagen type I defects are long established as the primary cause of the bone pathology, we are still far from comprehending the complete mechanism. In the last years, the advent of next generation sequencing has triggered the discovery of many new genetic causes for OI, helping to draw its molecular landscape. It has become clear that, in addition to collagen type I genes, OI can be caused by multiple proteins connected to different parts of collagen biosynthesis. The production of collagen entails a complex process, starting from the production of the collagen Iα1 and collagen Iα2 chains in the endoplasmic reticulum, during and after which procollagen is subjected to a plethora of posttranslational modifications by chaperones. After reaching the Golgi organelle, procollagen is destined to the extracellular matrix where it forms collagen fibrils. Recently discovered mutations in components of the retrograde transport of chaperones highlight its emerging role as critical contributor of OI development. This review offers an overview of collagen regulation in the context of recent gene discoveries, emphasizing the significance of transport disruptions in the OI mechanism. We aim to motivate exploration of skeletal fragility in OI from the perspective of these pathways to identify regulatory points which can hint to therapeutic targets.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariet Elting
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne Wisse
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam /UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular Matrix in Vascular Disease, Part 2/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2189-2203. [PMID: 32354385 DOI: 10.1016/j.jacc.2020.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Abstract
Medium-sized and large arteries consist of 3 layers: the tunica intima, tunica media, and tunica adventitia. The tunica media accounts for the bulk of the vessel wall and is the chief determinant of mechanical compliance. It is primarily composed of circumferentially arranged layers of vascular smooth muscle cells that are separated by concentrically arranged elastic lamellae; a form of extracellular matrix (ECM). The tunica media is separated from the tunica intima and tunica adventitia, the innermost and outermost layers, respectively, by the internal and external elastic laminae. This second part of a 4-part JACC Focus Seminar discusses the contributions of the ECM to vascular homeostasis and pathology. Advances in genetics and proteomics approaches have fostered significant progress in our understanding of vascular ECM. This review highlights the important role of the ECM in vascular disease and the prospect of translating these discoveries into clinical disease biomarkers and potential future therapies.
Collapse
Affiliation(s)
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
20
|
Cardiopulmonary Status in Adults with Osteogenesis Imperfecta: Intrinsic Lung Disease May Contribute More Than Scoliosis. Clin Orthop Relat Res 2020; 478:2833-2843. [PMID: 32649370 PMCID: PMC7899416 DOI: 10.1097/corr.0000000000001400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a heterogeneous group of collagen-related disorders characterized by osteopenia, bone fractures, spine deformities, and nonskeletal complications. Cardiopulmonary complications are the major cause of morbidity and mortality in adults with OI. The cause of such problems was often attributed solely to the presence of large scoliosis curves affecting pulmonary function and, indirectly, cardiovascular health. However, recent studies suggest this may not be the case. Therefore, determining the relationships and causative agents of cardiopulmonary problems in patients with OI, specifically pulmonary impairment, is important to improving the overall wellbeing, quality of life, and survival of these patients. QUESTIONS/PURPOSES (1) Is cardiopulmonary fitness in OI solely related to the presence of scoliosis? (2) What is the prevalence of heart and lung complications in this adult population? (3) Does the presence of pulmonary impairment impact quality of life in adults with OI? METHODS This is a prospective observational cross-sectional study. Within 1 year, each participant (n = 30) completed pulmonary function testing, echocardiogram, ECG, chest CT, AP spine radiography, and quality-of-life assessments (SF-36, St. George's Respiratory Questionnaire, Functional Outcomes of Sleep Questionnaire, and Pittsburgh Sleep Quality Index). In terms of pulmonary function, we differentiated restrictive and obstructive physiology using the ratio of forced expiratory volume over one second to forced vital capacity (FEV1/FVC), with restrictive lung physiology defined as FEV1/FVC > 0.8 and obstructive lung physiology as FEV1/FVC < 0.7. Spine radiographs were evaluated for scoliosis. Chest CT images were reviewed to qualitatively assess the lungs. The statistical analysis involved a Kruskall-Wallis test with Bonferroni's correction and a bivariate correlation analysis using Spearman's rho correlation coefficient (p < 0.05). RESULTS Sixteen of 23 participants with restrictive lung physiology had scoliosis; their ages ranged from 19 years to 67 years. There was no correlation between the magnitude of the scoliosis curve and deficient pulmonary function (R = 0.08; p = 0.68). Seven participants had normal pulmonary function. The average scoliosis curve was 44 ± 29°. Thirteen participants had abnormal ECG findings while 10 had abnormal echocardiogram results. All but two individuals with abnormal chest CT results were found to have bronchial wall thickening. There were no differences in pulmonary or cardiac findings between OI types, except for FVC and total lung capacity, which were lower in individuals with Type III OI than in those with other types of OI. FEV1/FVC correlated with St. George's Respiratory Questionnaire (R = 0.429; p = 0.02) but not with Functional Outcomes of Sleep Questionnaire (R = -0.26; p = 0.19) or SF-36 scores (physical component summary: R = -0.037, p = 0.85; mental component summary: R = -0.204, p = 0.29). CONCLUSIONS The lack of a relationship between decreased pulmonary function and the severity of scoliosis suggests that restrictive lung physiology in this population is likely because of factors intrinsic to OI and not entirely because of thoracic cage deformities. The fact that pulmonary impairment influences self-perceived quality of life exemplifies how detrimental such complications may be to everyday functioning. This also reinforces the importance of determining the underlying cause of cardiopulmonary impairment in this population to set clear clinical guidelines of care. LEVEL OF EVIDENCE Level II, prognostic study.
Collapse
|
21
|
Abstract
BACKGROUND Osteogenesis imperfecta is a collagen type I bone disorder. Recently, extra-skeletal manifestations have been described, including many cardiovascular alterations. This study aims to report echocardiogram study in children with osteogenesis imperfecta compared to a control group. METHODS A cross-sectional comparative study took place in the Reference Center for Treatment of Osteogenesis Imperfecta in Southern Brazil. Fifty-four patients with osteogenesis imperfecta were paired with 54 controls, based on body surface area, and echocardiogram findings were compared. RESULTS All cases were asymptomatic for cardiac manifestations. The case group presented significant larger values in aortic diameter, left atrium diameter, left ventricule end-diastolic diameter, left ventricule end-systolic diameter, and right ventricle diameter compared with the control group. The analysis considering the severity of osteogenesis imperfecta shows that in mild osteogenesis imperfecta, the aortic diameter (p < 0.001), left atrium diameter (p = 0.002), left ventricule end-diastolic diameter (p = 0.001), left ventricule end-systolic diameter (p = 0.026), and right ventricle diameter (p < 0.001) were significantly larger than in the control group. Patients with moderate/severe osteogenesis imperfecta had similar results, with aortic diameter (p < 0.001), left atrium diameter (p < 0.001), left ventricule end-diastolic diameter (p = 0.013), and left ventricule end-systolic diameter (0.004) statistically larger than controls. Twenty-six (48.1%) of the cases had physiological tricuspid regurgitation and in controls this finding was observed in eight (14.8%) (p < 0.001). CONCLUSION Children with osteogenesis imperfecta presented cardiac function within the normal pattern, but dimensions of left ventricular dimensions were increased compared to the ones of the controls.
Collapse
|
22
|
Natarajan JP, Mahenthiran AK, Ranginani AK, Mahenthiran J. High-Grade Spindle Cell Sarcoma of the Heart: A Rare Cause of Mitral Valve Disease. JACC Case Rep 2019; 1:675-677. [PMID: 34316905 PMCID: PMC8288776 DOI: 10.1016/j.jaccas.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 11/03/2022]
Abstract
A young female with pulmonary congestion suspected to be secondary to mitral valve disease with left atrial appendage thrombus was given therapy for heart failure and anticoagulation. Subsequent multimodality imaging with echocardiography and magnetic resonance imaging established an accurate but rare diagnosis of spindle cell sarcoma of the heart. (Level of Difficulty: Intermediate.)
Collapse
Affiliation(s)
- Jay P Natarajan
- College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | | | - Anil K Ranginani
- Division of Cardiology, Community Heart and Vascular, Indianapolis, Indiana
| | - Jo Mahenthiran
- Division of Cardiology, Community Heart and Vascular, Indianapolis, Indiana
| |
Collapse
|
23
|
Balasubramanian M, Verschueren A, Kleevens S, Luyckx I, Perik M, Schirwani S, Mortier G, Morisaki H, Rodrigus I, Van Laer L, Verstraeten A, Loeys B. Aortic aneurysm/dissection and osteogenesis imperfecta: Four new families and review of the literature. Bone 2019; 121:191-195. [PMID: 30684648 DOI: 10.1016/j.bone.2019.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/06/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
Osteogenesis imperfecta (OI) is the commonest form of heritable bone fragility. It is mainly characterized by fractures, hearing loss and dentinogenesis imperfecta. OI patients are at increased risk of cardiovascular disease of variable severity. Aortic aneurysm/dissection is one of the rarer but potentially serious cardiovascular complications of OI. So far, only six patients with aortic dissection and OI have been reported. As such, present OI diagnostic guidelines do not recommend systematic screening of patients for aortopathy. Here, we report on the clinical and molecular characteristics of three new OI patients and one additional patient with a first degree relative who presented with aortic dissection and/or aneurysm surgery. This observation further opens up the discussion on the need for and extent of cardiovascular screening in adult patients with OI.
Collapse
Affiliation(s)
- Meena Balasubramanian
- Highly Specialised Severe, Complex & Atypical OI Service, Sheffield Children's NHS Foundation Trust, UK; Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, UK.
| | - Aline Verschueren
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Simon Kleevens
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Ilse Luyckx
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Melanie Perik
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Schaida Schirwani
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Geert Mortier
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan
| | - Inez Rodrigus
- Department of Cardiac Surgery, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Maioli M, Gnoli M, Boarini M, Tremosini M, Zambrano A, Pedrini E, Mordenti M, Corsini S, D'Eufemia P, Versacci P, Celli M, Sangiorgi L. Genotype-phenotype correlation study in 364 osteogenesis imperfecta Italian patients. Eur J Hum Genet 2019; 27:1090-1100. [PMID: 30886339 PMCID: PMC6777444 DOI: 10.1038/s41431-019-0373-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder of the connective tissue and 90% of cases are due to dominant mutations in COL1A1 and COL1A2 genes. To increase OI disease knowledge and contribute to patient follow-up management, a homogeneous Italian cohort of 364 subjects affected by OI types I–IV was evaluated. The study population was composed of 262 OI type I, 24 type II, 39 type III, and 39 type IV patients. Three hundred and nine subjects had a type I collagen affecting function mutations (230 in α1(I) and 79 in α2(I)); no disease-causing changes were noticed in 55 patients. Compared with previous genotype–phenotype OI correlation studies, additional observations arose: a new effect for α1- and α2-serine substitutions has been pointed out and heart defects, never considered before, resulted associated to quantitative mutations (P = 0.043). Moreover, some different findings emerged if compared with previous literature; especially, focusing the attention on the lethal form, no association with specific collagen regions was found and most of variants localized in the previously reported “lethal clusters” were causative of OI types I–IV. Some discrepancies have been highlighted also considering the “50–55 nucleotides rule,” as well as the relationship between specific collagen I mutated region and the presence of dentinogenesis imperfecta and/or blue sclera. Despite difficulties still present in defining clear rules to predict the clinical outcome in OI patients, this study provides new pieces for completing the puzzle, also thanks to the inclusion of clinical signs never considered before and to the large number of OI Italian patients.
Collapse
Affiliation(s)
- Margherita Maioli
- Department of Medical Genetics and Rare Orthopaedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Maria Gnoli
- Department of Medical Genetics and Rare Orthopaedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manila Boarini
- CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Morena Tremosini
- Department of Medical Genetics and Rare Orthopaedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Anna Zambrano
- Department of Pediatrics, Center for Congenital Osteodystrophy - Sapienza University, Rome, Italy
| | - Elena Pedrini
- Department of Medical Genetics and Rare Orthopaedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marina Mordenti
- CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Serena Corsini
- Department of Medical Genetics and Rare Orthopaedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Patrizia D'Eufemia
- Department of Pediatrics, Center for Congenital Osteodystrophy - Sapienza University, Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics, Sapienza University, Rome, Italy
| | - Mauro Celli
- Department of Pediatrics, Center for Congenital Osteodystrophy - Sapienza University, Rome, Italy
| | - Luca Sangiorgi
- Department of Medical Genetics and Rare Orthopaedic Diseases, and CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
25
|
Hernández Jiménez V, Saavedra Falero J, Alberca Vela MT, Mata Caballero R, Rosado Sierra JA, Pavón de Paz I. Cambios estructurales y funcionales en el corazón de pacientes adultos con osteogénesis imperfecta: estudio de casos y controles. Med Clin (Barc) 2018; 151:397-399. [DOI: 10.1016/j.medcli.2018.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
|
26
|
Tatlock RL, Edwards N, Imel EA, Foli KJ. Osteogenesis Imperfecta Type I: Recognition in Primary Care. J Nurse Pract 2018. [DOI: 10.1016/j.nurpra.2018.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Abstract
Osteogenesis imperfecta (OI) is the most common inherited form of bone fragility and includes a heterogenous group of genetic disorders which most commonly result from defects associated with type 1 collagen. 85%-90% of cases are inherited in an autosomal dominant manner and are caused by mutations in the COL1A1 and COL1A2 genes, leading to quantitative or qualitative defects in type 1 collagen. In the last decade, defects in several other proteins involved in the normal processing of type 1 collagen have been described. Recent advances in genetics have called for reconsideration of the classification of OI, however, most recent classifications align with the classic clinical classification by Sillence. The hallmark of the disease is bone fragility but other tissues are also affected. Intravenous bisphosphonates (BPs) are the most widely used intervention, having significant favorable effects regarding areal bone mineral density (BMD) and vertebral reshaping following fractures in growing children. BPs have a modest effect in long bone fracture incidence, their effects in adults with OI concerns only BMD, while there are reports of subtrochanteric fractures resembling atypical femoral fractures. Other therapies showing promising results include denosumab, teriparatide, sclerostin inhibition, combination therapy with antiresorptive and anabolic drugs and TGF-β inhibition. Gene targeting approaches are under evaluation. More research is needed to delineate the best therapeutic approach in this heterogeneous disease.
Collapse
Affiliation(s)
- Symeon Tournis
- Laboratory for Research of the Musculoskeletal System 'Th. Garofalidis', KAT Hospital, University of Athens, Athens, Greece.
| | - Anastasia D Dede
- Laboratory for Research of the Musculoskeletal System 'Th. Garofalidis', KAT Hospital, University of Athens, Athens, Greece; Department of Endocrinology and Diabetes, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
28
|
Abstract
Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation.
Collapse
|
29
|
Folkestad L, Hald JD, Canudas-Romo V, Gram J, Hermann AP, Langdahl B, Abrahamsen B, Brixen K. Mortality and Causes of Death in Patients With Osteogenesis Imperfecta: A Register-Based Nationwide Cohort Study. J Bone Miner Res 2016; 31:2159-2166. [PMID: 27345018 DOI: 10.1002/jbmr.2895] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 02/02/2023]
Abstract
Osteogenesis imperfecta (OI) is a hereditary connective tissue disease that causes frequent fractures. Little is known about causes of death and length of survival in OI. The objective of this work was to calculate the risk and cause of death, and the median survival time in patients with OI. This study was a Danish nationwide, population-based and register-based cohort study. We used National Patient Register data from 1977 until 2013 with complete long-term follow-up. Participants comprised all patients registered with the diagnosis of OI from 1977 until 2013, and a reference population matched five to one to the OI cohort. We calculated hazard ratios for all-cause mortality and subhazard ratios for cause-specific mortality in a comparison of the OI cohort and the reference population. We also calculated all-cause mortality hazard ratios for males, females, and age groups (0 to 17.99 years, 18.00 to 34.99 years, 35.00 to 54.99 years, 55.00 to 74.99 years, and >75 years). We identified 687 cases of OI (379 women) and included 3435 reference persons (1895 women). A total of 112 patients with OI and 257 persons in the reference population died during the observation period. The all-cause mortality hazard ratio between the OI cohort and the reference population was 2.90. The median survival time for males with OI was 72.4 years, compared to 81.9 in the reference population. The median survival time for females with OI was 77.4 years, compared to 84.5 years in the reference population. Patients with OI had a higher risk of death from respiratory diseases, gastrointestinal diseases, and trauma. We were limited by the lack of clinical information about phenotype and genotype of the included patients. Patients with OI had a higher mortality rate throughout their life compared to the general population. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Hospital of Southwest Denmark, Esbjerg, Denmark
| | - Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Vladimir Canudas-Romo
- Max-Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, Odense, Denmark
| | - Jeppe Gram
- Department of Endocrinology, Hospital of Southwest Denmark, Esbjerg, Denmark
| | | | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Abrahamsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medicine, Holbaek Hospital, Holbaek, Denmark.,Odense Exploratory Patient Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Kim Brixen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Folkestad L, Hald JD, Gram J, Langdahl BL, Hermann AP, Diederichsen AC, Abrahamsen B, Brixen K. Cardiovascular disease in patients with osteogenesis imperfecta - a nationwide, register-based cohort study. Int J Cardiol 2016; 225:250-257. [PMID: 27741483 DOI: 10.1016/j.ijcard.2016.09.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/28/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a hereditary connective tissue disease often due to mutations in genes coding for type 1 collagen. Collagen type 1 is important in the development of the heart and vasculature. Little is known about the risk of cardiovascular disease (CVD) in OI. OBJECTIVE To investigate the risk of symptomatic CVD in OI. DESIGN A Danish nationwide, population-based and register-based longitudinal open cohort study. PARTICIPANTS All patients registered with the diagnosis of OI from 1977 to 2013 and a reference population matched 5:1 to the OI cohort. MEASUREMENTS Sub-hazard ratios for mitral and aortic valve regurgitation, atrial fibrillation and flutter, heart failure and vascular aneurisms and dissections comparing the OI cohort to the reference population. RESULTS We identified 687 cases with OI (379 women) and included 3435 reference persons (1895 women). The SHR was 6.3 [95% CI: 2.5-15.5] for mitral valve regurgitation, 4.5 [95% CI: 1.4-13.9] for aortic valve regurgitation, 1.7 [95% CI: 1.1-2.8] for atrial fibrillation/flutter, and 2.3 [95% CI: 1.4-3.7] for heart failure. The SHRs were not increased arterial aneurisms or dissections. LIMITATION Our results were limited by lacking clinical information about phenotype and genotype of the included patients. CONCLUSION We confirm that patients with OI have an increased risk of CVD compared to the general population. This held true even when adjusting for factors that are known to contribute to development of these diseases. Our results suggest that the collagenopathy seen in OI may be part of the pathogenesis of CVD in OI.
Collapse
Affiliation(s)
- Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Endocrinology, Hospital of Southwest Denmark, Esbjerg, Denmark.
| | - Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Jeppe Gram
- Department of Endocrinology, Hospital of Southwest Denmark, Esbjerg, Denmark.
| | - Bente L Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Anne Pernille Hermann
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | | | - Bo Abrahamsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Medicine, Holbæk Hospital, Holbæk, Denmark; Odense Exploratory Patient Network (OPEN), Odense University Hospital, Denmark.
| | - Kim Brixen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
31
|
Rush ET, Li L, Goodwin JL, Kreikemeier RM, Craft M, Danford DA, Kutty S. Echocardiographic phenotype in osteogenesis imperfecta varies with disease severity. Heart 2016; 103:443-448. [DOI: 10.1136/heartjnl-2016-310099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023] Open
|