1
|
Bahgat OT, Rizk DE, Kenawy HI, Barwa R. Characterization of non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Egypt. BMC Microbiol 2024; 24:488. [PMID: 39574016 PMCID: PMC11580514 DOI: 10.1186/s12866-024-03636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157 is implicated in serious food and water-borne diseases as hemorrhagic colitis (HC), and the potentially fatal hemolytic uremic syndrome (HUS). However, new players of non-O157 EHEC have been implicated in serious infections worldwide. This work aims at analyzing serotype and genotypic-based virulence profile of EHEC local isolates. METHODS A total of 335 samples were collected from different sources in Egypt. E. coli was isolated and subjected to serotyping. Non-O157 EHEC isolates were tested for virulence genes using PCR, phenotypic examination, phylogenetic typing, and molecular investigation by ERIC typing and MLST to disclose genetic relatedness of isolates. A heat map was used to identify potential associations between the origin of the isolates, their phenotypic and genotypic characteristics. RESULTS A total of 105 out of 335 isolates were identified as E. coli. Surprisingly, 49.5% of these isolates were EHEC, where O111, O91, O26 and O55 were the most prevalent serotypes including 38.46% from stool, 21.15% urine, 23.1% cheese, 9.62% meat products, 3.85% from both yogurt and sewage water. Screening 15 different virulence genes revealed that sheA, stx2 and eae were the most prevalent with abundance rates of 85%, 75% and 36%, respectively. Fifteen profiles of virulence gene association were identified, where the most abundant one was stx2/sheA (19%) followed by stx2/stx2g/sheA/eae (11.5%). Both stx2/sheA/eae and stx2/stx2g/sheA were equally distributed in 9.6% of total isolates. Phylogenetic typing revealed that pathogenic phylogroups B2 and D were detected among clinical isolates only. Forty-six different patterns were detected by ERIC genotyping. MLST resolved three sequence types of ST70, ST120 and ST394. The heat map showed that 21 isolates were of 70% similarity, 9 groups were of 100% clonality. CONCLUSIONS The prevalence of non-O157 EHEC pathotype was marginally higher among the food isolates compared to the clinical ones. The endemic ST120 was detected in cheese, necessitating crucial measures to prevent the spread of this clone. Clinical EHEC isolates exhibited a higher score, and combination of virulence genes compared to food and sewage water isolates, thereby posing a significant public health concern.
Collapse
Affiliation(s)
- Omnia T Bahgat
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dina E Rizk
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hany I Kenawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Sallam KI, Abd-Elrazik Y, Raslan MT, Imre K, Morar A, Herman V, Zaher HA. Cefotaxime-, Ciprofloxacin-, and Extensively Drug-Resistant Escherichia coli O157:H7 and O55:H7 in Camel Meat. Foods 2023; 12:foods12071443. [PMID: 37048264 PMCID: PMC10094314 DOI: 10.3390/foods12071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The present study aimed to explore for the first time the occurrence and the antimicrobial resistance profiles of E. coli O157:H7 and O55:H7 isolates in camel meat in Egypt. Among the 110 camel meat samples examined using standardized microbiological techniques, 10 (9.1%) and 32 (29.1%) were positive for E. coli O157:H7 and E. coli O55:H7, respectively. In total, 24 isolates were verified as E. coli O157:H7, while 102 isolates were confirmed serologically as E. coli O55:H7. Multiplex PCR revealed the existence of eaeA, stx1, stx2, and EHEC-hlyA among E. coli O157:H7 and O55:H7 isolates (n = 126) at various percentages. According to their resistance against 14 antibiotics, 16.7% and 83.3% of O157:H7 isolates and 8.6% and 76.5% of O55:H7 isolates were classified into extensively drug-resistant and multi-drug-resistant, respectively, whereas 29.4% and 22.2% of E. coli isolates were resistant to cefotaxime and ciprofloxacin, respectively. The study results emphasize that camel meat may be a vehicle for multi- and extensively drug-resistant E. coli O157:H7 and O55:H7 strains, indicating a potential threat to public health. Further studies based on the molecular evidence of the antimicrobial resistance genes and enrolling a larger number of samples are recommended for a better understanding of the antimicrobial resistance phenomenon of camel-meat-originating pathogenic E. coli strains.
Collapse
|
3
|
Vázquez-Villanueva J, Vázquez K, Martínez-Vázquez AV, Wong-González A, Hernández-Escareño J, Cabrero-Martínez O, Cruz-Pulido WL, Guerrero A, Rivera G, Bocanegra-García V. Molecular and Antimicrobial Susceptibility Characterization of Escherichia coli Isolates from Bovine Slaughterhouse Process. Antibiotics (Basel) 2023; 12:antibiotics12020291. [PMID: 36830200 PMCID: PMC9951931 DOI: 10.3390/antibiotics12020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Antimicrobials are routinely used in human and veterinary medicine. With repeated exposure, antimicrobials promote antibiotic resistance, which poses a threat to public health. In this study, we aimed to determine the susceptibility patterns, virulence factors, and phylogroups of E. coli isolates during the killing process in a bovine slaughterhouse. We analyzed 336 samples (from water, surfaces, carcasses, and feces), and 83.3% (280/336) were positive for E. coli. The most common phenotypic resistances that we detected were 50.7% (142/280) for tetracycline, 44.2% (124/280) for cephalothin, 34.6% (97/280) for streptomycin, and 36.7% (103/280) for ampicillin. A total of 82.4% of the isolates had resistance for at least one antimicrobial, and 37.5% presented multiresistance. We detected a total of 69 different phenotypic resistance patterns. We detected six other resistance-related genes, the most prevalent being tetA (22.5%) and strB (15.7%). The prevalence values of the virulence genes were 5.4% in hlyA, 1.4% in stx1, and 0.7% in stx2. The frequencies of the pathogenic strains (B2 and D) were 32.8% (92/280) and 67.1% (188/280) as commensals A and B1, respectively. E. coli isolates with pathogenic potential and multiresistance may represent an important source of dissemination and a risk to consumers.
Collapse
Affiliation(s)
- José Vázquez-Villanueva
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | | | - Alfredo Wong-González
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | - Jesus Hernández-Escareño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | - Omar Cabrero-Martínez
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | | | - Abraham Guerrero
- CONACyT Research, Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Mexico
| | - Gildardo Rivera
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Virgilio Bocanegra-García
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
- Correspondence: or ; Tel.: +52-8999243627 (ext. 87755)
| |
Collapse
|
4
|
Pakbin B, Brück WM, Brück TB, Allahyari S, Ashrafi Tamai I. A quantitative prevalence of Escherichia coliO157 in different food samples using real-time qPCR method. Food Sci Nutr 2023; 11:228-235. [PMID: 36655112 PMCID: PMC9834875 DOI: 10.1002/fsn3.3055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli serogroup O157 is the main causative agent of several intestinal and extra-intestinal foodborne diseases in humans through consumption of low-dose contaminated foods such as milk, beef, and vegetables. To date, studies regarding the quantitative prevalence of E. coli O157 in foods are so limited. Therefore, this study aimed to evaluate the quantitative prevalence rate of E. coli serogroup O157 in raw milk (n = 144), vegetable salad (n = 174), and minced beef samples (n = 108) using the real-time qPCR SYBR green melting curve method targeting the rfbA gene. First, we evaluated the method and found a sensitive and specific qPCR assay with 1 log of CFU/ml detection limit to detect E. coli O157 (Tm = 80.3 ± 0.1°C). About 2.77%, 10.18%, and 9.19% of raw milk, minced beef, and vegetable salad samples, respectively, were contaminated with E. coli O157. Minced beef and vegetable salad samples were significantly more contaminated than raw milk samples. Population average of E. coli O157 in raw milk, minced beef, and vegetable salad samples were 2.22 ± 0.57, 3.30 ± 0.40, and 1.65 ± 0.44 log CFU/ml or gr, respectively. Significantly higher levels of population of E. coli O157 were observed in minced beef samples. Minced beef can be regarded as the main food in the transmission of this foodborne pathogen. Routine quantitative rapid monitoring is strongly suggested to be carried out to prevent foodborne diseases caused by E. coli O157.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSion 2Switzerland
- Department of Chemistry, Werner Siemens Chair of Synthetic BiotechnologyTechnical University of Munich (TUM)MünchenGermany
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Wolfram Manuel Brück
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSion 2Switzerland
| | - Thomas B. Brück
- Department of Chemistry, Werner Siemens Chair of Synthetic BiotechnologyTechnical University of Munich (TUM)MünchenGermany
| | - Samaneh Allahyari
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Iradj Ashrafi Tamai
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
5
|
Characterization of virulence determinants and phylogenetic background of multiple and extensively drug resistant Escherichia coli isolated from different clinical sources in Egypt. Appl Microbiol Biotechnol 2022; 106:1279-1298. [PMID: 35050388 PMCID: PMC8816750 DOI: 10.1007/s00253-021-11740-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022]
Abstract
Abstract Escherichia coli is a multifaceted microbe since some are commensals, normally inhabiting the gut of both humans and animals while others are pathogenic responsible for a wide range of intestinal and extra-intestinal infections. It is one of the leading causes of septicemia, neonatal meningitis, urinary tract infections (UTIs), cystitis, pyelonephritis, and traveler’s diarrhea. The present study aims to survey the distribution and unravel the association of phylotypes, virulence determinants, and antimicrobial resistance of E. coli isolated from different clinical sources in Mansoura hospitals, Egypt. One hundred and fifty E. coli isolates were collected from different clinical sources. Antimicrobial resistance profile, virulence determinants, and virulence encoding genes were detected. Moreover, phylogenetic and molecular typing using ERIC-PCR analysis was performed. Our results have revealed that phylogroup B2 (26.67%) with the greatest content in virulence traits was the most prevalent phylogenetic group. Different virulence profiles and varying incidence of virulence determinants were detected among tested isolates. High rates of resistance to different categories of antimicrobial agents, dramatic increase of MDR (92.67%), and emergence of XDR (4%) were detected. ERIC-PCR analysis revealed great diversity among tested isolates. There was no clustering of isolates according to resistance, virulence patterns, or phylotypes. Our research has demonstrated significant phylogenetic diversity of E. coli isolated from different clinical sources in Mansoura hospitals, Dakahlia governorate, Egypt. E. coli isolates are equipped with various virulence factors which contribute to their pathogenesis in human. The elevated rates of antimicrobial resistance and emergence of MDR and XDR mirror the trend detected globally in recent years. Key points • Clinical E. coli isolates exhibited substantial molecular and phylogenetic diversity. • Elevated rates of antimicrobial resistance and emergence of XDR in pathogenic E. coli. • B2 Phylogroup with the highest VS was the most prevalent among pathogenic E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11740-x.
Collapse
|
6
|
Zhang P, Essendoubi S, Keenliside J, Reuter T, Stanford K, King R, Lu P, Yang X. Genomic analysis of Shiga toxin-producing Escherichia coli O157:H7 from cattle and pork-production related environments. NPJ Sci Food 2021; 5:15. [PMID: 34210979 PMCID: PMC8249597 DOI: 10.1038/s41538-021-00097-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Three E. coli O157:H7 outbreaks have been attributed to contaminated pork in Alberta, Canada, recently. This study investigates the phylogenetic relatedness of E. coli O157:H7 from pigs, cattle, and pork-production environments for source attribution. Limited strain diversity was observed using five conventional subtyping methods, with most or all strains being in one subgroup. Whole-genome single nucleotide polymorphism analysis confirmed the recent ancestry of the isolates from all three sources. Most environmental isolates clustered closer with pig isolates than cattle isolates. Also, a direct link was observed between 2018-outbreak environmental isolates and isolates collected from a pig farm in 2018. The majority of pig isolates harbor only one Shiga toxin gene, stx2a, while 70% (35/50) of the cattle isolates have both stx1a and stx2a. The results show some E. coli O157:H7 strains could establish persistence on pig farms and as such, pigs can be a significant source of the organism.
Collapse
Affiliation(s)
- Peipei Zhang
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lacombe, Alberta Canada
| | | | | | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, Alberta Canada ,grid.47609.3c0000 0000 9471 0214University of Lethbridge, Lethbridge, Alberta Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta Canada ,grid.47609.3c0000 0000 9471 0214University of Lethbridge, Lethbridge, Alberta Canada
| | - Robin King
- Alberta Agriculture and Forestry, Edmonton, Alberta Canada
| | - Patricia Lu
- Alberta Agriculture and Forestry, Edmonton, Alberta Canada
| | - Xianqin Yang
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lacombe, Alberta Canada
| |
Collapse
|
7
|
Akomoneh EA, Esemu SN, Jerome Kfusi A, Ndip RN, Ndip LM. Prevalence and virulence gene profiles of Escherichia coli O157 from cattle slaughtered in Buea, Cameroon. PLoS One 2020; 15:e0235583. [PMID: 33320853 PMCID: PMC7737970 DOI: 10.1371/journal.pone.0235583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
Background Escherichia coli O157 is an emerging foodborne pathogen of great public health concern. It has been associated with bloody diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome in humans. Most human infections have been traced to cattle and the consumption of contaminated cattle products. In order to understand the risk associated with the consumption of cattle products, this study sought to investigate the prevalence and identify virulence genes in E. coli O157 from cattle in Cameroon. Method A total of 512 rectal samples were obtained and analysed using conventional bacteriological methods (enrichment on modified Tryptone Soy Broth and selective plating on Cefixime-Tellurite Sorbitol Mac-Conkey Agar) for the isolation of E. coli O157. Presumptive E. coli O157 isolates were confirmed serologically using E. COLIPROTM O157 latex agglutination test and molecularly using PCR targeting the rfb gene in the isolates. Characterisation of the confirmed E. coli O157 strains was done by amplification of stx1, stx2, eaeA and hlyA virulence genes using both singleplex and multiplex PCR. Results E. coli O157 was detected in 56 (10.9%) of the 512 samples examined. The presence of the virulence genes stx2, eaeA and hylA was demonstrated in 96.4% (54/56) of the isolates and stx1 in 40 (71.4%) of the 54. The isolates exhibited three genetic profiles (I-III) with I (stx1, stx2, eaeA and hlyA) being the most prevalent (40/56; 71.4%) while two isolates had none of the virulence genes tested. Conclusion A proportion of cattle slaughtered in abattoirs in Buea are infected with pathogenic E. coli O157 and could be a potential source of human infections. We recommend proper animal food processing measures and proper hygiene be prescribed and implemented to reduce the risk of beef contamination.
Collapse
Affiliation(s)
- Elvis Achondou Akomoneh
- Department of Biological Science, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Laboratory for Emerging Infectious Diseases, University of Buea, Buea, Cameroon
| | - Achah Jerome Kfusi
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Laboratory for Emerging Infectious Diseases, University of Buea, Buea, Cameroon
| | - Roland N Ndip
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Laboratory for Emerging Infectious Diseases, University of Buea, Buea, Cameroon
| | - Lucy M Ndip
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Laboratory for Emerging Infectious Diseases, University of Buea, Buea, Cameroon.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| |
Collapse
|
8
|
Elafify M, Khalifa HO, Al-Ashmawy M, Elsherbini M, El Latif AA, Okanda T, Matsumoto T, Koseki S, Abdelkhalek A. Prevalence and antimicrobial resistance of Shiga toxin-producing Escherichia coli in milk and dairy products in Egypt. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:265-272. [PMID: 31762384 DOI: 10.1080/03601234.2019.1686312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food contaminated with Shiga toxin-producing Escherichia coli (STEC) represents a hazardous public health problem worldwide. Therefore, the present study was performed to elucidate the virulent and antimicrobial resistance characteristics of STEC isolated from milk and dairy products marketed in Egypt. A total of 125 samples (raw market milk, bulk tank milk, Kareish cheese, white soft cheese, and small scale-produced ice cream, 25 each) were collected for determination the prevalence and antimicrobial resistance profiling of STEC. Thirty-six STEC isolates were recovered from milk and dairy products. Serological analysis illustrated that three isolates were E. coli O157:H7 and 33 isolates belonged to different serotypes. Molecular examination indicated that all isolates harboured stx1 and/or stx2 genes, 14 isolates expressed eaeA gene and 3 isolates possessed rfbE gene. Antimicrobial resistance profiling of the isolates was both phenotypically and genetically examined. Interestingly, 31 out of 36 (86.11%) isolates were multidrug-resistant and harboured the extended-spectrum β-lactamase encoding genes, namely, blaCTX-M-15, blaSHV-12 and blaCTX-M-14. Moreover, 12 isolates (33.33%) harboured plasmid-mediated quinolone resistant gene, qnrS. The overall conclusion of the current investigation indicated insufficient hygienic measures adopted during milking, handling, and processing leading to development of pathogenic and multidrug-resistant STEC.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Graduate School of Agricultural Science, Hokkaido University, Sapporo, Japan
| | - Hazim O Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Maha Al-Ashmawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed Elsherbini
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Takashi Okanda
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Shige Koseki
- Graduate School of Agricultural Science, Hokkaido University, Sapporo, Japan
| | - Adel Abdelkhalek
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Ramires T, Iglesias M, Vitola H, Núncio A, Kroning I, Kleinubing N, Fiorentini Â, Silva W. First report ofEscherichia coliO157:H7 in ready‐to‐eat sushi. J Appl Microbiol 2019; 128:301-309. [DOI: 10.1111/jam.14456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- T. Ramires
- Science and Agroindustrial Technology Department Federal University of Pelotas Pelotas RS Brazil
| | - M.A. Iglesias
- Biotechnology Unit Technology Development Center Federal University of Pelotas Pelotas RS Brazil
| | - H.S. Vitola
- Science and Agroindustrial Technology Department Federal University of Pelotas Pelotas RS Brazil
| | - A.S.P. Núncio
- Science and Agroindustrial Technology Department Federal University of Pelotas Pelotas RS Brazil
| | - I.S. Kroning
- Science and Agroindustrial Technology Department Federal University of Pelotas Pelotas RS Brazil
| | - N.R. Kleinubing
- Science and Agroindustrial Technology Department Federal University of Pelotas Pelotas RS Brazil
| | - Â.M. Fiorentini
- Science and Agroindustrial Technology Department Federal University of Pelotas Pelotas RS Brazil
| | - W.P. Silva
- Science and Agroindustrial Technology Department Federal University of Pelotas Pelotas RS Brazil
- Biotechnology Unit Technology Development Center Federal University of Pelotas Pelotas RS Brazil
| |
Collapse
|
10
|
Ayaz ND, Cufaoglu G, Yonsul Y, Goncuoglu M, Erol I. Plasmid-Mediated Colistin Resistance in Escherichia coli O157:H7 Cattle and Sheep Isolates and Whole-Genome Sequence of a Colistin-Resistant Sorbitol Fermentative Escherichia coli O157:H7. Microb Drug Resist 2019; 25:1497-1506. [PMID: 31314669 DOI: 10.1089/mdr.2019.0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aims of this study were to investigate the plasmid-mediated colistin resistance genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5), phenotypic colistin resistance in Escherichia coli O157:H7+/H7- strains isolated from cattle and sheep, and whole-genome sequence (WGS) analysis of colistin-resistant sorbitol fermentative E. coli O157:H7. According to the results, 5 of the 49 isolates were found to harbor mcr-2 and/or mcr-3 genes. Three isolates, including a sorbitol fermentative E. coli O157:H7, were found phenotypically resistant to colistin with a minimum inhibitory concentration value of 128 μg/mL. The genome of sorbitol fermentative E. coli O157:H7 did not show 100% similarity to any of the other genome sequences found in the universal genome database. It has also been determined that this isolate carried 62 different antimicrobial resistance genes. This is the first report of plasmid-mediated mcr-2 and mcr-3 genes carrying E. coli O157:H7 from cattle and sheep isolates and WGS of a colistin-resistant sorbitol fermentative E. coli O157:H7. Findings of this study indicate that cattle and sheep can be an important source of colistin resistance in E. coli O157:H7, and slaughterhouse wastewater might be a significant route for dissemination of the plasmid-mediated colistin genes. Therefore, the use of colistin in veterinary medicine should be restricted to reduce the development of resistance. Also it may be necessary to review the non-sorbitol fermentation-based isolation protocol for not missing the sorbitol fermentative E. coli O157:H7 in epidemiological studies.
Collapse
Affiliation(s)
- Naim Deniz Ayaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Gizem Cufaoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Yesim Yonsul
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Muammer Goncuoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Irfan Erol
- Faculty of Health Sciences, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin, Turkey
| |
Collapse
|
11
|
Hazard Identification and Characterization: Criteria for Categorizing Shiga Toxin-Producing Escherichia coli on a Risk Basis †. J Food Prot 2019; 82:7-21. [PMID: 30586326 DOI: 10.4315/0362-028x.jfp-18-291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a large, highly diverse group of strains. Since the emergence of STEC serotype O157:H7 as an important foodborne pathogen, serotype data have been used for identifying STEC strains, and this use continued as other serotypes were implicated in human infections. An estimated 470 STEC serotypes have been identified, which can produce one or more of the 12 known Shiga toxin (Stx) subtypes. The number of STEC serotypes that cause human illness varies but is probably higher than 100. However, many STEC virulence genes are mobile and can be lost or transferred to other bacteria; therefore, STEC strains that have the same serotype may not carry the same virulence genes or pose the same risk. Although serotype information is useful in outbreak investigations and surveillance studies, it is not a reliable means of assessing the human health risk posed by a particular STEC serotype. To contribute to the development of a set of criteria that would more reliably support hazard identification, this review considered each of the factors contributing to a negative human health outcome: mild diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). STEC pathogenesis involves entry into the human gut (often via ingestion), attachment to the intestinal epithelial cells, and elaboration of Stx. Production of Stx, which disrupts normal cellular functions and causes cell damage, alone without adherence of bacterial cells to gut epithelial cells is insufficient to cause severe illness. The principal adherence factor in STEC is the intimin protein coded by the eae gene. The aggregative adherence fimbriae adhesins regulated by the aggR gene of enteroaggregative E. coli strains are also effective adherence factors. The stx2a gene is most often present in locus of enterocyte effacement ( eae)-positive STEC strains and has consistently been associated with HUS. The stx2a gene has also been found in eae-negative, aggR-positive STEC that have caused HUS. HUS cases where other stx gene subtypes were identified indicate that other factors such as host susceptibility and the genetic cocktail of virulence genes in individual isolates may affect their association with severe diseases.
Collapse
Affiliation(s)
-
- The Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) Secretariat, * Food Safety and Quality Unit, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
12
|
Samad A, Abbas F, Ahmad Z, Tanveer Z, Ahmad I, Patching SG, Nawaz N, Asmat MT, Raziq A, Asadullah, Naeem M, Akhtar MA, Pokryshko O, Mustafa MZ. Multiplex polymerase chain reaction detection of Shiga toxin genes and antibiotic sensitivity ofEscherichia coliO157:H7 isolated from beef meat in Quetta, Pakistan. J Food Saf 2018. [DOI: 10.1111/jfs.12540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdul Samad
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Ferhat Abbas
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Zafar Ahmad
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Zunera Tanveer
- Department of PhysiologyUniversity Medical and Dental College Faisalabad Pakistan
- Institute of Molecular Biology and BiotechnologyThe University of Lahore Lahore Pakistan
| | - Irshad Ahmad
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds United Kingdom
- Institute of Basic Medical SciencesKhyber Medical University Peshawar Pakistan
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds United Kingdom
| | - Nighat Nawaz
- Department of ChemistryIslamia College Peshawar Peshawar Pakistan
| | - Muhammad Tauseef Asmat
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Abdul Raziq
- Department of StatisticsUniversity of Balochistan Quetta Pakistan
| | - Asadullah
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Muhammad Naeem
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Muhammad Aleem Akhtar
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
- Department of PharmacyUniversity of Balochistan Quetta Pakistan
- Department of Physiology and EndocrinologyUniversity of Balochistan Quetta Pakistan
| | - Olena Pokryshko
- Department of Microbiology, Virology and ImmunologyTernopil State Medical University Ukraine
| | - Mohammad Zahid Mustafa
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| |
Collapse
|
13
|
Zhou C, Zou H, Li M, Sun C, Ren D, Li Y. Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosens Bioelectron 2018; 117:347-353. [PMID: 29935488 DOI: 10.1016/j.bios.2018.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/17/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022]
Abstract
A fiber optic surface plasmon resonance (FOSPR) sensor was developed for detection of Escherichia coli O157:H7 (E. coli O157:H7) in water and juice, based on antimicrobial peptides (AMP), Magainin I, as recognition elements and silver nanoparticles-reduced graphene oxide (AgNPs-rGO) nanocomposites assisted signal amplification. The uniform AgNPs-rGO was fixed on the surface of optical fiber and covered with gold film. Not only was the SPR response greatly enhanced, but also the AgNPs was prevented from being oxidized. The FOSPR showed a sensitivity of about 1.5 times higher than that fabricated only with gold film. In the assay, Magainin I, immobilized on the surface of gold film, could specifically capture E. coli O157:H7, resulting in the wavelength shift of the SPR absorption peak. Under the optimized conditions, the SPR resonance wavelength exhibited a good linear relationship with natural logarithm of the target bacteria concentration in the range of 1.0 × 103 to 5.0 × 107 cfu/mL with the detection limit of 5.0 × 102 cfu/mL (S/N = 3). The FOSPR sensor showed good specificity for E. coli O157:H7 detection compared to other bacteria similar to the target bacterial species. Furthermore, the FOSPR sensor was successfully applied to the detection of E. coli O157:H7 in water, fruit and vegetable juice with the satisfactory recoveries of 88-110%. This assay for E. coli O157:H7 detection possesses high sensitivity, good selectivity, reproducibility and stability. In addition, the AMP based SPR biosensing methodology could be extended to detect a wide variety of foodborne pathogens. Therefore, the versatile method might become a potential alternative tool in food analysis and early clinical diagnosis.
Collapse
Affiliation(s)
- Chen Zhou
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Haimin Zou
- West China School of Public Health, Sichuan University, Chengdu, China; Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Ming Li
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Chengjun Sun
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Dongxia Ren
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yongxin Li
- West China School of Public Health, Sichuan University, Chengdu, China; College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Martínez-Vázquez AV, Rivera-Sánchez G, Lira-Méndez K, Reyes-López MÁ, Bocanegra-García V. Prevalence, antimicrobial resistance and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. J Glob Antimicrob Resist 2018; 14:266-272. [PMID: 29501529 DOI: 10.1016/j.jgar.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The aim of this study was to determinate the prevalence of Escherichia coli and its resistance to antimicrobials and the presence of virulence genes in retail samples of beef and pork in several locations in Tamaulipas, Mexico. METHODS A total of 106 samples (54 beef and 52 pork) collected from August 2013 to March 2014 were analysed to detect E. coli isolates. The E. coli isolates were then analysed for detection of virulence factors and antimicrobial resistance genes. Antimicrobial susceptibility to 16 antimicrobial agents was also determined. RESULTS A total of 158 E. coli isolates were obtained, among which 3 (1.9%) harboured the virulence gene stx1, 28 (17.7%) harboured stx2 and 34 (21.5%) harboured hlyA. High phenotypic resistance was observed in almost all isolates, since 146 (92.4%) showed a multiresistant phenotype with resistance to cefalotin (92%), ampicillin (92%), cefotaxime (78%), nitrofurantoin (76%) and tetracycline (75%). The antimicrobial resistance genes tet(A) and tet(B) were detected in 56% of isolates, strA in 9.6%, aadA in 17% and aac(3)-IV in only 0.6% of strains. CONCLUSIONS Based on these results, it can be concluded that retail beef and pork meat may play a role in the spread of antimicrobial-resistant E. coli strains in this region.
Collapse
Affiliation(s)
- Ana Verónica Martínez-Vázquez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro and Elías Piña, Reynosa 88710, Tamaulipas, Mexico
| | - Gildardo Rivera-Sánchez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro and Elías Piña, Reynosa 88710, Tamaulipas, Mexico
| | - Krystal Lira-Méndez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro and Elías Piña, Reynosa 88710, Tamaulipas, Mexico
| | - Miguel Ángel Reyes-López
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro and Elías Piña, Reynosa 88710, Tamaulipas, Mexico
| | - Virgilio Bocanegra-García
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro and Elías Piña, Reynosa 88710, Tamaulipas, Mexico.
| |
Collapse
|
15
|
Castro VS, Carvalho RCT, Conte-Junior CA, Figuiredo EES. Shiga-toxin ProducingEscherichia coli: Pathogenicity, Supershedding, Diagnostic Methods, Occurrence, and Foodborne Outbreaks. Compr Rev Food Sci Food Saf 2017; 16:1269-1280. [DOI: 10.1111/1541-4337.12302] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Vinicius Silva Castro
- Animal Science Program, Faculdade de Agronomia e Zootecnia; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
- Natl. Inst. of Health Quality Control; Fundação Oswaldo Cruz; Rio de Janeiro 21040-900 Rio de Janeiro Brazil
| | - Ricardo César Tavares Carvalho
- Nutrition, Food and Metabolism Program, Faculdade de Nutrição; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
| | - Carlos Adam Conte-Junior
- Dept. of Food Technology, Faculdade de Veterinária; Univ. Federal Fluminense; 24230-340 Rio de Janeiro Brazil
- Food Science Program, Inst. de Química; Univ. Federal do Rio de Janeiro; 21941-909 Rio de Janeiro Brazil
- Natl. Inst. of Health Quality Control; Fundação Oswaldo Cruz; Rio de Janeiro 21040-900 Rio de Janeiro Brazil
| | - Eduardo Eustáquio Souza Figuiredo
- Animal Science Program, Faculdade de Agronomia e Zootecnia; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
- Nutrition, Food and Metabolism Program, Faculdade de Nutrição; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
| |
Collapse
|
16
|
Helmy YA, El-Adawy H, Abdelwhab EM. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt. Pathogens 2017; 6:pathogens6030033. [PMID: 28754024 PMCID: PMC5617990 DOI: 10.3390/pathogens6030033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Egypt has a unique geographical location connecting the three old-world continents Africa, Asia and Europe. It is the country with the highest population density in the Middle East, Northern Africa and the Mediterranean basin. This review summarizes the prevalence, reservoirs, sources of human infection and control regimes of common bacterial, parasitic and viral zoonoses in animals and humans in Egypt. There is a gap of knowledge conerning the epidemiology of zoonotic diseases at the human-animal interface in different localities in Egypt. Some zoonotic agents are “exotic” for Egypt (e.g., MERS-CoV and Crimean-Congo hemorrhagic fever virus), others are endemic (e.g., Brucellosis, Schistosomiasis and Avian influenza). Transboundary transmission of emerging pathogens from and to Egypt occurred via different routes, mainly importation/exportation of apparently healthy animals or migratory birds. Control of the infectious agents and multidrug resistant bacteria in the veterinary sector is on the frontline for infection control in humans. The implementation of control programs significantly decreased the prevalence of some zoonoses, such as schistosomiasis and fascioliasis, in some localities within the country. Sustainable awareness, education and training targeting groups at high risk (veterinarians, farmers, abattoir workers, nurses, etc.) are important to lessen the burden of zoonotic diseases among Egyptians. There is an urgent need for collaborative surveillance and intervention plans for the control of these diseases in Egypt.
Collapse
Affiliation(s)
- Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, 41511 Ismailia, Egypt.
| | - Hosny El-Adawy
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
- Faculty of Veterinary Medicine, Kafrelsheikh University, 335516 Kafrelsheikh, Egypt.
| | - Elsayed M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
17
|
Jaakkonen A, Salmenlinna S, Rimhanen-Finne R, Lundström H, Heinikainen S, Hakkinen M, Hallanvuo S. Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012. Zoonoses Public Health 2017; 64:468-475. [PMID: 28045227 DOI: 10.1111/zph.12327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 12/31/2022]
Abstract
Shiga toxin-producing, sorbitol-fermenting Escherichia coli O157 (SF O157) has emerged as a cause of severe human illness. Despite frequent human findings, its transmission routes and reservoirs remain largely unknown. Foodborne transmission and reservoir in cattle have been suspected, but with limited supporting evidence. This study describes the outbreak of SF O157 that occurred in Finland in 2012. The outbreak originated from a recreational farm selling unpasteurized milk, as revealed by epidemiologic and microbiological investigations, and involved six hospitalized children and two asymptomatic adults with culture-confirmed infection. An identical strain of SF O157 was isolated from patients, cattle and the farm environment, and epidemiologic analysis suggested unpasteurized milk as the vehicle of transmission. This study reports the first milkborne outbreak of SF O157, provides supporting evidence of cattle as a reservoir and highlights the health risks related to the consumption of unpasteurized milk.
Collapse
Affiliation(s)
- A Jaakkonen
- Finnish Food Safety Authority Evira, Helsinki, Finland
| | - S Salmenlinna
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - R Rimhanen-Finne
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - S Heinikainen
- Finnish Food Safety Authority Evira, Kuopio, Finland
| | - M Hakkinen
- Finnish Food Safety Authority Evira, Helsinki, Finland
| | - S Hallanvuo
- Finnish Food Safety Authority Evira, Helsinki, Finland
| |
Collapse
|
18
|
Böhnlein C, Kabisch J, Meske D, Franz CMAP, Pichner R. Fitness of Enterohemorrhagic Escherichia coli (EHEC)/Enteroaggregative E. coli O104:H4 in Comparison to That of EHEC O157: Survival Studies in Food and In Vitro. Appl Environ Microbiol 2016; 82:6326-6334. [PMID: 27542931 PMCID: PMC5066349 DOI: 10.1128/aem.01796-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022] Open
Abstract
In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. IMPORTANCE In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages than E. coli O157:H7 strains. E. coli O104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potential E. coli O104:H4 infection.
Collapse
Affiliation(s)
- Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Diana Meske
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany Department of Nutritional, Food, and Consumer Sciences, University of Applied Sciences, Fulda, Germany
| |
Collapse
|
19
|
A Rapid and Sensitive Method for Simultaneous Screening of Nine Foodborne Pathogens Using High-Performance Liquid Chromatography Assay. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0672-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Antibacterial Activity of Carum copticum Essential Oil Against Escherichia Coli O157:H7 in Meat: Stx Genes Expression. Curr Microbiol 2016; 73:265-72. [PMID: 27155845 DOI: 10.1007/s00284-016-1048-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
This work were aimed to (a) determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Carum copticum essential oil (EO) against Escherichia. coli O157:H7 in vitro Trypticase Soy Broth, (TSB) and in ground beef; (b) evaluation of the effect of sub-inhibitory concentrations (sub-MICs) of EO on the growth of bacterium in TSB over 72 h (at 35 °C) and ground beef over 9 days (at 4 °C); and (c) investigation of gene expression involved in Shiga toxins production using relative quantitative real-time PCR method. The MIC in broth and ground beef medium were determined as 0.05 (v/v) and 1.75 % (v/w), respectively. In comparison with control cultures, the EO concentration of 0.03 % in broth caused reduction of colony counting as 1.93, 1.79, and 2.62 log10 CFU ml(-1) after 24, 48, and 72 h at 35 °C, and similarly EO (0.75 %) in ground beef resulted to reduction of colony counting as 1.03, 0.92, 1.48, and 2.12 log10 CFU g (-1) after 2, 5, 7, and 9 days at 4 °C, respectively. An increase and decrease in gene expression were observed as result of EO addition (0.03 %) to broth and (0.5 %) to ground beef was noticed, respectively.
Collapse
|
21
|
Bozçal E, Yiğittürk G, Uzel A, Aydemir SŞ. Investigation of enteropathogenic Escherichia coli and Shiga toxin-producingEscherichia coli associated with hemolytic uremic syndrome in İzmir Province, Turkey. Turk J Med Sci 2016; 46:733-41. [PMID: 27513249 DOI: 10.3906/sag-1501-60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/27/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The purpose of this study was to investigate Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) strains originating from diarrheagenic patients. MATERIALS AND METHODS A total of 102 patients with diarrhea between October 2012 and January 2013 were enrolled in this study. Multiplex and standard polymerase chain reactions were performed to detect and distinguish STEC and EPEC strains. O serotyping of EPEC was carried out by monovalent antisera. The O and H serotyping of STEC strains was performed at the Refik Saydam Institute, Ankara. RESULTS A total of 5 (3.42%) strains were identified as STEC, and 3 strains (2.05%) were atypical EPEC. One of the STEC serotypes was O157:H7 carrying VT1, Stx1A, and escv genes. The other STEC strain was identified as O174:H21, which is associated with hemolytic uremic syndrome and consists of VT2 and Stx2A genes. One of the EPEC and three of the STEC serotypes were nontypeable. The serotypes of the atypical EPEC strains were identified as O114 and O26. CONCLUSION To the best of our knowledge, this is the first report of O174:H21 from the İzmir region that was shown to be a Shiga toxin-producing non-O157 serotype of STEC.
Collapse
Affiliation(s)
- Elif Bozçal
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Gürkan Yiğittürk
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Ataç Uzel
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Sabire Şöhret Aydemir
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
22
|
|
23
|
Dong P, Zhu L, Mao Y, Liang R, Niu L, Zhang Y, Luo X. Prevalence and characterization of Escherichia coli O157:H7 from samples along the production line in Chinese beef-processing plants. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Mohammed MA, Sallam KI, Tamura T. Prevalence, identification and molecular characterization of Cronobacter sakazakii isolated from retail meat products. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Narváez-Bravo C, Echeverry A, Miller MF, Rodas-González A, Brashears MT, Aslam M, Brashears MM. Virulence characterization and molecular subtyping of typical and atypical Escherichia coli O157:H7 and O157:H(-) isolated from fecal samples and beef carcasses in Mexico. J Food Prot 2015; 78:264-72. [PMID: 25710140 DOI: 10.4315/0362-028x.jfp-14-348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of the study was to characterize virulence genes and subtype Escherichia coli O157:H7 and O157:H( 2 ) isolates obtained from a vertically integrated feedlot slaughter plant in Mexico. A total of 1,695 samples were collected from feedlots, holding pens, colon contents, hides, and carcasses. E. coli O157:H7 detection and confirmation was carried out using conventional microbiology techniques, immunomagnetic separation, latex agglutination, and the BAX system. A total of 97 E. coli O157 strains were recovered and screened for key virulence and metabolic genes using multiplex and conventional PCR. Eighty-eight (91.72%) of the strains carried stx2, eae, and ehxA genes. Ten isolates (8.25%) were atypical sorbitol-fermenting strains, and nine were negative for the flicH7 gene and lacked eae, stx1, stx2, and ehxA. One sorbitol-positive strain carried stx2, eae, tir, toxB, and iha genes but was negative for stx1 and ehxA. Pulsed-field gel electrophoresis (PFGE) analysis yielded 49 different PFGE subtypes, showing a high genetic diversity; however, the majority of the typical isolates were closely related (80 to 90% cutoff). Atypical O157 isolates were not closely related within them or to typical E. coli O157:H7 isolates. Identical PFGE subtypes were found in samples obtained from colon contents, feedlots, holding pens, and carcasses. Isolation of a sorbitolfermenting E. coli O157 positive for a number of virulence genes is a novel finding in Mexico. These data showed that genetically similar strains of E. coli O157:H7 can be found at various stages of beef production and highlights the importance of preventing cross-contamination at the pre- and postharvest stages of processing.
Collapse
Affiliation(s)
- Claudia Narváez-Bravo
- Department of Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Alejandro Echeverry
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Markus F Miller
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | | | - M Todd Brashears
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mueen Aslam
- Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta, Canada T4L 1W1
| | - Mindy M Brashears
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
26
|
Prevalence and characterization of Escherichia coli O157 and O157:H7 in retail fresh raw meat in South China. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1037-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Elhadidy M, Mohammed M. Interaction of Different Shiga Toxin–ProducingEscherichia coliSerotypes with Caco-2 Cells. Foodborne Pathog Dis 2014; 11:874-80. [DOI: 10.1089/fpd.2014.1780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohamed Elhadidy
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud Mohammed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Ahmed M, Van Velkinburgh J. Enterohemorrhagic Escherichia coli O157 in North Africa region: a threat require advanced investigation. Pan Afr Med J 2014; 19:26. [PMID: 25667688 PMCID: PMC4314147 DOI: 10.11604/pamj.2014.19.26.4825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mohamed Ahmed
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | |
Collapse
|
29
|
Ayaz ND, Gencay YE, Erol I. Prevalence and molecular characterization of sorbitol fermenting and non-fermenting Escherichia coli O157:H7+/H7– isolated from cattle at slaughterhouse and slaughterhouse wastewater. Int J Food Microbiol 2014; 174:31-8. [DOI: 10.1016/j.ijfoodmicro.2014.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
|
30
|
Mohammed MA, Sallam KI, Eldaly EAZ, Ahdy AM, Tamura T. Occurrence, serotypes and virulence genes of non-O157 Shiga toxin-producing Escherichia coli in fresh beef, ground beef, and beef burger. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Enterohemorrhagic Escherichia coli (EHEC). Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
32
|
Langsrud S, Heir E, Rode TM. Survival of Shiga toxin-producing Escherichia coli and Stx bacteriophages in moisture enhanced beef. Meat Sci 2013; 97:339-46. [PMID: 24134920 DOI: 10.1016/j.meatsci.2013.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
Moisture enhancement of meat through injection is a technology to improve the sensory properties and the weight of meat. However, the technology may increase the risk of food borne infections. Shiga toxin-producing Escherichia coli (STEC) or bacteriophages carrying cytotoxin genes (Shiga toxin genes, stx), which is normally only present on the surface of intact beef, may be transferred to the inner parts of the muscle during the injection process. Pathogens and bacteriophages surviving the storage period may not be eliminated in the cooking process since many consumers prefer undercooked beef. Measures to increase the microbial food safety of moisture enhanced beef may include sterilization or washing of the outer surface of the meat before injection, avoiding recycling of marinade and addition of antimicrobial agents to the marinade. This paper reviews the literature regarding microbial safety of moisture enhanced beef with special emphasis on STEC and Stx bacteriophages. Also, results from a European Union research project, ProSafeBeef (Food-CT-16 2006-36241) are presented.
Collapse
Affiliation(s)
- Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| | - Tone Mari Rode
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| |
Collapse
|