1
|
Hu WX, Zhan X, Lu D, Li ZQ. Is choroid plexus growth altered in isolated ventriculomegaly on fetal neuro-ultrasound? Eur Radiol 2025; 35:463-473. [PMID: 39014090 PMCID: PMC11632053 DOI: 10.1007/s00330-024-10966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Reveal developmental alterations in choroid plexus volume (CPV) among fetuses with isolated ventriculomegaly (VM) through neuro-ultrasound. METHODS This prospective study aimed to assess the development of fetal CPV in normal fetuses and those with isolated VM through neuro-ultrasound. The fetuses of isolated VM were categorized into mild, moderate, and severe groups, and subsequently, the lateral ventricle evolution was monitored. The developmental alterations in CPV among fetuses with isolated VM were determined by comparing the CPV z-scores with those of normal fetuses. Receiver operating characteristics curve analysis was used to assess the predictive value of altered CPV in lateral ventricle evolution. RESULTS A total of 218 normal fetuses and 114 isolated VM fetuses from 22 weeks to 35 weeks of gestation were included. The CPV decreased as the isolated VM was getting worse. Both fetuses with isolated moderate ventriculomegaly and those with isolated severe ventriculomegaly exhibited reduced CPV compared to normal fetuses. The CPV in fetuses with isolated mild ventriculomegaly (IMVM) varied, with some showing a larger CPV compared to normal fetuses, while others exhibited a smaller CPV. The larger CPV in cases of IMVM may serve as a predictive factor for either regression or stability of the lateral ventricle, while reduced CPV in cases of isolated VM may indicate worsening of the lateral ventricle. CONCLUSION The growth volume of fetal CP exhibited alterations in fetuses with isolated VM, and these changes were found to be correlated with the evolution of the lateral ventricle. CLINICAL RELEVANCE STATEMENT Neuro-ultrasound revealed varying degrees of alterations in the volume development of the choroid plexus within the fetus with isolated VM. The findings can help predict lateral ventricle prognosis, greatly contributing to prenatal diagnosis strategies for fetuses with isolated VM. KEY POINTS The volume of choroid plexus growth is altered in fetuses with isolated VM. The altered CPV in isolated VM was associated with lateral ventricle evolution. The findings are useful for prenatal counseling and managing fetuses with isolated VM.
Collapse
Affiliation(s)
- Wei-Xi Hu
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhan
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Lu
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Tanabe M, Saito Y, Takasaki A, Nakano K, Yamamoto S, Suzuki C, Kawamura N, Hattori A, Oikawa M, Nagashima S, Yanagi S, Yamaguchi T, Fukuda T. Role of immature choroid plexus in the pathology of model mice and human iPSC-derived organoids with autism spectrum disorder. Cell Rep 2024; 44:115133. [PMID: 39731733 DOI: 10.1016/j.celrep.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear. Here, we find that ChP-specific CAMDI-knockout mice develop an immature ChP alongside decreased multiciliogenesis and expression of differentiation marker genes following disruption of the cerebrospinal fluid barrier. These mice exhibit ASD-like behaviors, including anxiety and impaired socialization. Additionally, the administration of metformin, an FDA-approved drug, before the social critical period achieves ChP maturation and restores social behaviors. Furthermore, both the ASD model mice and organoids derived from patients with ASD developed an immature ChP. These results propose the involvement of an immature ChP in the pathogenesis of ASD and suggest the targeting of functional maturation of the ChP as a therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Motoi Tanabe
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuga Saito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayaka Takasaki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keita Nakano
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shunta Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chikako Suzuki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nao Kawamura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Aki Hattori
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
3
|
Levman J, McCann B, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Takahashi E. Structural Magnetic Resonance Imaging-Based Surface Morphometry Analysis of Pediatric Down Syndrome. BIOLOGY 2024; 13:575. [PMID: 39194513 DOI: 10.3390/biology13080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Down syndrome (DS) is a genetic disorder characterized by intellectual disability whose etiology includes an additional partial or full copy of chromosome 21. Brain surface morphometry analyses can potentially assist in providing a better understanding of structural brain differences, and may help characterize DS-specific neurodevelopment. We performed a retrospective surface morphometry study of 73 magnetic resonance imaging (MRI) examinations of DS patients (aged 1 day to 22 years) and compared them to a large cohort of 993 brain MRI examinations of neurotypical participants, aged 1 day to 32 years. Surface curvature measurements, absolute surface area measurements, and surface areas as a percentage of total brain surface area (%TBSA) were extracted from each brain region in each examination. Results demonstrate broad reductions in surface area and abnormalities of surface curvature measurements across the brain in DS. After adjusting our regional surface area measurements as %TBSA, abnormally increased presentation in DS relative to neurotypical controls was observed in the left precentral, bilateral entorhinal, left parahippocampal, and bilateral perirhinal cortices, as well as Brodmann's area 44 (left), and the right temporal pole. Findings suggest the presence of developmental abnormalities of regional %TBSA in DS that can be characterized from clinical MRI examinations.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada
| | - Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA 02215, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Ortug A, Guo Y, Feldman HA, Ou Y, Warren JLA, Dieuveuil H, Baumer NT, Faja SK, Takahashi E. Autism-associated brain differences can be observed in utero using MRI. Cereb Cortex 2024; 34:bhae117. [PMID: 38602735 PMCID: PMC11008691 DOI: 10.1093/cercor/bhae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024] Open
Abstract
Developmental changes that occur before birth are thought to be associated with the development of autism spectrum disorders. Identifying anatomical predictors of early brain development may contribute to our understanding of the neurobiology of autism spectrum disorders and allow for earlier and more effective identification and treatment of autism spectrum disorders. In this study, we used retrospective clinical brain magnetic resonance imaging data from fetuses who were diagnosed with autism spectrum disorders later in life (prospective autism spectrum disorders) in order to identify the earliest magnetic resonance imaging-based regional volumetric biomarkers. Our results showed that magnetic resonance imaging-based autism spectrum disorder biomarkers can be found as early as in the fetal period and suggested that the increased volume of the insular cortex may be the most promising magnetic resonance imaging-based fetal biomarker for the future emergence of autism spectrum disorders, along with some additional, potentially useful changes in regional volumes and hemispheric asymmetries.
Collapse
Affiliation(s)
- Alpen Ortug
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Yurui Guo
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Henry A Feldman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yangming Ou
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Jose Luis Alatorre Warren
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Harrison Dieuveuil
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Nicole T Baumer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Susan K Faja
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Division of Developmental Medicine, Laboratories of Cognitive Neuroscience, Boston Children's Hospital, Harvard Medical School, Brookline, MA 02115, United States
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
5
|
Bannai D, Reuter M, Hegde R, Hoang D, Adhan I, Gandu S, Pong S, Raymond N, Zeng V, Chung Y, He G, Sun D, van Erp TGM, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Jeffries C, Stone W, Tsuang M, Walker E, Woods SW, Cannon TD, Perkins D, Keshavan M, Lizano P. Linking enlarged choroid plexus with plasma analyte and structural phenotypes in clinical high risk for psychosis: A multisite neuroimaging study. Brain Behav Immun 2024; 117:70-79. [PMID: 38169244 DOI: 10.1016/j.bbi.2023.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1β (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.
Collapse
Affiliation(s)
- Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Iniya Adhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Swetha Gandu
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nick Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT, USA
| | - George He
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - Jean Addington
- Hotchkins Brain Institute, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
| | - Elaine Walker
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Diana Perkins
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
6
|
Singal K, Adamczyk K, Hurt L, Woolner A, Paranjothy S. Isolated choroid plexus cysts and health and developmental outcomes in childhood and adolescence - A systematic review. Eur J Obstet Gynecol Reprod Biol 2023; 290:115-122. [PMID: 37778251 DOI: 10.1016/j.ejogrb.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Choroid plexus cysts (CPCs) are incidental findings on ultrasound examination of the fetal brain. It is not known if isolated CPCs are associated with any adverse health or neurodevelopmental outcomes during the life course. This systematic review aimed to collate and synthesize the evidence on whether or not isolated choroid plexus cysts are associated with an increased risk of adverse health or developmental outcomes during childhood and adolescence. METHODS A search strategy was developed specifically for this study and applied to four electronic databases Medline (Ovid), Embase (Ovid), Web of Science, and Google Scholar. Studies were assessed and selected for inclusion if there was a measurement of CPC (including single or multiple; unilateral or bilateral; isolated or presenting alongside other markers) during the antenatal or early neonatal period (<7 days) with follow-up of children and adolescents for health and developmental outcomes measured at any time from age 1 month onwards. Study quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Due to heterogeneity in the types of outcome measures included and the timing of measurement of outcomes across the studies, it was not possible to pool data across studies and a narrative description of findings was presented. RESULTS Eight studies (three cohorts and five case series) met the inclusion criteria. Different methods were used for outcome assessment, such as in-person assessment, parent questionnaires, medical records, and telephone interviews with parents. Six studies measured outcomes only once during the specified duration of follow-up; two studies carried out paediatric reviews of the children several times during follow-up. There were no differences in developmental outcomes or physical health between babies with CPCs reported in the three cohort studies, and no abnormalities were detected in the children that were followed up in four of the five case series studies. Most of the included studies were graded as low quality due to the small sample size, high risk of selection bias, unclear definitions of CPC or lack of a comparison group. CONCLUSIONS The studies conducted to date do not provide evidence of adverse physical health outcomes or neurodevelopmental delays in babies with CPCs. However, most of these studies were small and included a narrow range of outcomes. Further research is needed to explore the relative incidence of outcomes such as ASD, ADHD, epilepsy and educational attainment in children with CPCs.
Collapse
Affiliation(s)
- Kusum Singal
- Aberdeen Center for Health Data Sciences, Institute of Applied Health Sciences, University of Aberdeen, Scotland, United Kingdom.
| | - Krzysztof Adamczyk
- Aberdeen Center for Health Data Sciences, Institute of Applied Health Sciences, University of Aberdeen, Scotland, United Kingdom.
| | - Lisa Hurt
- Division of Population Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Andrea Woolner
- Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom.
| | | |
Collapse
|
7
|
Sun F, Chen Y, Huang Y, Yan J, Chen Y. Relationship between gray matter structure and age in children and adolescents with high-functioning autism spectrum disorder. Front Hum Neurosci 2023; 16:1039590. [PMID: 36684838 PMCID: PMC9853167 DOI: 10.3389/fnhum.2022.1039590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
Objective The present study used magnetic resonance imaging to investigate the difference in the relationship between gray matter structure and age in children and adolescents with autism spectrum disorder (ASD) and typically developing (TD) subjects. Methods After screening T1 structural images from the Autism Brain Imaging Data Exchange (ABIDE) database, 111 children and adolescents (7-18 years old) with high-functioning ASD and 151 TD subjects matched for age, sex and full IQ were included in the current study. By using the voxel-based morphological analysis method, gray matter volume/density (GMV/GMD) maps were obtained for each participant. Then, a multiple regression analysis was performed for ASD and TD groups, respectively to estimate the relationship between GMV/GMD and age with gender, education, site, and IQ scores as covariates. Furthermore, a z-test was used to compare such relationship difference between the groups. Results Results showed that compared with TD, the GMD of ASD showed stronger positive correlations with age in the prefrontal cortex, and a stronger negative correlation in the left inferior parietal lobule, and a weaker positive correlation in the right inferior parietal lobule. The GMV of ASD displayed stronger positive correlations with age in the prefrontal cortex and cerebellum. Conclusion These findings may provide evidence to support that the brain structure abnormalities underlying ASD during childhood and adolescence may differ from each other.
Collapse
Affiliation(s)
- Fenfen Sun
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yue Chen
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yingwen Huang
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Jing Yan
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yihong Chen
- Department of Otorhinolaryngology, The First People’s Hospital of Xiaoshan, Hangzhou, China
| |
Collapse
|
8
|
Bitanihirwe BKY, Lizano P, Woo TUW. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. Mol Psychiatry 2022; 27:3573-3582. [PMID: 35618887 PMCID: PMC9133821 DOI: 10.1038/s41380-022-01623-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
The choroid plexus (CP) is a delicate and highly vascularized structure in the brain comprised of a dense network of fenestrated capillary loops that help in the synthesis, secretion and circulation of cerebrospinal fluid (CSF). This unique neuroanatomical structure is comprised of arachnoid villi stemming from frond-like surface projections-that protrude into the lumen of the four cerebral ventricles-providing a key source of nutrients to the brain parenchyma in addition to serving as a 'sink' for central nervous system metabolic waste. In fact, the functions of the CP are often described as being analogous to those of the liver and kidney. Beyond forming a barrier/interface between the blood and CSF compartments, the CP has been identified as a modulator of leukocyte trafficking, inflammation, cognition, circadian rhythm and the gut brain-axis. In recent years, advances in molecular biology techniques and neuroimaging along with the use of sophisticated animal models have played an integral role in shaping our understanding of how the CP-CSF system changes in relation to the maturation of neural circuits during critical periods of brain development. In this article we provide an ontogenetic perspective of the CP and review the experimental evidence implicating this structure in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Humanitarian and Conflict Response Institute, University of Manchester, Manchester, UK.
| | - Paulo Lizano
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Translational Neuroscience Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tsung-Ung W Woo
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Program in Molecular Neuropathology, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
9
|
Levman J, Forgeron C, Shiohama T, MacDonald P, Stewart N, Lim A, Berrigan L, Takahashi E. Cortical Thickness Abnormalities in Attention Deficit Hyperactivity Disorder Revealed by Structural Magnetic Resonance Imaging: Newborns to Young Adults. Int J Dev Neurosci 2022; 82:584-595. [PMID: 35797727 DOI: 10.1002/jdn.10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
Attention deficit hyperactivity disorder is a neurodevelopmental condition for which we have an incomplete understanding, and so brain imaging methods, such as magnetic resonance imaging (MRI) may be able to assist in characterizing and understanding the presentation of the brain in an ADHD population. Statistical and computational methods were used to compare participants with attention deficit hyperactivity disorder (ADHD) and neurotypical controls at a variety of developmental stages to assess detectable abnormal neurodevelopment potentially associated with ADHD and to assess our ability to diagnose and characterize the condition from real-world clinical magnetic resonance imaging (MRI) examinations. T1-weighted structural MRI examinations (n=993; 0-31 years old [YO]) were obtained from neurotypical controls and 637 examinations were obtained from patients with ADHD (0-26 YO). Measures of average (mean) regional cortical thickness were acquired, alongside the first reporting of regional cortical thickness variability (as assessed with the standard deviation [SD]) in ADHD. A comparison between the inattentive and combined (inattentive and hyperactive) subtypes of ADHD is also provided. A preliminary independent validation was also performed on the publicly available ADHD200 dataset. Relative to controls, subjects with ADHD had, on average, lowered SD of cortical thicknesses and increased mean thicknesses across several key regions potentially linked with known symptoms of ADHD, including the precuneus, supramarginal gyrus, etc.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Cynthia Forgeron
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | - Patrick MacDonald
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Natalie Stewart
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Ashley Lim
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Lindsay Berrigan
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Massachusetts Institute of Technology, Charlestown, MA, USA
| |
Collapse
|
10
|
McCann B, Lam M, Shiohama T, Ijner P, Takahashi E, Levman J. Magnetic Resonance Imaging Demonstrates Gyral Abnormalities in Tourette Syndrome. Int J Dev Neurosci 2022; 82:539-547. [PMID: 35775746 DOI: 10.1002/jdn.10209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022] Open
Abstract
Tourette syndrome (TS) is a neurological disorder characterized by involuntary and repetitive movements known as tics. A retrospective analysis of magnetic resonance imaging (MRI) scans from 39 children and adolescents with TS was performed and subsequently compared to MRI scans from 834 neurotypical controls. The purpose of this study was to identify any differences in the regions of motor circuitry in TS to further our understanding of their disturbances in motor control (i.e., motor tics). Measures of volume, cortical thickness, surface area, and surface curvature for specific motor regions were derived from each MRI scan. The results revealed increased surface curvature in the opercular part of the inferior frontal gyrus and the triangular part of the inferior frontal gyrus in the TS group compared to the neurotypical control group. These novel findings offer some of the first evidence for surface curvature differences in motor circuitry regions in TS, which may be associated with known motor and vocal tics.
Collapse
Affiliation(s)
- Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Melanie Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | - Prahar Ijner
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Department of Pediatrics, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Massachusetts Institute of Technology, Charlestown, MA, USA
| | - Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada.,Nova Scotia Health Authority - Research, Innovation and Discovery, Center for Clinical Research, Halifax, NS, Canada
| |
Collapse
|
11
|
Shiohama T, Ortug A, Warren JLA, Valli B, Levman J, Faja SK, Tsujimura K, Maunakea AK, Takahashi E. Small Nucleus Accumbens and Large Cerebral Ventricles in Infants and Toddlers Prior to Receiving Diagnoses of Autism Spectrum Disorder. Cereb Cortex 2022; 32:1200-1211. [PMID: 34455432 PMCID: PMC8924432 DOI: 10.1093/cercor/bhab283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/14/2022] Open
Abstract
Early interventions for autism spectrum disorder (ASD) are increasingly available, while only 42-50% of ASD children are diagnosed before 3 years old (YO). To identify neuroimaging biomarkers for early ASD diagnosis, we evaluated surface- and voxel-based brain morphometry in participants under 3YO who were later diagnosed with ASD. Magnetic resonance imaging data were retrospectively obtained from patients later diagnosed with ASD at Boston Children's Hospital. The ASD participants with comorbidities such as congenital disorder, epilepsy, and global developmental delay/intellectual disability were excluded from statistical analyses. Eighty-five structural brain magnetic resonance imaging images were collected from 81 participants under 3YO and compared with 45 images from 45 gender- and age-matched nonautistic controls (non-ASD). Using an Infant FreeSurfer pipeline, 236 regionally distributed measurements were extracted from each scan. By t-tests and linear mixed models, the smaller nucleus accumbens and larger bilateral lateral, third, and fourth ventricles were identified in the ASD group. Vertex-wise t-statistical maps showed decreased thickness in the caudal anterior cingulate cortex and increased thickness in the right medial orbitofrontal cortex in ASD. The smaller bilateral accumbens nuclei and larger cerebral ventricles were independent of age, gender, or gestational age at birth, suggesting that there are MRI-based biomarkers in prospective ASD patients before they receive the diagnosis and that the volume of the nucleus accumbens and cerebral ventricles can be key MRI-based early biomarkers to predict the emergence of ASD.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Pediatrics, Chiba University Hospital, Chiba 2608670, Japan
| | - Alpen Ortug
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jose Luis Alatorre Warren
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Briana Valli
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Behavioral Neuroscience Program, Northeastern University, Boston, MA 02115, USA
| | - Jacob Levman
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Susan K Faja
- Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, 651 Ilalo Street, John A. Burns School of Medicine, University of Hawaii, Manoa, HI 96813, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Ouyang M, Peng Y, Sotardi S, Hu D, Zhu T, Cheng H, Huang H. Flattened Structural Network Changes and Association of Hyperconnectivity With Symptom Severity in 2-7-Year-Old Children With Autism. Front Neurosci 2022; 15:757838. [PMID: 35237118 PMCID: PMC8882907 DOI: 10.3389/fnins.2021.757838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 01/17/2023] Open
Abstract
Understanding the brain differences present at the earliest possible diagnostic age for autism spectrum disorder (ASD) is crucial for delineating the underlying neuropathology of the disorder. However, knowledge of brain structural network changes in the early important developmental period between 2 and 7 years of age is limited in children with ASD. In this study, we aimed to fill the knowledge gap by characterizing age-related brain structural network changes in ASD from 2 to 7 years of age, and identify sensitive network-based imaging biomarkers that are significantly correlated with the symptom severity. Diffusion MRI was acquired in 30 children with ASD and 21 typically developmental (TD) children. With diffusion MRI and quantified clinical assessment, we conducted network-based analysis and correlation between graph-theory-based measurements and symptom severity. Significant age-by-group interaction was found in global network measures and nodal efficiencies during the developmental period of 2-7 years old. Compared with significant age-related growth of the structural network in TD, relatively flattened maturational trends were observed in ASD. Hyper-connectivity in the structural network with higher global efficiency, global network strength, and nodal efficiency were observed in children with ASD. Network edge strength in ASD also demonstrated hyper-connectivity in widespread anatomical connections, including those in default-mode, frontoparietal, and sensorimotor networks. Importantly, identified higher nodal efficiencies and higher network edge strengths were significantly correlated with symptom severity in ASD. Collectively, structural networks in ASD during this early developmental period of 2-7 years of age are characterized by hyper-connectivity and slower maturation, with aberrant hyper-connectivity significantly correlated with symptom severity. These aberrant network measures may serve as imaging biomarkers for ASD from 2 to 7 years of age.
Collapse
Affiliation(s)
- Minhui Ouyang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yun Peng
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China,*Correspondence: Yun Peng,
| | - Susan Sotardi
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Di Hu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Tianjia Zhu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Hua Cheng
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Hao Huang,
| |
Collapse
|
13
|
Ijner P, Tompkins G, Shiohama T, Takahashi E, Levman J. Structural Abnormalities in Pediatric Moyamoya Disease Revealed by Clinical Magnetic Resonance Imaging, Regionally Distributed Relative Signal Intensities and Volumes. Int J Dev Neurosci 2021; 82:146-158. [PMID: 34969179 DOI: 10.1002/jdn.10167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Moyamoya disease (MMD) is a rare, progressive cerebrovascular disorder, with an unknown etiology and pathogenesis. It is characterized by steno-occlusive changes at the terminal portion of the internal carotid artery (ICA), which is accompanied by variable development of the basal collaterals called moyamoya vessels. In this study, we investigate the potential for structural T1 magnetic resonance imaging (MRI) to help characterize MMD clinically, with the help of regionally distributed relative signal intensities (RRSIs) and volumes (RRVs). These RRSIs and RRVs provide the ability to characterize aspects of regional brain development and represent an extension to existing automated biomarker extraction technologies. This study included 269 MRI examinations from MMD patients and 993 MRI examinations from neurotypical controls, with regional biomarkers compared between groups with the area under the receiver operating characteristic curve (AUC). Results demonstrate abnormal presentation of RRSIs and RRVs in the insula (15-20 year old cohort, left AUC: 0.74, right AUC: 0.71), and the lateral orbitofrontal region (5-10 year old cohort, left AUC: 0.67; 15-20 year cohort, left AUC: 0.62, right AUC: 0.65). Results indicate that RRSIs and RRVs may help in characterizing brain development, assist in the assessment of the presentation of the brains of children with MMD, and may help overcome standardization challenges in multi-protocol clinical MRI. Further investigation of the potential for RRSIs and RRVs in clinical imaging is warranted and supported through the release of open source software.
Collapse
Affiliation(s)
- Prahar Ijner
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Grace Tompkins
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|
14
|
Cui J, Xu H, Lehtinen MK. Macrophages on the margin: choroid plexus immune responses. Trends Neurosci 2021; 44:864-875. [PMID: 34312005 PMCID: PMC8551004 DOI: 10.1016/j.tins.2021.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022]
Abstract
The choroid plexus (ChP), an epithelial bilayer containing a network of mesenchymal, immune, and neuronal cells, forms the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While best recognized for secreting CSF, the ChP is also a hotbed of immune cell activity and can provide circulating peripheral immune cells with passage into the central nervous system (CNS). Here, we review recent studies on ChP immune cells, with a focus on the ontogeny, development, and behaviors of ChP macrophages, the principal resident immune cells of the ChP. We highlight the implications of immune cells for ChP barrier function, CSF cytokines and volume regulation, and their contribution to neurodevelopmental disorders, with possible age-specific features to be elucidated in the future.
Collapse
Affiliation(s)
- Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in Autism Spectrum Disorder: Narrative Review and Recent Advances. J Magn Reson Imaging 2021; 55:1613-1624. [PMID: 34626442 DOI: 10.1002/jmri.27949] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Autism spectrum disorder (ASD) is neuropsychiatric continuum of disorders characterized by persistent deficits in social communication and restricted repetitive patterns of behavior which impede optimal functioning. Early detection and intervention in ASD children can mitigate the deficits in social interaction and result in a better outcome. Various non-invasive imaging methods and molecular techniques have been developed for the early identification of ASD characteristics. There is no general consensus on specific neuroimaging features of autism; however, quantitative magnetic resonance techniques have provided valuable structural and functional information in understanding the neuropathophysiology of ASD and how the autistic brain changes during childhood, adolescence, and adulthood. In this review of decades of ASD neuroimaging research, we identify the structural, functional, and molecular imaging clues that most accurately point to the diagnosis of ASD vs. typically developing children. These studies highlight the 1) exaggerated synaptic pruning, 2) anomalous gyrification, 3) interhemispheric under- and overconnectivity, and 4) excitatory glutamate and inhibitory GABA imbalance theories of ASD. The application of these various theories to the analysis of a patient with ASD is mitigated often by superimposed comorbid neuropsychological disorders, evolving brain maturation processes, and pharmacologic and behavioral interventions that may affect the structure and function of the brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Faranak Rafiee
- Department of Radiology, Fara Parto Medical Imaging and Interventional Radiology Center, Shiraz, Iran
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | - Mina Motaghi
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | | |
Collapse
|
16
|
McCann B, Levman J, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Ijner P, Takahashi E. Structural magnetic resonance imaging demonstrates volumetric brain abnormalities in down syndrome: Newborns to young adults. Neuroimage Clin 2021; 32:102815. [PMID: 34520978 PMCID: PMC8441087 DOI: 10.1016/j.nicl.2021.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of an extra full or partial copy of chromosome 21 and characterized by intellectual disability. We hypothesize that performing a retrospective analysis of 73 magnetic resonance imaging (MRI) examinations of participants with DS (aged 0 to 22 years) and comparing them to a large cohort of 993 brain MRI examinations of neurotypical participants (aged 0 to 32 years), will assist in better understanding what brain differences may explain phenotypic developmental features in DS, as well as to provide valuable confirmation of prospective literature findings clinically. Measurements for both absolute volumes and volumes corrected as a percentage of estimated total intracranial volume (%ETIV) were extracted from each examination. Our results presented novel findings such as volume increases (%ETIV) in the perirhinal cortex, entorhinal cortex, choroid plexus, and Brodmann's areas (BA) 3a, 3b, and 44, as well as volume decreases (%ETIV) in the white matter of the cuneus, the paracentral lobule, the postcentral gyrus, and the supramarginal gyrus. We also confirmed volumetric brain abnormalities previously discussed in the literature. Findings suggest the presence of volumetric brain abnormalities in DS that can be detected clinically with MRI.
Collapse
Affiliation(s)
- Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Prahar Ijner
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Tompkins G, Levman J, Ijner P, Shiohama T, Takahashi E. Cortical thickness in clinical moyamoya disease: A magnetic resonance imaging study. Int J Dev Neurosci 2021; 81:698-705. [PMID: 34370351 DOI: 10.1002/jdn.10146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
Moyamoya disease (MMD) is a progressive cerebrovascular disorder, with an unknown pathogenesis and aetiology. MMD is characterized by steno-occlusive changes at the terminal portion of the internal carotid artery (ICA), which is accompanied by variable development of the basal collaterals, also known as moyamoya vessels. Patients with MMD show variable patterns of brain damage and may experience recurrent multiple transient ischaemic attacks, intracranial bleeding and cerebral infarction. In this study, we investigate the potential for structural T1 magnetic resonance imaging (MRI) to help characterize abnormal cortical development in MMD clinically, with an analysis of both average and variability of regional cortical thicknesses. This study also included a machine learning analysis to assess the predictive capacity of the cortical thickness abnormalities observed in this research. This study included 993 MRI examinations from neurotypical controls and 269 MRI examinations from MMD patients. Results demonstrate abnormal cortical presentation of the insula, caudate, postcentral, precuneus and cingulate regions, in agreement with previous literature cortical thickness findings as well as alternative methods such as functional MRI (fMRI) and digital angiography. To the best of our knowledge, this is the first manuscript to report cortical thickness abnormalities in the middle temporal visual area in MMD and the first study to report on cortical thickness variability abnormalities in MMD.
Collapse
Affiliation(s)
- Grace Tompkins
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Prahar Ijner
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Bandeira ID, Lins-Silva DH, Barouh JL, Faria-Guimarães D, Dorea-Bandeira I, Souza LS, Alves GS, Brunoni AR, Nitsche M, Fregni F, Lucena R. Neuroplasticity and non-invasive brain stimulation in the developing brain. PROGRESS IN BRAIN RESEARCH 2021; 264:57-89. [PMID: 34167665 DOI: 10.1016/bs.pbr.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain is a dynamic organ whose growth and organization varies according to each subject's life experiences. Through adaptations in gene expression and the release of neurotrophins and neurotransmitters, these experiences induce a process of cellular realignment and neural network reorganization, which consolidate what is called neuroplasticity. However, despite the brain's resilience and dynamism, neuroplasticity is maximized during the first years of life, when the developing brain is more sensitive to structural reorganization and the repair of damaged neurons. This review presents an overview of non-invasive brain stimulation (NIBS) techniques that have increasingly been a focus for experimental research and the development of therapeutic methods involving neuroplasticity, especially Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS). Due to its safety risk profile and extensive tolerability, several trials have demonstrated the benefits of NIBS as a feasible experimental alternative for the treatment of brain and mind disorders in children and adolescents. However, little is known about the late impact of neuroplasticity-inducing tools on the developing brain, and there are concerns about aberrant plasticity. There are also ethical considerations when performing interventions in the pediatric population. This article will therefore review these aspects and also obstacles related to the premature application of NIBS, given the limited evidence available concerning the extent to which these methods interfere with the developing brain.
Collapse
Affiliation(s)
- Igor D Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.
| | - Daniel H Lins-Silva
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Judah L Barouh
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniela Faria-Guimarães
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ingrid Dorea-Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucca S Souza
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Gustavo S Alves
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Charlestown, MA, United States
| | - Rita Lucena
- Department of Neuroscience and Mental Health, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
19
|
Prigge MBD, Lange N, Bigler ED, King JB, Dean DC, Adluru N, Alexander AL, Lainhart JE, Zielinski BA. A 16-year study of longitudinal volumetric brain development in males with autism. Neuroimage 2021; 236:118067. [PMID: 33878377 PMCID: PMC8489006 DOI: 10.1016/j.neuroimage.2021.118067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with unknown brain etiology. Our knowledge to date about structural brain development across the lifespan in ASD comes mainly from cross-sectional studies, thereby limiting our understanding of true age effects within individuals with the disorder that can only be gained through longitudinal research. The present study describes FreeSurfer-derived volumetric findings from a longitudinal dataset consisting of 607 T1-weighted magnetic resonance imaging (MRI) scans collected from 105 male individuals with ASD (349 MRIs) and 125 typically developing male controls (258 MRIs). Participants were six to forty-five years of age at their first scan, and were scanned up to 5 times over a period of 16 years (average inter-scan interval of 3.7 years). Atypical age-related volumetric trajectories in ASD included enlarged gray matter volume in early childhood that approached levels of the control group by late childhood, an age-related increase in ventricle volume resulting in enlarged ventricles by early adulthood and reduced corpus callosum age-related volumetric increase resulting in smaller corpus callosum volume in adulthood. Larger corpus callosum volume was related to a lower (better) ADOS score at the most recent study visit for the participants with ASD. These longitudinal findings expand our knowledge of volumetric brain-based abnormalities in males with ASD, and highlight the need to continue to examine brain structure across the lifespan and well into adulthood.
Collapse
Affiliation(s)
- Molly B D Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Nicholas Lange
- Department of Psychiatry, Harvard School of Medicine, Boston, MA, USA
| | - Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA; Department of Neurology, University of Utah, Salt Lake City, UT USA; Department of Psychiatry, University of Utah, Salt Lake City, UT USA; Department of Neurology, University of California-Davis, Davis, CA USA
| | - Jace B King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Janet E Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Brandon A Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA; Department of Neurology, University of Utah, Salt Lake City, UT USA; Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Brain Magnetic Resonance Findings in 117 Children with Autism Spectrum Disorder under 5 Years Old. Brain Sci 2020; 10:brainsci10100741. [PMID: 33081247 PMCID: PMC7602717 DOI: 10.3390/brainsci10100741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
We examined the potential benefits of neuroimaging measurements across the first 5 years of life in detecting early comorbid or etiological signs of autism spectrum disorder (ASD). In particular, we analyzed the prevalence of neuroradiologic findings in routine magnetic resonance imaging (MRI) scans of a group of 117 ASD children younger than 5 years old. These data were compared to those reported in typically developing (TD) children. MRI findings in children with ASD were analyzed in relation to their cognitive level, severity of autistic symptoms, and the presence of electroencephalogram (EEG) abnormalities. The MRI was rated abnormal in 55% of children with ASD with a significant prevalence in the high-functioning subgroup compared to TD children. We report significant incidental findings of mega cisterna magna, ventricular anomalies and abnormal white matter signal intensity in ASD without significant associations between these MRI findings and EEG features. Based on these results we discuss the role that brain MRI may play in the diagnostic procedure of ASD.
Collapse
|
21
|
Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020; 141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Despite fundamental differences in disease course and outcomes, neurodevelopmental (autism spectrum disorders - ASD) and neurodegenerative disorders (Alzheimer's disease - AD and Parkinson's disease - PD) present surprising, common traits in their molecular pathomechanisms. Uncontrolled oligomerization and aggregation of amyloid β (Aβ), microtubule-associated protein (MAP) tau, or α-synuclein (α-syn) contribute to synaptic impairment and the ensuing neuronal death in both AD and PD. Likewise, the pathogenesis of ASD may be attributed, at least in part, to synaptic dysfunction; attention has also been recently paid to irregularities in the metabolism and function of the Aβ precursor protein (APP), tau, or α-syn. Commonly affected elements include signaling pathways that regulate cellular metabolism and survival such as insulin/insulin-like growth factor (IGF) - PI3 kinase - Akt - mammalian target of rapamycin (mTOR), and a number of key synaptic proteins critically involved in neuronal communication. Understanding how these shared pathomechanism elements operate in different conditions may help identify common targets and therapeutic approaches.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Magdalena Cieślik
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Grażyna Gromadzka
- Cardinal Stefan Wyszynski University, Faculty of Medicine. Collegium Medicum, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Agata Adamczyk
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
22
|
Chen T, Chen Y, Yuan M, Gerstein M, Li T, Liang H, Froehlich T, Lu L. The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study. JMIR Med Inform 2020; 8:e15767. [PMID: 32041690 PMCID: PMC7244998 DOI: 10.2196/15767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/01/2019] [Accepted: 02/09/2020] [Indexed: 01/28/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with an unknown etiology. Early diagnosis and intervention are key to improving outcomes for patients with ASD. Structural magnetic resonance imaging (sMRI) has been widely used in clinics to facilitate the diagnosis of brain diseases such as brain tumors. However, sMRI is less frequently used to investigate neurological and psychiatric disorders, such as ASD, owing to the subtle, if any, anatomical changes of the brain. Objective This study aimed to investigate the possibility of identifying structural patterns in the brain of patients with ASD as potential biomarkers in the diagnosis and evaluation of ASD in clinics. Methods We developed a novel 2-level histogram-based morphometry (HBM) classification framework in which an algorithm based on a 3D version of the histogram of oriented gradients (HOG) was used to extract features from sMRI data. We applied this framework to distinguish patients with ASD from healthy controls using 4 datasets from the second edition of the Autism Brain Imaging Data Exchange, including the ETH Zürich (ETH), NYU Langone Medical Center: Sample 1, Oregon Health and Science University, and Stanford University (SU) sites. We used a stratified 10-fold cross-validation method to evaluate the model performance, and we applied the Naive Bayes approach to identify the predictive ASD-related brain regions based on classification contributions of each HOG feature. Results On the basis of the 3D HOG feature extraction method, our proposed HBM framework achieved an area under the curve (AUC) of >0.75 in each dataset, with the highest AUC of 0.849 in the ETH site. We compared the 3D HOG algorithm with the original 2D HOG algorithm, which showed an accuracy improvement of >4% in each dataset, with the highest improvement of 14% (6/42) in the SU site. A comparison of the 3D HOG algorithm with the scale-invariant feature transform algorithm showed an AUC improvement of >18% in each dataset. Furthermore, we identified ASD-related brain regions based on the sMRI images. Some of these regions (eg, frontal gyrus, temporal gyrus, cingulate gyrus, postcentral gyrus, precuneus, caudate, and hippocampus) are known to be implicated in ASD in prior neuroimaging literature. We also identified less well-known regions that may play unrecognized roles in ASD and be worth further investigation. Conclusions Our research suggested that it is possible to identify neuroimaging biomarkers that can distinguish patients with ASD from healthy controls based on the more cost-effective sMRI images of the brain. We also demonstrated the potential of applying data-driven artificial intelligence technology in the clinical setting of neurological and psychiatric disorders, which usually harbor subtle anatomical changes in the brain that are often invisible to the human eye.
Collapse
Affiliation(s)
- Tao Chen
- School of Information Management, Wuhan University, Wuhan, China.,School of Information Technology, Shangqiu Normal University, Shangqiu, China
| | - Ye Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mengxue Yuan
- School of Information Management, Wuhan University, Wuhan, China
| | - Mark Gerstein
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.,Department of Computer Science, Yale University, New Haven, CT, United States
| | - Tingyu Li
- Children Nutrition Research Center, Chongqing, China.,Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Huiying Liang
- Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Tanya Froehlich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Long Lu
- School of Information Management, Wuhan University, Wuhan, China.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
23
|
Shiohama T, Levman J, Baumer N, Takahashi E. Structural Magnetic Resonance Imaging-Based Brain Morphology Study in Infants and Toddlers With Down Syndrome: The Effect of Comorbidities. Pediatr Neurol 2019; 100:67-73. [PMID: 31036426 PMCID: PMC6755072 DOI: 10.1016/j.pediatrneurol.2019.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Down syndrome (DS) is the most prevalent chromosomal disorder characterized by intellectual disability, multiple organ anomalies, generalized muscular hypotonia, and characteristic physical features. The presence of DS-associated medical comorbidities has contributed to brain morphologic changes. The aim of this study was to evaluate brain morphologic characteristics during infant and toddler ages in patients with DS using structural brain magnetic resonance imaging. METHODS Structural brain T1-weighted magnetic resonance images from participants with DS with complete chromosome 21 trisomy (n = 20; 1.6 ± 0.6 [mean ± standard deviation] years old) were analyzed using FreeSurfer. The measurements were compared with those of 60 gender- and age-matched neurotypical controls by Cohen's d statistic and unpaired t test with false discovery rate correction for multiple comparisons and analyzed using a univariate general linear model with the following DS-associated medical comorbidities: congenital cardiac disease, infantile spasms, and hypothyroidism. RESULTS We identified 27 candidate measurements with large effect sizes (absolute d > 0.8) and statistically significant differences (P < 6.9 × 10-3). Among them were decreased volumes in bilateral cerebellar gray matter and right cerebellar white matter and brainstem and cortical abnormalities in the right superior temporal, right rostral anterior cingulate, and left rostral middle frontal gyrus, independent of comorbid effects. Only bilateral cerebellar gray matter volumes and brainstem volume showed differences between DS and healthy groups during infancy. CONCLUSION These results suggest that cerebellar gray matter and brainstem may represent the primary regions affected by the presence of an additional copy of chromosome 21.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Chiba University Hospital, Chiba-shi, Chiba, Japan.
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA,Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, 2323 Notre Dame Ave, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Nicole Baumer
- Down Syndrome Program, Developmental Medicine Center, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
24
|
Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A, Anderson T, Jackson BP, Oberdorster G. The Impact of Inhaled Ambient Ultrafine Particulate Matter on Developing Brain: Potential Importance of Elemental Contaminants. Toxicol Pathol 2019; 47:976-992. [PMID: 31610749 DOI: 10.1177/0192623319878400] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological studies report associations between air pollution (AP) exposures and several neurodevelopmental disorders including autism, attention deficit disorder, and cognitive delays. Our studies in mice of postnatal (human third trimester brain equivalent) exposures to concentrated ambient ultrafine particles (CAPs) provide biological plausibility for these associations, producing numerous neuropathological and behavioral features of these disorders, including male-biased vulnerability. These findings raise questions about the specific components of AP that underlie its neurotoxicity, which our studies suggest could involve trace elements as candidate neurotoxicants. X-ray fluorescence analyses of CAP chamber filters confirm contamination of AP exposures by multiple elements, including iron (Fe) and sulfur (S). Correspondingly, laser ablation inductively coupled plasma mass spectrometry of brains of male mice indicates marked postexposure elevations of Fe and S and other elements. Elevations of brain Fe and S in particular are consistent with potential ferroptotic, oxidative stress, and altered antioxidant capacity-based mechanisms of CAPs-induced neurotoxicity, supported by observations of increased serum oxidized glutathione and increased neuronal cell death in nucleus accumbens with no corresponding significant increase in caspase-3, in male brains following postnatal CAP exposures. Understanding the role of trace element contaminants of particulate matter AP as a source of neurotoxicity is critical for public health protection.
Collapse
Affiliation(s)
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Tim Anderson
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Gunter Oberdorster
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| |
Collapse
|
25
|
Levman J, MacDonald A, Baumer N, MacDonald P, Stewart N, Lim A, Cogger L, Shiohama T, Takahashi E. Structural magnetic resonance imaging demonstrates abnormal cortical thickness in Down syndrome: Newborns to young adults. NEUROIMAGE-CLINICAL 2019; 23:101874. [PMID: 31176294 PMCID: PMC6551568 DOI: 10.1016/j.nicl.2019.101874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of all or part of chromosome 21 and is characterized by intellectual disability. We performed a retrospective analysis of 47 magnetic resonance imaging (MRI) examinations of participants with DS (aged 5 to 22 years) and compared them with a large cohort of 854 brain MRIs obtained from neurotypical participants (aged 5 to 32 years) with the objective of assessing the clinical presentation of Down syndrome, towards better understanding the neurological development associated with the condition. An additional cohort of 26 MRI exams from patients with DS and 139 exams from neurotypical participants (aged 0–5 years) are included as part of a supplementary analysis. Regionally distributed cortical thickness measurements, including average measurements as well as standard deviations (intra-regional cortical thickness variability) were extracted from each examination. The largest effect sizes observed were associated with increased average cortical thickness in the postcentral gyrus with specific abnormalities observed in Brodmann's areas 1 and 3b in DS, which was observed across all age ranges. We also observed strong effect sizes associated with decreased cortical thickness variability in the lateral orbitofrontal gyrus, the postcentral gyrus and more in DS participants. Findings suggest regionally irregular gray matter development in DS that can be detected with MRI. Large scale study of the clinical presentation of Down Syndrome Abnormally increased mean cortical thicknesses identified in key regions. Abnormally decreased variability in cortical thicknesses identified within key regions Findings may be connected with abnormal pruning in Down Syndrome.
Collapse
Affiliation(s)
- Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Patrick MacDonald
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Natalie Stewart
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Ashley Lim
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Liam Cogger
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|