1
|
Liu J, Wazir ZG, Hou G, Wang G, Rong F, Xu Y, Liu K, Li M, Liu A, Liu H, Sun H. Composition and the predicted functions of fungal communities and the key drivers in acidic soils of Jiaodong Peninsula, China. Front Microbiol 2025; 15:1496268. [PMID: 39834367 PMCID: PMC11743958 DOI: 10.3389/fmicb.2024.1496268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Soil acidification imperils soil health and hinders the agricultural sustainability. As being more tolerant than bacteria to soil acidification, so it would be more meaningful for agricultural management and crop yield to characterize fungal community in acidic soils and manifest its key drivers. Method This study investigated the composition and diversity of fungal communities and its key driving factors by collecting 90 soil samples from the acidic region of Jiaodong Peninsula China, spanning 3 × 104 km2. Results The results indicated that most soil pH values ranged from 5.01 to 6.42, and the exchangeable acidity (EA) content raised significantly (p < 0.01) along with soil acidic degree increasing. However, no significant differences were found in fungal community diversity and composition among various soil samples, which were all predominantly habited with the phyla of Ascomycota and Basidiomycota. Results of the linear discriminant analysis effect size (LEfSe) analysis revealed that saprophytic fungi were biomarkers of the slightly acidic soil (pH 6.0-6.5), including Nectriaceae, Thielavia, Nectria, Haematonectria, and unclassified Microascaceae, while plant pathogenic fungi, such as Didymellaceae, were biomarkers of the soils pH < 5.5. Similarly, the FUNGuild results also indicated that saprophytic fungi and pathogenic fungi were the dominant functional guilds in the investigated acidic soils, accounting for 66% of the total fungal communities. Redundancy analysis (RDA) revealed that soil pH as well as nitrate nitrogen (NO 3 - -N) and total nitrogen (TN) significantly associated with fungal community at the phylum level, whilst soil pH was the only factor significantly linked to individual fungal classes (p < 0.01 or 0.05). The further Mantel test analysis and structural equation modeling (SEM) suggested that, in contrast to the negative and directive driving of soil pH on fungal communities' variation, the specific plant pathogenic fungi, Gibberella and Didymellaceae, were significantly and positively associated with soil acidic characteristics (p < 0.05). Discussion These findings highlighted that, in addition to modulating the variation of soil fungal community, soil acidification might prime some plant pathogens development. So that, more attentions should be focused on impact of soil acidification on fungal ecology, as well as plant pathogenic fungi.
Collapse
Affiliation(s)
- Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zafran Gul Wazir
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Guoqin Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Guizhen Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Fangxu Rong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yuzhi Xu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| | - Kai Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| | - Mingyue Li
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| | - Aiju Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Song B, Wang T, Wan C, Cai Y, Mao L, Ge Z, Yang N. Diversity Patterns and Drivers of Soil Bacterial and Fungal Communities in a Muddy Coastal Wetland of China. J Fungi (Basel) 2024; 10:770. [PMID: 39590689 PMCID: PMC11595316 DOI: 10.3390/jof10110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Elucidating the dynamics of soil microbial diversity in coastal wetlands is essential for understanding the changes in ecological functions within these ecosystems, particularly in the context of climate change and improper management practices. In this study, the diversity patterns and influencing factors of soil bacterial and fungal communities in a muddy coastal wetland in China were investigated using Illumina sequencing of 16S rRNA and ITS1, across wetlands dominated by different vegetations and varying proximity to the coastline. The wetlands include four plots dominated by Spartina alterniflora (SA1), four plots dominated by Suaeda glauca (SG2), additional four plots of Suaeda glauca (SG3), and four plots dominated by Phragmites australis (PA4), ranging from the nearest to the coast to those farther away. The results revealed significant differences in bacterial richness (Observed_species index) and fungal diversity (Shannon index) across different wetlands, with SG3 demonstrating the lowest bacterial Observed_species value (1430.05), while SA1 exhibited the highest fungal Shannon value (5.55) and PA4 showing the lowest fungal Shannon value (3.10). Soil bacterial and fungal community structures differed significantly across different wetlands. The contents of soil available phosphorus and total phosphorus were the main drivers for fungal Observed_species and Shannon index, respectively. Soil organic carbon, pH, and salinity were indicated as the best predictors of bacterial community structure, accounting for 28.1% of the total variation. The total nitrogen content and soil salinity contributed mostly to regulating fungal community structure across different wetlands, accounting for 19.4% of the total variation. The results of this study offer a thorough understanding of the response and variability in soil microbial diversity across the muddy coastal wetlands in China.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Ge
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.S.); (T.W.); (C.W.); (Y.C.); (L.M.)
| | - Nan Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.S.); (T.W.); (C.W.); (Y.C.); (L.M.)
| |
Collapse
|
3
|
Xiong R, He X, Gao N, Li Q, Qiu Z, Hou Y, Shen W. Soil pH amendment alters the abundance, diversity, and composition of microbial communities in two contrasting agricultural soils. Microbiol Spectr 2024; 12:e0416523. [PMID: 38916324 PMCID: PMC11302230 DOI: 10.1128/spectrum.04165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Soil microorganisms are the most active participants in terrestrial ecosystems, and have key roles in biogeochemical cycles and ecosystem functions. Despite the extensive research on soil pH as a key predictor of microbial community and composition, a limitation of these studies lies in determining whether bacterial and/or fungal communities are directly or indirectly influenced by pH. We conducted a controlled laboratory experiment to investigate the effects of soil pH amendment (+/- 1-2 units) with six levels on soil microbial communities in two contrasting Chinese agricultural soils (pH 8.43 in Dezhou, located in the North China Plain, Shandong vs pH 6.17 in Wuxi, located in the Taihu Lake region, Jiangsu, east China). Results showed that the fungal diversity and composition were related to soil pH, but the effects were much lower than the effects of soil pH on bacterial community in two soils. The diversity and composition of bacterial communities were more closely associated with soil pH in Wuxi soils compared to Dezhou soils. The alpha diversity of bacterial communities peaked near in situ pH levels in both soils, displaying a quadratic fitting pattern. Redundancy analysis and variation partition analysis indicated that soil pH affected bacterial community and composition by directly imposing a physiological constraint on soil bacteria and indirectly altering soil characteristics (e.g., nutrient availability). The study also examined complete curves of taxa relative abundances at the phylum and family levels in response to soil pH, with most relationships conforming to a quadratic fitting pattern, indicating soil pH is a reliable predictor. Furthermore, soil pH amendment affected the transformation of nitrogen and the abundances of functional genes involved in the nitrogen cycle, and methane production and consumption. Overall, results from this study would enhance our comprehension of how soil microorganisms in contrasting farmlands will respond to soil pH changes, and would contribute to more effective soil management and conservation strategies. IMPORTANCE This study delves into the impact of soil pH on microbial communities, investigating whether pH directly or indirectly influences bacterial and fungal communities. The research involved two contrasting soils subjected to a 1-2 pH unit amendment. Results indicate bacterial community composition was shaped by soil pH through physiological constraints and nutrient limitations. We found that most taxa relative abundances at the phylum and family levels responded to pH with a quadratic fitting pattern, indicating that soil pH is a reliable predictor. Additionally, soil pH was found to significantly influence the predicted abundance of functional genes involved in the nitrogen cycle as well as in methane production and consumption processes. These insights can contribute to develop more effective soil management and conservation strategies.
Collapse
Affiliation(s)
- Ruonan Xiong
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xinhua He
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, California, USA
| | - Nan Gao
- National Engineering Research Center for Biotechnology, School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qing Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zijian Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yixin Hou
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- Institute of Soil Health and Climate-Smart Agriculture, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
4
|
Bedair HM, Samir TM, Mansour FR. Antibacterial and antifungal activities of natural deep eutectic solvents. Appl Microbiol Biotechnol 2024; 108:198. [PMID: 38324052 PMCID: PMC10850035 DOI: 10.1007/s00253-024-13044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
The increasing antibiotic resistance towards a panel of microorganisms is one of the public health concerns. For this reason, the search for alternatives to the widely used antibiotic has been undertaken. In the era of sustainable chemistry, deep eutectic solvents (DESs) have emerged as promising antimicrobial agents. These solvents possess several advantages such as low volatility, low flammability, ease of preparation, and typically low cost of production. These properties make DES suitable for various applications, including extraction of biomolecules and preparation of cosmetics. Natural DESs (NADESs) are special category of DESs prepared from natural sources, which matched the recent trends of leaning back to nature, and decreasing dependence on synthetic precursors. NADES can be prepared by heating and stirring, freeze-drying, evaporation, grinding, and ultrasound-assisted and microwave-assisted synthesis. Utilizing NADESs as an alternative to traditional antibiotics, which become ineffective over time due to bacterial resistance, holds great promise for these reasons. This review aims to discuss the antimicrobial properties of multiple NADESs, including antibacterial and antifungal activities. To the best of our knowledge, this review is the first literature survey of the antimicrobial activities of NADESs. KEY POINTS: • Natural deep eutectic solvents are promising antimicrobial alternative to antibiotics • NADES holds high potential for their activity against bacterial resistance • NADES have also substantial antifungal activities.
Collapse
Affiliation(s)
- Hadeer M Bedair
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
5
|
Li J, Fan M, Wei Z, Zhang K, Ma X, Shangguan Z. Broad environmental adaptation of abundant microbial taxa in Robinia pseudoacacia forests during long-term vegetation restoration. ENVIRONMENTAL RESEARCH 2024; 242:117720. [PMID: 37996008 DOI: 10.1016/j.envres.2023.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Vegetation restoration has significant impacts on ecosystems, and a comprehensive understanding of microbial environmental adaptability could facilitate coping with ecological challenges such as environmental change and biodiversity loss. Here, abundant and rare soil bacterial and fungal communities were characterized along a 15-45-year chronosequence of forest vegetation restoration in the Loess Plateau region. Phylogenetic-bin-based null model analysis (iCAMP), niche breadth index, and co-occurrence network analysis were used to assess microbial community assembly and environmental adaptation of a Robinia pseudoacacia plantation under long-term vegetation restoration. The drift process governed community assembly of abundant and rare soil fungi and bacteria. With increasing soil total phosphorus content, the relative importance of drift increased, while dispersal limitation and heterogeneous selection exhibited opposite trends for abundant and rare fungi. Rare soil fungal composition dissimilarities were dominated by species replacement processes. Abundant microbial taxa had higher ecological niche width and contribution to ecosystem multifunctionality than rare taxa. Node property values (e.g., degree and betweenness) of abundant microbial taxa were substantially higher than those of rare microbial taxa, indicating abundant species occupied a central position in the network. This study provides insights into the diversity and stability of microbial communities during vegetation restoration in Loess Plateau. The findings highlight that abundant soil fungi and bacteria have broad environmental adaptation and major implications for soil multifunctionality under long-term vegetation restoration.
Collapse
Affiliation(s)
- Jiajia Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Miaochun Fan
- Department of Grassland Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhenhao Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Kang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xing Ma
- Department of Grassland Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
6
|
Hsu SY, Xu YC, Lin YC, Chuang WY, Lin SR, Stadler M, Tangthirasunun N, Cheewangkoon R, AL-Shwaiman HA, Elgorban AM, Ariyawansa HA. Hidden diversity of Pestalotiopsis and Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan. MycoKeys 2024; 101:275-312. [PMID: 38333551 PMCID: PMC10851163 DOI: 10.3897/mycokeys.101.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Pestalotiopsissensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsismanyueyuanani and four new records, N.camelliae-oleiferae, N.haikouensis, P.chamaeropis and P.hispanica, were reported for the first time in Taiwan. In addition, P.formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa.
Collapse
Affiliation(s)
- Sheng-Yu Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Yuan-Cheng Xu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Yu-Chen Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Wei-Yu Chuang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Shiou-Ruei Lin
- Section of Tea Agronomy, Tea Research and Extension Station, Council of Agriculture, Taoyuan City 326011, TaiwanCouncil of AgricultureTaoyuan CityTaiwan
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, GermanyHelmholtz Centre for Infection Research GmbH (HZI)BraunschweigGermany
| | - Narumon Tangthirasunun
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, ThailandKing Mongkut’s Institute of Technology Ladkrabang (KMITL)BangkokThailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, ThailandChiang Mai UniversityChiang MaiThailand
| | - Hind A. AL-Shwaiman
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi ArabiaKing Saud UniversityRiyadhSaudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi ArabiaKing Saud UniversityRiyadhSaudi Arabia
| | - Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
7
|
Gao F, Ye L, Mu X, Xu L, Shi Z, Luo Y. Synergistic effects of earthworms and cow manure under reduced chemical fertilization modified microbial community structure to mitigate continuous cropping effects on Chinese flowering cabbage. Front Microbiol 2023; 14:1285464. [PMID: 37954241 PMCID: PMC10637444 DOI: 10.3389/fmicb.2023.1285464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
The substitution of chemical fertilizers with organic fertilizers is a viable strategy to enhance crop yield and soil quality. In this study, the aim was to investigate the changes in soil microorganisms, soil chemical properties, and growth of Chinese flowering cabbage under different fertilization treatments involving earthworms and cow manure. Compared with the control (100% chemical fertilizer), CE (30% reduction in chemical fertilizer + earthworms) and CFE (30% reduction in chemical fertilizer + cow dung + earthworms) treatments at soil pH 8.14 and 8.07, respectively, and CFC (30% reduction in chemical fertilizer + cow manure) and CFE treatments increased soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), and available potassium (AK) contents. Earthworms and cow manure promoted the abundance of Bacillus and reduced that of the pathogens Plectosphaerella and Gibberella. The mantle test revealed that pH was not correlated with the microbial community. Random forest analysis verified that AN, SOM, and TN were important factors that jointly influenced bacterial and fungal diversity. Overall, the synergistic effect of earthworms and cow manure increased soil fertility and microbial diversity, thereby promoting the growth and development of Chinese flowering cabbage. This study enhanced the understanding of how bioregulation affects the growth and soil quality of Chinese flowering cabbage, and thus provided a guidance for the optimization of fertilization strategies to maximize the yield and quality of Chinese flowering cabbage while reducing environmental risks.
Collapse
Affiliation(s)
| | - Lin Ye
- College of Wine and Horticulture, Ningxia University, Yinchuan, China
| | | | | | | | | |
Collapse
|
8
|
Huang Z, Su Y, Lin S, Wu G, Cheng H, Huang G. Elevational patterns of microbial species richness and evenness across climatic zones and taxonomic scales. Ecol Evol 2023; 13:e10594. [PMID: 37818244 PMCID: PMC10560872 DOI: 10.1002/ece3.10594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding the elevational patterns of soil microbial diversity is crucial for microbial biogeography, yet the elevational patterns of diversity across different climatic zones, trophic levels, and taxonomic levels remain unclear. In this study, we investigated the elevational patterns of species richness, species evenness and the relationship between species richness and evenness (RRE) in the forest soil bacterial and fungal communities and individual phyla across three climatic zones (tropical, subtropical, and cold temperate). Our results revealed that soil bacterial richness (alpha diversity) decreased with elevation, while fungal richness exhibited a hump-shaped pattern in the tropical and cold-temperate forests. Elevational patterns of evenness in bacterial and fungal communities showed the hump-shaped pattern across climatic zones, except for bacterial evenness in the tropical forest. Both bacterial and fungal richness and evenness were positively correlated in the subtropical and cold-temperate forests, while negatively correlated for bacteria in the tropical forest. The richness and evenness of soil microorganisms across different regions were controlled by climatic and edaphic factors. Soil pH was the most important factor associated with the variations in bacterial richness and evenness, while mean annual temperature explained the major variations in fungal richness. Our results addressed that the varieties of elevational patterns of microbial diversity in climatic zones and taxonomic levels, further indicating that richness and evenness may respond differently to environmental gradients.
Collapse
Affiliation(s)
- Zhengyi Huang
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Yangui Su
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Sinuo Lin
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Guopeng Wu
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Hao Cheng
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| | - Gang Huang
- School of Geographical Sciences, School of Carbon Neutrality Future TechnologyFujian Normal UniversityFuzhouChina
| |
Collapse
|
9
|
Xia H, Liu B, Riaz M, Li Y, Wang X, Wang J, Jiang C. 30-Month Pot Experiment: Biochar Alters Soil Potassium Forms, Soil Properties and Soil Fungal Diversity and Composition in Acidic Soil of Southern China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3442. [PMID: 36559557 PMCID: PMC9783735 DOI: 10.3390/plants11243442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Biochar has a significant impact on improving soil, nutrient supply, and soil microbial amounts. However, the impacts of biochar on soil fungi and the soil environment after 30 months of cultivation experiments are rarely reported. We studied the potential role of peanut shell biochar (0% and 2%) in the soil properties and the soil fungal communities after 30 months of biochar application under different soil potassium (K) levels (100%, 80%, 60%, 0% K fertilizer). We found that biochar had a promoting effect on soil K after 30 months of its application, such as the available K, water-soluble K, exchangeable K, and non-exchangeable K; and increments were 125.78%, 124.39%, 126.01%, and 26.63% under biochar and K fertilizer treatment, respectively, compared to control treatment. Our data revealed that p_Ascomycota and p_Basidiomycota were the dominant populations in the soil, and their sub-levels showed different relationships with the soil properties. The relationships between c_sordariomycetes and its sub-level taxa with soil properties showed a significant positive correlation. However, c_Dothideomycetes and its sub-group demonstrated a negative correlation with soil properties. Moreover, soil enzyme activity, especially related to the soil C cycle, was the most significant indicator that affected the community and structure of fungi through structural equation modeling (SEM) and redundancy analysis (RDA). This work emphasized that biochar plays an important role in improving soil quality, controlling soil nutrients, and regulating fungal diversity and community composition after 30 months of biochar application.
Collapse
Affiliation(s)
- Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Liu
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832000, China
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832000, China
| |
Collapse
|
10
|
Li H, Liu PQ, Luo QP, Ma JJ, Yang XR, Yan Y, Su JQ, Zhu YG. Spatiotemporal variations of microbial assembly, interaction, and potential risk in urban dust. ENVIRONMENT INTERNATIONAL 2022; 170:107577. [PMID: 36244231 DOI: 10.1016/j.envint.2022.107577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Community and composition of dust-borne microbes would affect human health and are regulated by microbial community assembly. The dust in kindergarten is always collected to evaluate the microbial exposure of children, yet the microbial assembly, their interactions, and potential pathogens in kindergarten dust remain unclear. Here, we aim to investigate the microbial community assembly and structures, and potential bacterial pathogens in outdoor dust of kindergartens, and reveal the factors influencing the assembly and composition of microbial community. A total of 118 urban dust samples were collected on the outdoor impervious surfaces of 59 kindergartens from different districts of Xiamen in January and June 2020. We extracted microbial genomic DNA in these dusts and characterized the microbial (i.e., bacteria and fungi) community compositions and diversities using target gene-based (16S rRNA genes for bacterial community and ITS 2 regions for fungal community) high-throughput sequencing. Potential bacterial pathogens were identified and the interactions between microbes were determined through a co-occurrence network analysis. Our results showed the predominance of Actinobacteria and α-Proteobacteria in bacterial communities and Capnodiales in fungal communities. Season altered microbial assembly, composition, and interactions, with both bacterial and fungal communities exhibiting a higher heterogeneity in summer than those in winter. Although stochastic processes predominated in bacterial and fungal community assembly, the season-depended environmental factors (e.g., temperature) and interactions between microbes play important roles in dust microbial community assembly. Potential bacterial pathogens were detected in all urban dust, with significantly higher relative abundance in summer than that in winter. These results indicated that season exerted more profound effects on microbial community composition, assembly, and interactions, and suggested the seasonal changes of potential risk of microbes in urban dust. Our findings provide new insights into microbial community, community assembly, and interactions between microbes in the urban dust, and indicate that taxa containing opportunistic pathogens occur commonly in urban dust.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Pei-Qin Liu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiu-Ping Luo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jin-Jin Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Marion V, Van Long Nicolas N, Jean-Luc J, Thibaud B, Audrey P, Georges B, Karim R, Valérie V, Véronique H, Louis C. Impact of water activity on the radial growth of fungi in a dairy environment. Food Res Int 2022; 157:111247. [DOI: 10.1016/j.foodres.2022.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
|
12
|
Bazzicalupo AL, Erlandson S, Branine M, Ratz M, Ruffing L, Nguyen NH, Branco S. Fungal Community Shift Along Steep Environmental Gradients from Geothermal Soils in Yellowstone National Park. MICROBIAL ECOLOGY 2022; 84:33-43. [PMID: 34468785 DOI: 10.1007/s00248-021-01848-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Geothermal soils offer unique insight into the way extreme environmental factors shape communities of organisms. However, little is known about the fungi growing in these environments and in particular how localized steep abiotic gradients affect fungal diversity. We used metabarcoding to characterize soil fungi surrounding a hot spring-fed thermal creek with water up to 84 °C and pH 10 in Yellowstone National Park. We found a significant association between fungal communities and soil variable principal components, and we identify the key trends in co-varying soil variables that explain the variation in fungal community. Saprotrophic and ectomycorrhizal fungi community profiles followed, and were significantly associated with, different soil variable principal components, highlighting potential differences in the factors that structure these different fungal trophic guilds. In addition, in vitro growth experiments in four target fungal species revealed a wide range of tolerances to pH levels but not to heat. Overall, our results documenting turnover in fungal species within a few hundred meters suggest many co-varying environmental factors structure the diverse fungal communities found in the soils of Yellowstone National Park.
Collapse
Affiliation(s)
- Anna L Bazzicalupo
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Sonya Erlandson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Margaret Branine
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, USA
| | - Megan Ratz
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Lauren Ruffing
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawaii At Manoa, Honolulu, HI, USA
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| |
Collapse
|
13
|
Changes in Soil Organic Carbon Fractions and Fungal Communities, Subsequent to Different Management Practices in Moso Bamboo Plantations. J Fungi (Basel) 2022; 8:jof8060640. [PMID: 35736123 PMCID: PMC9225535 DOI: 10.3390/jof8060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Moso bamboo (Phyllostachys pubescens) has an extremely fast growth rate and major carbon sequestration potential. However, little information is available on the dynamics of soil C accumulation and fungi communities related to different management practices. Here, we investigated changes in the soil organic carbon (SOC) fractions and fungal communities of a Moso bamboo plantation under three different management practices (M0: undisturbed; M1: extensively managed; and M2: intensively managed). Compared with M0, SOC levels were reduced by 41.2% and 71.5% in M1 and M2, respectively; furthermore, four SOC fractions (C1: very labile; C2: labile; C3: less labile; and C4: nonlabile) and the carbon management index (CMI) were also significantly reduced by plantation management. These practices further altered fungal communities, for example, by increasing Basidiomycota and Mortierellomycota, and by decreasing Ascomycota and Rozellomycota. Pyrenochaeta, Mortierella, Saitozyma, and Cladophialophora were identified as keystone taxa. Soil fungal communities were significantly related to the pH, NH4-N, AP, C3, and the C4 fractions of SOC. Random forest modeling identified soil C3 and Mortierella as the most important predictors of the CMI. Our results suggest that reducing human interference would be beneficial for fungal community improvement and C sequestration in Moso bamboo plantations.
Collapse
|
14
|
Brito VD, Achimón F, Zunino MP, Zygadlo JA, Pizzolitto RP. Fungal diversity and mycotoxins detected in maize stored in silo-bags: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2640-2650. [PMID: 35076089 DOI: 10.1002/jsfa.11756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 01/08/2021] [Indexed: 06/14/2023]
Abstract
Silo-bags are hermetic storage systems that inhibit fungal growth because of their atmosphere with low humidity, as well as low pH and O2 concentrations, and a high CO2 concentration. If a silo-bag with stored maize loses its hermetic nature, it favors the development of fungi and the production of mycotoxins. To the best of our knowledge, this is the first review on the diversity of fungal species and mycotoxins that were reported in maize stored under the environmental conditions provided by silo-bags. The genera Penicillium, Aspergillus and Fusarium were found more frequently, whereas Acremonium spp., Alternaria sp., Candida sp., Cladosporium sp., Debaryomyces spp., Epiconum sp., Eupenicillium spp., Eurotium sp., Eurotium amstelodami, Hyphopichia spp., Hyphopichia burtonii, Moniliella sp., Wallemia sp. and genera within the orden Mucorales were reported less recurrently. Despite finding a great fungal diversity, all of the studies focused their investigations on a small group of toxins: fumonisins (FBs), aflatoxins (AFs), deoxynivalenol (DON), zearalenone (ZEA), patulin (PAT), toxin T2 (T2) and ochratoxin (OT). Of the FBs, fumonisin B1 and fumonisin B2 presented higher incidence percentages, followed by fumonisin B3 . Of the AFs, the only one reported was aflatoxin B1. The mycotoxins DON, ZEA and OT were found with lower incidences, whereas PAT and T2 were not detected. Good management practices of the silo-bags are necessary to achieve a hermetically sealed environment, without exchange of gases and water with the external environment during the storage period. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vanessa D Brito
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María P Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
15
|
Marchel M, Cieśliński H, Boczkaj G. Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127963. [PMID: 34896723 DOI: 10.1016/j.jhazmat.2021.127963] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvents (DESs) were described at the beginning of 21st century and they consist of a mixture of two or more solid components, which gives rise to a lower melting point compared to the starting materials. Over the years, DESs have proved to be a promising alternative to traditional organic solvents and ionic liquids (ILs) due to their low volatility, low inflammability, easy preparation, and usually low cost of compounds used in their preparation. All these properties encouraged researchers to use them in diverse fields and applications e.g., as extractants for biomolecules and solvents in pharmaceutical and cosmetic industries. Nevertheless, despite undeniable potential of DESs, there is still controversy about their toxicity. Besides the low number of studies on this topic, there are also some contradicting reports on biocompatibility of these solvents. Such misleading reports could be mainly attributed to the lack of well design standard protocol for DESs toxicity determination or the use of out-off-purpose methodology. Thus, to better apply DESs in green and sustainable chemistry, more studies on their impact on organisms at different trophic levels and the use of proper techniques are required. This review focuses on DESs toxicity towards microorganisms and is divided into three parts: The first part provides a brief general introduction to DESs, the second part discusses the methodologies used for assessment of DESs microbial toxicity and the obtained results, and finally in the third part the critical evaluation of the methods is provided, as well as suggestions and guidelines for future research.
Collapse
Affiliation(s)
- Mateusz Marchel
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Gdansk University of Technology, Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
16
|
Geml J, Arnold AE, Semenova-Nelsen TA, Nouhra ER, Drechsler-Santos ER, Góes-Neto A, Morgado LN, Ódor P, Hegyi B, Grau O, Ibáñez A, Tedersoo L, Lutzoni F. Community dynamics of soil-borne fungal communities along elevation gradients in neotropical and paleotropical forests. Mol Ecol 2022; 31:2044-2060. [PMID: 35080063 DOI: 10.1111/mec.16368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Because of their steep gradients in abiotic and biotic factors, mountains offer an ideal setting to illuminate the mechanisms that underlie patterns of species distributions and community assembly. We compared the composition of taxonomically and functionally diverse fungal communities in soils along five elevational gradients in mountains of the Neo- and Paleotropics (northern Argentina, southern Brazil, Panama, Malaysian Borneo, and Papua New Guinea). Both richness and composition of soil fungal communities reflect environmental factors, particularly temperature and soil pH, with some shared patterns among neotropical and paleotropical regions. Community dynamics are characterized by replacement of species along elevation gradients, implying a relatively narrow elevation range for most fungi, which appears to be driven by contrasting environmental preferences among both functional and taxonomic groups. For functional groups dependent on symbioses with plants (especially ectomycorrhizal fungi), the distribution of host plants drives richness and community composition, resulting in important differences in elevational patterns between neotropical and paleotropical montane communities. The pronounced compositional and functional turnover along elevation gradients implies that tropical montane forest fungi will be sensitive to climate change, resulting in shifts in composition and functionality over time.
Collapse
Affiliation(s)
- József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, H-3300, Eger, Hungary.,Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, U.S.A
| | - Tatiana A Semenova-Nelsen
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands
| | - Eduardo R Nouhra
- Multidisciplinary Institute of Plant Biology (IMBIV), CONICET, FCEFyN, National University of Córdoba, Córdoba, Córdoba, Argentina
| | | | - Aristóteles Góes-Neto
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luis N Morgado
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Péter Ódor
- Institute of Ecology and Botany, Centre for Ecological Research, 2163, Vácrátót, Hungary
| | - Balázs Hegyi
- Research and Development Centre, Eszterházy Károly Catholic University, H-3300, Eger, Hungary.,Doctoral School of Earth Science and Department for Landscape Protection and Environmental Geography, University of Debrecen, H-4002, Debrecen, Hungary
| | - Oriol Grau
- CREAF, Global Ecology Unit, 08193, Cerdanyola del Vallès, Catalonia, Spain.,Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ. Antilles, Univ. Guyane), Campus Agronomique, Kourou, French Guiana.,Spanish National Research Council (CSIC), Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain
| | - Alicia Ibáñez
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, U.S.A
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, 50411, Tartu, Estonia
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC, 27708, U.S.A
| |
Collapse
|
17
|
Yamauchi DH, Garcia Garces H, Teixeira MDM, Rodrigues GFB, Ullmann LS, Garcia Garces A, Hebeler-Barbosa F, Bagagli E. Soil Mycobiome Is Shaped by Vegetation and Microhabitats: A Regional-Scale Study in Southeastern Brazil. J Fungi (Basel) 2021; 7:587. [PMID: 34436126 PMCID: PMC8396882 DOI: 10.3390/jof7080587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
Soil is the principal habitat and reservoir of fungi that act on ecological processes vital for life on Earth. Understanding soil fungal community structures and the patterns of species distribution is crucial, considering climatic change and the increasing anthropic impacts affecting nature. We evaluated the soil fungal diversity in southeastern Brazil, in a transitional region that harbors patches of distinct biomes and ecoregions. The samples originated from eight habitats, namely: semi-deciduous forest, Brazilian savanna, pasture, coffee and sugarcane plantation, abandoned buildings, owls' and armadillos' burrows. Forty-four soil samples collected in two periods were evaluated by metagenomic approaches, focusing on the high-throughput DNA sequencing of the ITS2 rDNA region in the Illumina platform. Normalized difference vegetation index (NDVI) was used for vegetation cover analysis. NDVI values showed a linear relationship with both diversity and richness, reinforcing the importance of a healthy vegetation for the establishment of a diverse and complex fungal community. The owls' burrows presented a peculiar fungal composition, including high rates of Onygenales, commonly associated with keratinous animal wastes, and Trichosporonales, a group of basidiomycetous yeasts. Levels of organic matter and copper influenced all guild communities analyzed, supporting them as important drivers in shaping the fungal communities' structures.
Collapse
Affiliation(s)
- Danielle Hamae Yamauchi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| | - Hans Garcia Garces
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| | - Marcus de Melo Teixeira
- Center for Tropical Medicine, Faculty of Medicine, University of Brasília (UnB), Brasília 70910-900, DF, Brazil;
| | - Gabriel Fellipe Barros Rodrigues
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil;
| | - Leila Sabrina Ullmann
- Institute for Biotechnology, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18607-440, SP, Brazil;
| | - Adalberto Garcia Garces
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| | - Flavia Hebeler-Barbosa
- Laboratory of Molecular Biology, Medical School, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-687, SP, Brazil;
| | - Eduardo Bagagli
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| |
Collapse
|
18
|
Muneer MA, Huang X, Hou W, Zhang Y, Cai Y, Munir MZ, Wu L, Zheng C. Response of Fungal Diversity, Community Composition, and Functions to Nutrients Management in Red Soil. J Fungi (Basel) 2021; 7:jof7070554. [PMID: 34356933 PMCID: PMC8307627 DOI: 10.3390/jof7070554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
Soil fungi play a critical role in plant performance and soil nutrient cycling. However, the understanding of soil fungal community composition and functions in response to different nutrients management practices in red soils remains largely unknown. Here, we investigated the responses of soil fungal communities and functions under conventional farmer fertilization practice (FFP) and different nutrient management practices, i.e., optimization of NPK fertilizer (O) with soil conditioner (O + C), with lime and mushroom residue (O + L + M), and with lime and magnesium fertilizer (O + L + Mg). Illumina high-throughput sequencing was used for fungal identification, while the functional groups were inferred with FUNGuild. Nutrient management practices significantly raised the soil pH to 4.79–5.31 compared with FFP (3.69), and soil pH had the most significant effect (0.989 ***) on fungal communities. Predominant phyla, including Ascomycota, Basidiomycota, and Mortierellomycota were identified in all treatments and accounted for 94% of all fungal communities. The alpha diversity indices significantly increased under nutrients management practices compared with FFP. Co-occurrence network analysis revealed the keystone fungal species in the red soil, i.e., Ascomycota (54.04%), Basidiomycota (7.58%), Rozellomycota (4.55%), and Chytridiomycota (4.04%). FUNGuild showed that the relative abundance of arbuscular mycorrhizal fungi and ectomycorrhizal fungi was higher, while pathogenic fungi were lower under nutrient management practices compared with FFP. Our findings have important implications for the understanding of improvement of acidic soils that could significantly improve the soil fungal diversity and functioning in acidic soils.
Collapse
Affiliation(s)
- Muhammad Atif Muneer
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.M.); (X.H.); (W.H.); (Y.Z.); (L.W.)
| | - Xiaoman Huang
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.M.); (X.H.); (W.H.); (Y.Z.); (L.W.)
| | - Wei Hou
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.M.); (X.H.); (W.H.); (Y.Z.); (L.W.)
| | - Yadong Zhang
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.M.); (X.H.); (W.H.); (Y.Z.); (L.W.)
| | - Yuanyang Cai
- College of Plant Science, Jilin University, Changchun 130062, China;
| | - Muhammad Zeeshan Munir
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Liangquan Wu
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.M.); (X.H.); (W.H.); (Y.Z.); (L.W.)
| | - Chaoyuan Zheng
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.M.); (X.H.); (W.H.); (Y.Z.); (L.W.)
- Correspondence: ; Tel.: +86-177-5020-8499
| |
Collapse
|
19
|
Production of Mycophenolic Acid by a Newly Isolated Indigenous Penicillium glabrum. Curr Microbiol 2021; 78:2420-2428. [PMID: 34019120 PMCID: PMC8138112 DOI: 10.1007/s00284-021-02509-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/25/2021] [Indexed: 11/03/2022]
Abstract
Soil-occupant fungi produce a variety of mycotoxins as secondary metabolites, one of which is mycophenolic acid (MPA), an antibiotic and immunosuppressive agent. MPA is mainly produced by several species of Penicillium, especially Penicillium brevicompactum. Here, we present the first report of MPA production by a local strain belonging to Penicillium glabrum species. We screened ascomycete cultures isolated from moldy food and fruits, as well as soils, collected from different parts of Iran. MPA production of one hundred and forty Penicillium isolates was analyzed using HPLC. Three MPA producer isolates were identified, among which the most producer was subjected to further characterization, based on morphological and microscopic analysis, as well as molecular approach (ITS, rDNA and beta-tubulin gene sequences). The results revealed that the best MPA producer belongs to P. glabrum IBRC-M 30518, and can produce 1079 mg/L MPA in Czapek-Dox medium.
Collapse
|
20
|
Koňuchová M, Valík Ľ. Modelling the Radial Growth of Geotrichum candidum: Effects of Temperature and Water Activity. Microorganisms 2021; 9:532. [PMID: 33807629 PMCID: PMC7999232 DOI: 10.3390/microorganisms9030532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Modelling the growth of microorganisms in relation to environmental factors provides quantitative knowledge that can be used to predict their behaviour in foods. For this reason, the effects of temperature and water activity (aw) adjusted with NaCl on the surface growth of two isolates and one culture strain of Geotrichum candidum were studied. A dataset of growth parameters obtained from almost 600 growth curves was employed for secondary modelling with cardinal models (CMs). The theoretical minimal temperature resulting from the modelling of the mycelium proliferation rate ranged from -5.2 to -0.4 °C. Optimal and maximal temperatures were calculated and found to have narrow ranges of 25.4 to 28.0 °C and 34.2 to 37.6 °C, respectively. Cardinal aw values associated with radial growth (awmin from 0.948-0.960 and awopt from 0.992-0.993) confirmed the salt sensitivity of the species. Model goodness-of-fit was evaluated by the coefficient of determination R2, which ranged from 0.954 to 0.985, and RMSE, which ranged from 0.28 to 0.42. Substantially higher variability accompanied the lag time for growth modelling than the radial growth rate modelling despite the square root transformation of the reciprocal lag phase data (R2 = 0.685 to 0.808). Nevertheless, the findings demonstrate that the outputs of growth modelling can be applied to the quantitative evaluation of the roles of G. candidum in fresh cheese spoilage as well as the ripening of Camembert-type cheeses or various artisanal cheeses. Along with validation, the interactions with lactic acid bacteria can be included to improve the predictions of G. candidum in the future.
Collapse
Affiliation(s)
- Martina Koňuchová
- Department of Nutrition and Food Quality Assessment, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovakia;
| | | |
Collapse
|
21
|
Fusarium Species in Mangrove Soil in Northern Peninsular Malaysia and the Soil Physico-Chemical Properties. Microorganisms 2021; 9:microorganisms9030497. [PMID: 33652900 PMCID: PMC7996719 DOI: 10.3390/microorganisms9030497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium genus comprises important saprophytic and phytopathogenic fungi and is widespread in nature. The present study reports the occurrence of Fusarium spp. in soils from two mangrove forests in northern Peninsular Malaysia and analyzed physico-chemical properties of the mangrove soil. Based on TEF-1α sequences, nine Fusarium species were identified: Fusarium solani species complex (FSSC) (n = 77), Fusarium verticillioides (n = 20), Fusarium incarnatum (n = 10), Fusarium proliferatum (n = 7), Fusarium lateritium (n = 4), Fusarium oxysporum (n = 3), Fusarium rigidiuscula (n = 2), Fusarium chlamydosporum (n = 1), and Fusarium camptoceras (n = 1); FSSC isolates were the most prevalent. Phylogenetic analysis of the combined TEF-1α and ITS sequences revealed diverse phylogenetic affinities among the FSSC isolates and potentially new phylogenetic clades of FSSC. Soil analysis showed varied carbon content, pH, soil moisture, and salinity, but not nitrogen content, between sampling locations. Regardless of the physico-chemical properties, various Fusarium species were recovered from the mangrove soils. These were likely saprophytes; however, some were well-known plant pathogens and opportunistic human pathogens. Thus, mangrove soils might serve as inoculum sources for plant and human pathogenic Fusarium species. The present study demonstrates the occurrence of various Fusarium species in the extreme environment of mangrove soil, thereby contributing to the knowledge on species diversity in Fusarium.
Collapse
|
22
|
Zhang Z, Deng Q, Cao X, Zhou Y, Song C. Patterns of Sediment Fungal Community Dependent on Farming Practices in Aquaculture Ponds. Front Microbiol 2021; 12:542064. [PMID: 33679624 PMCID: PMC7933557 DOI: 10.3389/fmicb.2021.542064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Despite fungi playing an important role in nutrient decomposition in aquatic ecosystems and being considered as vital actors in the ecological processes, they received limited attention regarding the community in aquaculture pond sediments which are extremely important and typically disturbed habitats. Using an ITS1 region of fungal rDNA, this study aimed to investigate sediment fungal communities in fish, crab, and crayfish ponds for decades of farming practices at representative aquaculture regions in the middle Yangtze River basin, China. We then aimed to explore the community patterns associated with species-based farming practices in the ponds at 18 farms. The results showed that the pond sediments harbored more than 9,000 operational taxonomic units. The sediments had significantly higher alpha diversity in crab ponds compared to that in fish and crayfish ponds. The fungal phyla largely belonged to Ascomycota and Chytridiomycota, and the dominance of Rozellomycota over Basidiomycota and Aphelidiomycota was observed. The majority of sediment fungal members were ascribed to unclassified fungi, with higher proportions in fish ponds than crab and crayfish ponds. Further, the fungal communities were markedly distinct among the three types of ponds, suggesting divergent patterns of fungal community assemblages caused by farming practices in aquaculture ponds. The community diversity and structure were closely correlated to sediment properties, especially sediment carbon content and pH. Thus, the distribution and pattern of fungal communities in the sediments appear to primarily depend on species-based farming practices responsible for the resulting sediment carbon content and pH in aquaculture ponds. This study provides a detailed snapshot and extension of understanding fungal community structure and variability in pond ecosystems, highlighting the impacts of farming practices on the assembly and succession of sediment fungal communities in aquaculture ponds.
Collapse
Affiliation(s)
- Zhimin Zhang
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qinghui Deng
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuyun Cao
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiyong Zhou
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunlei Song
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
23
|
Lei H, Liu A, Hou Q, Zhao Q, Guo J, Wang Z. Diversity patterns of soil microbial communities in the Sophora flavescens rhizosphere in response to continuous monocropping. BMC Microbiol 2020; 20:272. [PMID: 32867674 PMCID: PMC7457492 DOI: 10.1186/s12866-020-01956-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/23/2020] [Indexed: 12/23/2022] Open
Abstract
Background Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated. Results In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens. As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples. Conclusions Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.
Collapse
Affiliation(s)
- Haiying Lei
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Ake Liu
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Qinwen Hou
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Qingsong Zhao
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Jia Guo
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, Shanxi, 046011, P. R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi, Shanxi, 046011, P. R. China.
| |
Collapse
|
24
|
Shen C, Gunina A, Luo Y, Wang J, He JZ, Kuzyakov Y, Hemp A, Classen AT, Ge Y. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environ Microbiol 2020; 22:3287-3301. [PMID: 32436332 DOI: 10.1111/1462-2920.15090] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/17/2020] [Indexed: 11/28/2022]
Abstract
Microbial elevational diversity patterns have been extensively studied, but their shaping mechanisms remain to be explored. Here, we examined soil bacterial and fungal diversity and community compositions across a 3.4 km elevational gradient (consists of five elevations) on Mt. Kilimanjaro located in East Africa. Bacteria and fungi had different diversity patterns across this extensive mountain gradient-bacterial diversity had a U shaped pattern while fungal diversity monotonically decreased. Random forest analysis revealed that pH (12.61% importance) was the most important factor affecting bacterial diversity, whereas mean annual temperature (9.84% importance) had the largest impact on fungal diversity, which was consistent with results obtained from mixed-effects model. Meanwhile, the diversity patterns and drivers of those diversity patterns differ among taxonomic groups (phyla/classes) within bacterial or fungal communities. Taken together, our study demonstrated that bacterial and fungal diversity and community composition responded differently to climate and edaphic properties along an extensive mountain gradient, and suggests that the elevational diversity patterns across microbial groups are determined by distinct environmental variables. These findings enhanced our understanding of the formation and maintenance of microbial diversity along elevation, as well as microbial responses to climate change in montane ecosystems.
Collapse
Affiliation(s)
- Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anna Gunina
- Department of Environmental Chemistry, University of Kassel, Nordbahnhof Strasse 1a, Witzenhausen, 32213, Germany
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jianjun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yakov Kuzyakov
- Department of Environmental Chemistry, University of Kassel, Nordbahnhof Strasse 1a, Witzenhausen, 32213, Germany.,Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, 37077, Germany.,Department of Agricultural Soil Science, University of Göttingen, Göttingen, 37077, Germany.,Institute of Environmental Sciences, Kazan Federal University, Kazan, 420049, Russia.,Agro-Technological Institute, RUDN University, Moscow, 117198, Russia
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Universitӓtsstraße 30, Bayreuth, 95440, Germany
| | - Aimée T Classen
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA.,Gund Institute for Environment, University of Vermont, Burlington, VT, 05405, USA
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Xie F, Ma A, Zhou H, Liang Y, Yin J, Ma K, Zhuang X, Zhuang G. Revealing Fungal Communities in Alpine Wetlands Through Species Diversity, Functional Diversity and Ecological Network Diversity. Microorganisms 2020; 8:E632. [PMID: 32349397 PMCID: PMC7284966 DOI: 10.3390/microorganisms8050632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
The biodiversity of fungi, which are extremely important in maintaining the ecosystem balance in alpine lakeside wetlands, has not been fully studied. In this study, we investigated the fungal communities of three lakeside wetlands from different altitudes in the Qinghai-Tibet Plateau and its edge. The results showed that the fungi of the alpine lakeside wetland had higher species diversity. Functional annotation of fungi by FUNGild software showed that saprophytic fungi were the most abundant type in all three wetlands. Further analysis of the microbial phylogenetic molecular ecological network (pMEN) showed that saprophytic fungi are important species in the three wetland fungal networks, while symbiotic fungi and pathotrophic fungi have different roles in the fungal networks in different wetlands. Community diversity was high in all three lakeside wetlands, but there were significant differences in the composition, function and network structure of the fungal communities. Contemporary environmental conditions (soil properties) and historical contingencies (geographic sampling location) jointly determine fungi community diversity in this study. These results expand our knowledge of fungal biodiversity in the alpine lakeside wetlands.
Collapse
Affiliation(s)
- Fei Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (F.X.); (H.Z.); (Y.L.); (J.Y.); (K.M.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Arikan EB, Isik Z, Bouras HD, Dizge N. Investigation of immobilized filamentous fungi for treatment of real textile industry wastewater using up flow packed bed bioreactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
The Variation of the Soil Bacterial and Fungal Community Is Linked to Land Use Types in Northeast China. SUSTAINABILITY 2019. [DOI: 10.3390/su11123286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
From the west to the east across Northeast China, there are three major land use types, ranging from agricultural-pastoral interlaced land, crop land, and forest land. The soil microbial community of each land use type has been reported; however, a thorough comparison of the soil microbial ecology of soils from each land use type has not been made. In the current study, soil samples from agricultural-pastoral land, crop land, and an artificial economic forest were collected from Tongliao, Siping, and Yanji, respectively. The structure and composition of bacterial and fungal communities was investigated by a next generation sequencing protocol, and soil physicochemical properties were also determined. Pair-wise analysis showed some soil parameters were significantly different between agricultural-pastoral land and crop land or forest land, while those soil parameters shared more similarities in crop land and forest land soils. Principal coordinates analysis and dissimilarity analyses jointly indicated that bacterial and fungal communities from each sampling site were quite different. Canonical correspondence analysis and a partial Mantel test showed that the community structures of bacteria and fungi were mainly affected by clay, pH, water soluble organic carbon (WSOC), and total soluble nitrogen (TN). Co-occurrence network analysis and the associated topological features revealed that the network of the bacterial community was more complex than that of the fungal community. Clay, pH, WSOC, and NH4+-N were major drivers and pH and WSOC were major factors in shaping the network of the bacterial community and the fungal community, respectively. In brief, our results indicated that microbial diversity, co-occurrence network patterns, and their shaping factors differed greatly among soils of distinct land use types in Northeast China. Our data also provided insights into the sustainable use of soils under different land use types.
Collapse
|
28
|
Geml J. Soil fungal communities reflect aspect-driven environmental structuring and vegetation types in a Pannonian forest landscape. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
30
|
Ogunade IM, Martinez-Tuppia C, Queiroz OCM, Jiang Y, Drouin P, Wu F, Vyas D, Adesogan AT. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J Dairy Sci 2018; 101:4034-4059. [PMID: 29685276 DOI: 10.3168/jds.2017-13788] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/28/2017] [Indexed: 01/03/2023]
Abstract
Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins.
Collapse
Affiliation(s)
- I M Ogunade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - C Martinez-Tuppia
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - O C M Queiroz
- Chr Hansen, Animal Health and Nutrition, Chr. Hansen, Buenos Aires 1107, Argentina
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - P Drouin
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - F Wu
- Department of Food Science and Human Nutrition, Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing 48824
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
31
|
Lian T, Mu Y, Ma Q, Cheng Y, Gao R, Cai Z, Jiang B, Nian H. Use of sugarcane-soybean intercropping in acid soil impacts the structure of the soil fungal community. Sci Rep 2018; 8:14488. [PMID: 30262899 PMCID: PMC6160455 DOI: 10.1038/s41598-018-32920-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/18/2018] [Indexed: 11/28/2022] Open
Abstract
Although sugarcane-soybean intercropping has been widely used to control disease and improve productivity in the field, the response of soil fungal communities to intercropping has not been fully understood. In this study, the rhizosphere fungal communities of sugarcane and soybean under monoculture and intercropping systems were investigated using Illumina MiSeq sequencing of ITS gene. Intercropping decreased the alpha-diversity and changed fungal community composition compared to monocultures. Taxonomic analyses showed that the dominant phyla were Ascomycota, Zygomycota and Basidiomycota. The abundance of Ascomycota decreased in intercropping sugarcane-grown soil compared to monoculture, while it increased in soybean-grown soil in the intercropping system. In addition, intercropping increased the abundance of important fungal genera, such as Trichoderma, Hypocreales and Fusarium but decreased the relative abundance of Gibberella and Chaetomium. The results of canonical correspondence analysis and automatic linear modelling indicated that fungal community compositions were closely associated with soil parameters such as total nitrogen (TN), soil organic matter (SOC), pH and NO3-, which suggests that the impacts of intercropping on the soil fungal community are linked to the alteration of soil chemical properties.
Collapse
Affiliation(s)
- Tengxiang Lian
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yinghui Mu
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Rui Gao
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhandong Cai
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Bin Jiang
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
32
|
Ma M, Jiang X, Wang Q, Ongena M, Wei D, Ding J, Guan D, Cao F, Zhao B, Li J. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. Microbiologyopen 2018; 7:e00597. [PMID: 29573192 PMCID: PMC6182557 DOI: 10.1002/mbo3.597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 11/07/2022] Open
Abstract
How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition.
Collapse
Affiliation(s)
- Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, China
| | - Qingfeng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Marc Ongena
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Dan Wei
- The Institute of Soil Fertility and Environmental Sources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jianli Ding
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
33
|
He J, Tedersoo L, Hu A, Han C, He D, Wei H, Jiao M, Anslan S, Nie Y, Jia Y, Zhang G, Yu G, Liu S, Shen W. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol Ecol 2017; 93:3916685. [PMID: 28854678 DOI: 10.1093/femsec/fix069] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/16/2017] [Indexed: 11/14/2022] Open
Abstract
Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests.
Collapse
Affiliation(s)
- Jinhong He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China.,Department of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leho Tedersoo
- Natural History Museum, Tartu University, 14A Ravila, Tartu 50411, Estonia
| | - Ang Hu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Conghai Han
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Min Jiao
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Sten Anslan
- Natural History Museum, Tartu University, 14A Ravila, Tartu 50411, Estonia
| | - Yanxia Nie
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Yongxia Jia
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Gengxin Zhang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shirong Liu
- Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Chinese Academy of Forestry, Beijing 100091, China
| | - Weijun Shen
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
34
|
Ochoa-Velasco CE, Navarro-Cruz AR, Vera-López O, Palou E, Avila-Sosa R. Growth modeling to control (in vitro) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol. Rev Argent Microbiol 2017; 50:70-74. [PMID: 28947087 DOI: 10.1016/j.ram.2016.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to evaluate the antifungal activity (in vitro) of thymol and carvacrol alone or in mixtures against Fusarium verticillioides and Rhizopus stolonifer, and to obtain primary growth models. Minimal inhibitory concentration (MIC) was evaluated with fungal radial growth with thymol or carvacrol concentrations (0-1600mg/l). Mixtures were evaluated using concentrations below MIC values. Radial growth curves were described by the modified Gompertz equation. MIC values of carvacrol were 200mg/l for both fungi. Meanwhile, MIC values of thymol were between 500 and 400mg/l for F. verticillioides and R. stolonifer, respectively. A synergistic effect below MIC concentrations for carvacrol (100mg/l) and thymol (100-375mg/l) was observed. Significant differences (p<0.05) between the Gompertz parameters for the antimicrobial concentrations and their tested mixtures established an inverse relationship between antimicrobial concentration and mycelial development of both fungi. Modified Gompertz parameters can be useful to determine fungistatic concentrations.
Collapse
Affiliation(s)
- Carlos E Ochoa-Velasco
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, 72420 Puebla, Puebla, Mexico
| | - Addí R Navarro-Cruz
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, 72420 Puebla, Puebla, Mexico
| | - Obdulia Vera-López
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, 72420 Puebla, Puebla, Mexico
| | - Enrique Palou
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Pue. 72810, Mexico
| | - Raul Avila-Sosa
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, 72420 Puebla, Puebla, Mexico.
| |
Collapse
|
35
|
Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017. [PMCID: PMC5486322 DOI: 10.3390/ijerph14060636] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.
Collapse
|
36
|
Sharma D, Garlapat VK, Goel G. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered 2017; 7:88-97. [PMID: 26941214 DOI: 10.1080/21655979.2016.1160190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Characterization and production of efficient lignocellulytic enzyme cocktails for biomass conversion is the need for biofuel industry. The present investigation reports the modeling and optimization studies of lignocellulolytic enzyme cocktail production by Cotylidia pannosa under submerged conditions. The predominant enzyme activities of cellulase, xylanase and laccase were produced in the cocktail through submerged conditions using wheat bran as a substrate. A central composite design approach was utilized to model the production process using temperature, pH, incubation time and agitation as input variables with the goal of optimizing the output variables namely cellulase, xylanase and laccase activities. The effect of individual, square and interaction terms on cellulase, xylanase and laccase activities were depicted through the non-linear regression equations with significant R(2) and P-values. An optimized value of 20 U/ml, 17 U/ml and 13 U/ml of cellulase, xylanase and laccase activities, respectively, were obtained with a media pH of 5.0 in 77 h at 31C, 140 rpm using wheatbran as a substrate. Overall, the present study introduces a fungal strain, capable of producing lignocellulolytic enzyme cocktail for subsequent applications in biofuel industry.
Collapse
Affiliation(s)
- Deepika Sharma
- a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India
| | - Vijay Kumar Garlapat
- a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India
| | - Gunjan Goel
- a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India
| |
Collapse
|
37
|
Gleeson D, Mathes F, Farrell M, Leopold M. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1407-1418. [PMID: 27432724 DOI: 10.1016/j.scitotenv.2016.05.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
The Critical Zone is defined as the thin, permeable layer from the tops of the trees to the bottom of the bedrock that sustains terrestrial life on Earth. The geometry and shape of the various weathering zones are known as the critical zone architecture. At the centre of the Critical Zone are soils and the microorganisms that inhabit them. In Western Australia, the million-year-old stable weathering history and more recent lateral erosion during the past hundreds of thousands of years have created a geomorphic setting where deep weathering zones are now exposed on the surface along the flanks of many lateritic hills. These old weathering zones provide diverse physical and chemical properties that influence near surface pedologic conditions and thus likely shape current surface microbiology. Here, we present data derived from a small lateritic hill on the UWA Farm Ridgefield. Spatial soil sampling revealed the contrasting distribution patterns of simple soil parameters such as pH (CaCl2) and electric conductivity. These are clearly linked with underlying changes of the critical zone architecture and show a strong contrast with low values of pH3.3 at the top of the hill to pH5.3 at the bottom. These parameters were identified as major drivers of microbial spatial variability in terms of bacterial and archaeal community composition but not abundance. In addition, we used sensitive (14)C labelling to assess turnover of three model organic nitrogen compounds - an important biogeochemical functional trait relating to nutrient availability. Though generally rapid and in the order of rates reported elsewhere (t½<5h), some points in the sampling area showed greatly reduced turnover rates (t½>10h). In conclusion, we have shown that the weathering and erosion history of ancient Western Australia affects the surface pedology and has consequences for microbial community structure and function.
Collapse
Affiliation(s)
- Deirdre Gleeson
- Soil Biology and Molecular Ecology Group, School of Earth and Environment and The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Falko Mathes
- Soil Biology and Molecular Ecology Group, School of Earth and Environment and The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark Farrell
- Soil Biology and Molecular Ecology Group, School of Earth and Environment and The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; CSIRO Agriculture, PMB2, Glen Osmond, SA 5064, Australia
| | - Matthias Leopold
- Soil Matrix Group, School of Earth and Environment and The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
38
|
Belbahi A, Leguerinel I, Méot JM, Loiseau G, Madani K, Bohuon P. Modelling the effect of temperature, water activity and carbon dioxide on the growth of Aspergillus niger and Alternaria alternata isolated from fresh date fruit. J Appl Microbiol 2016; 121:1685-1698. [PMID: 27626891 DOI: 10.1111/jam.13296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/10/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
AIMS To quantify and model the combined effects of temperature (T) (10-40°C), water activity (aw ) (0·993-0·818) and CO2 concentration (9·4-55·1%, v/v) on the growth rate of Aspergillus niger and Alternaria alternata that cause spoilage during the storage and packaging of dates. METHODS AND RESULTS The effects of environmental factors were studied using the γ-concept. Cardinal models were used to quantify the effect of studied environmental factors on the growth rates. Firstly, the cardinal parameters were estimated independently from experiments carried out on potato dextrose agar using a monofactorial design. Secondly, model performance evaluation was conducted on pasteurized date paste. The boundary between growth and no-growth was predicted using a deterministic approach. Aspergillus niger displayed a faster growth rate and higher tolerance to low aw than Al. alternata, which in turn proved more resistant to CO2 concentration. Minimal cardinal parameters of T and aw were lower than those reported in the literature. CONCLUSIONS The combination of the aw and CO2 effects significantly affected As. niger and Al. alternata growth. The γ-concept model overestimated growth rates, however, it is optimistic and provides somewhat conservative predictions. SIGNIFICANCE AND IMPACT OF THE STUDY The developed model provides a decision support tool for the choice of the date fruit conservation mode (refrigeration, drying, modified atmospheric packaging or their combination) using T, aw and CO2 as environmental factors.
Collapse
Affiliation(s)
- A Belbahi
- Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - I Leguerinel
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université de Brest, Quimper, France
| | - J-M Méot
- Food Process Engineering Research Unit, CIRAD, UMR QualiSud, Montpellier, France
| | - G Loiseau
- Food Process Engineering Research Unit, Montpellier SupAgro UMR QualiSud, Montpellier, France
| | - K Madani
- Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - P Bohuon
- Food Process Engineering Research Unit, Montpellier SupAgro UMR QualiSud, Montpellier, France
| |
Collapse
|
39
|
Kalai S, Anzala L, Bensoussan M, Dantigny P. Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of Penicillium camemberti and Penicillium roqueforti conidia. Int J Food Microbiol 2016; 240:124-130. [PMID: 27090813 DOI: 10.1016/j.ijfoodmicro.2016.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
In this study, the influence of environmental factors on the germination time of Penicillium camemberti and Penicillium roqueforti conidia was evaluated. To do so, the effects of i/temperature, pH, water activity, and ii/organic acids were determined using models based on i/cardinal values, and ii/minimum inhibitory concentration (MIC) respectively. Cardinal values for germination of conidia were not observed to be species dependent. Minimum temperatures were estimated to be below the freezing point, with an optimum of 26.9°C, and a maximum of 33.5°C. For both species, minimal and optimal aw values were found to be 0.83 and 0.99, respectively, while for pH these values corresponded to 2.9, and 5.6. MIC values could not be determined for lactic acid because conidia of both species germinated in up to 1M concentrations, the highest concentration tested. At pH5.6, P. camemberti (MIC=0.197M) was more sensitive to propionic acid than P. roqueforti (MIC=0.796M).
Collapse
Affiliation(s)
- Safaa Kalai
- UMR PAM A 02.102, Laboratoire des Procédés Microbiologiques et Biotechnologiques, Université de Bourgogne-Franche Comté, Agro-Sup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Lexane Anzala
- UMR PAM A 02.102, Laboratoire des Procédés Microbiologiques et Biotechnologiques, Université de Bourgogne-Franche Comté, Agro-Sup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Maurice Bensoussan
- UMR PAM A 02.102, Laboratoire des Procédés Microbiologiques et Biotechnologiques, Université de Bourgogne-Franche Comté, Agro-Sup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Philippe Dantigny
- UMR PAM A 02.102, Laboratoire des Procédés Microbiologiques et Biotechnologiques, Université de Bourgogne-Franche Comté, Agro-Sup Dijon, 1 Esplanade Erasme, 21000 Dijon, France; Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
40
|
Dagnas S, Onno B, Membré JM. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH. Int J Food Microbiol 2014; 186:95-104. [DOI: 10.1016/j.ijfoodmicro.2014.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/07/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
|
41
|
Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 2014; 23:2452-72. [PMID: 24762095 DOI: 10.1111/mec.12765] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/01/2022]
Abstract
The Yungas, a system of tropical and subtropical montane forests on the eastern slopes of the Andes, are extremely diverse and severely threatened by anthropogenic pressure and climate change. Previous mycological works focused on macrofungi (e.g. agarics, polypores) and mycorrhizae in Alnus acuminata forests, while fungal diversity in other parts of the Yungas has remained mostly unexplored. We carried out Ion Torrent sequencing of ITS2 rDNA from soil samples taken at 24 sites along the entire latitudinal extent of the Yungas in Argentina. The sampled sites represent the three altitudinal forest types: the piedmont (400-700 m a.s.l.), montane (700-1500 m a.s.l.) and montane cloud (1500-3000 m a.s.l.) forests. The deep sequence data presented here (i.e. 4 108 126 quality-filtered sequences) indicate that fungal community composition correlates most strongly with elevation, with many fungi showing preference for a certain altitudinal forest type. For example, ectomycorrhizal and root endophytic fungi were most diverse in the montane cloud forests, particularly at sites dominated by Alnus acuminata, while the diversity values of various saprobic groups were highest at lower elevations. Despite the strong altitudinal community turnover, fungal diversity was comparable across the different zonal forest types. Besides elevation, soil pH, N, P, and organic matter contents correlated with fungal community structure as well, although most of these variables were co-correlated with elevation. Our data provide an unprecedented insight into the high diversity and spatial distribution of fungi in the Yungas forests.
Collapse
Affiliation(s)
- József Geml
- Naturalis Biodiversity Center, Darwinweg 2, P.O. Box 9517, 2300, RA Leiden, the Netherlands; Faculty of Science, Leiden University, P.O. Box 9502, 2300, RA Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS One 2014; 9:e99852. [PMID: 24937200 PMCID: PMC4061046 DOI: 10.1371/journal.pone.0099852] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/17/2014] [Indexed: 11/19/2022] Open
Abstract
Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought.
Collapse
|
43
|
Liu S, Wang F, Xue K, Sun B, Zhang Y, He Z, Van Nostrand JD, Zhou J, Yang Y. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry. Environ Microbiol 2014; 17:566-76. [DOI: 10.1111/1462-2920.12398] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Shanshan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control; School of Environment; Tsinghua University; Beijing China
| | - Feng Wang
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science; Chinese Academy of Sciences; Nanjing China
- University of Chinese Academy of Sciences; Beijing China
| | - Kai Xue
- Institute for Environmental Genomics; Department Microbiology and Plant Science; University of Oklahoma; Norman OK USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science; Chinese Academy of Sciences; Nanjing China
| | - Yuguang Zhang
- Institute of Forestry Ecology, Environment and Protection; Key Laboratory of Forest Ecology and Environment of State Forestry Administration; Chinese Academy of Forestry; Beijing China
| | - Zhili He
- Institute for Environmental Genomics; Department Microbiology and Plant Science; University of Oklahoma; Norman OK USA
| | - Joy D. Van Nostrand
- Institute for Environmental Genomics; Department Microbiology and Plant Science; University of Oklahoma; Norman OK USA
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control; School of Environment; Tsinghua University; Beijing China
- Institute for Environmental Genomics; Department Microbiology and Plant Science; University of Oklahoma; Norman OK USA
- Earth Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control; School of Environment; Tsinghua University; Beijing China
| |
Collapse
|
44
|
Knob A, Beitel SM, Fortkamp D, Terrasan CRF, de Almeida AF. Production, purification, and characterization of a major Penicillium glabrum xylanase using Brewer's spent grain as substrate. BIOMED RESEARCH INTERNATIONAL 2013; 2013:728735. [PMID: 23762855 PMCID: PMC3666430 DOI: 10.1155/2013/728735] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/20/2013] [Indexed: 11/25/2022]
Abstract
In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production by Penicillium glabrum using brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained when P. glabrum was grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase from P. glabrum was purified to homogeneity by a rapid and inexpensive procedure, using ammonium sulfate fractionation and molecular exclusion chromatography. SDS-PAGE analysis revealed one band with estimated molecular mass of 18.36 kDa. The optimum activity was observed at 60 °C, in pH 3.0. The enzyme was very stable at 50 °C, and high pH stability was verified from pH 2.5 to 5.0. The ion Mn(2+) and the reducing agents β -mercaptoethanol and DTT enhanced xylanase activity, while the ions Hg(2+), Zn(2+), and Cu(2+) as well as the detergent SDS were strong inhibitors of the enzyme. The use of brewer's spent grain as substrate for xylanase production cannot only add value and decrease the amount of this waste but also reduce the xylanase production cost.
Collapse
Affiliation(s)
- Adriana Knob
- Department of Biological Sciences, Midwest State University, Camargo Varela de Sá Street 03, 85040-080 Guarapuava, PR, Brazil
- Department of Biology, Midwest State University, Camargo Varela de Sá Street 03, 85040-080 Guarapuava, PR, Brazil
| | - Susan Michelz Beitel
- Department of Biological Sciences, Midwest State University, Camargo Varela de Sá Street 03, 85040-080 Guarapuava, PR, Brazil
| | - Diana Fortkamp
- Department of Biological Sciences, Midwest State University, Camargo Varela de Sá Street 03, 85040-080 Guarapuava, PR, Brazil
| | - César Rafael Fanchini Terrasan
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, SP-310, 13565-905 São Carlos, SP, Brazil
| | - Alex Fernando de Almeida
- Department of Biochemistry and Microbiology, São Paulo State University, 24-A Avenue 1515, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
45
|
Abstract
This article is a review of how to quantify mold spoilage and consequently shelf life of a food product. Mold spoilage results from having a product contaminated with fungal spores that germinate and form a visible mycelium before the end of the shelf life. The spoilage can be then expressed as the combination of the probability of having a product contaminated and the probability of mold growth (germination and proliferation) up to a visible mycelium before the end of the shelf life. For products packed before being distributed to the retailers, the probability of having a product contaminated is a function of factors strictly linked to the factory design, process, and environment. The in-factory fungal contamination of a product might be controlled by good manufacturing hygiene practices and reduced by particular processing practices such as an adequate air-renewal system. To determine the probability of mold growth, both germination and mycelium proliferation can be mathematically described by primary models. When mold contamination on the product is scarce, the spores are spread on the product and more than a few spores are unlikely to be found at the same spot. In such a case, models applicable for a single spore should be used. Secondary models can be used to describe the effect of intrinsic and extrinsic factors on either the germination or proliferation of molds. Several polynomial models and gamma-type models quantifying the effect of water activity and temperature on mold growth are available. To a lesser extent, the effect of pH, ethanol, heat treatment, addition of preservatives, and modified atmospheres on mold growth also have been quantified. However, mold species variability has not yet been properly addressed, and only a few secondary models have been validated for food products. Once the probability of having mold spoilage is calculated for various shelf lives and product formulations, the model can be implemented as part of a risk management decision tool.
Collapse
Affiliation(s)
- Stéphane Dagnas
- L'Université Nantes Angers Le Mans, Oniris, Nantes F-44322 cédex 3, France
| | | |
Collapse
|
46
|
Pereira e Silva MC, Dias ACF, van Elsas JD, Salles JF. Spatial and temporal variation of archaeal, bacterial and fungal communities in agricultural soils. PLoS One 2012; 7:e51554. [PMID: 23284712 PMCID: PMC3527478 DOI: 10.1371/journal.pone.0051554] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. METHODOLOGY/PRINCIPAL FINDINGS In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. CONCLUSIONS Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities.
Collapse
Affiliation(s)
- Michele C Pereira e Silva
- Department of Microbial Ecology, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Ciccarone C, Petruzzi L, Bevilacqua A, Sinigaglia M. Qualitative survey of fungi isolated from wine-aging environment. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.02952.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Gougouli M, Kalantzi K, Beletsiotis E, Koutsoumanis KP. Development and application of predictive models for fungal growth as tools to improve quality control in yogurt production. Food Microbiol 2011; 28:1453-62. [DOI: 10.1016/j.fm.2011.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
49
|
Nevarez L, Vasseur V, Debaets S, Barbier G. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould. Fungal Biol 2010; 114:490-7. [PMID: 20943160 DOI: 10.1016/j.funbio.2010.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/29/2009] [Accepted: 03/24/2010] [Indexed: 11/18/2022]
Abstract
Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.
Collapse
|
50
|
Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions. Int J Food Microbiol 2010; 140:254-62. [DOI: 10.1016/j.ijfoodmicro.2010.03.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/05/2010] [Accepted: 03/12/2010] [Indexed: 11/17/2022]
|