1
|
Viaro R, Bernardi D, Maggiolini E, D'Ausilio A, Ferroni CG, Parmiani P, Fadiga L. Differential motor neuron activity in rats during successful and failed grasping. Cereb Cortex 2025; 35:bhaf032. [PMID: 40037413 DOI: 10.1093/cercor/bhaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
A substantial body of literature has focused on neural signals evoked by errors emerging during the execution of goal-directed actions. It is still unclear how motor cortex activity during movement execution relates to feedback error processing. To investigate this, we recorded primary motor cortex (M1) single-unit activity in rats during a grasping task. About half of the recorded neurons showed modulation of their firing activity that did not depend on success or failure, which we termed outcome-independent neurons. Other neurons showed a difference in their discharge profile when comparing successful and unsuccessful trials, which we called outcome-dependent neurons. Among both outcome-dependent and -independent neurons, we further distinguished neurons presenting their maximum firing rate in specific epochs as defined by the task. We compared the cortical distribution of outcome-independent and outcome-dependent neurons to cortical maps of complex forelimb movements evoked by intracortical microstimulation in additional animals. The majority of outcome-independent neurons was localized within the limb extension and paw open-closure movement representations. Outcome-dependent neurons were not clearly associated to particular motor representations. Cortical arrangement of neurons, both outcome-independent and outcome-dependent, and their correlation with distinct movement representations, can serve as indicator for anticipating potential outcomes before the conclusion of an action.
Collapse
Affiliation(s)
- Riccardo Viaro
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| | - Davide Bernardi
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
- Department of Physics and Astronomy, University of Padova, Padova 35131, Italy
| | - Emma Maggiolini
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Alessandro D'Ausilio
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| | - Carolina Giulia Ferroni
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| | - Pierantonio Parmiani
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Luciano Fadiga
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| |
Collapse
|
2
|
Ghanayim A, Benisty H, Cohen Rimon A, Schwartz S, Dabdoob S, Lifshitz S, Talmon R, Schiller J. VTA projections to M1 are essential for reorganization of layer 2-3 network dynamics underlying motor learning. Nat Commun 2025; 16:200. [PMID: 39746993 PMCID: PMC11696230 DOI: 10.1038/s41467-024-55317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
The primary motor cortex (M1) is crucial for motor skill learning. Previous studies demonstrated that skill acquisition requires dopaminergic VTA (ventral-tegmental area) signaling in M1, however little is known regarding the effect of these inputs at the neuronal and network levels. Using dexterity task, calcium imaging, chemogenetic inhibiting, and geometric data analysis, we demonstrate VTA-dependent reorganization of M1 layer 2-3 during motor learning. While average activity and average functional connectivity of layer 2-3 network remain stable during learning, activity kinetics, correlational configuration of functional connectivity, and average connectivity strength of layer 2-3 neurons gradually transform towards an expert configuration. Additionally, sensory tone representation gradually shifts to success-failure outcome signaling. Inhibiting VTA dopaminergic inputs to M1 during learning, prevents all these changes. Our findings demonstrate dopaminergic VTA-dependent formation of outcome signaling and new connectivity configuration of the layer 2-3 network, supporting reorganization of the M1 network for storing new motor skills.
Collapse
Affiliation(s)
- Amir Ghanayim
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Hadas Benisty
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel.
| | | | - Sivan Schwartz
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Sally Dabdoob
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Shira Lifshitz
- Viterbi Faculty of Electrical and Computer Engineering, Technion, Haifa, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical and Computer Engineering, Technion, Haifa, Israel
| | - Jackie Schiller
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel.
| |
Collapse
|
3
|
Jalalvandi M, Sharini H, Shafaghi L, Alam NR. Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states. Exp Brain Res 2024; 243:36. [PMID: 39739121 DOI: 10.1007/s00221-024-06977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques. Data were collected from 10 right-handed volunteers performing a motor task using fMRI and fNIRS. fMRI utilized a 3T scanner and a 20-channel head coil, while fNIRS recorded data with a 48-channel device at 765 nm and 855 nm. Analysis focused on key motor and sensory cortices using NIRS-SPM and SPM12, applying a significance threshold of p < 0.05 and a minimum cluster size of 10 voxels for group analysis. Super-threshold voxels were identified with FWE thresholding in SPM12. For activation map extraction we focused on the primary motor cortex, primary somatosensory cortex, somatosensory association cortex, premotor cortex, and supplementary motor cortex. Both fMRI and fNIRS detected activation in the primary motor cortex (M1). The primary somatosensory cortex was found to influence movement direction coding, with smaller activation sizes for upward movements. Combining fNIRS with fMRI provided clearer differentiation of brain activation patterns for wrist movements in various directions and conditions (p < 0.05). This study highlights variations in left motor cortex activity across different movement states. fNIRS proved effective in detecting brain function and showed strong correlation with fMRI results, suggesting it as a viable alternative for those unable to undergo fMRI.
Collapse
Affiliation(s)
- Maziar Jalalvandi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Sharini
- Department of Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Riyahi Alam
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Concordia University, PERFORM Preventive Medicine and Personal Health Care Center, Montreal, Quebec, Canada.
- PERFORM Center, Concordia University, 3 Rue Harbridge, Dollard Des Ormeaux (D.D.O.), Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
5
|
Lee K, Barradas V, Schweighofer N. Self-organizing recruitment of compensatory areas maximizes residual motor performance post-stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601213. [PMID: 39005333 PMCID: PMC11244868 DOI: 10.1101/2024.06.28.601213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Whereas the orderly recruitment of compensatory motor cortical areas after stroke depends on the size of the motor cortex lesion affecting arm and hand movements, the mechanisms underlying this reorganization are unknown. Here, we hypothesized that the recruitment of compensatory areas results from the motor system's goal to optimize performance given the anatomical constraints before and after the lesion. This optimization is achieved through two complementary plastic processes: a homeostatic regulation process, which maximizes information transfer in sensory-motor networks, and a reinforcement learning process, which minimizes movement error and effort. To test this hypothesis, we developed a neuro-musculoskeletal model that controls a 7-muscle planar arm via a cortical network that includes a primary motor cortex and a premotor cortex that directly project to spinal motor neurons, and a contra-lesional primary motor cortex that projects to spinal motor neurons via the reticular formation. Synapses in the cortical areas are updated via reinforcement learning and the activity of spinal motor neurons is adjusted through homeostatic regulation. The model replicated neural, muscular, and behavioral outcomes in both non-lesioned and lesioned brains. With increasing lesion sizes, the model demonstrated systematic recruitment of the remaining primary motor cortex, premotor cortex, and contra-lesional cortex. The premotor cortex acted as a reserve area for fine motor control recovery, while the contra-lesional cortex helped avoid paralysis at the cost of poor joint control. Plasticity in spinal motor neurons enabled force generation after large cortical lesions despite weak corticospinal inputs. Compensatory activity in the premotor and contra-lesional motor cortex was more prominent in the early recovery period, gradually decreasing as the network minimized effort. Thus, the orderly recruitment of compensatory areas following strokes of varying sizes results from biologically plausible local plastic processes that maximize performance, whether the brain is intact or lesioned.
Collapse
Affiliation(s)
- Kevin Lee
- Computer Science, University of Southern California, Los Angeles, USA
| | - Victor Barradas
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA
| |
Collapse
|
6
|
Vinding MC, Waldthaler J, Eriksson A, Manting CL, Ferreira D, Ingvar M, Svenningsson P, Lundqvist D. Oscillatory and non-oscillatory features of the magnetoencephalic sensorimotor rhythm in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:51. [PMID: 38443402 PMCID: PMC10915140 DOI: 10.1038/s41531-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) on Parkinsonian medication and age- and sex-matched healthy controls (N = 60) using source reconstructed resting-state MEG. We quantified features of the time series data in terms of oscillatory alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband characteristics using power spectral density. Furthermore, we characterised transient oscillatory burst events in the mu-beta band time-domain signals. We examined the relationship between these signal features and the patients' disease state, symptom severity, age, sex, and cortical thickness. PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was associated with increased severity of bradykinesia, whereas the burst duration was associated with axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with symptom severity in PD.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Cognitive Neuroimaging Centre, Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore, Singapore
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran, Canaria, España
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Almani MN, Lazzari J, Chacon A, Saxena S. μSim: A goal-driven framework for elucidating the neural control of movement through musculoskeletal modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578628. [PMID: 38405828 PMCID: PMC10888726 DOI: 10.1101/2024.02.02.578628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
How does the motor cortex (MC) produce purposeful and generalizable movements from the complex musculoskeletal system in a dynamic environment? To elucidate the underlying neural dynamics, we use a goal-driven approach to model MC by considering its goal as a controller driving the musculoskeletal system through desired states to achieve movement. Specifically, we formulate the MC as a recurrent neural network (RNN) controller producing muscle commands while receiving sensory feedback from biologically accurate musculoskeletal models. Given this real-time simulated feedback implemented in advanced physics simulation engines, we use deep reinforcement learning to train the RNN to achieve desired movements under specified neural and musculoskeletal constraints. Activity of the trained model can accurately decode experimentally recorded neural population dynamics and single-unit MC activity, while generalizing well to testing conditions significantly different from training. Simultaneous goal- and data- driven modeling in which we use the recorded neural activity as observed states of the MC further enhances direct and generalizable single-unit decoding. Finally, we show that this framework elucidates computational principles of how neural dynamics enable flexible control of movement and make this framework easy-to-use for future experiments.
Collapse
|
8
|
Custódio-Silva AC, Beserra-Filho JIA, Soares-Silva B, Maria-Macêdo A, Silva-Martins S, Silva SP, Santos JR, Silva RH, Ribeiro DA, Ribeiro AM. Purple Carrot Extract Exhibits a Neuroprotective Profile in th e Nigrostriatal Pathway in the Reserpine-induced Model of Parkinson 's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:196-205. [PMID: 38279716 DOI: 10.2174/0118715249260445231226112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Even with scientific and technological advances, the therapeutic approaches used for the treatment of PD have shown to be largely ineffective in controlling the progression of symptoms in the long term. There is a growing demand for the development of novel therapeutic strategies for PD treatment. Different herbs and supplements have been considered as adjuvant to treat the symptoms of Parkinsonism. The carrot is one of the most consumed vegetable species worldwide, and its root is known for its content of anthocyanins, which possess antioxidant and antiinflammatory properties. This study evaluated the neuroprotective effect of purple carrot extract (CAR) in rats on the reserpine (RES)-induced progressive parkinsonism model. METHODS Male rats (6-month-old) received orally the CAR (400 mg/kg) or vehicle and subcutaneously RES (0.01 mg/kg) or vehicle for 28 days (Preventive Phase). From the 29th day, rats received CAR or vehicle daily and RES (0.1 mg/kg) or vehicle every other day (for 23 days, Protective phase). Behavioral tests were conducted throughout the treatment. Upon completion, the animals' brain were processed for tyrosine hydroxylase (TH) immunohistochemical assessment. RESULTS Our results showed that the chronic treatment of CAR protected against motor disabilities, reducing the time of catalepsy behavior and decreasing the frequency of oral movements, possibly by preserving TH levels in the Ventral Tegmental Area (VTA) and SNpc. CONCLUSION CAR extract is effective to attenuate motor symptoms in rats associated with increased TH+ levels in the Ventral Tegmental Area (VTA) and SNpc, indicating the potential nutraceutical benefits of CAR extract in a progressive parkinsonism model induced by RES.
Collapse
Affiliation(s)
| | | | - Beatriz Soares-Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Amanda Maria-Macêdo
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | | | - Sara Pereira Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal of Sergipe, Itabaiana, SE, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal of São Paulo, São Paulo, SP, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | | |
Collapse
|
9
|
Grau-Sánchez J, Jamey K, Paraskevopoulos E, Dalla Bella S, Gold C, Schlaug G, Belleville S, Rodríguez-Fornells A, Hackney ME, Särkämö T. Putting music to trial: Consensus on key methodological challenges investigating music-based rehabilitation. Ann N Y Acad Sci 2022; 1518:12-24. [PMID: 36177875 PMCID: PMC10091788 DOI: 10.1111/nyas.14892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major advances in music neuroscience have fueled a growing interest in music-based neurological rehabilitation among researchers and clinicians. Musical activities are excellently suited to be adapted for clinical practice because of their multisensory nature, their demands on cognitive, language, and motor functions, and music's ability to induce emotions and regulate mood. However, the overall quality of music-based rehabilitation research remains low to moderate for most populations and outcomes. In this consensus article, expert panelists who participated in the Neuroscience and Music VII conference in June 2021 address methodological challenges relevant to music-based rehabilitation research. The article aims to provide guidance on challenges related to treatment, outcomes, research designs, and implementation in music-based rehabilitation research. The article addresses how to define music-based rehabilitation, select appropriate control interventions and outcomes, incorporate technology, and consider individual differences, among other challenges. The article highlights the value of the framework for the development and evaluation of complex interventions for music-based rehabilitation research and the need for stronger methodological rigor to allow the widespread implementation of music-based rehabilitation into regular clinical practice.
Collapse
Affiliation(s)
- Jennifer Grau-Sánchez
- School of Nursing and Occupational Therapy of Terrassa, Autonomous University of Barcelona, Terrassa, Spain.,Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Kevin Jamey
- International Laboratory for Brain, Music and Sounds Research (BRAMS), Montreal, Québec, Canada.,Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Centre for Research on Brain, Language and Music (CRBLM), Montreal, Québec, Canada
| | | | - Simone Dalla Bella
- International Laboratory for Brain, Music and Sounds Research (BRAMS), Montreal, Québec, Canada.,Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Centre for Research on Brain, Language and Music (CRBLM), Montreal, Québec, Canada
| | - Christian Gold
- NORCE Norwegian Research Centre AS, Bergen, Norway.,Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Gottfried Schlaug
- Music, Neuroimaging, and Stroke Recovery Laboratories, Department of Neurology, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA.,Department of Biomedical Engineering/Institute of Applied Life Sciences at UMass Amherst, Amherst, Massachusetts, USA
| | - Sylvie Belleville
- Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Centre de recherche de l'Institut Universitaire de gériatrie de Montréal, Montreal, Québec, Canada
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Madeleine E Hackney
- Departments of Medicine and Rehabilitation Medicine, Emory University School of Medicine, Emory University School of Nursing, Atlanta, Georgia, USA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, Georgia, USA.,Birmingham/Atlanta VA Geriatric Rehabilitation Education and Clinical Center, Decatur, Georgia, USA
| | - Teppo Särkämö
- Cognitive Brain Research Unit (CBRU), Department of Psychology and Logopedics, Faculty of Medicine and Centre of Excellence in Music, Mind, Body and Brain (MMBB), University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Chen XJ, Kwak Y. Contribution of the sensorimotor beta oscillations and the cortico-basal ganglia-thalamic circuitry during value-based decision making: A simultaneous EEG-fMRI investigation. Neuroimage 2022; 257:119300. [PMID: 35568351 DOI: 10.1016/j.neuroimage.2022.119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
In decision neuroscience, the motor system has primarily been considered to be involved in executing choice actions. However, a competing perspective suggests its engagement in the evaluation of options, traditionally considered to be performed by the brain's valuation system. Here, we investigate the role of the motor system in value-based decision making by determining the neural circuitries associated with the sensorimotor beta oscillations previously identified to encode decision options. In a simultaneous EEG-fMRI study, participants evaluated reward and risk associated with a forthcoming action. A significant sensorimotor beta desynchronization was identified prior to and independent of response. The level of beta desynchronization showed evidence of encoding the reward levels. This beta desynchronization covaried, on a trial-by-trial level, with BOLD activity in the cortico-basal ganglia-thalamic circuitry. In contrast, there was only a weak covariation within the valuation network, despite significant modulation of its BOLD activity by reward levels. These results suggest that the way in which decision variables are processed differs in the valuation network and in the cortico-basal ganglia-thalamic circuitry. We propose that sensorimotor beta oscillations indicate incentive motivational drive towards a choice action computed from the decision variables even prior to making a response, and it arises from the cortico-basal ganglia-thalamic circuitry.
Collapse
Affiliation(s)
- Xing-Jie Chen
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Youngbin Kwak
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
The importance of volitional behavior in neuroplasticity. Proc Natl Acad Sci U S A 2022; 119:e2208739119. [PMID: 35858459 PMCID: PMC9335316 DOI: 10.1073/pnas.2208739119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
12
|
Bowles S, Hickman J, Peng X, Williamson WR, Huang R, Washington K, Donegan D, Welle CG. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron 2022; 110:2867-2885.e7. [PMID: 35858623 DOI: 10.1016/j.neuron.2022.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/23/2022]
Abstract
Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.
Collapse
Affiliation(s)
- Spencer Bowles
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jordan Hickman
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xiaoyu Peng
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - W Ryan Williamson
- IDEA Core, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rongchen Huang
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kayden Washington
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dane Donegan
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cristin G Welle
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Moorjani S, Walvekar S, Fetz EE, Perlmutter SI. Movement-dependent electrical stimulation for volitional strengthening of cortical connections in behaving monkeys. Proc Natl Acad Sci U S A 2022; 119:e2116321119. [PMID: 35759657 PMCID: PMC9271159 DOI: 10.1073/pnas.2116321119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Correlated activity of neurons can lead to long-term strengthening or weakening of the connections between them. In addition, the behavioral context, imparted by execution of physical movements or the presence of a reward, can modulate the plasticity induced by Hebbian mechanisms. In the present study, we have combined behavior and induced neuronal correlations to strengthen connections in the motor cortex of adult behaving monkeys. Correlated activity was induced using an electrical-conditioning protocol in which stimuli gated by voluntary movements were used to produce coactivation of neurons at motor-cortical sites involved in those movements. Delivery of movement-dependent stimulation resulted in small increases in the strength of associated cortical connections immediately after conditioning. Remarkably, when paired with further repetition of the movements that gated the conditioning stimuli, there were substantially larger gains in the strength of cortical connections, which occurred in a use-dependent manner, without delivery of additional conditioning stimulation. In the absence of such movements, little change was observed in the strength of motor-cortical connections. Performance of the motor behavior in the absence of conditioning also did not produce any changes in connectivity. Our results show that combining movement-gated stimulation with further natural use of the "conditioned" pathways after stimulation ends can produce use-dependent strengthening of connections in adult primates, highlighting an important role for behavior in cortical plasticity. Our data also provide strong support for combining movement-gated stimulation with use-dependent physical rehabilitation for strengthening connections weakened by a stroke or spinal cord injury.
Collapse
Affiliation(s)
- Samira Moorjani
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| | - Sarita Walvekar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Eberhard E Fetz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| |
Collapse
|
14
|
HGprt deficiency disrupts dopaminergic circuit development in a genetic mouse model of Lesch–Nyhan disease. Cell Mol Life Sci 2022; 79:341. [PMID: 35660973 PMCID: PMC9167210 DOI: 10.1007/s00018-022-04326-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 11/20/2022]
Abstract
In Lesch–Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.
Collapse
|
15
|
Tsay JS, Kim HE, Saxena A, Parvin DE, Verstynen T, Ivry RB. Dissociable use-dependent processes for volitional goal-directed reaching. Proc Biol Sci 2022; 289:20220415. [PMID: 35473382 PMCID: PMC9043705 DOI: 10.1098/rspb.2022.0415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023] Open
Abstract
Repetition of specific movement biases subsequent actions towards the practiced movement, a phenomenon known as use-dependent learning (UDL). Recent experiments that impose strict constraints on planning time have revealed two sources of use-dependent biases, one arising from dynamic changes occurring during motor planning and another reflecting a stable shift in motor execution. Here, we used a distributional analysis to examine the contribution of these biases in reaching. To create the conditions for UDL, the target appeared at a designated 'frequent' location on most trials, and at one of six 'rare' locations on other trials. Strikingly, the heading angles were bimodally distributed, with peaks at both frequent and rare target locations. Despite having no constraints on planning time, participants exhibited a robust bias towards the frequent target when movements were self-initiated quickly, the signature of a planning bias; notably, the peak near the rare target was shifted in the frequently practiced direction, the signature of an execution bias. Furthermore, these execution biases were not only replicated in a delayed-response task but were also insensitive to reward. Taken together, these results extend our understanding of how volitional movements are influenced by recent experience.
Collapse
Affiliation(s)
- Jonathan S. Tsay
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Arohi Saxena
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Darius E. Parvin
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| |
Collapse
|
16
|
Kolmančič K, Zupančič NK, Trošt M, Flisar D, Kramberger MG, Pirtošek Z, Kojović M. Continuous Dopaminergic Stimulation Improves Cortical Maladaptive Changes in Advanced Parkinson's Disease. Mov Disord 2022; 37:1465-1473. [PMID: 35436354 DOI: 10.1002/mds.29028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND With the progression of Parkinson's disease (PD), pulsatile treatment with oral levodopa causes maladaptive changes within basal ganglia-thalamo-cortical circuits, which are clinically expressed as motor fluctuations and dyskinesias. At the level of the motor cortex, these changes may be detected using transcranial magnetic stimulation (TMS), as abnormal corticospinal and intracortical excitability and absent response to plasticity protocols. OBJECTIVE We investigated the effect of continuous dopaminergic stimulation on cortical maladaptive changes related to oral levodopa treatment. METHODS Twenty patients with advanced PD were tested using TMS within 1 week before and again 6 months after the introduction of levodopa-carbidopa intestinal gel. We measured resting and active motor thresholds, input/output curve, short interval intracortical inhibition curve, cortical silent period, and response to intermittent theta burst stimulation. Patients were clinically assessed with Part III and Part IV of the Movement Disorders Society Unified Parkinson's Disease Rating Scale. RESULTS Six months after the introduction of levodopa-carbidopa intestinal gel, motor fluctuations scores (P = 0.001) and dyskinesias scores (P < 0.001) were reduced. Resting and active motor threshold (P = 0.012 and P = 0.015) and x-intercept of input/output curve (P = 0.005) were also decreased, while short-interval intracortical inhibition and response to intermittent theta bust stimulation were improved (P = 0.026 and P = 0.031, respectively). Changes in these parameters correlated with clinical improvement. CONCLUSIONS In patients with advanced PD, switching from intermittent to continuous levodopa delivery increased corticospinal excitability and improved deficient intracortical inhibition and abnormal motor cortex plasticity, along with amelioration of motor fluctuations and dyskinesias. Continuous dopaminergic stimulation ameliorates maladaptive changes inflicted by chronic pulsatile dopaminergic stimulation. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kaja Kolmančič
- Department of Nuclear Medicine, University Clinical Centre, Ljubljana, Slovenia.,Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Nina K Zupančič
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Milica G Kramberger
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| |
Collapse
|
17
|
Stegemöller EL, Zaman A, Shelley M, Patel B, Kouzi AE, Shirtcliff EA. The Effects of Group Therapeutic Singing on Cortisol and Motor Symptoms in Persons With Parkinson's Disease. Front Hum Neurosci 2021; 15:703382. [PMID: 34381345 PMCID: PMC8349974 DOI: 10.3389/fnhum.2021.703382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The inclusion of music into the treatment plan for persons with Parkinson's disease (PD) may be a viable strategy to target multiple motor symptoms. However, potential mechanisms to explain why music has an impact on multiple motor symptoms in persons with PD remain understudied. The purpose of this study was to examine the acute effects of 1 h of group therapeutic singing (GTS) on physiological measures of stress and clinical motor symptoms in persons with PD. We posit that improvement in motor symptoms after GTS may be related to stress reduction. Seventeen participants with PD completed 1 h of GTS and eight participants completed 1 h of a quiet reading (control session). Cortisol was collected via passive drool immediately before and after the singing and control session. The Unified Parkinson's Disease Rating Scale (UPDRS) Part-III (motor examination) was also video-recorded immediately before and after the singing and control session and scored by two raters masked to time and condition. Secondary outcome measures for quality of life, depression, and mood were collected. Results revealed no significant change in cortisol or motor UPDRS scores, as well as no significant relationship between cortisol and motor UPDRS scores. There was a trend for the singing group to report feeling less sad compared to the control group after the 1-h session (effect size = 0.86), and heart rate increased in the singing group while heart rate decreased in the control group after the 1-h session. These results suggest that an acute session of GTS is not unduly stressful and promotes the use of GTS for persons with PD. Multiple mechanisms may underlie the benefits of GTS for persons with PD. Further exploring potential mechanisms by which singing improves motor symptoms in persons with PD will provide greater insight on the therapeutic use of music for persons with PD.
Collapse
Affiliation(s)
| | - Andrew Zaman
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Mack Shelley
- Department of Statistics, Iowa State University, Ames, IA, United States.,Department of Political Science, Iowa State University, Ames, IA, United States
| | - Bhavana Patel
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Ahmad El Kouzi
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Elizabeth A Shirtcliff
- Department of Human Development and Family Studies, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Role of the nucleus accumbens in functional recovery from spinal cord injury. Neurosci Res 2021; 172:1-6. [PMID: 33895202 DOI: 10.1016/j.neures.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022]
Abstract
Post brain damage depression impedes functional recovery. On the other hand, higher motivation facilitates functional recovery after damage to the central nervous system, but the neural mechanism of psychological effects on functional recovery is unclear. The nucleus accumbens (NAcc), a motivation center, has not been considered directly involved in motor function. Recently, it was demonstrated that the NAcc makes a direct contribution to motor performance after spinal cord injury by facilitating motor cortex activity. In this perspective, we first summarize our investigation of role of NAcc in motor control during the recovery course after spinal cord injury, followed by a discussion of the current knowledge regarding the relationship between the recovery and NAcc after neuronal damage.
Collapse
|
19
|
Spampinato D, Celnik P. Multiple Motor Learning Processes in Humans: Defining Their Neurophysiological Bases. Neuroscientist 2020; 27:246-267. [PMID: 32713291 PMCID: PMC8151555 DOI: 10.1177/1073858420939552] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Learning new motor behaviors or adjusting previously learned actions to account for dynamic changes in our environment requires the operation of multiple distinct motor learning processes, which rely on different neuronal substrates. For instance, humans are capable of acquiring new motor patterns via the formation of internal model representations of the movement dynamics and through positive reinforcement. In this review, we will discuss how changes in human physiological markers, assessed with noninvasive brain stimulation techniques from distinct brain regions, can be utilized to provide insights toward the distinct learning processes underlying motor learning. We will summarize the findings from several behavioral and neurophysiological studies that have made efforts to understand how distinct processes contribute to and interact when learning new motor behaviors. In particular, we will extensively review two types of behavioral processes described in human sensorimotor learning: (1) a recalibration process of a previously learned movement and (2) acquiring an entirely new motor control policy, such as learning to play an instrument. The selected studies will demonstrate in-detail how distinct physiological mechanisms contributions change depending on the time course of learning and the type of behaviors being learned.
Collapse
|
20
|
Chen K, Vincis R, Fontanini A. Disruption of Cortical Dopaminergic Modulation Impairs Preparatory Activity and Delays Licking Initiation. Cereb Cortex 2020; 29:1802-1815. [PMID: 30721984 PMCID: PMC6418393 DOI: 10.1093/cercor/bhz005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022] Open
Abstract
Dysfunction of motor cortices is thought to contribute to motor disorders such as Parkinson's disease (PD). However, little is known on the link between cortical dopaminergic loss, abnormalities in motor cortex neural activity and motor deficits. We address the role of dopamine in modulating motor cortical activity by focusing on the anterior lateral motor cortex (ALM) of mice performing a cued-licking task. We first demonstrate licking deficits and concurrent alterations of spiking activity in ALM of head-fixed mice with unilateral depletion of dopaminergic neurons (i.e., mice injected with 6-OHDA into the medial forebrain bundle). Hemilesioned mice displayed delayed licking initiation, shorter duration of licking bouts, and lateral deviation of tongue protrusions. In parallel with these motor deficits, we observed a reduction in the prevalence of cue responsive neurons and altered preparatory activity. Acute and local blockade of D1 receptors in ALM recapitulated some of the key behavioral and neural deficits observed in hemilesioned mice. Altogether, our data show a direct relationship between cortical D1 receptor modulation, cue-evoked, and preparatory activity in ALM, and licking initiation.
Collapse
Affiliation(s)
- Ke Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
| | - Roberto Vincis
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Department of Biological Science, Florida State University, Tallahassee, FL, USA.,Graduate Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
21
|
Wächtler CO, Chakroun K, Clos M, Bayer J, Hennies N, Beaulieu JM, Sommer T. Region-specific effects of acute haloperidol in the human midbrain, striatum and cortex. Eur Neuropsychopharmacol 2020; 35:126-135. [PMID: 32439227 DOI: 10.1016/j.euroneuro.2020.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/30/2022]
Abstract
D2 autoreceptors provide an important regulatory mechanism of dopaminergic neurotransmission. However, D2 receptors are also expressed as heteroreceptors at postsynaptic membranes. The expression and the functional characteristics of both, D2 auto- and heteroreceptors, differ between brain regions. Therefore, one would expect that also the net response to a D2 antagonist, i.e. whether and to what degree overall neural activity increases or decreases, varies across brain areas. In the current study we systematically tested this hypothesis by parametrically increasing haloperidol levels (placebo, 2 and 3 mg) in healthy volunteers and measuring brain activity in the three major dopaminergic pathways. In particular, activity was assessed using fMRI while participants performed a working memory and a reinforcement learning task. Consistent with the hypothesis, across brain regions activity parametrically in- and decreased. Moreover, even within the same area there were function-specific concurrent de- and increases of activity, likely caused by input from upstream dopaminergic regions. In the ventral striatum, for instance, activity during reinforcement learning decreased for outcome processing while prediction error related activity increased. In conclusion, the current study highlights the intricacy of D2 neurotransmission which makes it difficult to predict the function-specific net response of a given area to pharmacological manipulations.
Collapse
Affiliation(s)
- Christian Ole Wächtler
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karima Chakroun
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Clos
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Bayer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, Faculty of medicine, University of Toronto, Toronto, Canada
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
22
|
Grau-Sánchez J, Münte TF, Altenmüller E, Duarte E, Rodríguez-Fornells A. Potential benefits of music playing in stroke upper limb motor rehabilitation. Neurosci Biobehav Rev 2020; 112:585-599. [PMID: 32092314 DOI: 10.1016/j.neubiorev.2020.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
Music-based interventions have emerged as a promising tool in stroke motor rehabilitation as they integrate most of the principles of motor training and multimodal stimulation. This paper aims to review the use of music in the rehabilitation of upper extremity motor function after stroke. First, we review the evidence supporting current music-based interventions including Music-supported Therapy, Music glove, group music therapy, Rhythm- and music-based intervention, and Musical sonification. Next, we describe the mechanisms that may be responsible for the effectiveness of these interventions, focusing on motor learning aspects, how multimodal stimulation may boost motor performance, and emotional and motivational aspects related to music. Then, we discuss methodological concerns in music therapy research related to modifications of therapy protocols, evaluation of patients and study designs. Finally, we highlight clinical considerations for the implementation of music-based interventions in clinical settings.
Collapse
Affiliation(s)
- Jennifer Grau-Sánchez
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Escola Universitària d'Infermeria i Teràpia Ocupacional de Terrassa (EUIT), Universitat Autònoma de Barcelona, Terrassa, Catalonia, Spain.
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | - Esther Duarte
- Department of Physical Medicine and Rehabilitation, Hospitals del Mar i l'Esperança, Parc de Salut Mar, Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain.
| |
Collapse
|
23
|
Bellucci G, Münte TF, Park SQ. Resting-state dynamics as a neuromarker of dopamine administration in healthy female adults. J Psychopharmacol 2019; 33:955-964. [PMID: 31246145 DOI: 10.1177/0269881119855983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Different neuromarkers of people's emotions, personality traits and behavioural performance have recently been identified. However, not much attention has been devoted to neuromarkers of neural responsiveness to drug administration. AIMS We investigated the predictive neuromarkers of acute dopamine (DA) administration. METHODS In a double-blind, within-subject study, we administrated a DA agonist (pramipexole) or placebo to 27 healthy female subjects. Using multivariate classification and prediction analyses, we examined whether dopaminergic modulations of task-free resting-state brain dynamics predict individual differences in pramipexole's modulation of facial attractiveness evaluations. RESULTS Our results demonstrate that pramipexole's effects on brain dynamics could be successfully discriminated from resting-state functional connectivity (accuracy: 78.9%; p < 0.0001). On the behavioural level, pramipexole increased facial attractiveness evaluations (t(39) = 4.44; p < 0.0001). In particular, pramipexole administration enhanced connectivity strength of the cinguloopercular network (t(23) = 3.29; p = 0.003) and increased brain signal variability in subcortical and prefrontal brain areas (t(13) = 3.05, p = 0.009). Importantly, multivariate predictive models reveal that pramipexole-dependent modulation of resting-state dynamics predicted the increase of facial attractiveness evaluations after pramipexole (connectivity strength: standardized mean squared error, smse = 0.65; p = 0.0007; brain signal variability: smse = 0.94, p = 0.015). CONCLUSION These results demonstrate that modulations of resting-state brain dynamics induced by a DA agonist predict drug-related effects on evaluation processes, providing a neuromarker of the neural responsiveness of specific brain networks to DA administration.
Collapse
Affiliation(s)
- Gabriele Bellucci
- 1 Department of Psychology I, University of Lübeck, Lübeck, Germany.,2 Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Thomas F Münte
- 3 Department of Neurology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.,4 Department of Psychology II, University of Lübeck, Lübeck, Germany
| | - Soyoung Q Park
- 1 Department of Psychology I, University of Lübeck, Lübeck, Germany.,2 Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany.,5 Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| |
Collapse
|
24
|
Silwal AP, Lu HP. Mode-Selective Raman Imaging of Dopamine-Human Dopamine Transporter Interaction in Live Cells. ACS Chem Neurosci 2018; 9:3117-3127. [PMID: 30024721 DOI: 10.1021/acschemneuro.8b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dopamine (DA) is the catecholamine neurotransmitter which interacts with dopamine receptors (DARs) to generate dopaminergic signals in the nervous system. Dopamine transporter (DAT) interacts with DA to maintain DA's homeostasis in synaptic and perisynaptic space. DAT and DARs have great importance in the central nervous system (CNS) because they are associated with the targeted binding of drugs. Interactions of DA, its analogue with DARs, or DAT have been studied extensively to understand the mechanism of the dopaminergic signaling process and several neurodegenerative diseases, including schizophrenia, Parkinson's diseases, addiction, attention deficit hyperactivity disorder, and bipolar disorder. However, there is still a lack of a risk-free, label-free, and minimally invasive imaging approach to probe the interaction between DA and DAT or DARs. Here, we probed the DA, human dopamine transporter (hDAT), and DA-hDAT interactions in live cells using combined approach of two-photon excited (2PE) fluorescence imaging and mode-selective Raman measurement. We utilized the signature Raman peak at 1287 cm-1 to probe the location of DA and 807 and 1076 cm-1 to probe the DA-hDAT interaction in live cells. We found that the combined approach of mode-selective Raman imaging, 2PE fluorescence imaging, and computational methods is successful to probe and confirm the DA-hDAT interactions in living cells. The probing of the interactions of DARs or DAT with DA or other targeting drugs is crucial for the diagnosis and cure of several neurodegenerative diseases. Also, this analytical approach could be extended to probe other types of protein-ligand interactions.
Collapse
Affiliation(s)
- Achut P. Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Ohio 43403, United States
| |
Collapse
|
25
|
Harris DJ, Vine SJ, Wilson MR, McGrath JS, LeBel ME, Buckingham G. Action observation for sensorimotor learning in surgery. Br J Surg 2018; 105:1713-1720. [DOI: 10.1002/bjs.10991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/04/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
Abstract
Background
Acquiring new motor skills to learn complex movements and master the use of a diverse range of instruments is fundamental for developing expertise in surgery. Although aspects of skill development occur through trial and error, watching the performance of another individual (action observation) is an increasingly important adjunct for the acquisition of these complex skills before performing a procedure. The aim of this review was to examine the evidence in support of the use of action observation in surgery.
Methods
A narrative review of observational learning for surgical motor skills was undertaken. Searches of PubMed and PsycINFO databases were performed using the terms ‘observational learning’ OR ‘action observation’ AND ‘motor learning’ OR ‘skill learning’.
Results
Factors such as the structure of physical practice, the skill level of the demonstrator and the use of feedback were all found to be important moderators of the effectiveness of observational learning. In particular, observation of both expert and novice performance, cueing attention to key features of the task, and watching the eye movements of expert surgeons were all found to enhance the effectiveness of observation. It was unclear, however, whether repeated observations were beneficial for skill learning. The evidence suggests that these methods can be employed to enhance surgical training curricula.
Conclusion
Observational learning is an effective method for learning surgical skills. An improved understanding of observational learning may further inform the refinement and use of these methods in contemporary surgical training curricula.
Collapse
Affiliation(s)
- D J Harris
- School of Sport and Health Sciences, University of Exeter, Exeter, UK
| | - S J Vine
- School of Sport and Health Sciences, University of Exeter, Exeter, UK
| | - M R Wilson
- School of Sport and Health Sciences, University of Exeter, Exeter, UK
| | - J S McGrath
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter Hospital, Exeter, UK
| | - M-E LeBel
- Division of Orthopaedic Surgery, Western University, London, Ontario, Canada
| | - G Buckingham
- School of Sport and Health Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
26
|
Abstract
INTRODUCTION Brain injuries are one of the leading causes of disability worldwide. It is estimated that nearly half of patients who develop severe sequelae will continue with a chronic severe disability despite having received an appropriate rehabilitation program. For more than 3 decades, there has been a worldwide effort to investigate the possibility of pharmacologically stimulating the neuroplasticity process for enhancing the recovery of these patients. OBJECTIVE The objective of this article is to make a critical and updated review of the available evidence that supports the positive effect of different drugs on the recovery from brain injury. METHOD To date, there have been several clinical trials that tested different drugs that act on different neurotransmitter systems: catecholaminergic, cholinergic, serotonergic, and glutamatergic. There is both basic and clinical evidence that may support some positive effect of these drugs on motor, cognitive, and language skills; however, only few of the available studies are of sufficient methodological quality (placebo controlled, randomized, blinded, multicenter, etc) to make solid conclusions about their beneficial effects. CONCLUSIONS Currently, the pharmacological stimulation of neuroplasticity still does not have enough scientific evidence to make a systematic therapeutic recommendation for all patients, but it certainly is a feasible and very promising field for future research.
Collapse
|
27
|
Lei Y, Bao S, Perez MA, Wang J. Enhancing Generalization of Visuomotor Adaptation by Inducing Use-dependent Learning. Neuroscience 2017; 366:184-195. [PMID: 29031601 DOI: 10.1016/j.neuroscience.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
Learning a motor task in one condition typically generalizes to another, although it is unclear why it generalizes substantially in certain situations, but only partially in other situations (e.g., across movement directions and motor effectors). Here, we demonstrate that generalization of motor learning across directions and effectors can be enhanced substantially by inducing use-dependent learning, that is, by having subjects experience motor actions associated with a desired trajectory repeatedly during reaching movements. In Experiments 1 and 2, healthy human adults adapted to a visuomotor rotation while concurrently experiencing repetitive passive movements guided by a robot. This manipulation increased the extent of generalization across movement directions (Expt. 1) and across the arms (Expt. 2) by up to 50% and 42%, respectively, indicating crucial contribution of use-dependent learning to motor generalization. In Experiment 3, we applied repetitive transcranial magnetic stimulation (rTMS) to the left primary motor cortex (M1) of the human subjects prior to passive training with the right arm to increase cortical excitability. This intervention resulted in increased motor-evoked potentials (MEPs) and decreased short-interval intracortical inhibition (SICI) in the rTMS group, but not in the sham group. These changes observed in the rTMS group were accompanied by enhanced generalization of visuomotor adaptation across the arms, which was not the case in the sham group. Collectively, these findings confirm the involvement of M1 in use-dependent learning, and suggest that use-dependent learning can contribute not only to motor learning, but also to motor generalization.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, United States; University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States.
| | - Shancheng Bao
- University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, United States
| | - Jinsung Wang
- University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States
| |
Collapse
|
28
|
Derosiere G, Vassiliadis P, Demaret S, Zénon A, Duque J. Learning stage-dependent effect of M1 disruption on value-based motor decisions. Neuroimage 2017; 162:173-185. [PMID: 28882634 DOI: 10.1016/j.neuroimage.2017.08.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022] Open
Abstract
The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBSLearning group) or after consolidation of the implicit rule, during decision-making (cTBSDecision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Sophie Demaret
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
29
|
Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2017; 125:337-363. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
| |
Collapse
|
30
|
Holca-Lamarre R, Lücke J, Obermayer K. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations. Front Comput Neurosci 2017; 11:54. [PMID: 28690509 PMCID: PMC5479899 DOI: 10.3389/fncom.2017.00054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/07/2017] [Indexed: 11/17/2022] Open
Abstract
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates.
Collapse
Affiliation(s)
- Raphaël Holca-Lamarre
- Neural Information Processing Group, Fakultät IV, Technische Universität BerlinBerlin, Germany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Jörg Lücke
- Cluster of Excellence Hearing4all and Research Center Neurosensory Science, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Machine Learning Lab, Department of Medical Physics and Acoustics, Carl von Ossietzky Universität OldenburgOldenburg, Germany
| | - Klaus Obermayer
- Neural Information Processing Group, Fakultät IV, Technische Universität BerlinBerlin, Germany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| |
Collapse
|
31
|
Effect of Intrastriatal 6-OHDA Lesions on Extrastriatal Brain Structures in the Mouse. Mol Neurobiol 2017; 55:4240-4252. [PMID: 28616718 DOI: 10.1007/s12035-017-0637-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor and non-motor symptoms. The underlying pathology of non-motor symptoms is poorly understood. Discussed are pathological changes of extrastriatal brain structures. In this study, we characterized histopathological alterations of extrastriatal brain structures in the 6-hydroxydopamine (6-OHDA) PD animal model. Lesions were induced by unilateral stereotactic injections of 6-OHDA into the striatum or medial forebrain bundle of adult male mice. Loss of tyrosine hydroxylase positive (TH+) fibers as well as glia activation was quantified following stereological principles. Loss of dopaminergic innervation was further investigated by western-blotting. As expected, 6-OHDA injection into the nigrostriatal route induced retrograde degeneration of dopaminergic neurons within the substantia nigra pars compacta (SNpc), less so within the ventral tegmental area. Furthermore, we observed a region-specific drop of TH+ projection fiber density in distinct cortical regions. This pathology was most pronounced in the cingulate- and motor cortex, whereas the piriform cortex was just modestly affected. Loss of cortical TH+ fibers was not paralleled by microglia or astrocyte activation. Our results demonstrate that the loss of dopaminergic neurons within the substantia nigra pars compacta is paralleled by a cortical dopaminergic denervation in the 6-OHDA model. This model serves as a valuable tool to investigate mechanisms operant during cortical pathology in PD patients. Further studies are needed to understand why cortical dopaminergic innervation is lost in this model, and what functional consequence is associated with the observed denervation.
Collapse
|
32
|
Rajan R, Popa T, Quartarone A, Ghilardi MF, Kishore A. Cortical plasticity and levodopa-induced dyskinesias in Parkinson's disease: Connecting the dots in a multicomponent network. Clin Neurophysiol 2017; 128:992-999. [PMID: 28454042 DOI: 10.1016/j.clinph.2017.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Abstract
Levodopa-induced dyskinesias are motor complications following long term dopaminergic therapy in Parkinson's disease (PD). Impaired brain plasticity resulting in the creation of aberrant motor maps intended to encode normal voluntary movement is proposed to result in the development of dyskinesias. Traditionally, the various nodes in the motor network like the striato-cortical and the cerebello-thalamic loops were thought to function independent of each other with little communication among them. Anatomical evidence from primates revealed the existence of reciprocal loops between the basal ganglia and the cerebellum providing an anatomical basis for communication between the motor network loops. Dyskinetic PD patients reveal impaired brain plasticity within the motor cortex which may be modulated by cortico-cortical, cerebello-cortical or striato-cortical connections. In this article, we review the evidence for altered plasticity in the multicomponent motor network in the context of levodopa induced dyskinesias in PD. Current evidence suggests a pivotal role for the cerebellum in the larger motor network with the ability to integrate sensorimotor information and independently influence multiple nodes in this network. Targeting the cerebellum seems to be a justified approach for future interventions aimed at attenuating levodopa-induced dyskinesias.
Collapse
Affiliation(s)
- Roopa Rajan
- Comprehensive Care Center for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India.
| | - Traian Popa
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, USA.
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy; IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo, Messina, Italy.
| | - Maria Felice Ghilardi
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, NY, USA.
| | - Asha Kishore
- Comprehensive Care Center for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India.
| |
Collapse
|
33
|
Motor Learning Enhances Use-Dependent Plasticity. J Neurosci 2017; 37:2673-2685. [PMID: 28143961 DOI: 10.1523/jneurosci.3303-16.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 02/02/2023] Open
Abstract
Motor behaviors are shaped not only by current sensory signals but also by the history of recent experiences. For instance, repeated movements toward a particular target bias the subsequent movements toward that target direction. This process, called use-dependent plasticity (UDP), is considered a basic and goal-independent way of forming motor memories. Most studies consider movement history as the critical component that leads to UDP (Classen et al., 1998; Verstynen and Sabes, 2011). However, the effects of learning (i.e., improved performance) on UDP during movement repetition have not been investigated. Here, we used transcranial magnetic stimulation in two experiments to assess plasticity changes occurring in the primary motor cortex after individuals repeated reinforced and nonreinforced actions. The first experiment assessed whether learning a skill task modulates UDP. We found that a group that successfully learned the skill task showed greater UDP than a group that did not accumulate learning, but made comparable repeated actions. The second experiment aimed to understand the role of reinforcement learning in UDP while controlling for reward magnitude and action kinematics. We found that providing subjects with a binary reward without visual feedback of the cursor led to increased UDP effects. Subjects in the group that received comparable reward not associated with their actions maintained the previously induced UDP. Our findings illustrate how reinforcing consistent actions strengthens use-dependent memories and provide insight into operant mechanisms that modulate plastic changes in the motor cortex.SIGNIFICANCE STATEMENT Performing consistent motor actions induces use-dependent plastic changes in the motor cortex. This plasticity reflects one of the basic forms of human motor learning. Past studies assumed that this form of learning is exclusively affected by repetition of actions. However, here we showed that success-based reinforcement signals could affect the human use-dependent plasticity (UDP) process. Our results indicate that learning augments and interacts with UDP. This effect is important to the understanding of the interplay between the different forms of motor learning and suggests that reinforcement is not only important to learning new behaviors, but can shape our subsequent behavior via its interaction with UDP.
Collapse
|
34
|
Derosiere G, Zénon A, Alamia A, Duque J. Primary motor cortex contributes to the implementation of implicit value-based rules during motor decisions. Neuroimage 2016; 146:1115-1127. [PMID: 27742597 DOI: 10.1016/j.neuroimage.2016.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
In the present study, we investigated the functional contribution of the human primary motor cortex (M1) to motor decisions. Continuous theta burst stimulation (cTBS) was used to alter M1 activity while participants performed a decision-making task in which the reward associated with the subjects' responses (right hand finger movements) depended on explicit and implicit value-based rules. Subjects performed the task over two consecutive days and cTBS occurred in the middle of Day 2, once the subjects were just about to implement implicit rules, in addition to the explicit instructions, to choose their responses, as evident in the control group (cTBS over the right somatosensory cortex). Interestingly, cTBS over the left M1 prevented subjects from implementing the implicit value-based rule while its implementation was enhanced in the group receiving cTBS over the right M1. Hence, cTBS had opposite effects depending on whether it was applied on the contralateral or ipsilateral M1. The use of the explicit value-based rule was unaffected by cTBS in the three groups of subject. Overall, the present study provides evidence for a functional contribution of M1 to the implementation of freshly acquired implicit rules, possibly through its involvement in a cortico-subcortical network controlling value-based motor decisions.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Andrea Alamia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
35
|
Kunori N, Kajiwara R, Takashima I. The ventral tegmental area modulates intracortical microstimulation (ICMS)-evoked M1 activity in a time-dependent manner. Neurosci Lett 2016; 616:38-42. [DOI: 10.1016/j.neulet.2016.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
36
|
Hosp JA, Nolan HE, Luft AR. Topography and collateralization of dopaminergic projections to primary motor cortex in rats. Exp Brain Res 2015; 233:1365-75. [PMID: 25633321 DOI: 10.1007/s00221-015-4211-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/16/2015] [Indexed: 11/30/2022]
Abstract
Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.
Collapse
Affiliation(s)
- Jonas A Hosp
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | | | | |
Collapse
|
37
|
Singh AM, Staines WR. The Effects of Acute Aerobic Exercise on the Primary Motor Cortex. J Mot Behav 2015; 47:328-39. [DOI: 10.1080/00222895.2014.983450] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol Learn Mem 2014; 116:46-58. [DOI: 10.1016/j.nlm.2014.08.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023]
|
39
|
Leow LA, Hammond G, de Rugy A. Anodal motor cortex stimulation paired with movement repetition increases anterograde interference but not savings. Eur J Neurosci 2014; 40:3243-52. [DOI: 10.1111/ejn.12699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Ann Leow
- School of Psychology; The University of Western Australia; 35 Stirling Highway Crawley WA 6009 Australia
- The Brain and Mind Institute; University of Western Ontario; London ON Canada N6A 5B7
| | - Geoff Hammond
- School of Psychology; The University of Western Australia; 35 Stirling Highway Crawley WA 6009 Australia
| | - Aymar de Rugy
- Centre for Sensorimotor Neuroscience; School of Human Movement Studies; The University of Queensland; Brisbane Qld Australia
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine; CNRS UMR 5287; Université Bordeaux Segalen; Bordeaux France
| |
Collapse
|
40
|
Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation. J Neurosci 2014; 34:8894-903. [PMID: 24966388 DOI: 10.1523/jneurosci.5286-13.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The primary motor cortex (M1) receives dopaminergic projections from the ventral tegmental area (VTA) through the mesocortical dopamine pathway. However, few studies have focused on changes in M1 neuronal activity caused by VTA activation. To address this issue, we used voltage-sensitive dye imaging (VSD) to reveal the spatiotemporal dynamics of M1 activity induced by single-pulse stimulation of VTA in anesthetized rats. VSD imaging showed that brief electrical stimulation of unilateral VTA elicited a short-latency excitatory-inhibitory sequence of neuronal activity not only in the ipsilateral but also in the contralateral M1. The contralateral M1 response was not affected by pharmacological blockade of ipsilateral M1 activity, but it was completely abolished by corpus callosum transection. Although the VTA-evoked neuronal activity extended throughout the entire M1, we found the most prominent activity in the forelimb area of M1. The 6-OHDA-lesioned VTA failed to evoke M1 activity. Furthermore, both excitatory and inhibitory intact VTA-induced activity was entirely extinguished by blocking glutamate receptors in the target M1. When intracortical microstimulation of M1 was paired with VTA stimulation, the evoked forelimb muscle activity was facilitated or inhibited, depending on the interval between the two stimuli. These findings suggest that VTA neurons directly modulate the excitability of M1 neurons via fast glutamate signaling and, consequently, may control the last cortical stage of motor command processing.
Collapse
|
41
|
Kishore A, Popa T. Cerebellum in levodopa-induced dyskinesias: the unusual suspect in the motor network. Front Neurol 2014; 5:157. [PMID: 25183959 PMCID: PMC4135237 DOI: 10.3389/fneur.2014.00157] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms that generate levodopa-induced dyskinesias (LID) during chronic levodopa therapy for Parkinson’s disease (PD) are not yet fully established. The most widely accepted theories incriminate the non-physiological synthesis, release and reuptake of dopamine generated by exogenously administered levodopa in the striatum, and the aberrant plasticity in the cortico-striatal loops. However, normal motor performance requires the correct recruitment of motor maps. This depends on a high level of synergy within the primary motor cortex (M1) as well as between M1 and other cortical and subcortical areas, for which dopamine is necessary. The plastic mechanisms within M1, which are crucial for the maintenance of this synergy, are disrupted both during “OFF” and dyskinetic states in PD. When tested without levodopa, dyskinetic patients show loss of treatment benefits on long-term potentiation and long-term depression-like plasticity of the intracortical circuits. When tested with the regular pulsatile levodopa doses, they show further impairment of the M1 plasticity, such as inability to depotentiate an already facilitated synapse and paradoxical facilitation in response to afferent input aimed at synaptic inhibition. Dyskinetic patients have also severe impairment of the associative, sensorimotor plasticity of M1 attributed to deficient cerebellar modulation of sensory afferents to M1. Here, we review the anatomical and functional studies, including the recently described bidirectional connections between the cerebellum and the basal ganglia that support a key role of the cerebellum in the generation of LID. This model stipulates that aberrant neuronal synchrony in PD with LID may propagate from the subthalamic nucleus to the cerebellum and “lock” the cerebellar cortex in a hyperactive state. This could affect critical cerebellar functions such as the dynamic and discrete modulation of M1 plasticity and the matching of motor commands with sensory information from the environment during motor performance. We propose that in dyskinesias, M1 neurons have lost the ability to depotentiate an activated synapse when exposed to acute pulsatile, non-physiological, dopaminergic surges and become abnormally receptive to unfiltered, aberrant, and non-salient afferent inputs from the environment. The motor program selection in response to such non-salient and behaviorally irrelevant afferent inputs would be abnormal and involuntary. The motor responses are worsened by the lack of normal subcortico–cortical inputs from cerebellum and basal ganglia, because of the aberrant plasticity at their own synapses. Artificial cerebellar stimulation might help re-establish the cerebellar and basal ganglia control over the non-salient inputs to the motor areas during synaptic dopaminergic surges.
Collapse
Affiliation(s)
- Asha Kishore
- Department of Neurology, Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology , Kerala , India
| | - Traian Popa
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelleepiniere (ICM) , Paris , France
| |
Collapse
|
42
|
Pearson-Fuhrhop KM, Dunn EC, Mortero S, Devan WJ, Falcone GJ, Lee P, Holmes AJ, Hollinshead MO, Roffman JL, Smoller JW, Rosand J, Cramer SC. Dopamine genetic risk score predicts depressive symptoms in healthy adults and adults with depression. PLoS One 2014; 9:e93772. [PMID: 24834916 PMCID: PMC4023941 DOI: 10.1371/journal.pone.0093772] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/08/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Depression is a common source of human disability for which etiologic insights remain limited. Although abnormalities of monoamine neurotransmission, including dopamine, are theorized to contribute to the pathophysiology of depression, evidence linking dopamine-related genes to depression has been mixed. The current study sought to address this knowledge-gap by examining whether the combined effect of dopamine polymorphisms was associated with depressive symptomatology in both healthy individuals and individuals with depression. METHODS Data were drawn from three independent samples: (1) a discovery sample of healthy adult participants (n = 273); (2) a replication sample of adults with depression (n = 1,267); and (3) a replication sample of healthy adult participants (n = 382). A genetic risk score was created by combining functional polymorphisms from five genes involved in synaptic dopamine availability (COMT and DAT) and dopamine receptor binding (DRD1, DRD2, DRD3). RESULTS In the discovery sample, the genetic risk score was associated with depressive symptomatology (β = -0.80, p = 0.003), with lower dopamine genetic risk scores (indicating lower dopaminergic neurotransmission) predicting higher levels of depression. This result was replicated with a similar genetic risk score based on imputed genetic data from adults with depression (β = -0.51, p = 0.04). Results were of similar magnitude and in the expected direction in a cohort of healthy adult participants (β = -0.86, p = 0.15). CONCLUSIONS Sequence variation in multiple genes regulating dopamine neurotransmission may influence depressive symptoms, in a manner that appears to be additive. Further studies are required to confirm the role of genetic variation in dopamine metabolism and depression.
Collapse
Affiliation(s)
- Kristin M. Pearson-Fuhrhop
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Erin C. Dunn
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Sarah Mortero
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - William J. Devan
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Guido J. Falcone
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Phil Lee
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Avram J. Holmes
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| | - Marisa O. Hollinshead
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Joshua L. Roffman
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jordan W. Smoller
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jonathan Rosand
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Steven C. Cramer
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
43
|
Kishore A, Meunier S, Popa T. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson's disease. Front Neurol 2014; 5:68. [PMID: 24834063 PMCID: PMC4018542 DOI: 10.3389/fneur.2014.00068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/21/2014] [Indexed: 11/13/2022] Open
Abstract
Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other's plastic responses and functions. The defective striatal signaling in Parkinson's disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD.
Collapse
Affiliation(s)
- Asha Kishore
- Department of Neurology, Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology , Kerala , India
| | - Sabine Meunier
- Institut du Cerveau et de la Moelle epiniere (ICM), INSERM U1127, CNRS UMR 7225, Université Pierre et Marie Curie-Paris 6 UMR S975 , Paris , France ; Centre de Neuroimagerie de Recherche (CENIR), l'Institut du Cerveau et de la Moelle epiniere (ICM) , Paris , France
| | - Traian Popa
- Institut du Cerveau et de la Moelle epiniere (ICM), INSERM U1127, CNRS UMR 7225, Université Pierre et Marie Curie-Paris 6 UMR S975 , Paris , France ; Centre de Neuroimagerie de Recherche (CENIR), l'Institut du Cerveau et de la Moelle epiniere (ICM) , Paris , France
| |
Collapse
|
44
|
Contribution of a mesocorticolimbic subcircuit to drug context-induced reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology 2014; 39:660-9. [PMID: 24051899 PMCID: PMC3895243 DOI: 10.1038/npp.2013.249] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/08/2022]
Abstract
Cocaine-seeking behavior triggered by drug-paired environmental context exposure is dependent on orbitofrontal cortex (OFC)-basolateral amygdala (BLA) interactions. Here, we present evidence supporting the hypothesis that dopaminergic input from the ventral tegmental area (VTA) to the OFC critically regulates these interactions. In experiment 1, we employed site-specific pharmacological manipulations to show that dopamine D1-like receptor stimulation in the OFC is required for drug context-induced reinstatement of cocaine-seeking behavior following extinction training in an alternate context. Intra-OFC pretreatment with the dopamine D1-like receptor antagonist, SCH23390, dose-dependently attenuated cocaine-seeking behavior in an anatomically selective manner, without altering motor performance. Furthermore, the effects of SCH23390 could be surmounted by co-administration of a sub-threshold dose of the D1-like receptor agonist, SKF81297. In experiment 2, we examined effects of D1-like receptor antagonism in the OFC on OFC-BLA interactions using a functional disconnection manipulation. Unilateral SCH23390 administration into the OFC plus GABA agonist-induced neural inactivation of the contralateral or ipsilateral BLA disrupted drug context-induced cocaine-seeking behavior relative to vehicle, while independent unilateral manipulations of these brain regions were without effect. Finally, in experiment 3, we used fluorescent retrograde tracers to demonstrate that the VTA, but not the substantia nigra, sends dense intra- and interhemispheric projections to the OFC, which in turn has reciprocal bi-hemispheric connections with the BLA. These findings support that dopaminergic input from the VTA, via dopamine D1-like receptor stimulation in the OFC, is required for OFC-BLA functional interactions. Thus, a VTA-OFC-BLA neural circuit promotes drug context-induced motivated behavior.
Collapse
|
45
|
Manley H, Dayan P, Diedrichsen J. When money is not enough: awareness, success, and variability in motor learning. PLoS One 2014; 9:e86580. [PMID: 24489746 PMCID: PMC3904934 DOI: 10.1371/journal.pone.0086580] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
When performing a skill such as throwing a dart, many different combinations of joint motions suffice to hit the target. The motor system adapts rapidly to reduce bias in the desired outcome (i.e., the first-order moment of the error); however, the essence of skill is to produce movements with less variability (i.e., to reduce the second-order moment). It is easy to see how feedback about success or failure could sculpt performance to achieve this aim. However, it is unclear whether the dimensions responsible for success or failure need to be known explicitly by the subjects, or whether learning can proceed without explicit awareness of the movement parameters that need to change. Here, we designed a redundant, two-dimensional reaching task in which we could selectively manipulate task success and the variability of action outcomes, whilst also manipulating awareness of the dimension along which performance could be improved. Variability was manipulated either by amplifying natural errors, leaving the correlation between the executed movement and the visual feedback intact, or by adding extrinsic noise, decorrelating movement and feedback. We found that explicit, binary, feedback about success or failure was only sufficient for learning when participants were aware of the dimension along which motor behavior had to change. Without such awareness, learning was only present when extrinsic noise was added to the feedback, but not when task success or variability was manipulated in isolation; learning was also much slower. Our results highlight the importance of conscious awareness of the relevant dimension during motor learning, and suggest that higher-order moments of outcome signals are likely to play a significant role in skill learning in complex tasks.
Collapse
Affiliation(s)
- Harry Manley
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Institute for the Psychology of Elite Performance, Bangor University, Bangor, United Kingdom
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Jörn Diedrichsen
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia. Neurobiol Dis 2014; 64:142-9. [PMID: 24398173 DOI: 10.1016/j.nbd.2013.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 01/07/2023] Open
Abstract
Levodopa-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy for Parkinson's disease, and becomes increasingly problematic in the advanced stage of the disease. Although the cause of LID still remains unclear, there is accumulating evidence from animal experiments that it results from maladaptive plasticity, resulting in supersensitive excitatory transmission at corticostriatal synapses. Recent work using transcranial magnetic stimulation suggests that the motor cortex displays the same supersensitivity in Parkinson's disease patients with LID. To date, the cellular mechanisms underlying the abnormal cortical plasticity have not been examined. The morphology of the dendritic spines has a strong relationship to synaptic plasticity. Therefore, we explored the spine morphology of pyramidal neurons in the motor cortex in a rat model of LID. We used control rats, 6-hydroxydopamine-lesioned rats (a model of Parkinson's disease), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Because the direct pathway of the basal ganglia plays a central role in the development of LID, we quantified the density and size of dendritic spines in intratelencephalic (IT)-type pyramidal neurons in M1 cortex that project to the striatal medium spiny neurons in the direct pathway. The spine density was not different among the four groups. In contrast, spine size became enlarged in the Parkinson's disease and LID rat models. The enlargement was significantly greater in the LID model than in the Parkinson's disease model. This enlargement of the spines suggests that IT-type pyramidal neurons acquire supersensitivity to excitatory stimuli. To confirm this possibility, we monitored miniature excitatory postsynaptic currents (mEPSCs) in the IT-type pyramidal neurons in M1 cortex using whole-cell patch clamp. The amplitude of the mEPSCs was significantly increased in the LID model compared with the control. This indicates that the IT-type pyramidal neurons become hyperexcited in the LID model, paralleling the enlargement of spines. Thus, spine enlargement and the resultant hyperexcitability of IT-type pyramidal neurons in M1 cortex might contribute to the abnormal cortical neuronal plasticity in LID.
Collapse
|
47
|
Corticostriatal and mesocortical dopamine systems: do species differences matter? Nat Rev Neurosci 2013; 15:63. [PMID: 24301065 DOI: 10.1038/nrn3469-c1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW. Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortex. Neural Comput 2013; 25:3263-93. [PMID: 24047323 DOI: 10.1162/neco_a_00521] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions at multiple levels, from synaptic mechanisms to cellular dynamics to network connectomics. We developed a model of sensory and motor neocortex consisting of 704 spiking model neurons. Sensory and motor populations included excitatory cells and two types of interneurons. Neurons were interconnected with AMPA/NMDA and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a two-joint virtual arm to reach to a fixed target. For each of 125 trained networks, we used 200 training sessions, each involving 15 s reaches to the target from 16 starting positions. Learning altered network dynamics, with enhancements to neuronal synchrony and behaviorally relevant information flow between neurons. After learning, networks demonstrated retention of behaviorally relevant memories by using proprioceptive information to perform reach-to-target from multiple starting positions. Networks dynamically controlled which joint rotations to use to reach a target, depending on current arm position. Learning-dependent network reorganization was evident in both sensory and motor populations: learned synaptic weights showed target-specific patterning optimized for particular reach movements. Our model embodies an integrative hypothesis of sensorimotor cortical learning that could be used to interpret future electrophysiological data recorded in vivo from sensorimotor learning experiments. We used our model to make the following predictions: learning enhances synchrony in neuronal populations and behaviorally relevant information flow across neuronal populations, enhanced sensory processing aids task-relevant motor performance and the relative ease of a particular movement in vivo depends on the amount of sensory information required to complete the movement.
Collapse
Affiliation(s)
- Samuel A Neymotin
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, U.S.A., and Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY 11203, U.S.A.
| | | | | | | | | |
Collapse
|
49
|
Genetic variation in the human brain dopamine system influences motor learning and its modulation by L-Dopa. PLoS One 2013; 8:e61197. [PMID: 23613810 PMCID: PMC3629211 DOI: 10.1371/journal.pone.0061197] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
Dopamine is important to learning and plasticity. Dopaminergic drugs are the focus of many therapies targeting the motor system, where high inter-individual differences in response are common. The current study examined the hypothesis that genetic variation in the dopamine system is associated with significant differences in motor learning, brain plasticity, and the effects of the dopamine precursor L-Dopa. Skilled motor learning and motor cortex plasticity were assessed using a randomized, double-blind, placebo-controlled, crossover design in 50 healthy adults during two study weeks, one with placebo and one with L-Dopa. The influence of five polymorphisms with established effects on dopamine neurotransmission was summed using a gene score, with higher scores corresponding to higher dopaminergic neurotransmission. Secondary hypotheses examined each polymorphism individually. While training on placebo, higher gene scores were associated with greater motor learning (p = .03). The effect of L-Dopa on learning varied with the gene score (gene score*drug interaction, p = .008): participants with lower gene scores, and thus lower endogenous dopaminergic neurotransmission, showed the largest learning improvement with L-Dopa relative to placebo (p<.0001), while L-Dopa had a detrimental effect in participants with higher gene scores (p = .01). Motor cortex plasticity, assessed via transcranial magnetic stimulation (TMS), also showed a gene score*drug interaction (p = .02). Individually, DRD2/ANKK1 genotype was significantly associated with motor learning (p = .02) and its modulation by L-Dopa (p<.0001), but not with any TMS measures. However, none of the individual polymorphisms explained the full constellation of findings associated with the gene score. These results suggest that genetic variation in the dopamine system influences learning and its modulation by L-Dopa. A polygene score explains differences in L-Dopa effects on learning and plasticity most robustly, thus identifying distinct biological phenotypes with respect to L-Dopa effects on learning and plasticity. These findings may have clinical applications in post-stroke rehabilitation or the treatment of Parkinson's disease.
Collapse
|
50
|
Zhuang X, Mazzoni P, Kang UJ. The role of neuroplasticity in dopaminergic therapy for Parkinson disease. Nat Rev Neurol 2013; 9:248-56. [PMID: 23588357 DOI: 10.1038/nrneurol.2013.57] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine replacement is a mainstay of therapeutic strategies for Parkinson disease (PD). The motor response to therapy involves an immediate improvement in motor function, known as the short-duration response (SDR), followed by a long-duration response (LDR) that develops more slowly, over weeks. Here, we review evidence in patients and animal models suggesting that dopamine-dependent corticostriatal plasticity, and retention of such plasticity in the absence of dopamine, are the mechanisms underlying the LDR. Conversely, experience-dependent aberrant plasticity that develops slowly under reduced dopamine levels could contribute substantially to PD motor symptoms before initiation of dopamine replacement therapy. We place these findings in the context of the role of dopamine in basal ganglia function and corticostriatal plasticity, and provide a new framework suggesting that therapies that enhance the LDR could be more effective than those targeting the SDR. We further propose that changes in neuroplasticity constitute a form of disease modification that is distinct from prevention of degeneration, and could be responsible for some of the unexplained disease-modifying effects of certain therapies. Understanding such plasticity could provide novel therapeutic approaches that combine rehabilitation and pharmacotherapy for treatment of neurological and psychiatric disorders involving basal ganglia dysfunction.
Collapse
Affiliation(s)
- Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago Medicine and Biological Sciences, 947 South 58th Street, MC 0926, Chicago, IL 60637, USA
| | | | | |
Collapse
|