1
|
Deng X, You Y, Lv S, Liu Y. MMP8-mediated vascular remodeling in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167582. [PMID: 39581558 DOI: 10.1016/j.bbadis.2024.167582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease that impacts the cardiopulmonary system. Due to the currently limited understanding of vascular remodeling, a cure for PAH remains elusive. This study highlights the critical role of the STAT1 (signal transducer and activator of transcription 1)/MMP8 (matrix metallopeptidase 8)/DRP1 (dynamin-related protein 1) axis in vascular remodeling and the pathogenesis of pulmonary hypertension. Notably, MMP8 is significantly elevated in pulmonary arterial endothelial cells and its levels correlate with the severity of the disease. MMP8 binds to and activates DRP1, inducing mitochondrial fragmentation and promoting a malignant phenotype of endothelial cells under hypoxic conditions. Moreover, MMP8 is tightly regulated by STAT1. The knockout of MMP8 attenuates chronic pulmonary vascular remodeling, and drugs targeting MMP8 alleviate pulmonary hypertension and enhance cardiac function. This study offers fresh insights into hypoxia-induced vascular remodeling, laying a theoretical foundation for countering vascular remodeling by directly regulating the STAT1/MMP8/DRP1 axis.
Collapse
Affiliation(s)
- Xiaodong Deng
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua 61700, China
| | - Yong You
- Department of Respiratory department, Huanggang Central Hospital, Huanggang 438000, China
| | - Sheng Lv
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua 61700, China
| | - Yi Liu
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua 61700, China.
| |
Collapse
|
2
|
Carman BL, Qin S, Predescu DN, Jana M, Cortese R, Aldred MA, Gozal D, Mokhlesi B, Predescu SA. Dysregulation of the Long Noncoding RNA X-Inactive-Specific Transcript Expression in Male Patients with Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1592-1606. [PMID: 38705381 PMCID: PMC11284765 DOI: 10.1016/j.ajpath.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with female sex as a significant risk factor. Increased expression of the long noncoding RNA X-inactive-specific transcript (Xist), as induced by an intersectin-1s protein fragment with proliferative potential (EHITSN), may explain the sexual dimorphism of female pulmonary artery endothelial cells (ECs) and at least in part, the imbalance sex/ratio of PAH. Xist is essential for X-chromosome inactivation and dosage compensation of X-linked genes. Herein, increased Xist expression was detected in a subset of ECs and lung tissue samples of male patients with PAH. The role of different Xist expression levels in ECs of male patients with PAH (ECPAH) was studied in several lines of male ECPAH in conjunction with molecular, biochemical, morphologic, and functional approaches. Male ECPAH showed on average 10.3-fold increase in high Xist versus low Xist, a significant association between Xist levels and their proliferative potential, and a heterogeneous methylation of the Xist/XIST antisense RNA (Tsix) locus. Interestingly, Xist up-regulation in male ECPAH decreased the expression of Krueppel-like factor 2 (Klf2), via EHITSN interaction with enhancer of zeste polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of the polycomb repressive complex 2. Moreover, the studies demonstrate that EHITSN-triggered p38/ETS domain-containing protein Elk1/AP-1 transcription factor subunit (c-Fos) signaling is a pathologic mechanism central to ECPAH proliferation and the dynamic crosstalk with cell cycle regulatory proteins cyclin A1/cyclin D2 and Xist-EZH2-Klf2 interaction participate directly and differentially in establishing the proliferative profile of male ECPAH.
Collapse
Affiliation(s)
- Brandon L Carman
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Shanshan Qin
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Malabendu Jana
- Department of Neurological Science, Rush University Medical Center, Chicago, Illinois
| | - Rene Cortese
- Child Health Research Institute, University of Missouri, Columbia, Missouri
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Gozal
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
3
|
Coates-Park S, Rich JA, Stetler-Stevenson WG, Peeney D. The TIMP protein family: diverse roles in pathophysiology. Am J Physiol Cell Physiol 2024; 326:C917-C934. [PMID: 38284123 PMCID: PMC11193487 DOI: 10.1152/ajpcell.00699.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts. Herein, we provide a comprehensive overview of the MP-dependent and -independent roles of TIMPs across a range of pathological conditions. The potential therapeutic and biomarker applications of TIMPs in these disease contexts are also considered, highlighting the biomedical promise of this complex and often misunderstood protein family.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - Joshua A Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
5
|
He W, Liu C, Liao J, Liu F, Lei H, Wei D, Ruan H, Kunwar B, Lu W, Wang J, Wang T. TIMP-1: A Circulating Biomarker for Pulmonary Hypertension Diagnosis Among Chronic Obstructive Pulmonary Disease Patients. Front Med (Lausanne) 2022; 8:774623. [PMID: 35284430 PMCID: PMC8914225 DOI: 10.3389/fmed.2021.774623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD) and induces increased mortality among COPD patients. However, there are no blood biomarkers to identify PH in COPD. Here, we investigated whether circulating angiogenic factors and cytokines could serve as (a) biomarker (s) for COPD-PH patients. Using Angiogenesis and Cytokine proteome profile array assay, we measured the level of 36 cytokines and 55 angiogenesis-associated proteins in plasma from four COPD patients with PH (COPD-PH) and four COPD patients without PH (COPD), respectively, tissue inhibitor of metalloproteinase 1 (TIMP-1) and thrombospondin 1(TSP-1) were significantly different between the two groups. Enzyme-linked immunosorbent assay (ELISA) was applied to measured TIMP-1 and TSP-1 in a validation cohort (COPD-PH, n = 28; COPD, n = 18), and TIMP-1 was the only factor that was significantly different between COPD-PH and COPD patients (P < 0.01). Logistic regression analysis demonstrated that elevated TIMP-1 was an independent risk factor for COPD-PH [odds ratio (OR) = 1.258, 95% CI: 1.005–1.574, P < 0.05). Next, we explored the expression level and function of TIMP-1 in human pulmonary arterial smooth muscle cells (hPASMCs) exposed to cigarette smoking extract (CSE, a major etiological factor of COPD). In cultured hPASMCs, CSE treatment increased both TIMP-1 protein level and cell proliferation, and exogenous TIMP-1 (25 ng/mL) treatment inhibited CSE-induced hPASMCs proliferation. Overall, our results indicated that TIMP-1 elevation could serve as a circulating biomarker to diagnose PH among COPD patients, and TIMP-1 elevation in COPD-PH could be adaptive.
Collapse
Affiliation(s)
- Wenjun He
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Fei Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Hui Lei
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Danmei Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Bibhav Kunwar
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jian Wang
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
- Tao Wang
| |
Collapse
|
6
|
Arvidsson M, Ahmed A, Säleby J, Hesselstrand R, Rådegran G. Plasma matrix metalloproteinase 2 is associated with severity and mortality in pulmonary arterial hypertension. Pulm Circ 2022; 12:e12041. [PMID: 35506077 PMCID: PMC9053005 DOI: 10.1002/pul2.12041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease characterized by vasoconstriction and remodeling of the pulmonary vessels. Risk stratification in PAH could potentially be improved by including novel biomarkers related to PAH pathobiology. We aimed to investigate the relationship between extracellular matrix (ECM)‐related proteins, survival, and European Society of Cardiology and European Respiratory Society (ESC/ERS) risk stratification scores in patients with PAH. Plasma samples and hemodynamics were collected from PAH patients during right heart catheterizations at diagnosis (n = 48) and early follow‐up, after treatment initiation (n = 33). Plasma levels of 14 ECM‐related proteins, with altered levels in PAH compared to healthy controls, were analyzed with proximity extension assays, and related to hemodynamics, transplant‐free survival time, and ESC/ERS risk score. Glypican‐1 levels were higher before versus after treatment initiation (p = 0.048). PAH patients with high plasma levels of matrix metalloproteinase (MMP) ‐2, MMP‐7, MMP‐9, MMP‐12, perlecan, and tissue inhibitor of metalloproteinase 4 (TIMP‐4) at baseline, had worse transplant‐free survival (p < 0.03) than patients with low levels. Hazard ratio (95% confidence interval) was for MMP‐2 1.126 (1.011–1.255), perlecan 1.0099 (1.0004–1.0196), and TIMP‐4 1.037 (1.003–1.071) in age and sex‐adjusted Cox‐regression model. MMP‐2 correlated with ESC/ERS risk scores (rs = 0.34, p = 0.019), mean right atrial pressure (rs = 0.44, p = 0.002), NT‐proBNP (rs = 0.49, p ≤ 0.001), and six‐minute walking distance (rs = −0.34, p = 0.02). The present study indicates that high levels of MMP‐2, perlecan, and TIMP‐4 are associated with poor survival in PAH. High plasma MMP‐2, correlated with poor prognosis in PAH. Further validation in larger studies is needed to better determine this association.
Collapse
Affiliation(s)
- Mattias Arvidsson
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine Lund University Lund Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine Skåne University Hospital Lund Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine Lund University Lund Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine Skåne University Hospital Lund Sweden
| | - Joanna Säleby
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine Lund University Lund Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine Skåne University Hospital Lund Sweden
| | - Roger Hesselstrand
- Department of Clinical Sciences Lund, Rheumatology, Faculty of Medicine Lund University Lund Sweden
- The Department of Rheumatology Skåne University Hospital Lund Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine Lund University Lund Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine Skåne University Hospital Lund Sweden
| |
Collapse
|
7
|
Marc A, Pop C, Sitar-Taut AV, Budisan L, Berindan-Neagoe I, Pop D. The role of matrix metalloproteinases in patients with pulmonary hypertension: data from a prospective study. BMC Cardiovasc Disord 2021; 21:607. [PMID: 34930125 PMCID: PMC8686623 DOI: 10.1186/s12872-021-02424-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite several therapies, pulmonary hypertension (PH) is still a severe disease which can lead to right heart failure. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in cardiac and vascular remodeling in PH. Therefore, these biomarkers play an important role in PH patients. This study investigated whether TIMP-4, MMP-2, and N-terminal Pro-B-Type Natriuretic Peptide (NT-proBNP) plasma levels are useful in assessing the severity of PH and other clinical or echocardiographic parameters. METHODS The concentrations of MMP-2, TIMP-4, and NT-proBNP in 68 PH patients were compared with those of 12 controls without PH. All patients underwent a physical examination, echocardiography, and were checked for the presence of cardiovascular risk factors; also, plasma concentrations of MMP-2, TIMP-4, NT-proBNP, total cholesterol, and triglycerides were determined. RESULTS In PH patients, significantly elevated plasma levels of TIMP-4 (PH: 2877.99 ± 1363.78 pg/ml, control: 2028.38 ± 762.67 pg/ml, p = 0.0068) and NT-proBNP ( PH: 2405.00 pg/ml-5423.47 ± 6703.38 pg/ml, control: 411.0000 pg/ml-421.75 ± 315.37 pg/ml, p = 0.01) were detected. We also observed that MMP-2 and NT-proBNP were significantly increased in patients with higher WHO functional class (p = 0.001 for MMP-2, p = 0.008 for NT-proBNP), higher pressure in the pulmonary artery (p = 0.002 for MMP-2, p = 0.001 for NT-proBNP), and more severe tricuspid regurgitation (p = 0.001 for MMP-2, p = 0.009 for NT-proBNP). TIMP-4 was elevated in patients with more severe pressure in the pulmonary artery (p = 0.006). CONCLUSIONS The plasma levels of TIMP-4 and NT-proBNP are higher in PH patients. MMP-2 and NT-proBNP correlates with different PH parameters severity (WHO functional class, sPAP severity, TV regurgitation severity). Therefore, plasmatic levels of MMP-2 and NT-proBNP at this kind of patients reflect disease severity and may have a prognostic role. MMP-2 can help assess the beneficial effects of PH pharmacotherapy on tissue remodeling. These remodeling biomarkers may not have a diagnostic value but they have the potential to predict survival. Nevertheless, a greater understanding of the involvement of MMPs in PH is mandatory to further explore the prognostic role and the possibilities of therapeutic MMP inhibition in PH.
Collapse
Affiliation(s)
- Adriana Marc
- Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
- Department of Cardiology, Emergency County Hospital Baia Mare, 430031, Baia Mare, Romania
| | - Calin Pop
- Department of Cardiology, Emergency County Hospital Baia Mare, 430031, Baia Mare, Romania.
- Faculty of Medicine Arad, West Vasile Goldis University, 310025, Arad, Romania.
| | - Adela-Viviana Sitar-Taut
- Internal Medicine Department, 4Th Medical Clinic "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu - Hatieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu - Hatieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Dana Pop
- Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
- Clinical Rehabilitaton Hospital, Cardiology, 400437, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Schäfer M, Ivy DD, Nguyen K, Boncella K, Frank BS, Morgan GJ, Miller-Reed K, Truong U, Colvin K, Yeager ME. Metalloproteinases and their inhibitors are associated with pulmonary arterial stiffness and ventricular function in pediatric pulmonary hypertension. Am J Physiol Heart Circ Physiol 2021; 321:H242-H252. [PMID: 34085841 DOI: 10.1152/ajpheart.00750.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disturbed balance between matrix metalloproteinases (MMPs) and their respective tissue inhibitors (TIMPs) is a well-recognized pathophysiological component of pulmonary arterial hypertension (PAH). Both classes of proteinases have been associated with clinical outcomes as well as with specific pathological features of ventricular dysfunction and pulmonary arterial remodeling. The purpose of this study was to evaluate the circulating levels of MMPs and TIMPs in children with PAH undergoing the same-day cardiac magnetic resonance imaging (MRI) and right heart catheterization. Children with PAH (n = 21) underwent a same-day catheterization, comprehensive cardiac MRI evaluation, and blood sample collection for proteomic analysis. Correlative analysis was performed between protein levels and 1) standard PAH indices from catheterization, 2) cardiac MRI hemodynamics, and 3) pulmonary arterial stiffness. MMP-8 was significantly associated with the right ventricular end-diastolic volume (R = 0.45, P = 0.04). MMP-9 levels were significantly associated with stroke volume (R = -0.49, P = 0.03) and pulmonary vascular resistance (R = 0.49, P = 0.03). MMP-9 was further associated with main pulmonary arterial stiffness evaluated by relative area change (R = -0.79, P < 0.01).TIMP-2 and TIMP-4 levels were further associated with the right pulmonary artery pulse wave velocity (R = 0.51, P = 0.03) and backward compression wave (R = 0.52, P = 0.02), respectively. MMPs and TIMPs warrant further clinically prognostic evaluation in conjunction with the conventional cardiac MRI hemodynamic indices.NEW & NOTEWORTHY Metalloproteinases have been associated with clinical outcomes in pulmonary hypertension and with specific pathological features of ventricular dysfunction and pulmonary arterial remodeling. In this study, we demonstrated that plasma circulating levels of metalloproteinases and their inhibitors are associated with standard cardiac MRI hemodynamic indices and with the markers of proximal pulmonary arterial stiffness. Particularly, MMP-9 and TIMP-2 were associated with several different markers of pulmonary arterial stiffness. These findings suggest the interplay between the extracellular matrix (ECM) remodeling and overall hemodynamic status in children with PAH might be assessed using the peripheral circulating MMP and TIMP levels.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - D Dunbar Ivy
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen Nguyen
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, Colorado.,Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Katie Boncella
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, Colorado.,Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin S Frank
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Gareth J Morgan
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen Miller-Reed
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Uyen Truong
- Heart Center, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia
| | - Kelley Colvin
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, Colorado.,Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Michael E Yeager
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, Colorado.,Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Qin S, Predescu D, Carman B, Patel P, Chen J, Kim M, Lahm T, Geraci M, Predescu SA. Up-Regulation of the Long Noncoding RNA X-Inactive-Specific Transcript and the Sex Bias in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1135-1150. [PMID: 33836164 PMCID: PMC8176134 DOI: 10.1016/j.ajpath.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease. Increased expression and activity of the long-noncoding RNA X-inactive-specific transcript (Xist), essential for X-chromosome inactivation and dosage compensation of X-linked genes, may explain the sex bias of PAH. The present studies used a murine model of plexiform PAH, the intersectin-1s (ITSN) heterozygous knockout (KOITSN+/-) mouse transduced with an ITSN fragment (EHITSN) possessing endothelial cell proliferative activity, in conjunction with molecular, cell biology, biochemical, morphologic, and functional approaches. The data demonstrate significant sex-centered differences with regard to EHITSN-induced alterations in pulmonary artery remodeling, lung hemodynamics, and p38/ETS domain containing protein/c-Fos signaling, altogether leading to a more severe female lung PAH phenotype. Moreover, the long-noncoding RNA-Xist is up-regulated in the lungs of female EHITSN-KOITSN+/- mice compared with that in female wild-type mice, leading to sex-specific modulation of the X-linked gene ETS domain containing protein and its target, two molecular events also characteristic to female human PAH lung. More importantly, cyclin A1 expression in the S and G2/M phases of the cell cycle of synchronized pulmonary artery endothelial cells of female PAH patients is greater versus controls, suggesting functional hyperproliferation. Thus, Xist up-regulation leading to female pulmonary artery endothelial cell sexual dimorphic behavior may provide a better understanding of the origin of sex bias in PAH. Notably, the EHITSN-KOITSN+/- mouse is a unique experimental animal model of PAH that recapitulates most of the sexually dimorphic characteristics of human disease.
Collapse
Affiliation(s)
- Shanshan Qin
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dan Predescu
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brandon Carman
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Priyam Patel
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jiwang Chen
- Pulmonary Critical Care Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Miran Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tim Lahm
- Health Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Geraci
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Sanda A Predescu
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois.
| |
Collapse
|
10
|
Kostyunina DS, McLoughlin P. Sex Dimorphism in Pulmonary Hypertension: The Role of the Sex Chromosomes. Antioxidants (Basel) 2021; 10:779. [PMID: 34068984 PMCID: PMC8156365 DOI: 10.3390/antiox10050779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2-4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.
Collapse
Affiliation(s)
| | - Paul McLoughlin
- Conway Institute, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland;
| |
Collapse
|
11
|
Pang W, Zhang Z, Zhang Y, Zhang M, Miao R, Yang Y, Xie W, Wan J, Zhai Z, Wang C. Extracellular matrix collagen biomarkers levels in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis 2020; 52:48-58. [PMID: 33175289 DOI: 10.1007/s11239-020-02329-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Limited data exist on changes in the extracellular matrix (ECM) collagen biomarkers levels during chronic thromboembolic pulmonary hypertension (CTEPH) development. This study aimed to investigate ECM collagen biomarkers levels in stable patients with CTEPH. Patients with CTEPH and healthy persons were enrolled. Serum levels of procollagen III N-terminal peptide (PIIINP), carboxyterminal propeptide of type I procollagen (PICP), matrix metalloproteinases (MMP2), MMP9, and tissue inhibitor of metalloproteinases 1(TIMP1) were measured by ELISA. Clinical data coincident with samples were collected. The pulmonary endarterectomy (PEA) and control pulmonary artery tissue samples were analyzed for genetic and immunohistochemical differences. The serum concentrations of PIIINP, PICP, MMP2, and MMP9 decreased significantly in CTEPH patients compared to healthy controls (P < 0.001 for each). CTEPH patients had higher serum concentrations of TIMP1 (median, 111.97 [interquartile range, 84.35-139.93]) compared to healthy controls (74.97 [44.03-108.45] ng/mL, P < 0.001). The MMP2 to TIMP1 ratio was lower in patients than in the controls (P < 0.001). After adjusting for the body mass index (BMI), the MMP2 to TIMP1 ratio correlated negatively with pulmonary vascular resistance (PVR) (r = - 0.327, P = 0.025). Increased TIMP1 (P = 0.04) gene expression was identified in tissues of CTEPH patients. Immunohistochemistry results of vascular walls substantiated qRT-PCR results. This study indicates that ECM collagen biomarkers levels were significantly different in stable patients with CTEPH and healthy controls with significantly increased TIMP1 and decreased MMP2 and MMP9. Differences in TIMP1 expression should be expected not only among healthy controls and patients serum, but also across pathological tissue regions. These findings suggest that the state of vascular remodeling in pulmonary vascular bed in stable patients may be represented by ECM collagen biomarkers levels. We conclude that TIMP1 may play an important role in pulmonary vascular reconstruction in stable CTEPH patients.
Collapse
Affiliation(s)
- Wenyi Pang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhu Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yunxia Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China
| | - Ran Miao
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Yuanhua Yang
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China. .,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China. .,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Qin S, Predescu DN, Patel M, Drazkowski P, Ganesh B, Predescu SA. Sex differences in the proliferation of pulmonary artery endothelial cells: implications for plexiform arteriopathy. J Cell Sci 2020; 133:133/9/jcs237776. [PMID: 32409569 DOI: 10.1242/jcs.237776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The sex-biased disease pulmonary arterial hypertension (PAH) is characterized by the proliferation and overgrowth of dysfunctional pulmonary artery endothelial cells (PAECs). During inflammation associated with PAH, granzyme B cleaves intersectin-1 to produce N-terminal (EHITSN) and C-terminal (SH3A-EITSN) protein fragments. In a murine model of PAH, EHITSN triggers plexiform arteriopathy via p38-ELK1-c-Fos signaling. The SH3A-EITSN fragment also influences signaling, having dominant-negative effects on ERK1 and ERK2 (also known as MAPK3 and MAPK1, respectively). Using PAECs engineered to express tagged versions of EHITSN and SH3A-EITSN, we demonstrate that the two ITSN fragments increase both p38-ELK1 activation and the ratio of p38 to ERK1 and ERK2 activity, leading to PAEC proliferation, with female cells being more responsive than male cells. Furthermore, expression of EHITSN substantially upregulates the expression and activity of the long non-coding RNA Xist in female PAECs, which in turn upregulates the X-linked gene ELK1 and represses expression of krüppel-like factor 2 (KLF2). These events are recapitulated by the PAECs of female idiopathic PAH patients, and may account for their proliferative phenotype. Thus, upregulation of Xist could be an important factor in explaining sexual dimorphism in the proliferative response of PAECs and the imbalanced sex ratio of PAH.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Monal Patel
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Drazkowski
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Division of Bioanalytics, Biophysics and Cytomics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Hu L, Liu F, Li L, Zhang L, Yan C, Li Q, Qiu J, Dong J, Sun J, Zhang H. Effects of icariin on cell injury and glucocorticoid resistance in BEAS-2B cells exposed to cigarette smoke extract. Exp Ther Med 2020; 20:283-292. [PMID: 32550884 PMCID: PMC7296294 DOI: 10.3892/etm.2020.8702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) exert a therapeutic effect in numerous chronic inflammatory diseases. However, chronic obstructive pulmonary disease (COPD) tends to be GC-resistant. Icariin, a major component of flavonoids isolated from Epimedium brevicornum Maxim (Berberidaceae), significantly relieves symptoms in patients with COPD. However, the mechanism of action remains unclear and further investigation is required to establish whether it may serve as an alternative or complementary therapy for COPD. The aim of the present study was to determine the effects of icariin in human bronchial epithelial cells exposed to cigarette smoke extract (CSE) and to determine whether icariin reverses GC resistance. The results revealed that icariin significantly increased the proliferation of CSE-exposed cells. Furthermore, icariin significantly increased protein expression of the anti-inflammatory factor interleukin (IL)-10 and significantly decreased protein expression of the pro-inflammatory factors IL-8 and tumor necrosis factor α. Icariin also attenuated the expression of the cellular matrix remodelling biomarkers matrix metallopeptidase 9 and tissue inhibitor of metalloproteinase 1, and decreased the production of reactive oxygen species (ROS). In addition, icariin regulated the expression of GC resistance-related factors, such as GC receptors, histone deacetylase 2, nuclear factor erythroid-2-related factor 2 and nuclear factor κ B. The results obtained in the present study suggested that icariin may decrease CSE-induced inflammation, airway remodelling and ROS production by mitigating GC resistance. In conclusion, icariin may potentially be used in combination with GCs to increase therapeutic efficacy and reduce GC resistance in COPD.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
14
|
Todd JL, Vinisko R, Liu Y, Neely ML, Overton R, Flaherty KR, Noth I, Newby LK, Lasky JA, Olman MA, Hesslinger C, Leonard TB, Palmer SM, Belperio JA. Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort. BMC Pulm Med 2020; 20:64. [PMID: 32171287 PMCID: PMC7071646 DOI: 10.1186/s12890-020-1103-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 11/12/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) play important roles in the turnover of extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). This study aimed to determine the utility of circulating MMPs and TIMPs in distinguishing patients with IPF from controls and to explore associations between MMPs/TIMPs and measures of disease severity in patients with IPF. Methods The IPF cohort (n = 300) came from the IPF-PRO Registry, an observational multicenter registry of patients with IPF that was diagnosed or confirmed at the enrolling center in the past 6 months. Controls (n = 100) without known lung disease came from a population-based registry. Generalized linear models were used to compare circulating concentrations of MMPs 1, 2, 3, 7, 8, 9, 12, and 13 and TIMPs 1, 2, and 4 between patients with IPF and controls, and to investigate associations between circulating levels of these proteins and measures of IPF severity. Multivariable models were fit to identify the MMP/TIMPs that best distinguished patients with IPF from controls. Results All the MMP/TIMPs analyzed were present at significantly higher levels in patients with IPF compared with controls except for TIMP2. Multivariable analyses selected MMP8, MMP9 and TIMP1 as top candidates for distinguishing patients with IPF from controls. Higher concentrations of MMP7, MMP12, MMP13 and TIMP4 were significantly associated with lower diffusion capacity of the lung for carbon monoxide (DLCO) % predicted and higher composite physiologic index (worse disease). MMP9 was associated with the composite physiologic index. No MMP/TIMPs were associated with forced vital capacity % predicted. Conclusions Circulating MMPs and TIMPs were broadly elevated among patients with IPF. Select MMP/TIMPs strongly associated with measures of disease severity. Our results identify potential MMP/TIMP targets for further development as disease-related biomarkers.
Collapse
Affiliation(s)
- Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA. .,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.
| | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yi Liu
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | | | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Imre Noth
- University of Virginia, Charlottesville, VA, USA
| | - L Kristin Newby
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.,Duke Clinical & Translational Science Institute, Durham, NC, USA
| | - Joseph A Lasky
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Mitchell A Olman
- Department of Inflammation and Immunity and Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | - John A Belperio
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
15
|
Mathew R, Huang J, Iacobas S, Iacobas DA. Pulmonary Hypertension Remodels the Genomic Fabrics of Major Functional Pathways. Genes (Basel) 2020; 11:genes11020126. [PMID: 31979420 PMCID: PMC7074533 DOI: 10.3390/genes11020126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality rate. We analyzed the right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), lung histology, and transcriptomes of six-week-old male rats with PH induced by (1) hypoxia (HO), (2) administration of monocrotaline (CM), or (3) administration of monocrotaline and exposure to hypoxia (HM). The results in PH rats were compared to those in control rats (CO). After four weeks exposure, increased RVSP and RVH, pulmonary arterial wall thickening, and alteration of the lung transcriptome were observed in all PH groups. The HM group exhibited the largest alterations, as well as neointimal lesions and obliteration of the lumen in small arteries. We found that PH increased the expression of caveolin1, matrix metallopeptidase 2, and numerous inflammatory and cell proliferation genes. The cell cycle, vascular smooth muscle contraction, and oxidative phosphorylation pathways, as well as their interplay, were largely perturbed. Our results also suggest that the upregulated Rhoa (Ras homolog family member A) mediates its action through expression coordination with several ATPases. The upregulation of antioxidant genes and the extensive mitochondrial damage observed, especially in the HM group, indicate metabolic shift toward aerobic glycolysis.
Collapse
Affiliation(s)
- Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA; (R.M.); (J.H.)
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Jing Huang
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA; (R.M.); (J.H.)
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Dumitru A. Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: ; Tel.: +1-936-261-9926
| |
Collapse
|
16
|
Arvidsson M, Ahmed A, Bouzina H, Rådegran G. Matrix metalloproteinase 7 in diagnosis and differentiation of pulmonary arterial hypertension. Pulm Circ 2019; 9:2045894019895414. [PMID: 31908766 PMCID: PMC6935882 DOI: 10.1177/2045894019895414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/19/2019] [Indexed: 01/15/2023] Open
Abstract
Pulmonary arterial hypertension is a severe disease for which diagnosis often is delayed. Matrix metalloproteinases have been suggested to play a role in vascular remodeling and pulmonary hypertension development. Our aim was therefore to investigate the potential role of matrix metalloproteinases as biomarkers in diagnosis and differentiation of pulmonary arterial hypertension in relation to various causes of dyspnea and pulmonary hypertension. Using proximity extension assays, 10 matrix metalloproteinases and associated proteins were analyzed in venous plasma from healthy controls (n = 20), as well as patients diagnosed with pulmonary arterial hypertension (n = 48), chronic thromboembolic pulmonary hypertension (n = 20), pulmonary hypertension due to heart failure with preserved (n = 33) or reduced (n = 36) ejection fraction, and heart failure with reduced ejection fraction and heart failure with preserved ejection fraction without pulmonary hypertension (n = 15). Plasma levels of matrix metalloproteinase-2, -7, -9, -12 and TIMP-4 were elevated (p < 0.01) in pulmonary arterial hypertension compared to controls. Plasma levels of matrix metalloproteinase-7 were furthermore lower (p < 0.0081) in pulmonary arterial hypertension than in all the other disease groups, but higher compared to controls (p < 0.0001). Receiver operating characteristic analysis of matrix metalloproteinase-7 resulted in sensitivity of 58.7% and a specificity of 83.3% for detecting pulmonary arterial hypertension among the other disease groups. Plasma matrix metalloproteinase-7 may provide a potential new diagnostic tool to differentiate pulmonary arterial hypertension from other causes of dyspnea, including heart failure with or without pulmonary hypertension and healthy controls. Matrix metalloproteinase-7 may furthermore be involved in the development of pulmonary hypertension and pulmonary arterial hypertension. Future studies investigating the clinical usefulness of matrix metalloproteinase-7 in the differentiation and earlier diagnosis of pulmonary arterial hypertension, as well as its relationship to pulmonary arterial hypertension pathogenesis, are encouraged.
Collapse
Affiliation(s)
- Mattias Arvidsson
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Habib Bouzina
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
17
|
Odler B, Foris V, Gungl A, Müller V, Hassoun PM, Kwapiszewska G, Olschewski H, Kovacs G. Biomarkers for Pulmonary Vascular Remodeling in Systemic Sclerosis: A Pathophysiological Approach. Front Physiol 2018; 9:587. [PMID: 29971007 PMCID: PMC6018494 DOI: 10.3389/fphys.2018.00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication of systemic sclerosis (SSc) associated with high morbidity and mortality. There are several biomarkers of SSc-PAH, reflecting endothelial physiology, inflammation, immune activation, extracellular matrix, metabolic changes, or cardiac involvement. Biomarkers associated with diagnosis, disease severity and progression have been identified, however, very few have been tested in a prospective setting. Some antinuclear antibodies such as nucleosome antibodies (NUC), anti-centromere antibodies (CENP-A/B) and anti-U3-ribonucleoprotein (anti-U3-RNP) are associated with PAH while anti-U1-ribonucleoprotein (anti-U1-RNP) is associated with a reduced PAH risk. Anti-endothelin receptor and angiotensin-1 receptor antibodies might be good markers of SSc-PAH and progression of pulmonary vasculopathy. Regarding the markers reflecting immune activation and inflammation, there are many inconsistent results. CXCL-4 was associated with SSc progression including PAH and lung fibrosis. Growth differentiation factor (GDF)-15 was associated with PAH and mortality but is not specific for SSc. Among the metabolites, kynurenine was identified as diagnostic marker for PAH, however, its pathologic role in the disease is unclear. Endostatin, an angiostatic factor, was associated with heart failure and poor prognosis. Established heart related markers, such as N-terminal fragment of A-type natriuretic peptide/brain natriuretic peptide (NT-proANP, NT-proBNP) or troponin I/T are elevated in SSc-PAH but are not specific for the right ventricle and may be increased to the same extent in left heart disease. Taken together, there is no universal specific biomarker for SSc-PAH, however, there is a pattern of markers that is strongly associated with a risk of vascular complications in SSc patients. Further comprehensive, multicenter and prospective studies are warranted to develop reliable algorithms for detection and prognosis of SSc-PAH.
Collapse
Affiliation(s)
- Balazs Odler
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Anna Gungl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Paul M Hassoun
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Wetzl V, Tiede SL, Faerber L, Weissmann N, Schermuly RT, Ghofrani HA, Gall H. Plasma MMP2/TIMP4 Ratio at Follow-up Assessment Predicts Disease Progression of Idiopathic Pulmonary Arterial Hypertension. Lung 2017; 195:489-496. [PMID: 28516393 DOI: 10.1007/s00408-017-0014-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) are of particular interest in the remodeling processes of pulmonary hypertension. The aim of this study was to investigate MMP/TIMP ratios of selected biomarkers (MMP2, MMP9, TIMP1, TIMP4) at follow-up examination (V2) and their prognostic value in patients with idiopathic pulmonary arterial hypertension (iPAH). METHODS Blood samples were taken from iPAH patients during right heart catheterization at diagnosis (V1, from 2003 to 2012) and first follow-up examination (V2). MMP2, MMP9, TIMP1, and TIMP4 plasma levels at V2 were determined by ELISA. Coincident with sample collection hemodynamic, laboratory, and clinical parameters were acquired. Additionally, death and clinical worsening (CW) events were listed until July 2015. RESULTS MMP2/TIMP1 and MMP9/TIMP1 did not correlate with hemodynamic and clinical parameters. MMP2/TIMP4 showed a good correlation with mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance, estimated glomerular filtration rate (eGFR), and tricuspid annular plain systolic excursion (TAPSE). MMP9/TIMP4 shows good correlation with mPAP and eGFR. MMP2/TIMP4 showed significant results in the receiver operating characteristics analysis predicting death (AUC = 0.922; p = 0.005) and CW event (AUC = 0.818; p = 0.026). Patients above the cut-off values had a significantly higher probability to die or experience CW, respectively, estimated by log-rank test (p = 0.010 for death; p = 0.032 for CW). CONCLUSIONS MMP2/TIMP4 ratio was detected as a marker of disease severity and right ventricular function as well as a predictor for survival and time to clinical worsening and therefore might help for guidance of disease progression in iPAH patients at V2.
Collapse
Affiliation(s)
- Veronika Wetzl
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
- Novartis Pharmaceuticals, Nuremberg, Germany
| | - Svenja Lena Tiede
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lothar Faerber
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
- Novartis Pharmaceuticals, Nuremberg, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Henning Gall
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
19
|
Taggart C, Mall MA, Lalmanach G, Cataldo D, Ludwig A, Janciauskiene S, Heath N, Meiners S, Overall CM, Schultz C, Turk B, Borensztajn KS. Protean proteases: at the cutting edge of lung diseases. Eur Respir J 2017; 49:49/2/1501200. [PMID: 28179435 DOI: 10.1183/13993003.01200-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
Abstract
Proteases were traditionally viewed as mere protein-degrading enzymes with a very restricted spectrum of substrates. A major expansion in protease research has uncovered a variety of novel substrates, and it is now evident that proteases are critical pleiotropic actors orchestrating pathophysiological processes. Recent findings evidenced that the net proteolytic activity also relies upon interconnections between different protease and protease inhibitor families in the protease web.In this review, we provide an overview of these novel concepts with a particular focus on pulmonary pathophysiology. We describe the emerging roles of several protease families including cysteine and serine proteases.The complexity of the protease web is exemplified in the light of multidimensional regulation of serine protease activity by matrix metalloproteases through cognate serine protease inhibitor processing. Finally, we will highlight how deregulated protease activity during pulmonary pathogenesis may be exploited for diagnosis/prognosis purposes, and utilised as a therapeutic tool using nanotechnologies.Considering proteases as part of an integrative biology perspective may pave the way for the development of new therapeutic targets to treat pulmonary diseases related to intrinsic protease deregulation.
Collapse
Affiliation(s)
- Clifford Taggart
- Airway Innate Immunity Research group (AiiR), Centre for Experimental Medicine, Queen's University Belfast, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Gilles Lalmanach
- INSERM UMR1100 Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe: Mécanismes Protéolytiques dans l'Inflammation, Université François Rabelais, Tours, France
| | - Didier Cataldo
- Laboratory of Tumors and Development and Dept of Respiratory Diseases, University of Liege, Liege, Belgium
| | - Andreas Ludwig
- Inflammation Pharmacology Research Group, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Sabina Janciauskiene
- Dept of Respiratory Medicine, a member of The German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Nicole Heath
- Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christopher M Overall
- Centre for Blood Research, Dept of Oral Biological and Medical Research University of British Columbia, Vancouver, BC, Canada
| | - Carsten Schultz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Boris Turk
- Dept of Biochemistry & Molecular & Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| | - Keren S Borensztajn
- INSERM UMR _S933, Université Pierre et Marie Curie, Paris, France .,INSERM UMR1152 Université Paris Diderot, Faculté de Médecine - site Bichat, Paris, France
| |
Collapse
|
20
|
Xu T, Liu S, Ma T, Jia Z, Zhang Z, Wang A. Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension. Redox Biol 2016; 11:286-296. [PMID: 28030785 PMCID: PMC5192477 DOI: 10.1016/j.redox.2016.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/09/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
The cardioprotective benefits of aldehyde dehydrogenase 2 (ALDH2) are well established, although the regulatory role of ALDH2 in vascular remodeling in pulmonary arterial hypertension (PAH) is largely unknown. ALDH2 potently regulates the metabolism of aldehydes such as 4-hydroxynonenal (4-HNE), the endogenous product of lipid peroxidation. Thus, we hypothesized that ALDH2 ameliorates the proliferation and migration of human pulmonary artery smooth muscle cells (HPASMCs) by inhibiting 4-HNE accumulation and regulating downstream signaling pathways, thereby ameliorating pulmonary vascular remodeling. We found that low concentrations of 4-HNE (0.1 and 1μM) stimulated cell proliferation by enhancing cyclin D1 and c-Myc expression in primary HPASMCs. Low 4-HNE concentrations also enhanced cell migration by activating the nuclear factor kappa B (NF-κB) signaling pathway, thereby regulating matrix metalloprotein (MMP)-9 and MMP2 expression in vitro. In vivo, Alda-1, an ALDH2 agonist, significantly stimulated ALDH2 activity, reducing elevated 4-HNE and malondialdehyde levels and right ventricular systolic pressure in a monocrotaline-induced PAH animal model to the level of control animals. Our findings indicate that 4-HNE plays an important role in the abnormal proliferation and migration of HPASMCs, and that ALDH2 activation can attenuate 4-HNE-induced PASMC proliferation and migration, possibly by regulating NF-κB activation, in turn ameliorating vascular remodeling in PAH. This mechanism might reflect a new molecular target for treating PAH.
Collapse
Affiliation(s)
- Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China.
| | - Shuangyue Liu
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China
| | - Tingting Ma
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China
| | - Ziyi Jia
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhifei Zhang
- Department of Physiology and Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing 100069, PR China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China.
| |
Collapse
|