1
|
Atunnise AK, Bodede O, Adewuyi A, Maharaj V, Prinsloo G, Salau BA. Metabolomics and in-vitro bioactivities studies of fermented Musa paradisiaca pulp: A potential alpha-amylase inhibitor. Heliyon 2024; 10:e24659. [PMID: 38317983 PMCID: PMC10839803 DOI: 10.1016/j.heliyon.2024.e24659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
The in-vitro synthesis of bio-compounds via fermentation is a promising route for bioactive molecules intended for disease control and management. Therefore, this study evaluated the effect of fermentation on the antioxidants, antihyperglycemic and anti-inflammatory properties and the resultant chemometric phytochemical profiles of unripe plantain fruits. The results revealed that Escherichia coli and Propionibacterium spp. are suspected as the key fermenters. The E coli showed negative results to the pathogenicity test; Propionibacterium appeared to be opportunistic. A significant increase in the total polyphenols and protein and decreased flavonoids was recorded in the phytochemical profile of the methanolic extract of the fermented unripe plantain pulp; however, the ascorbic acid content was not significantly altered. The 1H NMR fingerprint showed that there is a closely related chemical shift among the shorter fermentation time (days 2-6) and the unfermented, while the more extended fermentation periods (days 7-12) with enhanced bioactivities were closely related based on the chemometrics analyses. Furthermore, the UPLC-QTOF-MS analysis annotated the presence of bioactive compounds in the day-9 fermented sample: polyhydroxy glucose conjugates (3-Methoxy-4-hydroxyphenyl 6-O-(3,4,5-trihydroxybenzoyl)-beta-D-glucopyranoside), short chain peptide (leucyl-glycyl-glycine), amino acid derivatives (4-Aminophenylalanine, and N-Acetylhistidine), linear and cyclic fatty acid derivatives (palmitoyl putrescine, ricinoleic acid, phytosphingosine, gabalid, rubrenoic acid, 2-aminocyclopentanecarboxylic and cystodienioc acid). The synergistic effect of these newly formed compounds and the increase in the phenolic content of the day-9 fermented unripe plantain may account for its more potent antioxidant, anti-inflammatory and antihyperglycemic activity. Therefore, the products obtained from the day 9 fermentation of unripe plantain pulp may serve as potential nutraceutical agents against gastro-enteric sugar digestion and absorption and sugar-induced oxidative stress, inflammation and metabolic disease.
Collapse
Affiliation(s)
| | - Olusola Bodede
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Pretoria, 0028, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Florida, 1710, South Africa
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Adewale Adewuyi
- Department of Chemical Sciences, Redeemer's University, Ede, Osun state, Nigeria
| | - Vinesh Maharaj
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Pretoria, 0028, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida, 1710, South Africa
| | | |
Collapse
|
2
|
Lunger C, Shen Z, Holcombe H, Mannion AJ, Dzink-Fox J, Kurnick S, Feng Y, Muthupalani S, Carrasco SE, Wilson KT, Peek RM, Piazuelo MB, Morgan DR, Armijo AL, Mammoliti M, Wang TC, Fox JG. Gastric coinfection with thiopeptide-positive Cutibacterium acnes decreases FOXM1 and pro-inflammatory biomarker expression in a murine model of Helicobacter pylori-induced gastric cancer. Microbiol Spectr 2024; 12:e0345023. [PMID: 38014984 PMCID: PMC10783005 DOI: 10.1128/spectrum.03450-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE H. pylori infects half of the world population and is the leading cause of gastric cancer. We previously demonstrated that gastric cancer risk is associated with gastric microbiota. Specifically, gastric urease-positive Staphylococcus epidermidis and Streptococcus salivarius had contrasting effects on H. pylori-associated gastric pathology and immune responses in germ-free INS-GAS mice. As gastritis progresses to gastric cancer, the oncogenic transcription factor Foxm1 becomes increasingly expressed. In this study, we evaluated the gastric commensal C. acnes, certain strains of which produce thiopeptides that directly inhibit FOXM1. Thiopeptide-positive C. acnes was isolated from Nicaraguan patient gastric biopsies and inoculated into germ-free INS-GAS mice with H. pylori. We, therefore, asked whether coinfection with C. acnes expressing thiopeptide and H. pylori would decrease gastric Foxm1 expression and pro-inflammatory cytokine mRNA and protein levels. Our study supports the growing literature that specific non-H. pylori gastric bacteria affect inflammatory and cancer biomarkers in H. pylori pathogenesis.
Collapse
Affiliation(s)
- Courtney Lunger
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hilda Holcombe
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anthony J. Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Susanna Kurnick
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sebastian E. Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas R. Morgan
- Division of Gastroenterology and Hepatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amanda L. Armijo
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Melissa Mammoliti
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Timothy C. Wang
- Division of Gastroenterology and Irvine Cancer Research Center, Columbia University, New York, New York, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Li Y, Rao G, Zhu G, Cheng C, Yuan L, Li C, Gao J, Tang J, Wang Z, Li W. Dysbiosis of lower respiratory tract microbiome are associated with proinflammatory states in non-small cell lung cancer patients. Thorac Cancer 2024; 15:111-121. [PMID: 38041547 PMCID: PMC10788479 DOI: 10.1111/1759-7714.15166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The lung has a sophisticated microbiome, and respiratory illnesses are greatly influenced by the lung microbiota. Despite the fact that numerous studies have shown that lung cancer patients have a dysbiosis as compared to healthy people, more research is needed to explore the association between the microbiota dysbiosis and immune profile within the tumor microenvironment (TME). METHODS In this study, we performed metagenomic sequencing of tumor and normal tissues from 61 non-small cell lung cancer (NSCLC) patients and six patients with other lung diseases. In order to characterize the impact of the microbes in TME, the cytokine concentrations of 24 lung tumor and normal tissues were detected using a multiple cytokine panel. RESULTS Our results showed that tumors had lower microbiota diversity than the paired normal tissues, and the microbiota of NSCLC was enriched in Proteobacteria, Firmicutes, and Actinobacteria. In addition, proinflammatory cytokines such as IL-8, MIF, TNF- α, and so on, were significantly upregulated in tumor tissues. CONCLUSION We discovered a subset of bacteria linked to host inflammatory signaling pathways and, more precisely, to particular immune cells. We determined that lower airway microbiome dysbiosis may be linked to the disruption of the equilibrium of the immune system causing lung inflammation. The spread of lung cancer may be linked to specific bacteria.
Collapse
Affiliation(s)
- Yangqian Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Guanhua Rao
- Genskey Medical Technology Co., LtdBeijingChina
| | - Guonian Zhu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Cheng Cheng
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Lijuan Yuan
- Genskey Medical Technology Co., LtdBeijingChina
| | - Chengpin Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | | | - Jun Tang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Gomez-Ramirez U, Nolasco-Romero CG, Contreras-Rodríguez A, Zuñiga G, Mendoza-Elizalde S, Prado-Galbarro FJ, Pérez Aguilar F, Pedraza Tinoco JE, Valencia-Mayoral P, Velázquez-Guadarrama N. Dysbiosis by Eradication of Helicobacter pylori Infection Associated with Follicular Gastropathy and Pangastropathy. Microorganisms 2023; 11:2748. [PMID: 38004759 PMCID: PMC10673246 DOI: 10.3390/microorganisms11112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Dysbiosis plays an important role in the development of bacterial infections in the gastric mucosa, particularly Helicobacter pylori. The international guidelines for the treatment of H. pylori infections suggest standard triple therapy (STT). Nevertheless, because of the increasing resistance rates to clarithromycin, metronidazole has been widely considered in several countries. Unfortunately, the non-justified administration of antibiotics induces dysbiosis in the target organ. We characterized the gastric microbiota of patients diagnosed with follicular gastropathy and pangastropathy attributed to H. pylori infection, before and after the administration of STT with metronidazole. Dominant relative abundances of Cutibacterium were observed in pre-treatment patients, whereas H. pylori was observed at <11%, suggesting the multifactor property of the disease. The correlation of Cutibacterium acnes and H. pylori with gastric infectious diseases was also evaluated using quantitative real-time polymerase chain reaction. The dominance of C. acnes over H. pylori was observed in gastritis, gastropathies, and non-significant histological alterations. None of the microorganisms were detected in the intestinal metaplasia. Post-treatment alterations revealed an increase in the relative abundances of Staphylococcus, Pseudomonas, and Klebsiella. Non-H. pylori gastrointestinal bacteria can be associated with the initiation and development of gastric diseases, such as pathobiont C. acnes.
Collapse
Affiliation(s)
- Uriel Gomez-Ramirez
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carolina G. Nolasco-Romero
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Gerardo Zuñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
| | | | - Fernando Pérez Aguilar
- Servicio de Endoscopía Gastrointestinal, Hospital General Dr. Fernando Quiroz, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City 01140, Mexico;
| | | | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
| |
Collapse
|
5
|
Gomez-Ramirez U, Valencia-Mayoral P, Mendoza-Elizalde S, Murillo-Eliosa JR, Solórzano Santos F, Contreras-Rodríguez A, Zúñiga G, Aguilar-Rodea P, Jiménez-Rojas VL, Vigueras Galindo JC, Salazar-García M, Velázquez-Guadarrama N. Role of Helicobacter pylori and Other Environmental Factors in the Development of Gastric Dysbiosis. Pathogens 2021; 10:1203. [PMID: 34578235 PMCID: PMC8467233 DOI: 10.3390/pathogens10091203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Microbiomes are defined as complex microbial communities, which are mainly composed of bacteria, fungi, and viruses residing in diverse regions of the human body. The human stomach consists of a unique and heterogeneous habitat of microbial communities owing to its anatomical and functional characteristics, that allow the optimal growth of characteristic bacteria in this environment. Gastric dysbiosis, which is defined as compositional and functional alterations of the gastric microbiota, can be induced by multiple environmental factors, such as age, diet, multiple antibiotic therapies, proton pump inhibitor abuse, H. pylori status, among others. Although H. pylori colonization has been reported across the world, chronic H. pylori infection may lead to serious consequences; therefore, the infection must be treated. Multiple antibiotic therapy improvements are not always successful because of the lack of adherence to the prescribed antibiotic treatment. However, the abuse of eradication treatments can generate gastric dysbiotic states. Dysbiosis of the gastric microenvironment induces microbial resilience, due to the loss of relevant commensal bacteria and simultaneous colonization by other pathobiont bacteria, which can generate metabolic and physiological changes or even initiate and develop other gastric disorders by non-H. pylori bacteria. This systematic review opens a discussion on the effects of multiple environmental factors on gastric microbial communities.
Collapse
Affiliation(s)
- Uriel Gomez-Ramirez
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Rafael Murillo-Eliosa
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Fortino Solórzano Santos
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Verónica Leticia Jiménez-Rojas
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Carlos Vigueras Galindo
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| |
Collapse
|
6
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Cardiac Tamponade Caused by Cutibacterium acnes: An Updated and Comprehensive Review of the Literature. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:9598210. [PMID: 32733623 PMCID: PMC7378628 DOI: 10.1155/2020/9598210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Bacterial pericarditis is a critical diagnosis caused by a wide range of organisms including Streptococcus pneumoniae and other anaerobic organisms like Cutibacterium acnes which has been gaining more importance as a causative organism. Cutibacterium species are Gram-positive microaerophilic rods that constitute part of the normal flora of skin and mucosal membranes. The incidence of pericarditis caused by this organism is underreported as it is often dismissed as a skin flora contaminant. However, if left untreated, Cutibacterium acnes can cause pericarditis with serious complications. In this paper, we present a comprehensive review of the literature regarding pericarditis caused by Cutibacterium acnes along with a case presentation from our institution. In our institution, a 20-year-old man with history of atrial septal defect presented with chest pain radiating to the back along with symptoms of upper respiratory tract infection including headaches and myalgia. Electrocardiogram was remarkable for diffuse low-voltage waves. Echocardiography revealed a large pericardial effusion with tamponade features. Pericardiocentesis drained 1.2 L of milky fluid. Pericardial fluid analysis grew Cutibacterium acnes after being cultured for 8 days. The patient received 3 weeks of IV penicillin followed by 3 weeks of oral amoxicillin along with nonsteroidal anti-inflammatory agents and colchicine with no recurrence. Pericarditis caused by Cutibacterium acnes requires a high clinical suspicion since isolation of this organism can be dismissed as a skin flora contaminant. Literature review reveals that this infection may be underdiagnosed and underreported. Prompt diagnosis may lead to timely initiation of antibiotics which can help prevent devastating complications like constrictive pericarditis. Prospective studies are needed to evaluate the true incidence and prevalence of this disease.
Collapse
|
8
|
de Leeuw MA, Duval MX. The Presence of Periodontal Pathogens in Gastric Cancer. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-10. [DOI: 10.14218/erhm.2020.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Serena T, Gao R, Dinnan K. Open surgical approach for infected mesenteric pseudocyst presenting as lifelong, migratory abdominal pain-A case report. Int J Surg Case Rep 2019; 66:96-100. [PMID: 31821982 PMCID: PMC6906687 DOI: 10.1016/j.ijscr.2019.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Mesenteric psuedocysts are rare tumors of the gastrointestinal mesentery that are seldom symptomatic. Although these benign tumors are most commonly found incidentally during work-up for other pathology, they can be troublesome in select patients based off size, location and risk of malignant transformation. This case is reported in accordance with SCARE Criteria [1]. PRESENTATION OF CASE A 24 year-old-male presents with life-long migratory abdominal pain presents with a one week history of acute pain associated with nausea. Computed tomography revealed free fluid in the pelvis and a thin-walled mesenteric cyst within the left, mid-abdominal mesentery measuring approximately 4.3 × 4.0 × 4.0 cm. The patient was admitted for resuscitation and planned delayed operative intervention. DISCUSSION The patient underwent complete open enucleation secondary to location and in an attempt to limit injuries to or resection of small bowel. Pathological analysis revealed a mesenteric cyst with fluid culture positive for Propionibacterium acnes without true cystic wall consistent with an infected mesenteric pseudocyst. These lesions are difficult to diagnose secondary to varied presentation and lack of pathognomonic clinical, laboratory and imaging findings. Mesenteric pseudocyst have a low rate of recurrence after removal; however, surgical management is mandated due to risks of malignant transformation. CONCLUSION This is a rare case of a mesenteric pseudocyst of small size presenting with lifelong abdominal pain secondary to its location near the root of the mesentery and inflammatory reaction secondary to infection. It is important to maintain a high index of suspicion for mesenteric cyst as many complications may result if misdiagnosed or without proper surgical management.
Collapse
Affiliation(s)
- Thomas Serena
- Beaumont Health Farmington Hills, Department of General Surgery, 28050 Grand River Avenue, Farmington Hills, MI, 48336, USA.
| | - Raisa Gao
- Beaumont Health Farmington Hills, Department of General Surgery, 28050 Grand River Avenue, Farmington Hills, MI, 48336, USA.
| | - Kelly Dinnan
- Beaumont Health Farmington Hills, Department of General Surgery, 28050 Grand River Avenue, Farmington Hills, MI, 48336, USA.
| |
Collapse
|
10
|
Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 2018; 32 Suppl 2:5-14. [PMID: 29894579 DOI: 10.1111/jdv.15043] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
While the commensal bacterium Propionibacterium acnes (P. acnes) is involved in the maintenance of a healthy skin, it can also act as an opportunistic pathogen in acne vulgaris. The latest findings on P. acnes shed light on the critical role of a tight equilibrium between members of its phylotypes and within the skin microbiota in the development of this skin disease. Indeed, contrary to what was previously thought, proliferation of P. acnes is not the trigger of acne as patients with acne do not harbour more P. acnes in follicles than normal individuals. Instead, the loss of the skin microbial diversity together with the activation of the innate immunity might lead to this chronic inflammatory condition. This review provides results of the most recent biochemical and genomic investigations that led to the new taxonomic classification of P. acnes renamed Cutibacterium acnes (C. acnes), and to the better characterisation of its phylogenetic cluster groups. Moreover, the latest data on the role of C. acnes and its different phylotypes in acne are presented, providing an overview of the factors that could participate in the virulence and in the antimicrobial resistance of acne-associated strains. Overall, this emerging key information offers new perspectives in the treatment of acne, with future innovative strategies focusing on C. acnes biofilms and/or on its acne-associated phylotypes.
Collapse
Affiliation(s)
- B Dréno
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - S Pécastaings
- Laboratoire de Génie Chimique, UMR 5503, Faculty of Pharmacy, Université de Toulouse, Université Paul Sabatier, Toulouse Cedex 9, France.,CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - S Corvec
- Department of Bacteriology, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - S Veraldi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, I.R.C.C.S. Foundation, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Khammari
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - C Roques
- Laboratoire de Génie Chimique, UMR 5503, Faculty of Pharmacy, Université de Toulouse, Université Paul Sabatier, Toulouse Cedex 9, France.,CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
11
|
McDowell A. Over a Decade of recA and tly Gene Sequence Typing of the Skin Bacterium Propionibacterium acnes: What Have We Learnt? Microorganisms 2017; 6:microorganisms6010001. [PMID: 29267255 PMCID: PMC5874615 DOI: 10.3390/microorganisms6010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
The Gram-positive, anaerobic bacterium Propionibacterium acnes forms part of the normal microbiota on human skin and mucosal surfaces. While normally associated with skin health, P. acnes is also an opportunistic pathogen linked with a range of human infections and clinical conditions. Over the last decade, our knowledge of the intraspecies phylogenetics and taxonomy of this bacterium has increased tremendously due to the introduction of DNA typing schemes based on single and multiple gene loci, as well as whole genomes. Furthermore, this work has led to the identification of specific lineages associated with skin health and human disease. In this review we will look back at the introduction of DNA sequence typing of P. acnes based on recA and tly loci, and then describe how these methods provided a basic understanding of the population genetic structure of the bacterium, and even helped characterize the grapevine-associated lineage of P. acnes, known as P. acnes type Zappe, which appears to have undergone a host switch from humans-to-plants. Particular limitations of recA and tly sequence typing will also be presented, as well as a detailed discussion of more recent, higher resolution, DNA-based methods to type P. acnes and investigate its evolutionary history in greater detail.
Collapse
Affiliation(s)
- Andrew McDowell
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Londonderry BT47 6SB, UK.
| |
Collapse
|
12
|
Moles L, Gómez M, Jiménez E, Bustos G, de Andrés J, Melgar A, Escuder D, Fernández L, Del Campo R, Rodríguez JM. Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital. Front Nutr 2017; 4:12. [PMID: 28459051 PMCID: PMC5394887 DOI: 10.3389/fnut.2017.00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella, and Escherichia. The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis. Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium, and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella, and Streptococcus were the most abundant. Own mother's milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them.
Collapse
Affiliation(s)
- Laura Moles
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Marta Gómez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Esther Jiménez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain.,ProbiSearch, S.L., Tres Cantos, Madrid, Spain
| | - Gerardo Bustos
- Servicio de Neonatología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Red de Salud Materno-Infantil y del Desarrollo (SAMID), Barakaldo, Spain
| | - Javier de Andrés
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Ana Melgar
- Servicio de Neonatología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Red de Salud Materno-Infantil y del Desarrollo (SAMID), Barakaldo, Spain
| | - Diana Escuder
- Servicio de Neonatología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Red de Salud Materno-Infantil y del Desarrollo (SAMID), Barakaldo, Spain
| | - Leónides Fernández
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain.,ProbiSearch, S.L., Tres Cantos, Madrid, Spain
| | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain.,Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain.,ProbiSearch, S.L., Tres Cantos, Madrid, Spain
| |
Collapse
|
13
|
Abstract
The esophagus and stomach are host to their own population of bacteria, which differs in health and disease. Helicobacter pylori uniquely colonizes only gastric mucosa, but an increasing number of bacteria is now isolated from the gastric juice and gastric mucosa, including Lactobacillus. The presence of H pylori alters populations of other gastric bacteria with a marked reduction in diversity. Alterations in intragastric acidity may be the cause or the consequence of changes in the microbial populations of the stomach. Esophageal inflammation is associated with an altered microbiota in gastroesophageal reflux disease, Barrett's esophagus, eosinophilic esophagitis, and cancer.
Collapse
|
14
|
Montalban‐Arques A, Wurm P, Trajanoski S, Schauer S, Kienesberger S, Halwachs B, Högenauer C, Langner C, Gorkiewicz G. Propionibacterium acnes overabundance and natural killer group 2 member D system activation in corpus-dominant lymphocytic gastritis. J Pathol 2016; 240:425-436. [PMID: 27538697 PMCID: PMC5111592 DOI: 10.1002/path.4782] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/30/2022]
Abstract
Corpus-dominant lymphocytic gastritis (LyG) is characterized by CD8+ T-cell infiltration of the stomach epithelium by a so far uncharacterized mechanism. Although Helicobacter pylori is typically undetectable in LyG, patients respond to H. pylori antibiotic eradication therapy, suggesting a non-H. pylori microbial trigger for the disease. Comparative microbiota analysis of specimens from LyG, H. pylori gastritis and healthy controls precluded involvement of H. pylori in LyG but identified Propionibacterium acnes as a possible disease trigger. In addition, the natural killer group 2 member D (NKG2D) system and the proinflammatory cytokine interleukin (IL)-15 are significantly upregulated in the gastric mucosa of LyG patients, and gastric epithelial cells respond to microbe-derived stimuli, including live P. acnes and the microbial products short-chain fatty acids, with induction of NKG2D ligands. In contrast, H. pylori infection does not activate or even repress NKG2D ligands. Together, our findings identify P. acnes as a possible causative agent for LyG, which is dependent on the NKG2D system and IL-15 activation. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ana Montalban‐Arques
- Institute of PathologyMedical University of GrazGrazAustria
- Theodor Escherich Laboratory for Medical Microbiome ResearchMedical University of GrazGrazAustria
| | - Philipp Wurm
- Institute of PathologyMedical University of GrazGrazAustria
- Theodor Escherich Laboratory for Medical Microbiome ResearchMedical University of GrazGrazAustria
| | - Slave Trajanoski
- Centre for Medical ResearchMedical University of GrazGrazAustria
| | - Silvia Schauer
- Institute of PathologyMedical University of GrazGrazAustria
| | - Sabine Kienesberger
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMedInteruniversity CooperationGrazAustria
| | - Bettina Halwachs
- Institute of PathologyMedical University of GrazGrazAustria
- Theodor Escherich Laboratory for Medical Microbiome ResearchMedical University of GrazGrazAustria
- BioTechMedInteruniversity CooperationGrazAustria
| | - Christoph Högenauer
- Theodor Escherich Laboratory for Medical Microbiome ResearchMedical University of GrazGrazAustria
- Department of Internal Medicine, Division of Gastroenterology and HepatologyMedical University of GrazGrazAustria
| | - Cord Langner
- Institute of PathologyMedical University of GrazGrazAustria
| | - Gregor Gorkiewicz
- Institute of PathologyMedical University of GrazGrazAustria
- Theodor Escherich Laboratory for Medical Microbiome ResearchMedical University of GrazGrazAustria
- BioTechMedInteruniversity CooperationGrazAustria
| |
Collapse
|
15
|
Rienmüller A, Borens O. Propionibacterium prosthetic joint infection: experience from a retrospective database analysis. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2016; 26:429-34. [PMID: 27017334 PMCID: PMC4856714 DOI: 10.1007/s00590-016-1766-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND With improved diagnostic methods and longer prosthesis indwelling time, the frequency of diagnosed Propionibacterium prosthetic joint infections (PJI) is increasing. Data on clinical, microbiological, radiological and surgical treatment are limited, and importance of this organism in PJI is probably underestimated. MATERIALS AND METHODS We retrospectively analyzed patients with PJI caused by Propionibacterium spp. diagnosed at our institution between 2000 and 2012. Patient data were retrieved through chart review, and the outcome was evaluated at patient follow-up visits. RESULTS Of 15 included patients (median age 65 years, range 44-87), 8 hip, 4 shoulder, 2 knee and 1 ankle PJI were recorded. The median time from implantation to diagnosis of PJI was 44.2 months (range 2-180 months). Most PJI (8 patients, 53 %) were diagnosed late (>24 months after arthroplasty). Persistent pain was present in 13, local joint symptoms in 8, fever in 4 and sinus tract in 3 patients. Radiological signs of loosening were present in 11 patients (73 %). Organisms were detected in intraoperative biopsy (n = 5), sonication (n = 4) or preoperative joint puncture (n = 4). In three cases coinfection with a coagulase-negative staphylococcus was diagnosed. Revision surgery was performed in all cases. After a mean follow-up of 16 months after revision surgery (range 4-37 months), 14 patients (93 %) showed no signs or symptoms of infection and had a functional prosthesis; one patient experienced a new infection with another organism (Staphylococcus epidermidis). CONCLUSION Patients with persistent postoperative pain and/or loosening of implants should be screened for PJI with low-virulent organisms such as Propionibacterium, including.
Collapse
Affiliation(s)
- Anna Rienmüller
- Orthopedic Septic Surgical Unit, Department of Surgery and Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland. .,Department of Orthopedic Surgery, Vienna General Hospital, Medical University Vienna, Waehriger Guertel 18-20, 1090, Vienna, Austria.
| | - Olivier Borens
- Orthopedic Septic Surgical Unit, Department of Surgery and Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
Zhang C, Cleveland K, Schnoll-Sussman F, McClure B, Bigg M, Thakkar P, Schultz N, Shah MA, Betel D. Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol 2015; 16:265. [PMID: 26614063 PMCID: PMC4661937 DOI: 10.1186/s13059-015-0821-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
Identifying the microbiome composition from primary tissues directly affords an opportunity to study the causative relationships between the host microbiome and disease. However, this is challenging due the low abundance of microbial DNA relative to the host. We present a systematic evaluation of microbiome profiling directly from endoscopic biopsies by whole genome sequencing. We compared our methods with other approaches on datasets with previously identified microbial composition. We applied this approach to identify the microbiome from 27 stomach biopsies, and validated the presence of Helicobacter pylori by quantitative PCR. Finally, we profiled the microbial composition in The Cancer Genome Atlas gastric adenocarcinoma cohort.
Collapse
Affiliation(s)
- Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Medicine, Division of Hematology and Medical Oncology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA
| | - Kyle Cleveland
- Department of Medicine, Division of Hematology and Medical Oncology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA
| | - Felice Schnoll-Sussman
- Department of Medicine, Division of Hematology and Medical Oncology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA.,The Jay Monahan Center for Gastrointestinal Health, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA
| | - Bridget McClure
- Center for Advanced Digestive Care, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA
| | - Michelle Bigg
- The Jay Monahan Center for Gastrointestinal Health, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA
| | - Prashant Thakkar
- Department of Medicine, Division of Hematology and Medical Oncology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nikolaus Schultz
- Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Manish A Shah
- Department of Medicine, Division of Hematology and Medical Oncology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA. .,Center for Advanced Digestive Care, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA. .,Department of Medicine, Division of Hematology and Medical Oncology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
17
|
Abstract
After the discovery of Helicobacter pylori in 1983, the stomach was no longer considered a sterile environment. In 2015, evolving data shows that H. pylori is not the only inhabitant of the gastric mucosa. Using culture-independent methods of analysis, a non-H. pylori microbial community has been recently observed in the human stomach, the so-called human gastric microbiota, along with H. pylori itself. Increasing evidence supports the hypothesis that although H. pylori may be the most relevant, it is not the only local bacterial culprit leading to gastric diseases. Further studies are warranted to offer a better picture of the role and functions of gastric microbiota and to identify the best therapeutic modulators of gut microbiota for the management of gastric diseases.
Collapse
Affiliation(s)
- Gianluca Ianiro
- Division of Internal Medicine, Gastroenterology and Liver Disease, Department of Internal Medicine, "A. Gemelli" University Hospital, Rome, Italy
| | | | - Antonio Gasbarrini
- Division of Internal Medicine, Gastroenterology and Liver Disease, Department of Internal Medicine, "A. Gemelli" University Hospital, Rome, Italy
| |
Collapse
|
18
|
Campaniello D, Bevilacqua A, Sinigaglia M, Altieri C. Screening of Propionibacterium spp. for potential probiotic properties. Anaerobe 2015; 34:169-73. [PMID: 26079323 DOI: 10.1016/j.anaerobe.2015.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
The main topic of this paper is the evaluation of adhesion of propionibacteria to IPEC-J2 cells and the survival at pH 2.5 and with 0.3% bile salts added, bioactivity towards pathogens and antibiotic resistance of Propionibacterium freudenreichii subsp. shermanii, Propionibacterium jensenii, Propionibacterium acidipropionici and Propionibacterium thoenii. Adhesion to IPEC-J2 cell lines was ca. 25-35% and significantly increased with CaCl2. Moreover, propionibacteria showed a reduction of cell count of ca. 0.5% at pH 2.5 after 3 h, whereas cell count increased after 24 h with bile salts; finally, they significantly inhibited Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Clelia Altieri
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
19
|
Christensen GJM, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes 2014; 5:201-15. [PMID: 24322878 DOI: 10.3920/bm2012.0062] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent years' investigations of the co-evolution and functional integration of the human body and its commensal microbiota have disclosed that the microbiome has a major impact on physiological functions including protection against infections, reaction patterns in the immune system, and disposition for inflammation-mediated diseases. Two ubiquitous members of the skin microbiota, the Gram-positive bacteria Staphylococcus epidermidis and Propionibacterium acnes, are predominant on human epithelia and in sebaceous follicles, respectively. Their successful colonisation is a result of a commensal or even mutualistic lifestyle, favouring traits conferring persistency over aggressive host-damaging properties. Some bacterial properties suggest an alliance with the host to keep transient, potential pathogens at bay, such as the ability of S. epidermidis to produce antimicrobials, or the production of short-chain fatty acids by P. acnes. These features can function together with host-derived components of the innate host defence to establish and maintain the composition of a health-associated skin microbiota. However, depending largely on the host status, the relationship between the human host and S. epidermidis/P. acnes can also have parasitic features. Both microorganisms are frequently isolated from opportunistic infections. S. epidermidis is a causative agent of hospital-acquired infections, mostly associated with the use of medical devices. P. acnes is suspected to be of major importance in the pathogenesis of acne and also in a number of other opportunistic infections. In this review we will present bacterial factors and traits of these two key members of our skin microbiota and discuss how they contribute to mutualistic and parasitic properties. The elucidation of their roles in health-promoting or disease-causing processes could lead to new prophylactic and therapeutic strategies against skin disorders and other S. epidermidis/P. acnes-associated diseases, and increase our understanding of the delicate interplay of the skin microbiota with the human host.
Collapse
Affiliation(s)
- G J M Christensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark
| | - H Brüggemann
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Romano-Bertrand S, Beretta M, Jean-Pierre H, Frapier JM, Calvet B, Parer S, Jumas-Bilak E. Propionibacterium acnes populations involved in deep pathological samples and their dynamics along the cardiac surgical pathway. Eur J Clin Microbiol Infect Dis 2014; 34:287-301. [DOI: 10.1007/s10096-014-2228-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/11/2014] [Indexed: 11/28/2022]
|
21
|
Wang LL, Yu XJ, Zhan SH, Jia SJ, Tian ZB, Dong QJ. Participation of microbiota in the development of gastric cancer. World J Gastroenterol 2014; 20:4948-4952. [PMID: 24803806 PMCID: PMC4009526 DOI: 10.3748/wjg.v20.i17.4948] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
There are a large number of bacteria inhabiting the human body, which provide benefits for the health. Alterations of microbiota participate in the pathogenesis of diseases. The gastric microbiota consists of bacteria from seven to eleven phyla, predominantly Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria. Intrusion by Helicobacter pylori (H. pylori) does not remarkably interrupt the composition and structure of the gastric microbiota. Absence of bacterial commensal from the stomach delays the onset of H. pylori-induced gastric cancer, while presence of artificial microbiota accelerates the carcinogenesis. Altered gastric microbiota may increase the production of N-nitroso compounds, promoting the development of gastric cancer. Further investigation of the carcinogenic mechanisms of microbiota would benefit for the prevention and management of gastric cancer.
Collapse
|
22
|
Dairy propionibacterium strains with potential as biopreservatives against foodborne pathogens and their tolerance–resistance properties. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-013-2066-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Seo I, Jha BK, Suh SI, Suh MH, Baek WK. Microbial Profile of the Stomach: Comparison between Normal Mucosa and Cancer Tissue in the Same Patient. ACTA ACUST UNITED AC 2014. [DOI: 10.4167/jbv.2014.44.2.162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Incheol Seo
- Department of Microbiology, School of Medicine, Keimyung University, Daegu, Korea
| | - Bijay Kumar Jha
- Department of Microbiology, School of Medicine, Keimyung University, Daegu, Korea
| | - Seong-Il Suh
- Department of Microbiology, School of Medicine, Keimyung University, Daegu, Korea
| | - Min-Ho Suh
- Department of Microbiology, School of Medicine, Keimyung University, Daegu, Korea
| | - Won-Ki Baek
- Department of Microbiology, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
24
|
Portillo ME, Corvec S, Borens O, Trampuz A. Propionibacterium acnes: an underestimated pathogen in implant-associated infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:804391. [PMID: 24308006 PMCID: PMC3838805 DOI: 10.1155/2013/804391] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 08/20/2013] [Accepted: 10/04/2013] [Indexed: 12/16/2022]
Abstract
The role of Propionibacterium acnes in acne and in a wide range of inflammatory diseases is well established. However, P. acnes is also responsible for infections involving implants. Prolonged aerobic and anaerobic agar cultures for 14 days and broth cultures increase the detection rate. In this paper, we review the pathogenic role of P. acnes in implant-associated infections such as prosthetic joints, cardiac devices, breast implants, intraocular lenses, neurosurgical devices, and spine implants. The management of severe infections caused by P. acnes involves a combination of antimicrobial and surgical treatment (often removal of the device). Intravenous penicillin G and ceftriaxone are the first choice for serious infections, with vancomycin and daptomycin as alternatives, and amoxicillin, rifampicin, clindamycin, tetracycline, and levofloxacin for oral treatment. Sonication of explanted prosthetic material improves the diagnosis of implant-associated infections. Molecular methods may further increase the sensitivity of P. acnes detection. Coating of implants with antimicrobial substances could avoid or limit colonization of the surface and thereby reduce the risk of biofilm formation during severe infections. Our understanding of the role of P. acnes in human diseases will likely continue to increase as new associations and pathogenic mechanisms are discovered.
Collapse
Affiliation(s)
| | - Stéphane Corvec
- Service de Bactériologie-Hygiène, CHU de Nantes, Institut de Biologie, Nantes Cedex, France
- Université de Nantes, EA3826, Thérapeutiques Cliniques et Expérimentales des Infections, 1 rue G. Veil, 44000 Nantes, France
| | - Olivier Borens
- Orthopedic Septic Surgical Unit, Department of Surgery and Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-University Medicine Berlin, Free University and Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
25
|
Yang I, Nell S, Suerbaum S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol Rev 2013; 37:736-61. [DOI: 10.1111/1574-6976.12027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023] Open
|
26
|
Delgado S, Cabrera-Rubio R, Mira A, Suárez A, Mayo B. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. MICROBIAL ECOLOGY 2013; 65:763-72. [PMID: 23397369 DOI: 10.1007/s00248-013-0192-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/21/2013] [Indexed: 05/09/2023]
Abstract
Stomach mucosa biopsies and gastric juices samples of 12 healthy persons were analysed by culturing in selective- and non-selective-rich media. Microbial DNA from four mucosal samples was also amplified by nested PCR using universal bacterial primers, and the 16S rDNA amplicons pyrosequenced. The total number of cultivable microorganisms recovered from the samples ranged from 10(2) to 10(4) cfu/g or ml. The isolates were identified at the species level by PCR amplification and sequencing of the 16S rDNA. Isolates belonged mainly to four genera; Propionibacterium, Lactobacillus, Streptococcus and Staphylococcus. A total of 15,622 high-quality 16S rDNA sequence reads were obtained by pyrosequencing from the four mucosal samples. Sequence analysis grouped the reads into 59 families and 69 genera, revealing wide bacterial diversity. Considerable differences in the composition of the gastric microbiota were observed among the subjects, although in all samples the most abundant operational taxonomic units belonged to Streptococcus, Propionibacterium and Lactobacillus. Comparison of the stomach microbiota with that present in other parts of the human gastrointestinal tract revealed distinctive microbial communities. This is the first study in which a combination of culture and culture-independent techniques has been used to explore the bacterial diversity of the human stomach.
Collapse
Affiliation(s)
- Susana Delgado
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Villaviciosa, Asturias, Spain.
| | | | | | | | | |
Collapse
|
27
|
Sui Z, Li N, Liu Z, Yan J, Liu Z. Metabolite profile analysis of aconitine in rabbit stomach after oral administration by liquid chromatography/electrospray ionization/multiple-stage tandem mass spectrometry. Xenobiotica 2012; 43:628-35. [PMID: 23267667 DOI: 10.3109/00498254.2012.753490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Aconitine (AC), an active and highly toxic constituent extracted from aconitum plants, is well known for its excellent effects against rheumatism and rheumatoid arthritis. The metabolism of AC in liver and intestine has been previously reported. However, little is known about the metabolism of AC in stomach. In this study, the metabolite profiling of AC in stomachs of rabbit and rat was performed by liquid chromatography/electrospray ionization/multiple-stage tandem mass spectrometry (LC/ESI/MS(n)), for the first time. 2. The samples were purified by liquid-liquid extraction, separated using an Agilent extended C18 column following a linear gradient elution and then detected by ESI/MS(n) in positive ion mode. Metabolites were identified by comparing their protonated molecules, fragmentation patterns and chromatographic behaviors with those of standard compounds and data from authorized literature works. 3. In conclusion, 14 metabolites were identified in animal stomach after oral administration of AC. The presentation of a large amount of metabolites of AC in stomach suggested that, for aconitum alkaloids, the stomach might play an important role in their metabolism.
Collapse
Affiliation(s)
- Zhigang Sui
- College of Pharmacy, Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
28
|
Mak TN, Fischer N, Laube B, Brinkmann V, Metruccio MME, Sfanos KS, Mollenkopf HJ, Meyer TF, Brüggemann H. Propionibacterium acnes host cell tropism contributes to vimentin-mediated invasion and induction of inflammation. Cell Microbiol 2012; 14:1720-33. [PMID: 22759266 DOI: 10.1111/j.1462-5822.2012.01833.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/02/2012] [Accepted: 06/27/2012] [Indexed: 11/30/2022]
Abstract
The contribution of the human microbiota to health and disease is poorly understood. Propionibacterium acnes is a prominent member of the skin microbiota, but is also associated with acne vulgaris. This bacterium has gained recent attention as a potential opportunistic pathogen at non-skin infection sites due to its association with chronic pathologies and its isolation from diseased prostates. We performed comparative global-transcriptional analyses for P. acnes infection of keratinocytes and prostate cells. P. acnes induced an acute, transient transcriptional inflammatory response in keratinocytes, whereas this response was delayed and sustained in prostate cells. We found that P. acnes invaded prostate epithelial cells, but not keratinocytes, and was detectable intracellularly 7 days post infection. Further characterization of the host cell response to infection revealed that vimentin was a key determinant for P. acnes invasion in prostate cells. siRNA-mediated knock-down of vimentin in prostate cellsattenuated bacterial invasion and the inflammatory response to infection. We conclude that host cell tropism, which may depend on the host protein vimentin, is relevant for P. acnes invasion and in part determines its sustained inflammatory capacity and persistence of infection.
Collapse
Affiliation(s)
- Tim N Mak
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Perry A, Lambert P. Propionibacterium acnes: infection beyond the skin. Expert Rev Anti Infect Ther 2012; 9:1149-56. [PMID: 22114965 DOI: 10.1586/eri.11.137] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Propionibacterium acnes is a Gram-positive bacterium that forms part of the normal flora of the skin, oral cavity, large intestine, the conjunctiva and the external ear canal. Although primarily recognized for its role in acne, P. acnes is an opportunistic pathogen, causing a range of postoperative and device-related infections. These include infections of the bones and joints, mouth, eye and brain. Device-related infections include those of joint prostheses, shunts and prosthetic heart valves. P. acnes may play a role in other conditions, including inflammation of the prostate leading to cancer, SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome, sarcoidosis and sciatica. If an active role in these conditions is established there are major implications for diagnosis, treatment and protection. Genome sequencing of the organism has provided an insight into the pathogenic potential and virulence of P. acnes.
Collapse
Affiliation(s)
- Alexandra Perry
- Eurofins Agroscience Services Ltd, Slade Lane, Wilson, Melbourne, Derbyshire, DE73 8AG, UK
| | | |
Collapse
|