1
|
Ferreira M, Carneiro P, Costa VM, Carvalho F, Meisel A, Capela JP. Amphetamine and methylphenidate potential on the recovery from stroke and traumatic brain injury: a review. Rev Neurosci 2024; 35:709-746. [PMID: 38843463 DOI: 10.1515/revneuro-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of stroke and traumatic brain injury is increasing worldwide. However, current treatments do not fully cure or stop their progression, acting mostly on symptoms. Amphetamine and methylphenidate are stimulants already approved for attention deficit hyperactivity disorder and narcolepsy treatment, with neuroprotective potential and benefits when used in appropriate doses. This review aimed to summarize pre-clinical and clinical trials testing either amphetamine or methylphenidate for the treatment of stroke and traumatic brain injury. We used PubMed as a database and included the following keywords ((methylphenidate) OR (Ritalin) OR (Concerta) OR (Biphentin) OR (amphetamine) OR (Adderall)) AND ((stroke) OR (brain injury) OR (neuroplasticity)). Overall, studies provided inconsistent results regarding cognitive and motor function. Neurite outgrowth, synaptic proteins, dendritic complexity, and synaptic plasticity increases were reported in pre-clinical studies along with function improvement. Clinical trials have demonstrated that, depending on the brain region, there is an increase in motor activity, attention, and memory due to the stimulation of the functionally depressed catecholamine system and the activation of neuronal remodeling proteins. Nevertheless, more clinical trials and pre-clinical studies are needed to understand the drugs' full potential for their use in these brain diseases namely, to ascertain the treatment time window, ideal dosage, long-term effects, and mechanisms, while avoiding their addictive potential.
Collapse
Affiliation(s)
- Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Center for Stroke Research Berlin, Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - João Paulo Capela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| |
Collapse
|
2
|
Maletic V, Mattingly GW, Earnest J. Viloxazine extended-release capsules as an emerging treatment for attention-deficit/hyperactivity disorder in children and adolescents. Expert Rev Neurother 2024; 24:443-455. [PMID: 38502148 DOI: 10.1080/14737175.2024.2327533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention and/or hyperactivity and impulsivity. Viloxazine extended-release (ER) capsules (Qelbree®) is a US Food and Drug Administration-approved nonstimulant treatment option for children, adolescents, and adults with ADHD. AREAS COVERED This review manuscript summarizes the neurobiology of ADHD and currently available treatment options before discussing viloxazine pharmacology, efficacy, safety, and tolerability data from phase II and III trials in children and adolescents (6-17 years old). Viloxazine clinical efficacy has also been further demonstrated by post hoc analyses of pediatric clinical trial results. EXPERT OPINION Current stimulant and nonstimulant treatments for ADHD may be suboptimal given low response rates and that tolerability issues are frequently experienced. Preclinical and clinical evidence has implicated both the role of catecholamine and serotonin signaling in the pathophysiology of ADHD and the pharmacologic effect of viloxazine on these critical neurotransmitter systems. With a relatively rapid onset of action, sustained symptom improvement, and clinical benefit in ADHD-associated impairments (functional and social), viloxazine ER represents a novel and emerging ADHD treatment option.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Psychiatry and Behavioral Science, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Gregory W Mattingly
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Jami Earnest
- Medical Affairs, Supernus Pharmaceuticals, Inc, Rockville, MD, USA
| |
Collapse
|
3
|
Memos N, Avila JA, Rodriguez E, Serrano PA. Synaptic remodeling of GluA1 and GluA2 expression in the nucleus accumbens promotes susceptibility to cognitive deficits concomitant with downstream GSK3 β mediated neurotoxicity in female mice during abstinence from voluntary oral methamphetamine. ADDICTION NEUROSCIENCE 2023; 8:100112. [PMID: 37842014 PMCID: PMC10569060 DOI: 10.1016/j.addicn.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Stimulant-use disorders can present with long-term cognitive and mental health deficits. Little is known about the underlying molecular mechanisms perpetuating sex differences in cognitive and behavioral deficits in preclinical models of addiction to stimulants such as methamphetamine (MA). The current study investigated the neurochemical shifts underlying sex disparities in MA-induced working memory deficits and an addictive phenotype following abstinence from chronic MA abuse. We used our previously reported mouse model of voluntary oral methamphetamine administration (VOMA) consisting of an acquisition phase (days 1-14) characterized by escalating doses of MA and a binge phase (days 14-28) characterized by static doses. Female VOMA mice exhibited sustained MA consumption during the binge phase, demonstrating sex-specific vulnerabilities to the maintenance of MA addiction. The 8-arm radial maze was used to test spatial working memory performance following abstinence from VOMA. Results indicate working memory deficits correlated to higher MA consumption in females only. Hippocampal and accumbal tissue were collected and analyzed by immunoblotting. Female VOMA mice had decreased GluA1, but not GluA2, in the hippocampus, which may perpetuate synaptic destabilization and working memory deficits. Female-specific increases in GluA1 and p-GSK3β expression in accumbal tissue suggest vulnerability toward abstinence-induced drug craving and heightened downstream neurotoxicity. Our study reveals female-specific neurochemical shifts in hippocampal and accumbal AMPA receptor signaling following abstinence from chronic MA consumption that may perpetuate female susceptibility to MA-induced cognitive deficits. These data demonstrate a novel molecular pathway that would exacerbate memory deficits and perpetuate an addictive phenotype in female populations following MA abuse.
Collapse
Affiliation(s)
- Nicoletta Memos
- Department of Psychology, Hunter College, City University of New York, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, 10016, USA
| | - Jorge A. Avila
- Undergraduate Research Center – Sciences, University of California, Los Angeles, CA 90095, USA
| | - Edgar Rodriguez
- Department of Psychology, Hunter College, City University of New York, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, 10016, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter College, City University of New York, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, 10016, USA
| |
Collapse
|
4
|
Joo Y, Lee S, Hwang J, Kim J, Cheon YH, Lee H, Kim S, Yurgelun-Todd DA, Renshaw PF, Yoon S, Lyoo IK. Differential alterations in brain structural network organization during addiction between adolescents and adults. Psychol Med 2023; 53:3805-3816. [PMID: 35440353 PMCID: PMC10317813 DOI: 10.1017/s0033291722000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The adolescent brain may be susceptible to the influences of illicit drug use. While compensatory network reorganization is a unique developmental characteristic that may restore several brain disorders, its association with methamphetamine (MA) use-induced damage during adolescence is unclear. METHODS Using independent component (IC) analysis on structural magnetic resonance imaging data, spatially ICs described as morphometric networks were extracted to examine the effects of MA use on gray matter (GM) volumes and network module connectivity in adolescents (51 MA users v. 60 controls) and adults (54 MA users v. 60 controls). RESULTS MA use was related to significant GM volume reductions in the default mode, cognitive control, salience, limbic, sensory and visual network modules in adolescents. GM volumes were also reduced in the limbic and visual network modules of the adult MA group as compared to the adult control group. Differential patterns of structural connectivity between the basal ganglia (BG) and network modules were found between the adolescent and adult MA groups. Specifically, adult MA users exhibited significantly reduced connectivity of the BG with the default network modules compared to control adults, while adolescent MA users, despite the greater extent of network GM volume reductions, did not show alterations in network connectivity relative to control adolescents. CONCLUSIONS Our findings suggest the potential of compensatory network reorganization in adolescent brains in response to MA use. The developmental characteristic to compensate for MA-induced brain damage can be considered as an age-specific therapeutic target for adolescent MA users.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Young-Hoon Cheon
- Department of Psychiatry, Incheon Chamsarang Hospital, Incheon, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Deborah A. Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Tryptophan and Substance Abuse: Mechanisms and Impact. Int J Mol Sci 2023; 24:ijms24032737. [PMID: 36769059 PMCID: PMC9917371 DOI: 10.3390/ijms24032737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Addiction, the continuous misuse of addictive material, causes long-term dysfunction in the neurological system. It substantially affects the control strength of reward, memory, and motivation. Addictive substances (alcohol, marijuana, caffeine, heroin, methamphetamine (METH), and nicotine) are highly active central nervous stimulants. Addiction leads to severe health issues, including cardiovascular diseases, serious infections, and pulmonary/dental diseases. Drug dependence may result in unfavorable cognitive impairments that can continue during abstinence and negatively influence recovery performance. Although addiction is a critical global health challenge with numerous consequences and complications, currently, there are no efficient options for treating drug addiction, particularly METH. Currently, novel treatment approaches such as psychological contingency management, cognitive behavioral therapy, and motivational enhancement strategies are of great interest. Herein, we evaluate the devastating impacts of different addictive substances/drugs on users' mental health and the role of tryptophan in alleviating unfavorable side effects. The tryptophan metabolites in the mammalian brain and their potential to treat compulsive abuse of addictive substances are investigated by assessing the functional effects of addictive substances on tryptophan. Future perspectives on developing promising modalities to treat addiction and the role of tryptophan and its metabolites to alleviate drug dependency are discussed.
Collapse
|
6
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
7
|
Liu L, Li J, Wang C, Xu Y, Leung CK, Yang G, Lin S, Zhang S, Tan Y, Zhang H, Wang H, Liu J, Li M, Zeng X. Cannabidiol attenuates methamphetamine-induced conditioned place preference in male rats and viability in PC12 cells through the Sigma1R/AKT/GSK3β/CREB signaling pathway. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:548-561. [PMID: 35881880 DOI: 10.1080/00952990.2022.2073450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Methamphetamine use is associated with several negative consequences, including neurotoxicity and greater probability of exhibiting a substance use disorder. Sigma1 receptor is involved in the neurobiological basis of several drug use disorders. Cannabidiol has received attention in the treatment of drug use disorders and neurotoxicity. Objectives: To investigate the effects of cannabidiol on methamphetamine-induced conditioned place preference (CPP) and the viability of PC12 cells. Methods: Adult male rats (n = 70) underwent methamphetamine (2 mg/kg, IP) induced CPP, and were administered cannabidiol (10, 20, 40, or 80 mg/kg, IP) during the methamphetamine withdrawal period for five consecutive days. Methamphetamine (0.5 mg/kg) was then injected to reactivate CPP. Four brain regions (ventral tegmental area, nucleus accumbens, prefrontal cortex, and hippocampus) were extracted after the last test. PC12 cells were treated with cannabidiol, Sigma1R-siRNA, or BD1047 before methamphetamine exposure. Results: Administration of 20, 40, or 80 mg/kg cannabidiol facilitated CPP extinction (80 mg/kg, p < .001) and prevented CPP development (80 mg/kg, p < .0001). This was associated with changes in the expression of Sigma1R (ventral tegmental area, 80 mg/kg, p < .0001) in the four brain regions. Cannabidiol protected the PC12 cell's viability (10 μM, p = .0008) and inhibited the methamphetamine-induced activation of the AKT/GSK3β/CREB signaling pathway by mediating Sigma1R (10 μM, p < .0001). Conclusions: Cannabidiol seems to inhibit the rewarding effects of methamphetamine and the effects of this drug on cell viability. Sigma1R should be given further consideration as a potential target for cannabidiol.
Collapse
Affiliation(s)
- Liu Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yue Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shucheng Lin
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shuwei Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Tan
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Huijie Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jianxing Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Ming Li
- School of Rehabilitation Medicine, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Zhou Y, Hu Y, Wang Q, Yang Z, Li J, Ma Y, Wu Q, Chen S, Yang D, Hao Y, Wang Y, Li M, Peng P, Liu T, Yang WFZ. Association between white matter microstructure and cognitive function in patients with methamphetamine use disorder. Hum Brain Mapp 2022; 44:304-314. [PMID: 35838008 PMCID: PMC9842920 DOI: 10.1002/hbm.26020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
Methamphetamine use disorder (MUD) has been associated with broad neurocognitive impairments. While the cognitive impairments of MUD have been demonstrated, the neuropathological underpinnings remain inadequately understood. To date, the published human diffusion tensor imaging (DTI) studies involving the correlation between diffusion parameters and neurocognitive function in MUD are limited. Hence, the present study aimed to examine the association between cognitive performance and white matter microstructure in patients with MUD. Forty-five patients with MUD and 43 healthy controls (HCs) completed their demographic information collection, cognitive assessments, and DTI imaging. DTI images were preprocessed to extract fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of various fiber tracts. Univariate tests were used to examine group differences in cognitive assessments and DTI metrics. Linear regression was used to examine the relationship between these two metrics. The results revealed that patients with MUD had lower subset scores of the MATRICS Consensus Cognitive Battery (MCCB), which reflects five cognitive domains: processing speed, attention, verbal learning, visual learning, problem-solving. Patients with MUD also had significantly higher AD, MD, and RD values of the left superior longitudinal fasciculus than HCs. Furthermore, the RD value of the left superior longitudinal fasciculus was a significant predictor of processing speed and problem-solving ability, as shown by the digit-symbol coding test and NAB-Mazes scores, respectively. Findings extended our understanding of white matter microstructure that is related to neurocognitive deficits in MUD and provided potential targets for the prevention and treatment of this chronic disorder.
Collapse
Affiliation(s)
- Yanan Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina,Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Yang Hu
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qianjin Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhi Yang
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinguang Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yuejiao Ma
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Qiuxia Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Shubao Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Dong Yang
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Yuzhu Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yunfei Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Manyun Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Pu Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Tieqiao Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts & SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
9
|
Metz VG, da Rosa JLO, Rossato DR, Burger ME, Pase CS. Cannabidiol treatment prevents drug reinstatement and the molecular alterations evoked by amphetamine on receptors and enzymes from dopaminergic and endocannabinoid systems in rats. Pharmacol Biochem Behav 2022; 218:173427. [PMID: 35810923 DOI: 10.1016/j.pbb.2022.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
10
|
Alteration of Ethanol Reward by Prior Mephedrone Exposure: The Role of Age and Matrix Metalloproteinase-9 (MMP-9). Int J Mol Sci 2022; 23:ijms23042122. [PMID: 35216236 PMCID: PMC8877998 DOI: 10.3390/ijms23042122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Mephedrone, a synthetic cathinone, is widely abused by adolescents and young adults. The aim of this study was to determine: (i) whether prior mephedrone exposure would alter ethanol reward and (ii) whether age and matrix metalloproteinase-9 (MMP-9) are important in this regard. In our research, male Wistar rats at postnatal day 30 (PND30) received mephedrone at the dose of 10 mg/kg, i.p., 3 times a day for 7 days. To clarify the role of MMP-9 in the mephedrone effects, one mephedrone-treated group received minocycline, as an MMP-9 antagonist. Animals were then assigned to conditioned place preference (CPP) procedure at PND38 (adolescent) or at PND69 (adult). After the CPP test (PND48/79), expression of dopamine D1 receptors (D1R), Cav1.2 (a subtype of L-type calcium channels), and MMP-9 was quantified in the rat ventral striatum (vSTR). The influence of mephedrone administration on the N-methyl-D-aspartate glutamate receptors (NMDAR) subunits (GluN1, GluN2A, and GluN2B) was then assessed in the vSTR of adult rats (only). These results indicate that, in contrast with adolescent rats, adult rats with prior mephedrone administration appear to be more sensitive to the ethanol effect in the CPP test under the drug-free state. The mephedrone effect in adult rats was associated with upregulation of D1R, NMDAR/GluN2B, MMP-9, and Cav1.2 signaling. MMP-9 appears to contribute to these changes in proteins expression because minocycline pretreatment blocked mephedrone-evoked sensitivity to ethanol reward. Thus, our results suggest that prior mephedrone exposure differentially alters ethanol reward in adolescent and adult rats.
Collapse
|
11
|
Spencer LP, Addison M, Alderson H, McGovern W, McGovern R, Kaner E, O'Donnell A. 'The Drugs Did For Me What I Couldn't Do For Myself': A Qualitative Exploration of the Relationship Between Mental Health and Amphetamine-Type Stimulant (ATS) Use. Subst Abuse 2021; 15:11782218211060852. [PMID: 34898985 PMCID: PMC8655440 DOI: 10.1177/11782218211060852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Substance use and mental ill health constitute a major public health burden, and a key global policy priority is to reduce illicit and other harmful substance use. Amphetamine-type stimulants (ATS) are the second most used class of illicit drugs and a range of mental health issues have been documented amongst users. This paper explores the relationship between mental health and ATS use, through a thematic analysis of qualitative interviews with n = 18 current and former ATS users in England. The findings are presented by trajectory point of; (1) Initiation of ATS use; (2) continued and increased ATS use and (3) decreased and remitted ATS use. This work helps to develop understanding around the complex and bi-directional relationship between ATS use and mental health. Many ATS users lead chaotic lives and engage in multiple risk behaviours, however there is a need to better understand and conceptualise the dynamic interaction between different individual, social, environment and cultural factors that determine individuals’ mental health and substance use. There is no ‘one size fits all’ approach to prevention and treatment, and these findings highlight the need for more joined-up, tailored and holistic approaches to intervention development.
Collapse
Affiliation(s)
- Liam Patrick Spencer
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Hayley Alderson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - William McGovern
- Department of Social Work, Education and Community Wellbeing, Northumbria University, Newcastle upon Tyne, UK
| | - Ruth McGovern
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Eileen Kaner
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy O'Donnell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Yin X, Guo C, Deng Y, Jin X, Teng Y, Xu J, Wu F. Tissue-specific accumulation, elimination, and toxicokinetics of illicit drugs in adult zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148153. [PMID: 34144238 DOI: 10.1016/j.scitotenv.2021.148153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The abuse of illicit drugs has led to their extensive detection worldwide and subsequently exerted adverse effects upon aquatic organisms and ecosystem. However, less attention has been paid to the uptake, biotransformation, internal distribution, and toxicokinetic processes in the exposed organisms. In this study, zebrafish (Danio rerio) was exposed to methamphetamine (METH) and ketamine (KET) at three different concentrations in a semi-static exposure system. METH and KET, together with their metabolites, amphetamine (AMP) and norketamine (NK), were consistently detected in zebrafish. Over 14-day exposure, the relative magnitude of mean concentrations of illicit drugs in zebrafish generally followed the order of brain > liver > intestine > ovary > muscle. The uptake rate constants (Ku) of METH and KET were in the range of 0.590-1.38 × 103 L/(kg·d), the elimination rate constants (Ke) were in the range of 0.18-6.98 1/d, and the half-lives were in the range of 0.18-6.98 d, respectively. METH and KET demonstrated relatively rapid uptake and elimination kinetics and short half-lives, and concentrations in organs were driven by external concentrations. Illicit drugs were not persistent within zebrafish organs when there were no substantial external contaminant sources. The observed values of bioconcentration factor (BCFo, L/kg) and kinetically-derived bioconcentration factor (BCFk, L/kg) were at the similar level. The ability of different zebrafish organs accumulating target chemicals from the aquatic environment was different, and brain was the target organ of the test illicit drugs.
Collapse
Affiliation(s)
- Xingxing Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanghui Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Avila JA, Memos N, Aslan A, Andrejewski T, Luine VN, Serrano PA. Voluntary oral methamphetamine increases memory deficits and contextual sensitization during abstinence associated with decreased PKMζ and increased κOR in the hippocampus of female mice. J Psychopharmacol 2021; 35:1240-1252. [PMID: 34587831 PMCID: PMC9083019 DOI: 10.1177/02698811211048285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Female populations exhibit vulnerabilities to psychostimulant addiction, as well as cognitive dysfunction following bouts of abuse. AIMS The goal for this study was to advance our understanding of the mechanisms that produce sex disparities in drug addiction. METHODS We used an animal model for voluntary oral methamphetamine administration (VOMA) and focused on male and female mice that consumed 7.6-8.2 mg/kg of methamphetamine (MA) per day during the last 18 days of the paradigm. RESULTS The VOMA-exposed female mice displayed increased locomotor activity in the drug-administration context compared to male mice, demonstrating sex-specific changes in contextual sensitization. During 2 weeks of forced abstinence, mice underwent further behavioral testing. We show that abstinence increased open-arm entries on the elevated plus maze in both sexes. There were no differences in immobility on the tail suspension test. In a hippocampal-dependent radial arm maze task, VOMA-treated female mice, but not male mice, showed working memory deficits. Hippocampal tissue was collected and analyzed using Western blotting. VOMA-exposed female mice exhibited increased kappa opioid receptor (κOR) expression in the hippocampus compared to male mice, suggesting a vulnerability toward abstinence-induced dysphoria. Female VOMA mice also exhibited a decrease in the memory protein marker, protein kinase M zeta (PKMζ), in the hippocampus. CONCLUSIONS Our study reveals sex-specific effects following abstinence from chronic MA consumption on hippocampal κOR and PKMζ expression, suggesting that these neural changes in female mice may underlie spatial memory deficits and identify an increased susceptibility to dysregulated neural mechanisms. These data validate VOMA as a model sensitive to sex differences in behavior and hippocampal neurochemistry following chronic MA exposure.
Collapse
Affiliation(s)
- Jorge A. Avila
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA.,The Graduate Center of CUNY, New York, NY 10016, USA
| | - Nicoletta Memos
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA.,The Graduate Center of CUNY, New York, NY 10016, USA
| | - Abdurrahman Aslan
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA.,Department of Pharmacology, Health Sciences Center, Louisiana State University, New Orleans, LA,Department of Pharmacology, Istinye University, Istanbul, Turkey
| | - Tytus Andrejewski
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA
| | - Victoria N. Luine
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA.,The Graduate Center of CUNY, New York, NY 10016, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA.,The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
14
|
Metz VG, da Rosa JLO, Rossato DR, Milanesi LH, Burger ME, Pase CS. Cannabidiol prevents amphetamine relapse and modulates D1- and D2-receptor levels in mesocorticolimbic brain areas of rats. Eur Neuropsychopharmacol 2021; 50:23-33. [PMID: 33951588 DOI: 10.1016/j.euroneuro.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/01/2021] [Accepted: 04/11/2021] [Indexed: 12/16/2022]
Abstract
Amphetamine (AMPH) is an addictive psychostimulant highly used worldwide and its consumption is related to neurotoxic effects. Currently, there is no pharmacotherapy approved for treating AMPH or other psychostimulant drug addiction. Different studies have shown promising properties of cannabidiol (CBD) for treating many neurological and psychiatric diseases, and recently, CBD is being considered a potential strategy for the treatment of drug addiction disorders. Thus, we investigated possible CBD beneficial effects on relapse symptoms following AMPH re-exposure considering drug relapse is the most difficult clinical factor to control during addiction treatment. Rats received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the conditioned place preference (CPP) paradigm (8 days), when each experimental group was re-assigned to receive CBD at two different doses (5 or 10 mg/kg, i.p) or control, for 5 days. Subsequently, animals were re-exposed to AMPH-CPP (4 mg/kg, i.p.) for 3 additional days to assess relapse behavior. Besides locomotor and anxiety-like behaviors, dopaminergic molecular parameters were quantified in both prefrontal cortex and ventral striatum. Regarding molecular levels, CBD modulated at basal levels the dopaminergic targets (D1R, D2R, DAT, and TH) in the assessed brain areas, preventing AMPH relapse and decreasing anxiety-like behavior per se and in AMPH-CPP animals. The current findings give evidence about CBD-induced AMPH-relapse prevention, which may be linked to dopaminergic mesocorticolimbic system modulation. Although future and clinical studies are needed, our outcomes show that CBD may be a useful alternative to prevent AMPH relapse.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | - Domenika Rubert Rossato
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Laura Hautrive Milanesi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Marilise Escobar Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, 97500-970 Uruguaiana, RS, Brazil.
| |
Collapse
|
15
|
García-Cabrerizo R, Bis-Humbert C, García-Fuster MJ. Electroconvulsive seizures protect against methamphetamine-induced inhibition of neurogenesis in the rat hippocampus. Neurotoxicology 2021; 86:185-191. [PMID: 34418438 DOI: 10.1016/j.neuro.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
Following methamphetamine consumption and during abstinence many behavioral consequences emerge (i.e., cognitive deficits, ongoing episodes of psychosis, depression, severe cravings, brain neurotoxicity), which are likely linked to propensity to relapse. In this line of thought, we recently showed that binge methamphetamine administration enhanced negative affect and voluntary drug consumption in rats, while it induced persistent neurotoxic effects (i.e., impaired hippocampal neurogenesis), effects that emerged long after drug removal. To date, no pharmacological strategies have been proven to be effective for the treatment of methamphetamine toxicity. A few studies have evaluated the impact of combining methamphetamine pretreatment with electroconvulsive seizures (ECS) post-treatment, an alternative non-pharmacological option used in psychiatry for resistant depression that offers a safe and really potent therapeutic response. Against this background, the present study aimed at testing whether repeated ECS treatment could ameliorate some of the long-term neurotoxicity effects induced by adolescent methamphetamine exposure in rats and emerging after drug removal. At the behavioral level, the main results showed that methamphetamine administration did not alter negative affect immediate during adolescence or later on in adulthood. Interestingly, repeated ECS improved the negative impact of methamphetamine administration on reducing hippocampal neurogenesis, demonstrating that ECS can attenuate certain degree of methamphetamine-induced neurotoxicity in rats, and suggesting ECS as a good therapeutical candidate that deserves further studies.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
16
|
Phillips TJ, Aldrich SJ. Peri-adolescent exposure to (meth)amphetamine in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:1-51. [PMID: 34801166 PMCID: PMC9134876 DOI: 10.1016/bs.irn.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimentation with psychoactive drugs is often initiated in the peri-adolescent period, but knowledge of differences in the outcomes of peri-adolescent- vs adult-initiated exposure is incomplete. We consider the existing animal research in this area for (meth)amphetamines. Established for a number of phenotypes, is lower sensitivity of peri-adolescents than adults to acute effects of (meth)amphetamines, including neurotoxic effects of binge-level exposure. More variable are data for long-term consequences of peri-adolescent exposure on motivational and cognitive traits. Moreover, investigations often exclude an adult-initiated exposure group critical for answering questions about outcomes unique to peri-adolescent initiation. Despite this, it is clear from the animal research that (meth)amphetamine exposure during the peri-adolescent period, whether self- or other-administered, impacts brain motivational circuitry and cognitive function, and alters adult sensitivity to other drugs and natural rewards. Such consequences occurring in humans have the potential to predispose toward unfortunate and potentially disastrous family, social and livelihood outcomes.
Collapse
Affiliation(s)
- T J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - S J Aldrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
17
|
Zhou C, Liu M, Mei X, Li Q, Zhang W, Deng P, He Z, Xi Y, Tong T, Pi H, Lu Y, Chen C, Zhang L, Yu Z, Zhou Z, He M. Histone hypoacetylation contributes to neurotoxicity induced by chronic nickel exposure in vivo and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147014. [PMID: 34088129 DOI: 10.1016/j.scitotenv.2021.147014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Nickel (Ni) is a heavy metal that is both an environmental pollutant and a threat to human health. However, the effects of Ni on the central nervous system in susceptible populations have not been well established. In the present study, the neurotoxicity of Ni and its underlying mechanism were investigated in vivo and in vitro. Ni exposure through drinking water (10 mg Ni/L, 12 weeks) caused learning and memory impairment in mice. Reduced dendrite complexity was observed in both Ni-exposed mouse hippocampi and Ni-treated (200 μM, 72 h) primary cultured hippocampal neurons. The levels of histone acetylation, especially at histone H3 lysine 9 (H3K9ac), were reduced in Ni-exposed mouse hippocampi and cultured neurons. RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing analyses revealed that H3K9ac-modulated gene expression were downregulated. Treatment with sodium butyrate, a histone deacetylase inhibitor, attenuated Ni-induced H3K9 hypoacetylation, neural gene downregulation and dendrite complexity reduction in cultured neurons. Sodium butyrate also restored Ni-induced memory impairment in mice. These results indicate that Ni-induced H3K9 hypoacetylation may be a contributor to the neurotoxicity of Ni. The finding that Ni disturbs histone acetylation in the nervous system may provide new insight into the health risk of chronic Ni exposure.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Mengyu Liu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China; Department of Medical Laboratory, General Hospital of the Central Theater Command of the Chinese People's Liberation Army, 430070 Wuhan, People's Republic of China
| | - Xiang Mei
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Qian Li
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University, 400037 Chongqing, People's Republic of China
| | - Wenjuan Zhang
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Zhixin He
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Yu Xi
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China
| | - Tong Tong
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China.
| | - Mindi He
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Addison M, Kaner E, Spencer L, McGovern W, McGovern R, Gilvarry E, O'Donnell A. Exploring pathways into and out of amphetamine type stimulant use at critical turning points: a qualitative interview study. HEALTH SOCIOLOGY REVIEW : THE JOURNAL OF THE HEALTH SECTION OF THE AUSTRALIAN SOCIOLOGICAL ASSOCIATION 2021; 30:111-126. [PMID: 34018913 DOI: 10.1080/14461242.2020.1811747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Amphetamine Type Stimulants (ATS) are increasingly used drugs globally. There is limited evidence about what shapes ATS use at critical turning points located within drug using pathways. Using turning point theory, as part of a life course approach, the ATTUNE study aimed to understand which social, economic and individual factors shape pathways into and out of ATS use. Qualitative, semi-structured interviews (n = 70) were undertaken with individuals who had used ATS, or had been exposed to them at least once. Our findings show that turning points for initiation were linked to pleasure, curiosity, boredom and declining mental health; increased use was linked to positive effects experienced at initiation and multiple life-stressors, leading to more intense use. Decreased use was prompted by pivotal events and sustained through continued wellbeing, day-to-day structure, and non-using social networks. We argue that the heterogeneity of these individuals challenges stereotypes of stimulant use allied to nightclubs and 'hedonism'. Further, at critical turning points for recovery, the use of services for problematic ATS consumption was low because users prioritised their alcohol or opioid use when seeking help. There is a need to develop service provision, training, and better outreach to individuals who need support at critical turning points.
Collapse
Affiliation(s)
- Michelle Addison
- Department of Art, Design and Social Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Eileen Kaner
- Population Health Sciences Institute, Faculty of Medical Science Newcastle University, Newcastle upon Tyne, UK
| | - Liam Spencer
- Population Health Sciences Institute, Faculty of Medical Science Newcastle University, Newcastle upon Tyne, UK
| | - William McGovern
- Department of Social Work, Education and Community Studies, Northumbria University, Newcastle upon Tyne, UK
| | - Ruth McGovern
- Population Health Sciences Institute, Faculty of Medical Science Newcastle University, Newcastle upon Tyne, UK
| | - Eilish Gilvarry
- Population Health Sciences Institute, Faculty of Medical Science Newcastle University, Newcastle upon Tyne, UK
| | - Amy O'Donnell
- Population Health Sciences Institute, Faculty of Medical Science Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Bates MLS, Trujillo KA. Use and abuse of dissociative and psychedelic drugs in adolescence. Pharmacol Biochem Behav 2021; 203:173129. [PMID: 33515586 PMCID: PMC11578551 DOI: 10.1016/j.pbb.2021.173129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022]
Abstract
Adolescence is a period of profound developmental changes, which run the gamut from behavioral and neural to physiological and hormonal. It is also a time at which there is an increased propensity to engage in risk-taking and impulsive behaviors like drug use. This review examines the human and preclinical literature on adolescent drug use and its consequences, with a focus on dissociatives (PCP, ketamine, DXM), classic psychedelics (LSD, psilocybin), and MDMA. It is the case for all the substances reviewed here that very little is known about their effects in adolescent populations. An emerging aspect of the literature is that dissociatives and MDMA produce mixed reinforcing and aversive effects and that the balance between reinforcement and aversion may differ between adolescents and adults, with consequences for drug use and addiction. However, many studies have failed to directly compare adults and adolescents, which precludes definitive conclusions about these consequences. Other important areas that are largely unexplored are sex differences during adolescence and the long-term consequences of adolescent use of these substances. We provide suggestions for future work to address the gaps we identified in the literature. Given the widespread use of these drugs among adolescent users, and the potential for therapeutic use, this work will be crucial to understanding abuse potential and consequences of use in this developmental stage.
Collapse
Affiliation(s)
- M L Shawn Bates
- Department of Psychology, California State University Chico, 400 W. First St, Chico, CA 95929, USA.
| | - Keith A Trujillo
- Department of Psychology and Office for Training, Research and Education in the Sciences (OTRES), California State University San Marcos, 333 S. Twin Oaks Valley Rd, San Marcos, CA 92096, USA..
| |
Collapse
|
20
|
New designer phenethylamines 2C-C and 2C-P have abuse potential and induce neurotoxicity in rodents. Arch Toxicol 2021; 95:1413-1429. [PMID: 33515270 DOI: 10.1007/s00204-021-02980-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
2C (2C-x) is the general name for the family of phenethylamines containing two methoxy groups at the 2 and 5 positions of the benzene ring. The abuse of 2C family drugs has grown rapidly, although the abuse potential and neurotoxic properties of 2C drugs have not yet been fully investigated. In this study, we investigated the abuse potential and neurotoxicity of 4-chloro-2,5-dimethoxyphenethylamine (2C-C) and 2,5-dimethoxy-4-propylphenethylamine (2C-P). We found that 2C-C and 2C-P produced conditioned place preference in a dose-dependent manner in mice, and increased self-administration in rats, suggesting that 2C-C and 2C-P have abuse potential. To investigate the neurotoxicity of 2C-C and 2C-P, we examined motor performance and memory impairment after high doses of 2C-C and 2C-P. High doses of 2C-C and 2C-P decreased locomotor activity, rota-rod performance, and lower Y-maze test, novel objective recognition test, and passive avoidance test scores. We also observed that 2C-C and 2C-P affected expression levels of the D1 dopamine receptor, D2 dopamine receptor, dopamine transporter, and phospho-dopamine transporter in the nucleus accumbens and the medial prefrontal cortex, and increased c-Fos immuno-positive cells in the nucleus accumbens. Moreover, high doses of 2C-C and 2C-P induced microglial activation, which is involved in the inflammatory reaction in the striatum. These results suggest that 2C-C and 2C-P have abuse potential by affecting dopaminergic signaling and induce neurotoxicity via initiating neuroinflammation at high doses.
Collapse
|
21
|
Kwan LY, Eaton DL, Andersen SL, Dow-Edwards D, Levin ED, Talpos J, Vorhees CV, Li AA. This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicol Teratol 2020; 81:106916. [DOI: 10.1016/j.ntt.2020.106916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
|
22
|
Soares J, Costa VM, Gaspar H, Santos S, Bastos MDL, Carvalho F, Capela JP. Adverse outcome pathways induced by 3,4-dimethylmethcathinone and 4-methylmethcathinone in differentiated human SH-SY5Y neuronal cells. Arch Toxicol 2020; 94:2481-2503. [PMID: 32382956 DOI: 10.1007/s00204-020-02761-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
Cathinones (β-keto amphetamines), widely abused in recreational settings, have been shown similar or even worse toxicological profile than classical amphetamines. In the present study, the cytotoxicity of two β-keto amphetamines [3,4-dimethylmethcathinone (3,4-DMMC) and 4-methylmethcathinone (4-MMC)], was evaluated in differentiated dopaminergic SH-SY5Y cells in comparison to methamphetamine (METH). MTT reduction and NR uptake assays revealed that both cathinones and METH induced cytotoxicity in a concentration- and time-dependent manner. Pre-treatment with trolox (antioxidant) partially prevented the cytotoxicity induced by all tested drugs, while N-acetyl-L-cysteine (NAC; antioxidant and glutathione precursor) and GBR 12909 (dopamine transporter inhibitor) partially prevented the cytotoxicity induced by cathinones, as evaluated by the MTT reduction assay. Unlike METH, cathinones induced oxidative stress evidenced by the increase on intracellular levels of reactive oxygen species (ROS), and also by the decrease of intracellular glutathione levels. Trolox prevented, partially but significantly, the ROS generation elicited by cathinones, while NAC inhibited it completely. All tested drugs induced mitochondrial dysfunction, since they led to mitochondrial membrane depolarization and to intracellular ATP depletion. Activation of caspase-3, indicative of apoptosis, was seen both for cathinones and METH, and confirmed by annexin V and propidium iodide positive staining. Autophagy was also activated by all drugs tested. Pre-incubation with bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, only protected against the cytotoxicity induced by METH, which indicates dissimilar toxicological pathways for the tested drugs. In conclusion, the mitochondrial impairment and oxidative stress observed for the tested cathinones may be key factors for their neurotoxicity, but different outcome pathways seem to be involved in the adverse effects, when compared to METH.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Gaspar
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
23
|
Harmony ZR, Alderson EM, Garcia-Carachure I, Bituin LD, Crawford CA. Effects of nicotine exposure on oral methamphetamine self-administration, extinction, and drug-primed reinstatement in adolescent male and female rats. Drug Alcohol Depend 2020; 209:107927. [PMID: 32106019 PMCID: PMC7127953 DOI: 10.1016/j.drugalcdep.2020.107927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Adolescent nicotine exposure increases methamphetamine (MA) intake in adult male rats; however, little is known about how nicotine affects MA self-administration during the adolescent period. Therefore, we assessed whether exposing rats to nicotine during early or late adolescence affects oral MA self-administration. METHODS 146 male and female rats were treated with saline or nicotine (0.16 or 0.64 mg/kg) from postnatal day (PD) 25-PD 34 (the early exposure phase) and/or PD 35-PD 55 (the late exposure phase). Rats began an oral MA self-administration procedure on PD 35. RESULTS Only the sex variable, but not nicotine, affected sucrose and MA acquisition, as female rats had more nose pokes than males during training. On the test sessions, female rats exposed to nicotine (0.64 mg/kg) in the early exposure phase had more active nose pokes than saline-treated female rats or nicotine-treated male rats. Rats exposed to nicotine (0.16 mg/kg) in the late exposure phase had fewer active nose pokes during testing than rats exposed to saline. Nose poke responding during extinction was not altered by nicotine exposure, but administering nicotine (0.16 or 0.64 mg/kg) to male rats in the early exposure phase did decrease nose pokes during the drug-primed reinstatement session. CONCLUSIONS Our results show that adolescent female rats are more sensitive to the reinforcing effects of oral sucrose and MA than adolescent males, and that preadolescent nicotine exposure enhances oral MA self-administration in female rats. These findings suggest that preteen nicotine use may increase vulnerability to later MA abuse in teenage girls.
Collapse
Affiliation(s)
- Zachary R. Harmony
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Erin M. Alderson
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Department of Psychology, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Israel Garcia-Carachure
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Department of Psychology, University of Texas, El Paso, 500 W University, El Paso, TX 79902, USA
| | - Laurence D. Bituin
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Cynthia A. Crawford
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Corresponding Author: Tel.: (909) 537-7416, Fax: (909) 537-7003, (C.A. Crawford)
| |
Collapse
|
24
|
Nazari A, Perez-Fernandez C, Flores P, Moreno M, Sánchez-Santed F. Age-dependent effects of repeated methamphetamine exposure on locomotor activity and attentional function in rats. Pharmacol Biochem Behav 2020; 191:172879. [PMID: 32088359 DOI: 10.1016/j.pbb.2020.172879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/29/2020] [Accepted: 02/20/2020] [Indexed: 01/12/2023]
Abstract
Many adolescents use amphetamines which are the second most common abused illegal drugs. Methamphetamine (Meth), as a potent amphetamine affects attentional functions. However, the most significant factor for susceptibility to Meth is the age of exposure, most studies have examined the effects of Meth after early adolescence stage. The present experiment was aimed to investigate some possible short- and long-term effects of Meth at two distinct points of adolescence stage (early versus late) on 1) locomotor activity in adolescent rats and 2) attentional functions in their adulthood. Rats received Meth (5 mg/kg, i.p., for consecutive 10 days) during early adolescence (postnatal days (PND) 30-39) or late adolescence (PND 50-59). Locomotor activity was assessed after the first and tenth injections. Then, in adulthood, rats were trained and tested on the Five-choice serial reaction time task (5-CSRTT) to display possible attentional impairments. The first Meth administration in early exposed adolescent (EEA) group produced the highest level of activity, compared with the first exposure in late exposed adolescent (LEA) group and tenth administrations in both groups. In adulthood, LEA group significantly delayed learning the 5-CSRTT and exhibited attentional impairments, as demonstrated by significant reduced response accuracy and increased omission errors under pharmacological challenge, compared with control group. The susceptibility to Meth depends on the age of exposure and Meth administration during late adolescence stage may cause prolonged attentional deficits in adulthood.
Collapse
Affiliation(s)
- Azadeh Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No, 88, Italia Street, Qods Street, 14177-55469 Tehran, Iran.
| | - Cristian Perez-Fernandez
- Department of Psychology, and Heath Research Center, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Pilar Flores
- Department of Psychology, and Heath Research Center, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Margarita Moreno
- Department of Psychology, and Heath Research Center, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Fernando Sánchez-Santed
- Department of Psychology, and Heath Research Center, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
25
|
Chitre NM, Bagwell MS, Murnane KS. The acute toxic and neurotoxic effects of 3,4-methylenedioxymethamphetamine are more pronounced in adolescent than adult mice. Behav Brain Res 2019; 380:112413. [PMID: 31809766 DOI: 10.1016/j.bbr.2019.112413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) recently achieved breakthrough status from the Food and Drug Administration (FDA) for post-traumatic stress disorder (PTSD). However, evidence indicates that exposure to toxic doses of MDMA can lead to long-lasting dysregulation of brain monoaminergic neurotransmitters, primarily from studies conducted in young adult rodents. To date, there is a paucity of data on whether toxic doses of MDMA can differentially affect neurotransmitter systems in adolescents and mature adults, which is an important question as adolescents and adults may be differentially vulnerable to MDMA abuse. In the current study, adolescent (6-7 weeks of age) and mature adult (16-18 weeks of age) male, Swiss-Webster mice were exposed to MDMA (20 mg/kg) using a binge-like dosing regimen (4 administrations spaced every 2 h). Acute lethality, acute hyperthermia, and acute decreases in body weight following MDMA administration were more pronounced in adolescent than adult mice. Likewise, acute loss of striatal dopamine neurochemistry was also exacerbated in adolescents, as determined by high-pressure liquid chromatography coupled to electrochemical detection. Exposure to MDMA induced greater turnover of dopamine into its major metabolite dihydroxyphenylacetic acid (DOPAC) in adolescents, but not in adults, suggesting a novel mechanism through which adolescents may show increased vulnerability to the acute toxic and neurotoxic effects of MDMA, or conversely that mature adults show greater protection. These data caution that MDMA exposure in adolescence may be particularly dangerous and that the therapeutic window for MDMA may differ between adolescents and mature adults.
Collapse
Affiliation(s)
- Neha Milind Chitre
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Monique Simone Bagwell
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
26
|
Soares J, Costa VM, Gaspar H, Santos S, de Lourdes Bastos M, Carvalho F, Capela JP. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology 2019; 75:158-173. [DOI: 10.1016/j.neuro.2019.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
27
|
Tran HQ, Shin EJ, Saito K, Tran TV, Phan DH, Sharma N, Kim DW, Choi SY, Jeong JH, Jang CG, Cheong JH, Nabeshima T, Kim HC. Indoleamine-2,3-dioxygenase-1 is a molecular target for the protective activity of mood stabilizers against mania-like behavior induced by d-amphetamine. Food Chem Toxicol 2019; 136:110986. [PMID: 31760073 DOI: 10.1016/j.fct.2019.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023]
Abstract
It is recognized that d-amphetamine (AMPH)-induced hyperactivity is thought to be a valid animal model of mania. In the present study, we investigated whether a proinflammatory oxidative gene indoleamine-2,3-dioxygenase (IDO) is involved in AMPH-induced mitochondrial burden, and whether mood stabilizers (i.e., lithium and valproate) modulate IDO to protect against AMPH-induced mania-like behaviors. AMPH-induced IDO-1 expression was significantly greater than IDO-2 expression in the prefrontal cortex of wild type mice. IDO-1 expression was more pronounced in the mitochondria than in the cytosol. AMPH treatment activated intra-mitochondrial Ca2+ accumulation and mitochondrial oxidative burden, while inhibited mitochondrial membrane potential and activity of the mitochondrial complex (I > II), mitochondrial glutathione peroxidase, and superoxide dismutase, indicating that mitochondrial burden might be contributable to mania-like behaviors induced by AMPH. The behaviors were significantly attenuated by lithium, valproate, or IDO-1 knockout, but not in IDO-2 knockout mice. Lithium, valproate administration, or IDO-1 knockout significantly attenuated mitochondrial burden. Neither lithium nor valproate produced additive effects above the protective effects observed in IDO-1 KO in mice. Collectively, our results suggest that mood stabilizers attenuate AMPH-induced mania-like behaviors via attenuation of IDO-1-dependent mitochondrial stress, highlighting IDO-1 as a novel molecular target for the protective potential of mood stabilizers.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, 24252, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
28
|
Bashkatova V, Philippu A. Role of nitric oxide in psychostimulant-induced neurotoxicity. AIMS Neurosci 2019; 6:191-203. [PMID: 32341976 PMCID: PMC7179361 DOI: 10.3934/neuroscience.2019.3.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
In recent decades, consumption of psychostimulants has been significantly increased all over the world, while exact mechanisms of neurochemical effects of psychomotor stimulants remained unclear. It is assumed that the neuronal messenger nitric oxide (NO) may be involved in mechanisms of neurotoxicity evoked by psychomotor stimulants. However, possible participation of NO in various pathological states is supported mainly by indirect evidence because of its short half-life in tissues. Aim of this review is to describe the involvement of NO and the contribution of lipid peroxidation (LPO) and acetylcholine (ACH) release in neurotoxic effects of psychostimulant drugs. NO was directly determined in brain structures by electron paramagnetic resonance (EPR). Both NO generation and LPO products as well as release of ACH were increased in brain structures following four injections of amphetamine (AMPH). Pretreatment of rats with the non-selective inhibitor of NO-synthase (NOS) N-nitro-L-arginine or the neuronal NOS inhibitor 7-nitroindazole significantly reduced increase of NO generation as well as the rise of ACH release induced by AMPH. Both NOS inhibitors injected prior to AMPH had no effect on enhanced levels of LPO products. Administration of the noncompetitive NMDA receptor antagonist dizocilpine abolished increase of both NO content and concentration of LPO products induced by of the psychostimulant drug. Dizocilpine also eliminated the influence of AMPH on the ACH release. Moreover, the neurochemical and neurotoxic effects of the psychostimulant drug sydnocarb were compared with those of AMPH. Single injection of AMPH showed a more pronounced increase in NO and TBARS levels than after an equimolar concentration of sydnocarb. The findings demonstrate the crucial role of NO in the development of neurotoxicity elicited by psychostimulants and underline the key role of NOS in AMPH-induced neurotoxicity.
Collapse
Affiliation(s)
- Valentina Bashkatova
- Laboratory of physiology of reinforcement, P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Athineos Philippu
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| |
Collapse
|
29
|
Methiopropamine, a methamphetamine analogue, produces neurotoxicity via dopamine receptors. Chem Biol Interact 2019; 305:134-147. [PMID: 30922767 DOI: 10.1016/j.cbi.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/03/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Methiopropamine (MPA) is structurally categorized as a thiophene ring-based methamphetamine (MA) derivative. Although abusive potential of MPA was recognized, little is known about the neurotoxic potential of MPA up to now. We investigated whether MPA induces dopaminergic neurotoxicity, and whether MPA activates a specific dopamine receptor. Here, we observed that treatment with MPA resulted in dopaminergic neurotoxicity in a dose-dependent manner. MPA treatment potentiated oxidative parameters (i.e., increases in the level of reactive oxygen species, 4-hydroxynonenal, and protein carbonyl), M1 phenotype-related microglial activity, and pro-apoptotic property (i.e., increases in Bax- and cleaved caspase-3-expressions, while a decrease in Bcl-2-expression). Moreover, treatment with MPA resulted in significant impairments in dopaminergic parameters [i.e., changes in dopamine level, dopamine turnover rate, tyrosine hydroxylase (TH) levels, dopamine transporter (DAT) expression, and vesicular monoamine transporter-2 (VMAT-2) expression], and in behavioral deficits. Both dopamine D1 receptor antagonist SCH23390 and D2 receptor antagonist sulpiride protected from these neurotoxic consequences. Therefore, our results suggest that dopamine D1 and D2 receptors simultaneously mediate MPA-induced dopaminergic neurodegeneration in mice via oxidative burdens, microgliosis, and pro-apoptosis.
Collapse
|
30
|
Schiavone S, Neri M, Maffione AB, Frisoni P, Morgese MG, Trabace L, Turillazzi E. Increased iNOS and Nitrosative Stress in Dopaminergic Neurons of MDMA-Exposed Rats. Int J Mol Sci 2019; 20:E1242. [PMID: 30871034 PMCID: PMC6429174 DOI: 10.3390/ijms20051242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Several mechanisms underlying 3,4-Methylenedioxy-N-methylamphetamine (MDMA) neurotoxicity have been proposed, including neurochemical alterations and excitotoxicity mediated by reactive oxygen species (ROS), nitric oxide (NO), and reactive nitrogen species (RNS). However, ROS, NO, and RNS sources in the brain are not fully known. We aimed to investigate possible alterations in the expression of the ROS producer NOX enzymes (NOX2, NOX1, and NOX4), NO generators (iNOS, eNOS, and nNOS), markers of oxidative (8-hydroxy-2'-deoxyguanosine, 8OHdG), and nitrosative (3-nitrotyrosine, NT) stress, as well as the colocalization between cells positive for the dopamine transporter (DT1) and cells expressing the neuronal nuclei (NeuN) marker, in the frontal cortex of rats receiving saline or MDMA, sacrificed 6 h, 16 h, or 24 h after its administration. MDMA did not affect NOX2, NOX1, and NOX4 immunoreactivity, whereas iNOS expression was enhanced. The number of NT-positive cells was increased in MDMA-exposed animals, whereas no differences were detected in 8OHdG expression among experimental groups. MDMA and NT markers colocalized with DT1 positive cells. DT1 immunostaining was found in NeuN-positive stained cells. Virtually no colocalization was observed with microglia and astrocytes. Moreover, MDMA immunostaining was not found in NOX2-positive cells. Our results suggest that iNOS-derived nitrosative stress, but not NOX enzymes, may have a crucial role in the pathogenesis of MDMA-induced neurotoxicity, highlighting the specificity of different enzymatic systems in the development of neuropathological alterations induced by the abuse of this psychoactive compound.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44100 Ferrara, Italy.
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Paolo Frisoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44100 Ferrara, Italy.
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Emanuela Turillazzi
- Section of Legal Medicine, Department of Surgical, Medical, Molecular and Critical Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
31
|
García-Cabrerizo R, García-Fuster MJ. Methamphetamine binge administration dose-dependently enhanced negative affect and voluntary drug consumption in rats following prolonged withdrawal: role of hippocampal FADD. Addict Biol 2019; 24:239-250. [PMID: 29282816 DOI: 10.1111/adb.12593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
While prior studies have established various interacting mechanisms and neural consequences (i.e. monoaminergic nerve terminal damage) that might contribute to the adverse effects caused by methamphetamine administration, the precise mechanisms that mediate relapse during withdrawal remain unknown. This study evaluated the long-term consequences of binge methamphetamine administration (three pulses/day, every 3 hours, 4 days, i.p.; dose-response: 2.5, 5 and 7.5 mg/kg) in adult Sprague-Dawley rats at two behavioral levels following 25 days of withdrawal: (1) negative affect (behavioral despair-forced-swim test, and anhedonia-1% sucrose consumption, two-bottle choice test) and (2) voluntary methamphetamine consumption (20 mg/l, two-bottle choice test). Striatal and hippocampal brain samples were dissected to quantify monoamines content by high-performance liquid chromatography and to evaluate neurotoxicity (dopaminergic and serotonergic markers) and neuroplasticity markers [i.e. cell fate regulator (Fas-associated protein with death domain) FADD] by Western blot. The results showed that methamphetamine administration induced dose-dependent negative effects during prolonged withdrawal in adult rats. In particular, rats treated repeatedly with methamphetamine (7.5 mg/kg) showed (1) enhanced negative affect-increased anhedonia associated with behavioral despair, (2) increased voluntary methamphetamine consumption, (3) enhanced neurotoxicity-decreased dopamine and metabolites in striatum and decreased serotonin in hippocampus, (4) altered neuroplasticity markers-decreased FADD protein and increased p-FADD/FADD balance selectively in hippocampus and (5) higher consumption rates of methamphetamine that were associated with lower FADD content in hippocampus. These results confirm that methamphetamine withdrawal dose-dependently induced negative affect and decreased monoamines content, while also increased voluntary methamphetamine consumption and suggested a role for hippocampal FADD neuroplasticity in these drug-withdrawal adaptations.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS; University of the Balearic Islands; Palma Spain
- Balearic Islands Health Research Institute (IdISBa); Palma Spain
| | - M. Julia García-Fuster
- IUNICS; University of the Balearic Islands; Palma Spain
- Balearic Islands Health Research Institute (IdISBa); Palma Spain
| |
Collapse
|
32
|
Wang Z, Xu Z, Li X. Impacts of methamphetamine and ketamine on C.elegans's physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:268-276. [PMID: 30312923 DOI: 10.1016/j.jhazmat.2018.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
In this work, C. elegans as a model organism was treated with methamphetamine (METH) and ketamine (KET) to assess its eco-toxicity at a range (0.05-250 μg L-1) that covers environmentally relevant concentrations (0.05-0.5 μg L-1). METH (≥0.05 μg L-1) and KET (≥0.5 μg L-1) significantly affected the feeding rate, locomotion, gustation and olfaction (P < 0.05), which may result in pronounced disturbance to aquatic ecology. Alterations in the contents of neurotransmitters (i.e., octopamine (OA), dopamine (DA), and serotonin (5-HT)) correlated with the physiology change. The metabolic activities and the antioxidase activity (i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) of METH and KET in C. elegans were different, which could partly explain the difference of the physiological changes induced by the two substances. Moreover, these two drugs could induce vulva deformity, and the 50% effect concentrations were 620.34 μg L-1 for METH and 54.39 μg L-1 for KET, respectively. The risk quotients (RQ) in two Chinese rivers, the Shenzhen and Liangshui River, were calculated to assess eco-risks of METH and KET. RQs of KET in the Shenzhen River were over 0.1 at the medium risk level, indicating that eco-risks of illicit drugs to aquatic organism cannot be overlooked.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
33
|
Segat HJ, Metz VG, Rosa HZ, Dias VT, Barcelos RC, Dolci GS, Burger ME. Substitution therapy with amphetamine-isotherapic attenuates amphetamine toxicological aspects of addiction. Neurosci Lett 2019; 690:138-144. [DOI: 10.1016/j.neulet.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
34
|
Kapitány-Fövény M, Vagdalt E, Ruttkay Z, Urbán R, Richman MJ, Demetrovics Z. Potential of an Interactive Drug Prevention Mobile Phone App (Once Upon a High): Questionnaire Study Among Students. JMIR Serious Games 2018; 6:e19. [PMID: 30514697 PMCID: PMC6299233 DOI: 10.2196/games.9944] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/30/2018] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In recent years, drug prevention networks and drug education programs have started using Web-based or mobile phone apps as novel prevention tools, testing their efficacy compared with face-to-face prevention. OBJECTIVE The aim of this study was to assess the potential of an interactive app called Once Upon a High (VoltEgySzer). METHODS The app approaches drug prevention from 6 different aspects, and it addresses youngsters with 6 different modules: (1) interactive comics/cartoons, telling stories of recovery; (2) quiz game; (3) roleplay game; (4) introduction of psychoactive drugs; (5) information on the somatic and psychological effects of psychoactive substances; (6) list of available treatment units, rehabs, and self-support groups in Hungary. Students of 2 vocational schools and 2 high schools filled out a questionnaire at a baseline (T0) and a 2-month follow-up (T1) data collection session. Students of 1 vocational school and 1 high school downloaded the Once Upon a High app (app group), whereas students from the other vocational school and high school did not (nonapp group). The time points of T0 and T1 questionnaires contained demographic variables, items with regard to substance use characteristics for both legal and illegal substances, including novel psychoactive substance, exercise habits, knowledge about psychoactive substances, attitudes toward substance users and validated instruments measuring the severity of tobacco (Fagerström Test for Nicotine Dependence), alcohol (Alcohol Use Disorder Identification Test), cannabis (Cannabis Abuse Screening Test), and synthetic cannabinoid consumption. Beliefs about substance use (Beliefs About Substance Abuse) and perceived self-efficacy (General Perceived Self-Efficacy) were also measured. At T1, members of the app group provided additional evaluation of the app. RESULTS There were 386 students who participated in the T0 session. After dropout, 246 students took part in T1 data collection procedure. Alcohol was the most frequently consumed psychoactive substance (334/364, 91.8% lifetime use), followed by tobacco (252/386, 65.3%, lifetime use) and cannabis (43/323, 13.3% lifetime use). Decreased self-efficacy (beta=-.29, P=.04) and increased daily physical exercise frequencies (beta=.04, P<.001) predicted higher frequencies of past month energy drink consumption, whereas elevated past month alcohol consumption was mainly predicted by a decrease in negative attitudes toward substance users (beta=-.13, P=.04) in the regression models. Once Upon a High was found to be effective only in reducing energy drink consumption (beta=-1.13, P=.04) after controlling for design effect, whereas perceived utility of the app showed correlation with a decreasing alcohol use (rS(44)=.32, P=.03). The roleplay module of the app was found to be the most preferred aspect of the app by the respondents. CONCLUSIONS The Once Upon a High app can be a useful tool to assist preventive intervention programs by increasing knowledge and self-efficacy; however, its efficacy in reducing or preventing substance use needs to be improved and further studied. Additional potential impacts of the app need further testing.
Collapse
Affiliation(s)
- Máté Kapitány-Fövény
- Department of Addiction, Semmelweis University Faculty of Health Sciences, Budapest, Hungary
- Drug Outpatient Centre, Nyírő Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Eszter Vagdalt
- Budapest Center for Vocational Education and Training in Engineering, Budapest, Hungary
| | - Zsófia Ruttkay
- Creative Technology Lab, Moholy-Nagy University of Art and Design, Budapest, Hungary
| | - Róbert Urbán
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Mara J Richman
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Zsolt Demetrovics
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
35
|
Wang Z, Xu Z, Li X. Biodegradation of methamphetamine and ketamine in aquatic ecosystem and associated shift in bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:356-364. [PMID: 30048950 DOI: 10.1016/j.jhazmat.2018.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Methamphetamine (METH) and ketamine (KET) are widely detected in surface waters and thus may pose threat to aquatic organisms. However, their degradation in aquatic systems and the effects on bacterial community were unknown. The present study investigated the biodegradation process of METH and KET in river waters and sediments. Three microcosms were examined over 40-days' incubation under (i) aerobic and illumination conditions, (ii) anaerobic condition exposed to light, (iii) anaerobic-dark condition. Statistically significant biodegradation of METH and KET (1 mg L-1) was observed in all treatments. The half-lives under the examined conditions indicate that the two drugs were refractory in aquatic environment. Moreover, there were no pronounced absorption and photolysis observed in this work. Illumina MiSeq sequencing analysis revealed that Methylophilaceae, Saprospiraceae, WCHB1-69, Desulfobulbaceae, Porphyromonadaceae, FamilyXI, Peptococcaceae, and Rhizobiaceae were the predominant candidatus families during KET and METH biodegradation, and the preponderance would impair other microorganisms' prosperity since them were scarcely detected in the wild. Meanwhile, canonical correlation analysis (CCA) indicates that METH as an environmental factor may affect bacterial community structure in field water samples.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
36
|
Dutta RR, Taffe MA, Mandyam CD. Chronic administration of amphetamines disturbs development of neural progenitor cells in young adult nonhuman primates. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:46-53. [PMID: 29601895 PMCID: PMC5962428 DOI: 10.1016/j.pnpbp.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023]
Abstract
The detrimental effects of amphetamines on developmental stages of NPCs are limited to rodent brain and it is not known if these effects occur in nonhuman primates which are the focus of the current investigation. Young adult rhesus macaques either experienced MDMA only, a combination of amphetamines (MDMA, MDA and methamphetamine) or no amphetamines (controls) and hippocampal tissue was processed for immunohistochemical analysis.Quantitative stereological analysis showed that intermittent exposure to MDMA or the three amphetamines over 9.6 months causes >80% decrease in the number of Ki-67 cells (actively dividing NPCs) and >50% decrease in the number of NeuroD1 cells (NPCs that have attained a neuronal phenotype). Co-labeling analysis revealed distinct, actively dividing hippocampal NPCs in the subgranular zone of the dentate gyrus that were in transition from stem-like radial glia-like cells (type-1) to immature transiently amplifying neuroblasts (type-2a, type-2b, and type-3).MDMA-alone and the combination reduced the number of dividing type-1 and type-3 NPCs and cells that were not NPCs. These data indicate that amphetamines interfere with the division and migration of NPCs. Notably, the reduction in the number of NPCs and immature neurons were not associated with changes in cell death (via apoptosis) or granule cell neuron numbers, indicating that amphetamines selectively affected the generation and maturation of newly born granule cell neurons. In sum, our findings suggest that alterations in the cellular composition in the dentate gyrus during chronic exposure to amphetamines can effect neuroplasticity in the hippocampus and influence functional properties of hippocampal neurons.
Collapse
Affiliation(s)
- Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Chitra D Mandyam
- Department of Neuroscience, The Scripps Research Institute,USA; VA San Diego Healthcare System, USA; Department of Anesthesiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
37
|
Feio-Azevedo R, Costa VM, Barbosa DJ, Teixeira-Gomes A, Pita I, Gomes S, Pereira FC, Duarte-Araújo M, Duarte JA, Marques F, Fernandes E, Bastos ML, Carvalho F, Capela JP. Aged rats are more vulnerable than adolescents to “ecstasy”-induced toxicity. Arch Toxicol 2018; 92:2275-2295. [DOI: 10.1007/s00204-018-2226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
|
38
|
Methamphetamine binge administration during late adolescence induced enduring hippocampal cell damage following prolonged withdrawal in rats. Neurotoxicology 2018; 66:1-9. [PMID: 29501631 DOI: 10.1016/j.neuro.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 11/20/2022]
Abstract
A recent study from our laboratory demonstrated that binge methamphetamine induced hippocampal cell damage (i.e., impaired cell genesis) in rats when administered specifically during late adolescence (postnatal day, PND 54-57) and evaluated 24 h later (PND 58). The results also suggested a possible role for brain-derived neurotrophic factor (BDNF) regulating cell genesis and survival. This subsequent study evaluated whether these effects persisted in time as measured following prolonged withdrawal. Male Sprague-Dawley rats were treated (i.p.) with BrdU (2 × 50 mg/kg, 3 days, PND 48-50) followed by a binge paradigm (3 pulses/day, every 3 h, 4 days, PND 54-57) of methamphetamine (5 mg/kg, n = 14, M) or saline (0.9% NaCl, 1 ml/kg, n = 12, C). Following 34 days of forced withdrawal (PND 91), rats were killed 45 min after a challenge dose of saline (Sal: C-Sal, n = 6; M-Sal, n = 7) or methamphetamine (Meth: C-Meth, n = 6; M-Meth, n = 7). Neurogenesis markers (Ki-67: cell proliferation; NeuroD: early neuronal survival; BrdU: prolonged cell survival, 41-43 days old cells) were evaluated by immunohistochemistry while neuroplasticity markers (BDNF and Fos forms) were evaluated by Western blot. The main results showed that a history of methamphetamine administration (PND 54-57) induced enduring hippocampal cell damage (i.e., observed on PND 91) by decreasing cell survival (BrdU + cells) and mature-BDNF (m-BDNF) protein content, associated with neuronal survival, growth and differentiation. Interestingly, m-BDNF regulation paralleled hippocampal c-Fos protein content, indicating decreased neuronal activity, and thus reinforcing the persisting negative effects induced by methamphetamine in rat hippocampus following prolonged withdrawal.
Collapse
|
39
|
Role of dopamine D1 receptor in 3-fluoromethamphetamine-induced neurotoxicity in mice. Neurochem Int 2018; 113:69-84. [DOI: 10.1016/j.neuint.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
|
40
|
Dhein S, Schmelmer K, Guenther J, Salameh A. Aspects of Methamphetamine Abuse in Adolescents and Young Adults in a Thuringian County. Eur Addict Res 2018; 24:98-105. [PMID: 29902793 DOI: 10.1159/000488141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVE Drug abuse is an increasing problem among young adults in European countries. We wanted to assess the prevalence of methamphetamine and cannabis use in young people and to ask for their socioeconomic, parental and emotional background. METHODS All pupils (n = 1,087) in the final class of 3 school types (-general school [in Germany: Hauptschule/Regelschule mit Hauptschulabschluss] class 9, regular school [in Germany: Regelschule] class 10, high school [in Germany: Gymnasium] class 10) and the first 2 classes of the vocational school (in Germany: Berufsschule) in the entire rural district of Altenburger Land, a Thuringian county in Germany with a total of 92,344 inhabitants were asked to fill out a 2-page questionnaire. In all, 920 questionnaires could be finally evaluated (mean age: 16.6 ± 0.07 years; mode value: 16; maximum range: 13-29). RESULTS In the entire group, 5.81% (33 females, 20 males) reported the use of methamphetamine, while 42.8% stated that they have used it only once, the remaining 57.2% specified that they have used it on a more regular basis, mostly once a month, but 14.2% had used it almost daily. With regard to the socioeconomic background, 55% of the parents of the methamphetamine users were employees and 10% of the parents were in a leading position. This was not different from the non-user group (p = 0.193). Unemployment of the parents was found in 6.5% of the methamphetamine users and in 4.7% of the non-users. Overall, 67.92% had a basic knowledge of the side effects of this drug. In 55.32% of the methamphetamine users, the parents lived alone, were divorced or widowed, while this was only 33.1% in the non-user group. Of all the methamphetamine users, 69% had friends who also consumed the drug, which may give a hint on the impact of a peer group. In the entire group, 29.84% were smokers (female group: 28.47%; male group 31.25%) and 25.5% consumed cannabis. Ecstasy was used by a total of 4.05% and cocaine by 1.53%. No participant mentioned that they have used opiates. CONCLUSION Among pupils aged about 16 years nearly 6% reported to have consumed methamphetamine. This group has a middle socioeconomic background. Two factors were strongly associated with methamphetamine usage: a family with only a single parent and friends who were used to taking methamphetamine. The self-perception of users was generally considered to be a disadvantage as compared to the other factors.
Collapse
Affiliation(s)
- Stefan Dhein
- Institute of Pharmacology, University of Leipzig, Leipzig, Germany.,Fachdienst Gesundheit, Altenburg, Germany
| | - Katrin Schmelmer
- Institute of Pharmacology, University of Leipzig, Leipzig, Germany
| | | | - Aida Salameh
- Clinic for Pediatric Cardiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Kim JE, Kim GH, Hwang J, Kim JY, Renshaw PF, Yurgelun-Todd D, Kim B, Kang I, Jeon S, Ma J, Lyoo IK, Yoon S. Metabolic alterations in the anterior cingulate cortex and related cognitive deficits in late adolescent methamphetamine users. Addict Biol 2018; 23:327-336. [PMID: 27813228 PMCID: PMC5418116 DOI: 10.1111/adb.12473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
The adolescent brain, with ongoing prefrontal maturation, may be more vulnerable to drug use-related neurotoxic changes as compared to the adult brain. We investigated whether the use of methamphetamine (MA), a highly addictive psychostimulant, during adolescence affect metabolic and cognitive functions of the anterior cingulate cortex (ACC). In adolescent MA users (n = 44) and healthy adolescents (n = 53), the levels of N-acetyl aspartate (NAA), a neuronal marker, were examined in the ACC using proton magnetic resonance spectroscopy. The Stroop color-word task was used to assess Stroop interference, which may reflect cognitive functions of behavior monitoring and response selection that are mediated by the ACC. Adolescent MA users had lower NAA levels in the ACC (t = -2.88, P = 0.005) and relatively higher interference scores (t = 2.03, P = 0.045) than healthy adolescents. Moreover, there were significant relationships between lower NAA levels in the ACC and worse interference scores in adolescent MA users (r = -0.61, P < 0.001). Interestingly, early onset of MA use, as compared to late onset, was related to both lower NAA levels in the ACC (t = -2.24, P = 0.03) as well as lower performance on interference measure of the Stroop color-word task (t = 2.25, P = 0.03). The current findings suggest that metabolic dysfunction in the ACC and its related cognitive impairment may play an important role in adolescent-onset addiction, particularly during early adolescence.
Collapse
Affiliation(s)
- Jieun E. Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Geon Ha Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jung Yoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Perry F. Renshaw
- The Brain Institute and Department of Psychiatry, The University of Utah, SLC, Utah, USA
| | - Deborah Yurgelun-Todd
- The Brain Institute and Department of Psychiatry, The University of Utah, SLC, Utah, USA
| | - Binna Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Saerom Jeon
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Jiyoung Ma
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| |
Collapse
|
42
|
Cadoni C, Pisanu A, Simola N, Frau L, Porceddu PF, Corongiu S, Dessì C, Sil A, Plumitallo A, Wardas J, Di Chiara G. Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence. Neuropharmacology 2017; 123:385-394. [DOI: 10.1016/j.neuropharm.2017.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
|
43
|
Arnaud N, Thomasius R. [Methamphetamine : Epidemiology, clinical importance and sequelae of abuse]. DER NERVENARZT 2017; 88:1079-1090. [PMID: 28721538 DOI: 10.1007/s00115-017-0376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methamphetamine (also known as meth and crystal meth) is a highly psychoactive synthetic amphetamine type stimulant, which falls under the German Federal Narcotics Law. The substance is similar to other stimulants but has distinct features with respect to psychoactive effects, clinical symptoms, user characteristics and short and long-term consequences including substance-induced problems and comorbidities. The consumption and misuse of crystal meth is still limited to certain regions in Germany; however, the substance causes significant clinical and public health concerns in the affected regions and beyond due to the associated high potential for misuse and dependence, neurotoxic and neurodegenerative effects as well as many other severe health risks. The new German guidelines for methamphetamine use disorders are now available to provide clinicians with the current knowledge on effective diagnostics and treatment planning.
Collapse
Affiliation(s)
- N Arnaud
- Deutsches Zentrum für Suchtfragen des Kindes- und Jugendalters (DZSKJ), Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| | - R Thomasius
- Deutsches Zentrum für Suchtfragen des Kindes- und Jugendalters (DZSKJ), Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| |
Collapse
|
44
|
Methylphenidate effects in the young brain: friend or foe? Int J Dev Neurosci 2017; 60:34-47. [PMID: 28412445 DOI: 10.1016/j.ijdevneu.2017.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 01/17/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatry disorders in children and adolescents, and methylphenidate (MPH) is a first-line stimulant drug available worldwide for its treatment. Despite the proven therapeutic efficacy, concerns have been raised regarding the possible consequences of chronic MPH exposure during childhood and adolescence. Disturbances in the neurodevelopment at these crucial stages are major concerns given the unknown future life consequences. This review is focused on the long-term adverse effects of MPH to the brain biochemistry. Reports conducted with young and/or adolescent animals and studies with humans are reviewed in the context of long-term consequences after early life-exposure. MPH pharmacokinetics is also reviewed as there are differences among laboratory animals and humans that may be relevant to extrapolate the findings. Studies reveal that exposure to MPH in laboratory animals during young and/or adolescent ages can impact the brain, but the outcomes are dependent on MPH dose, treatment period, and animal's age. Importantly, the female sex is largely overlooked in both animal and human studies. Unfortunately, human reports that evaluate adults following adolescent or child exposure to MPH are very scarce. In general, human data indicates that MPH is generally safe, although it can promote several brain changes in early ages. Even so, there is a lack of long course patient evaluation to clearly establish whether MPH-induced changes are friendly or foe to the brain and more human studies are needed to assess the adult brain changes that arise from early MPH treatment.
Collapse
|
45
|
Feio-Azevedo R, Costa VM, Ferreira LM, Branco PS, Pereira FC, Bastos ML, Carvalho F, Capela JP. Toxicity of the amphetamine metabolites 4-hydroxyamphetamine and 4-hydroxynorephedrine in human dopaminergic differentiated SH-SY5Y cells. Toxicol Lett 2017; 269:65-76. [PMID: 28115274 DOI: 10.1016/j.toxlet.2017.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/21/2022]
Abstract
Amphetamine (AMPH) is a psychostimulant used worldwide by millions of patients in the clinical treatment of attention deficit hyperactivity disorder, narcolepsy or even obesity, and is also a drug of abuse. 4-Hydroxynorephedrine (4-OHNE) and 4-hydroxyamphetamine (4-OHAMPH) are two major metabolites known to persist in the brain longer than AMPH. The contribution of AMPH metabolites for its neurotoxicity is undetermined. We evaluated the toxicity of AMPH and its metabolites 4-OHNE and 4-OHAMPH, obtained by chemical synthesis, in human dopaminergic differentiated SH-SY5Y neurons. Cells were exposed to AMPH (concentration range 0-5mM) or 4-OHAMPH or 4-OHNE (concentration range 0-10mM) for 24 or 48h, and the viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) leakage assays. Results showed that for both AMPH and the metabolites a concentration-dependent toxicity was observed. The toxic concentration 50% (TC50) for AMPH and 4-OHNE following 24h exposure was circa 3.5mM and 8mM, respectively. For 4-OHAMPH the TC50 was not reached in the tested concentration range. N-acetyl cysteine, cycloheximide, l-carnitine, and methylphenidate were able to reduce cell death induced by AMPH TC50. Acridine orange/ethidium bromide staining showed evident signs of late apoptotic cells and necrotic cells following 24h exposure to AMPH 3.50mM. The 4-OHAMPH metabolite at 8.00mM originated few late apoptotic cells, whereas 4-OHNE at 8.00mM resulted in late apoptotic cells and necrotic cells, in a scenario similar to AMPH. In conclusion, the AMPH metabolite 4-OHNE is more toxic than 4-OHAMPH, nonetheless both are less toxic than the parent compound in vitro. The most toxic metabolite 4-OHNE has longer permanence in the brain, rendering likely its contribution for AMPH neurotoxicity.
Collapse
Affiliation(s)
- R Feio-Azevedo
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal.
| | - V M Costa
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - L M Ferreira
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Portugal
| | - P S Branco
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Portugal
| | - F C Pereira
- Instituto de Farmacologia e Terapêutica Experimental/Instituto de Imagem Biomédica e Ciências da Vida (IBILI), Faculdade de Medicina, Universidade de Coimbra, Portugal
| | - M L Bastos
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - F Carvalho
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - J P Capela
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal; FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Portugal.
| |
Collapse
|
46
|
Weiß JA, Kadkhodaei K, Schmid MG. Indirect chiral separation of 8 novel amphetamine derivatives as potential new psychoactive compounds by GC–MS and HPLC. Sci Justice 2017; 57:6-12. [DOI: 10.1016/j.scijus.2016.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
|
47
|
Neurochemical substrates of the rewarding effects of MDMA: implications for the development of pharmacotherapies to MDMA dependence. Behav Pharmacol 2016; 27:116-32. [PMID: 26650254 DOI: 10.1097/fbp.0000000000000210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved. The most important finding of recent research is the demonstration of differential involvement of specific neurotransmitter receptor subtypes (5-HT2, 5-HT3, DA D1, DA D2, CB1, μ and δ opioid, etc.) and extracellular proteins (DA and 5-HT transporters) in the acquisition, expression, extinction, and reinstatement of MDMA self-administration and conditioned place preference. It is important to extend the research on the effects of different compounds acting on these receptors/transporters in animal models of reward, especially in priming-induced, cue-induced, and stress-induced reinstatement. Increase in knowledge of the neurochemical substrates of the rewarding effects of MDMA may contribute to the design of new pharmacological treatments for individuals who develop MDMA dependence.
Collapse
|
48
|
Roversi K, Pase CS, Roversi K, Vey LT, Dias VT, Metz VG, Burger ME. Trans fat intake across gestation and lactation increases morphine preference in females but not in male rats: Behavioral and biochemical parameters. Eur J Pharmacol 2016; 788:210-217. [DOI: 10.1016/j.ejphar.2016.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
49
|
Comparative effects of amphetamine-like psychostimulants on rat hippocampal cell genesis at different developmental ages. Neurotoxicology 2016; 56:29-39. [DOI: 10.1016/j.neuro.2016.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
|
50
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|