1
|
Boadu RO, Dankyi E, Apalangya VA, Osei-Safo D. Aflatoxins in maize and groundnuts on markets in Accra and consumers risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:213-222. [PMID: 38778671 DOI: 10.1080/19393210.2024.2351575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
This study presents the results of aflatoxin contamination of maize and groundnuts in major markets in Accra and assesses the population's exposure to aflatoxins. Raw maize and groundnuts from 6 major markets in Accra were sampled and analysed for their aflatoxin content. A total of 92 samples comprising 48 maize and 44 groundnuts were analysed using high-performance liquid chromatography, after extraction with methanol/water and cleanup on an immunoaffinity column. Total aflatoxins were quantified in 98% of the maize samples and 70% of the groundnut samples, with concentrations ranging from 0.60 to 1065 µg/kg and 0.20 to 627 µg/kg, respectively. Exposure assessment showed an estimated daily intake of 0.436 μg/kg bw/day and 0.0632 μg/kg bw/day for maize and groundnut consumption, respectively, suggesting significant health risks for consumers. The high prevalence and concentrations of aflatoxins call for an urgent need for measures to control exposure of the Ghanaian population.
Collapse
Affiliation(s)
| | - Enock Dankyi
- Department of Chemistry, University of Ghana, Accra, Ghana
| | - Vitus A Apalangya
- Department of Food Processing Engineering, University of Ghana, Accra, Ghana
| | | |
Collapse
|
2
|
Anyogu A, Somorin YM, Oladipo AO, Raheem S. Food safety issues associated with sesame seed value chains: Current status and future perspectives. Heliyon 2024; 10:e36347. [PMID: 39253262 PMCID: PMC11381738 DOI: 10.1016/j.heliyon.2024.e36347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Sesame (Sesamum indicum) is an oilseed crop which is increasingly recognised as a functional food by consumers due to its nutritional and nutraceutical components. Consequently, global demand for sesame has increased significantly over the last three decades. Sesame is an important export crop in producing countries, contributing to their socio-economic development. However, in recent years, major foodborne incidents have been associated with imported sesame seeds and products made with these seeds. Foodborne hazards are a potential risk to consumer health and hinder international trade due to border rejections and increased import controls. An insight into the routes of contamination of these hazards across the value chain and factors affecting persistence may lead to more focused intervention and prevention strategies. It was observed that Salmonella is a significant microbial hazard in imported sesame seeds and has been associated with several global outbreaks. Sesame is mainly cultivated in the tropical and subtropical regions of Africa and Asia by smallholder farmers. Agricultural and manufacturing practices during harvesting, storage, and processing before export may allow for the contamination of sesame seeds with Salmonella. However, only a few studies collect data on the microbiological quality of sesame across the value chain in producing countries. In addition, the presence of mycotoxins and pesticides above regulatory limits in sesame seeds is a growing concern. Eliminating foodborne hazards in the sesame value chain requires urgent attention from researchers, producers, processors, and regulators and suggestions for improving the safety of these foods are discussed.
Collapse
Affiliation(s)
- Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, London, W5 5RF, United Kingdom
| | - Yinka M Somorin
- University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- Department of Biological Science, Ajayi Crowther University, Oyo, Nigeria
| | - Abigail Oluseye Oladipo
- Food Safety and Security, School of Biomedical Sciences, University of West London, London, W5 5RF, United Kingdom
| | - Saki Raheem
- School of Life Sciences, University of Westminster, London, W1W 6UW, United Kingdom
| |
Collapse
|
3
|
Prattay KMR, Chowdhury MTA, Sarkar MR, Rahman T, Emon SZ, Hossain A, Rajib HG, Abdurrahim M. Microbiological Analysis and Content of Heavy Metals in Different Candies, Chocolates, and Their Wrappers in Bangladesh. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:4536475. [PMID: 38566755 PMCID: PMC10987241 DOI: 10.1155/2024/4536475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Present study investigates 39 brands of candies, chocolate, and litchis, purchased from Dhaka City, Bangladesh, for their moisture content, sulphated ash value, heavy metal, and bacterial contamination. All the brands showed moisture content (0.64%-4.775%) within the BSTI range, but sulphated ash values (18.80%-25.72%) were beyond the accepted value. Pb, Cd, Ni, and Cr ranged from 0.24-2.40 μg/g, 0.071-0.44 μg/g, 0.38-48.10 μg/g, and 0.50-12.79 μg/g, respectively, in the tested brands. Most of the brands contained Pb and Cd beyond the acceptable limits of WHO/FDA. Pb (2.24-2586.75 μg/g) was found in high concentration in the packaging of most brands, and Ni and Cd ranged from 2.10-108.05 μg/g and 1.68-45 μg/g, respectively. Bacterial presence was found in 15 brands, and 4 of them had a total aerobic bacterial count of >1 log CFU/g. Consumption of such contaminated confectionaries holds significant public health risks, specially in children, and demands necessary precautionary steps.
Collapse
Affiliation(s)
- Kazi Milenur Rahman Prattay
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
- School of Pharmacy, BRAC University, Dhaka 1212, Bangladesh
| | - Md. Tanvir Ahmed Chowdhury
- Department of Soil, Water and Environment, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Raihan Sarkar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanvir Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sharmin Zaman Emon
- Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Abrar Hossain
- Department of Disaster Science and Climate Resilience, Faculty of Earth and Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hredoy Ghosh Rajib
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Abdurrahim
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| |
Collapse
|
4
|
da Silva Estrela Junior A, Solís K, Sobrinho CCDM, Garzón AI, Peñaherrera S, Vera DI, Solís Bonilla JL, Moraes WB, Laranjeira D, Gramacho KP. Viability of Moniliophthora roreri on Cocoa Beans Under Microfermentation and Long-Term Survival on Carrier Materials. PLANT DISEASE 2023; 107:3497-3505. [PMID: 37157116 DOI: 10.1094/pdis-11-22-2630-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The viability of Moniliophthora roreri inoculum was evaluated during the microfermentation process of diseased and healthy pulp-seed masses and on a range of carrier materials: aluminum, cloth, glass, paper, plastic, raffia, and rubber tire. Fungal survival was assessed before the microfermentation (0 h) and every 24 to 96 h by the growth of colonies in potato-dextrose-agar (PDA) and sporulation in seed shells. Colonies of M. roreri and sporulation on seed shells were observed from seeds not submitted to microfermentation. No growth was recovered from diseased cocoa beans after 48 h under the microfermentation. The viability of M. roreri spores recovered from carrier materials was evaluated at 7, 15, 30, 45, and 100 days after inoculation (DAI) by collecting spores and plating them on Sabouraud dextrose yeast extract agar amended with chloramphenicol (50 mg l1). The viability was determined by counting germinated and ungerminated spores under a light microscope (40×) after incubating in a moist chamber at 26 ± 2°C for 72 h. Spores maintained long-term viability on all tested carrier materials toward the end of the experiment (overall 26%) with significant differences (<0.05) among them. Maximum spore viability occurred at 7 and 15 DAI, with cloth and plastic carrier materials considered at high risk of acting as vehicles for the fungal spread. Mathematical models of spore viability over time were fit to the data using the Bayesian information criterion. Findings confirmed the importance of the fermentation process to hamper M. roreri growth and the potential of carrier materials for fungal dispersal.
Collapse
Affiliation(s)
| | - Karina Solís
- Estación Experimental Tropical Pichilingue del Instituto Nacional de Investigaciones Agropecuarias (INIAP), Mocache, Los Ríos, Ecuador
| | | | - Arturo Iván Garzón
- Estación Experimental Tropical Pichilingue del Instituto Nacional de Investigaciones Agropecuarias (INIAP), Mocache, Los Ríos, Ecuador
| | - Sofia Peñaherrera
- Estación Experimental Tropical Pichilingue del Instituto Nacional de Investigaciones Agropecuarias (INIAP), Mocache, Los Ríos, Ecuador
| | - Danilo I Vera
- Estación Experimental Tropical Pichilingue del Instituto Nacional de Investigaciones Agropecuarias (INIAP), Mocache, Los Ríos, Ecuador
| | - José Luis Solís Bonilla
- Campo Experimental Rosario Izapa (CERI), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Tuxtla Chico, Chiapas 30870, México
| | - Willian Bucker Moraes
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal do Espírito Santo, Alegre, ES 29500-000, Brazil
| | - Delson Laranjeira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
| | - Karina Peres Gramacho
- Centro de Pesquisas do Cacau (CEPEC), Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Ilhéus, BA 45600-970, Brazil
| |
Collapse
|
5
|
Abreu DCP, Vargas EA, Oliveira FADS, Uetanabaro APT, Pires PN, Bazzana MJF, Saczk AA. Study of co-occurrence of mycotoxins in cocoa beans in Brazil by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1049-1058. [PMID: 37505626 DOI: 10.1080/19440049.2023.2238838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
In this study, 135 samples of cocoa beans collected in the Amazon and Atlantic Forest regions of Brazil were analysed to evaluate the possible co-occurrence of 34 mycotoxins. The results indicate that 42% of the cocoa samples exhibited quantifiable levels for 11 mycotoxins: aflatoxins (AFs) B1, B2 and G1; ochratoxin A; citrinin; cyclopiazonic acid; tenuazonic acid; paxilline; sterigmatocystin; zearalenone and fumonisin B2. Of the samples, 18% exhibited the co-occurrence of up to six mycotoxins. No toxins belonging to the groups of trichothecenes or ergot alkaloids were detected. Contingency analysis of the incidence of mycotoxins did not show significant differences between the two regions evaluated. Seven samples were contaminated with AFs, while only one contained ochratoxin A above 10 μg kg-1. The accuracy of the method was evaluated by proficiency testing for ochratoxin A, where satisfactory Z-scores were obtained.
Collapse
Affiliation(s)
| | - Eugenia Azevedo Vargas
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
7
|
Banahene JCM, Ofosu IW, Odai BT. Surveillance of ochratoxin A in cocoa beans from cocoa-growing regions of Ghana. Heliyon 2023; 9:e18206. [PMID: 37501961 PMCID: PMC10368851 DOI: 10.1016/j.heliyon.2023.e18206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Cocoa is one of the agricultural commodities which is highly susceptible to mycotoxin contamination. During two crop/harvest seasons, the occurrence and distribution of ochratoxin A (OTA) in viable commercial cocoa beans were investigated. The cocoa bean samples were collected randomly from farmers across cocoa-growing regions of Ghana. OTA concentrations in the samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods following purification on immunoaffinity solid phase column. The result showed that 21.7% of all samples analyzed were contaminated with OTA at concentrations ranging from 0.01 μg/kg to 12.36 μg/kg. The Western South region had the highest occurrence of OTA-positive samples at 32.5%, followed by the Western North region at 28.75%, the Eastern and Volta regions at 25% each, Brong Ahafo (16.25%), Central (15%) and the Ashanti region at 11.25%. However, 0.9% and 3.5% of the total OTA-positive samples exceeded the OTA maximum limits of 10 μg/kg for cocoa beans and 3 μg/kg for cocoa powder, set by the Brazilian National Health Surveillance Agency and the European Commission, respectively. During the Main and Light crop seasons, the highest concentrations of OTA were detected in the Western North region, reaching up to 12.36 μg/kg and 3.45 μg/kg, respectively. OTA concentrations between the cocoa-growing regions in the Main crop season were not significantly different (p > 0.05), however, the Light crop season indicated a significant difference (p < 0.05). There was a significant difference (p < 0.05) between the two crop seasons. The need for regular monitoring and careful adherence to agronomic strategies such as good agricultural practices (GAPs), recommended code of practices (COPs) and good manufacturing practices (GMPs) for the prevention and reduction of OTA throughout the cocoa value chain cannot be overemphasized.
Collapse
Affiliation(s)
- Joel Cox Menka Banahene
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
- Research Department, Quality Control Company Limited – Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Bernard Tawiah Odai
- Radiation Technology Centre - BNARI, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| |
Collapse
|
8
|
Kortei NK, Badzi S, Nanga S, Wiafe-Kwagyan M, Amon DNK, Odamtten GT. Survey of knowledge, and attitudes to storage practices preempting the occurrence of filamentous fungi and mycotoxins in some Ghanaian staple foods and processed products. Sci Rep 2023; 13:8710. [PMID: 37248384 DOI: 10.1038/s41598-023-35275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Mycotoxigenic fungi can infect and produce potent mycotoxins in foodstuffs prior to harvest, during harvest (field fungi), and in storage after harvest (storage fungi), which when ingested, can result in adverse health effects. This study was aimed at assessing the knowledge, attitudes, and practices adopted by the Ghanaian populace to help mitigate the occurrence of molds and mycotoxins in foods. A cross-sectional survey involving a structured questionnaire was conducted with 642 respondents from twelve regions of Ghana. Descriptive statistics and analyses of variance were calculated. Correct Classification Rate (CCR) was measured to assess the utility of a logistic regression model. The results of the study showed that the majority of 299 (46.6%) of the respondents were between the ages of 18-25. Age and educational level were related to knowledge about the occurrence of fungi and mycotoxins in foods (p < 0.05). More than half the respondents, 50% indicated that they knew of aflatoxins as a major mycotoxin present in food. Higher education directly influenced on the knowledge of mycotoxicosis and the management of stored food to present intoxication by fungal metabolites. 502 (32.9%) knew that consuming foods with toxins could cause stomach aches. The most commonly consumed food commodity despite the presence of visible growth of fungi was bread (35.3%). The average KAP score for knowledge showed that, out of 100%, there was adequate knowledge (63.8%) among the members of the Ghanaian populace. Favorable environmental conditions of high humidity (> 85% ERH) and temperature (> 28-32 °C) enhance the proliferation of fungi in most foods and the attendant production of mycotoxins such as aflatoxins, ochratoxins, and fumonisins are associated with several severe human and animal health conditions; mycotoxicosis was associated with high fever, pain, vomiting, suppression of immunity, cancer, etc. when these foods are consumed on regular basis for a prolonged length of time. Future examination of the food items used for the School Feeding Programme in Ghana will offer opportunities to examine the risks of feeding youth with fungal-contaminated food preparations from providers.
Collapse
Affiliation(s)
- Nii Korley Kortei
- School of Allied Health Sciences, Department of Nutrition and Dietetics, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Sandra Badzi
- School of Allied Health Sciences, Department of Nutrition and Dietetics, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Salifu Nanga
- School of Basic and Biomedical Sciences, Department of Basic Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Michael Wiafe-Kwagyan
- College of Basic and Applied Sciences, Department of Plant and Environmental Biology, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Denick Nii Kotey Amon
- College of Basic and Applied Sciences, Department of Plant and Environmental Biology, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - George Tawia Odamtten
- College of Basic and Applied Sciences, Department of Plant and Environmental Biology, University of Ghana, P. O. Box LG 55, Legon, Ghana
| |
Collapse
|
9
|
Wang G, Li E, Gallo A, Perrone G, Varga E, Ma J, Yang B, Tai B, Xing F. Impact of environmental factors on ochratoxin A: From natural occurrence to control strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120767. [PMID: 36455768 DOI: 10.1016/j.envpol.2022.120767] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Ochratoxin A (OTA) contamination and the associated issues of food security, food safety and economic loss are widespread throughout the world. The occurrence of OTA depends on ochratoxigenic fungi, foodstuffs and their environment. In this review, natural occurrence and control strategy of OTA, with a focus on the impact of environmental factors, are summarized. First, this manuscript introduces potentially contaminated foodstuffs, including the emerging ones which are not regulated in international legislation. Secondly, it gives an update of native producers based on foodstuffs and OTA biosynthesis. Thirdly, complicated environmental regulation is disassembled into individual factors in order to clarify their regulatory effect and mechanism. Finally, to emphasize control OTA at all stages of foodstuffs from farm to table, strategies used at crop planting, harvest, storage and processing stages are discussed.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Erfeng Li
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, 300392, China
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, 73100, Italy
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, 70126, Italy
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, 1090, Austria
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Hamad GM, Amer A, El-Nogoumy B, Ibrahim M, Hassan S, Siddiqui SA, EL-Gazzar AM, Khalifa E, Omar SA, Abd-Elmohsen Abou-Alella S, Ibrahim SA, Esatbeyoglu T, Mehany T. Evaluation of the Effectiveness of Charcoal, Lactobacillus rhamnosus, and Saccharomyces cerevisiae as Aflatoxin Adsorbents in Chocolate. Toxins (Basel) 2022; 15:toxins15010021. [PMID: 36668841 PMCID: PMC9863511 DOI: 10.3390/toxins15010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The high incidence of aflatoxins (AFs) in chocolates suggests the necessity to create a practical and cost-effective processing strategy for eliminating mycotoxins. The present study aimed to assess the adsorption abilities of activated charcoal (A. charcoal), yeast (Saccharomyces cerevisiae), and the probiotic Lactobacillus rhamnosus as AFs adsorbents in three forms-sole, di- and tri-mix-in phosphate-buffered saline (PBS) through an in vitro approach, simulated to mimic the conditions present in the gastrointestinal tract (GIT) based on pH, time and AFs concentration. In addition, the novel fortification of chocolate with A. charcoal, probiotic, and yeast (tri-mix adsorbents) was evaluated for its effects on the sensory properties. Using HPLC, 60 samples of dark, milk, bitter, couverture, powder, and wafer chocolates were examined for the presence of AFs. Results showed that all the examined samples contained AFs, with maximum concentrations of 2.32, 1.81, and 1.66 µg/kg for powder, milk, and dark chocolates, respectively. The combined treatment demonstrated the highest adsorption efficiency (96.8%) among all tested compounds. Scanning electron microscope (SEM) analysis revealed the tested adsorbents to be effective AF-binding agents. Moreover, the novel combination of tri-mix fortified chocolate had a minor cytotoxicity impact on the adsorptive abilities, with the highest binding at pH 6.8 for 4 h, in addition to inducing an insignificant effect on the sensory attributes of dark chocolate. Tri-mix is thus recommended in the manufacturing of dark chocolate in order to enhance the safety of the newly developed product.
Collapse
Affiliation(s)
- Gamal M. Hamad
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Egypt
| | - Amr Amer
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Baher El-Nogoumy
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Mohamed Ibrahim
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Sabria Hassan
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Ahmed M. EL-Gazzar
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Eman Khalifa
- Department of Microbiology, Medicine/Alexandria University Branch, Matrouh University, Marsa Matruh 51511, Egypt
| | - Sabrien A. Omar
- Department of Microbiology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | | | - Salam A. Ibrahim
- Food and Nutritional Sciences, North Carolina Agricultural and Technical State University, E. Market Street 1601, Greensboro, NC 24711, USA
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence: (T.E.); (T.M.); Tel.: +49-5117625589 (T.E.); +20-1028065903 (T.M.)
| | - Taha Mehany
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Egypt
- Correspondence: (T.E.); (T.M.); Tel.: +49-5117625589 (T.E.); +20-1028065903 (T.M.)
| |
Collapse
|
11
|
Korcari D, Ricci G, Fanton A, Emide D, Barbiroli A, Fortina MG. Exploration of Lactiplantibacillus fabifermentans and Furfurilactobacillus rossiae as potential cocoa fermentation starters. J Appl Microbiol 2022; 133:1769-1780. [PMID: 35751485 PMCID: PMC9540988 DOI: 10.1111/jam.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the characteristics of two minority autochthonous LAB species, with particular regard to those properties that could be exploited in an improved cocoa fermentation process from a quality and safety point of view. METHODS AND RESULTS Bacterial, yeast and mould strains characteristic of spontaneously fermented Dominican cocoa beans were isolated and identified by 16S or 26S rRNA gene sequencing. The potential of two autochthonous strains of LAB belonging to the species Lactiplantibacillus fabifermentans and Furfurilactibacillus rossiae were investigated. The two selected LAB strains were able to utilize glucose and fructose, produced mainly D-L lactic acid and had a good ability to resist to cocoa-related stress conditions such as low pH, high temperature and high osmotic pressure, as well as to grow in sterile cocoa pulp. The strains did not inhibit the growth of yeasts and acetic acid bacteria, that are essential to the cocoa fermentation process, and possessed a complex pool of peptidases especially active on hydrophobic amino acids. The strains also showed antifungal activity against mould species that can be found at the final stages of cocoa fermentation, as Aspergillus tamarii, A. nidulans, Lichtheimia ornata and Rhizomucor pusillus, CONCLUSIONS: The tested strains are good candidates for the design of starter cultures for a controlled cocoa fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY This research showcases the potential of two alternative LAB species to the dominating Lactiplantibacillus plantarum and Limosilactibacillus fermentum as cocoa fermentation starters, with an interesting activity in improving the safety and quality of the process.
Collapse
Affiliation(s)
- Dea Korcari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Ricci
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Alberto Fanton
- Rizek Cocoa S.A.S., San Francisco de Macorìs, Dominican Republic
| | - Davide Emide
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Maria Grazia Fortina
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Delgado-Ospina J, Molina-Hernandez JB, Viteritti E, Maggio F, Fernández-Daza FF, Sciarra P, Serio A, Rossi C, Paparella A, Chaves-López C. Advances in understanding the enzymatic potential and production of ochratoxin A of filamentous fungi isolated from cocoa fermented beans. Food Microbiol 2022; 104:103990. [DOI: 10.1016/j.fm.2022.103990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
|
13
|
Dos Santos ID, Fontana MEZ, Klein B, Ribeiro SR, Stefanello A, Thewes FR, Schmidt SFP, Copetti MV, Brackmann A, Pizzutti IR, Wagner R. Fungal growth, patulin accumulation and volatile profile in 'Fuji Mishima' apples under controlled atmosphere and dynamic controlled atmosphere. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:170-184. [PMID: 34702141 DOI: 10.1080/19440049.2021.1987533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this study was to evaluate fungal and patulin contamination, together with its correlation with the volatile compounds (VCs), in 'Fuji Mishima' apples (up to 25% decayed) under controlled atmosphere (CA) and dynamic controlled atmosphere with respiratory quotient (DCA-RQ) of 1.3 combined with different partial pressures of carbon dioxide (0.8, 1.2, 1.6 and 2.0 pCO2). Fruits were stored under the above conditions for 8 months at 0.5 °C plus 7 days shelf life at 20 °C. Toxigenic fungi and patulin accumulation were found in apples from all treatments. Penicillium expansum was the most prevalent species. For all storage conditions, patulin concentrations were above the maximum level allowed in Brazil (50 μg kg-1) with an exception of DCA-RQ1.3 + 0.8 kPa CO2. This condition, with lower pCO2, showed the lowest patulin accumulation, below the legal limit. The CA provided the highest patulin concentration (166 μg kg-1). It was observed that fungal growth could also contribute to changes in the volatile composition. Styrene and 3-methyl-1-butanol are considered P. expansum markers in some apple cultivars and were detected in the samples. However, it was not possible to identify volatile organic compounds (VOCs) that are biomarkers from P. expansum, because there were other fungi species present in all samples. In this study, styrene, n-decanoic acid, toluene, phenol and alpha-farnesene were the compounds that showed the most positive correlation with patulin accumulation. On the other hand, a negative correlation of patulin with acids has been shown, indicating that in treatments with a higher patulin concentration there were less acidic compounds.
Collapse
Affiliation(s)
- Ingrid D Dos Santos
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marlos E Z Fontana
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bruna Klein
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Stephanie R Ribeiro
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Andrieli Stefanello
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fabio R Thewes
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Suele F P Schmidt
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marina V Copetti
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Auri Brackmann
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ionara R Pizzutti
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
14
|
The Role of Fungi in the Cocoa Production Chain and the Challenge of Climate Change. J Fungi (Basel) 2021; 7:jof7030202. [PMID: 33802148 PMCID: PMC7999002 DOI: 10.3390/jof7030202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.
Collapse
|
15
|
De Vuyst L, Leroy F. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev 2021; 44:432-453. [PMID: 32420601 DOI: 10.1093/femsre/fuaa014] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Cured cocoa beans are obtained through a post-harvest, batchwise process of fermentation and drying carried out on farms in the equatorial zone. Fermentation of cocoa pulp-bean mass is performed mainly in heaps or boxes. It is made possible by a succession of yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) activities. Yeasts ferment the glucose of the cocoa pulp into ethanol, perform pectinolysis and produce flavour compounds, such as (higher) alcohols, aldehydes, organic acids and esters. LAB ferment the glucose, fructose and citric acid of the cocoa pulp into lactic acid, acetic acid, mannitol and pyruvate, generate a microbiologically stable fermentation environment, provide lactate as carbon source for the indispensable growth of AAB, and contribute to the cocoa and chocolate flavours by the production of sugar alcohols, organic acids, (higher) alcohols and aldehydes. AAB oxidize the ethanol into acetic acid, which penetrates into the bean cotyledons to prevent seed germination. Destruction of the subcellular seed structure in turn initiates enzymatic and non-enzymatic conversions inside the cocoa beans, which provides the necessary colour and flavour precursor molecules (hydrophilic peptides, hydrophobic amino acids and reducing sugars) for later roasting of the cured cocoa beans, the first step of the chocolate-making.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
16
|
|
17
|
Viesser JA, de Melo Pereira GV, de Carvalho Neto DP, Rogez H, Góes-Neto A, Azevedo V, Brenig B, Aburjaile F, Soccol CR. Co-culturing fructophilic lactic acid bacteria and yeast enhanced sugar metabolism and aroma formation during cocoa beans fermentation. Int J Food Microbiol 2020; 339:109015. [PMID: 33340944 DOI: 10.1016/j.ijfoodmicro.2020.109015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Glucose and fructose are the main fermentable sugars in cocoa pulp. During fermentation, glucose is consumed within 48-72 h and fructose only after 120 h, mainly associated with the preferential use of glucose by microorganisms. In the first stage of this study, the complete genome sequence of a lactic acid bacterium with high fructose consumption capacity (Lactobacillus plantarum LPBF35) was reported. The notable genomic features of L. plantarum LPBF35 were the presence of alcohol/acetaldehyde dehydrogenase gene and improved PTS system, confirming its classification as a "facultatively" fructophilic bacterium. Subsequently, this bacterium was introduced into cocoa fermentation process in single and mixed cultures with Pediococcus acidilactici LPBF66 or Pichia fermentans YC5.2. Community composition by Illumina-based amplicon sequencing and viable counts indicated suppression of wild microflora in all treatments. At the beginning of the fermentation processes, cocoa pulp consisted of approximately 73.09 mg/g glucose and 73.64 mg/g fructose. The L. plantarum LPBF35 + P. fermentans YC5.2 process showed the lowest levels of residual sugars after 72 h of fermentation (7.89 and 4.23 mg/g, for fructose and glucose, respectively), followed by L. plantarum LPBF35 + Ped. acidilactici LPBF66 (8.85 and 6.42 mg/g, for fructose and glucose, respectively), single L. plantarum LPBF35 treatment (4.15 and 10.15 mg/g, for fructose and glucose, respectively), and spontaneous process (22.25 and 14.60 mg/g, for fructose and glucose, respectively). The positive interaction between L. plantarum LPBF35 and P. fermentans YC5.2 resulted in an improved formation of primary (ethanol, lactic acid, and acetic acid) and secondary (2-methyl-1-butanol, isoamyl acetate, and ethyl acetate) metabolites during fermentation. The primary metabolites accumulated significantly in cocoa beans fermented by P. fermentans YC5.2 + L. plantarum LPBF35, causing important reactions of color development and key flavor molecules formation. The results of this study suggest that fructophilic lactic acid bacteria and yeast is a microbial consortium that could improve sugar metabolism and aroma formation during cocoa beans fermentation.
Collapse
Affiliation(s)
- Jéssica A Viesser
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Gilberto V de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil.
| | - Dão Pedro de Carvalho Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Hervé Rogez
- Center for Valorisation of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, 66.095-780 Belém, PA, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, BA, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37073 Göttingen, Germany
| | - Flávia Aburjaile
- Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| |
Collapse
|
18
|
Abreu DCP, da Silva Oliveira FA, Vargas EA, Madureira FD, Magalhães EJ, da Silva LP, Saczk AA. Methodology development based on "dilute and shoot" and QuEChERS for determination of multiple mycotoxins in cocoa by LC-MS/MS. Anal Bioanal Chem 2020; 412:1757-1767. [PMID: 32016569 DOI: 10.1007/s00216-020-02390-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 11/25/2022]
Abstract
This work proposes an extraction method based on the "dilute and shoot" approach and QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) for the simultaneous determination of 42 mycotoxins (34 quantified and 8 qualitatively studied) in dried cocoa bean samples. The purpose of the developed methodology was the reduction of co-extractives from the matrix and an efficient extraction without a cleanup step, and subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In order to obtain the best extraction conditions, gravimetric tests were performed and parameters that influenced the extraction efficiency were evaluated, such as the proportion of extraction phases, amount of salt, acidification, and extraction time. The performance of the developed method was evaluated to ensure its reliability. Considering the recovery range of 70-120% as an accuracy parameter, four of the mycotoxins under study (acetyl T-2, tenuazonic acid, wortmannin, and zearalenone) showed undesirable values at one of the levels evaluated. The repeatability of the method was assessed for 34 mycotoxins by the relative standard deviation (RSD%) of the responses, and all presented satisfactory values. The quantification limits ranged from 1.0 to 33.0 μg kg-1. Modification of the extraction methods made it possible to simultaneously analyze multiple mycotoxins, eliminating the need for the cleanup step, which led to analyte losses. The proposed methodology has a low cost, which makes it advantageous in routine analysis. It also has the potential for scope extension to cocoa-based foods, which are naturally exposed to a greater variety of mycotoxins. Graphical abstract.
Collapse
Affiliation(s)
| | - Fabiano Aurélio da Silva Oliveira
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, 30380-090, Brazil
| | - Eugenia Azevedo Vargas
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, 30380-090, Brazil
| | - Fernando Diniz Madureira
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, 30380-090, Brazil
| | | | - Lucas Pinto da Silva
- Chemistry Department, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | |
Collapse
|
19
|
Akinfala TO, Houbraken J, Sulyok M, Adedeji AR, Odebode AC, Krska R, Ezekiel CN. Moulds and their secondary metabolites associated with the fermentation and storage of two cocoa bean hybrids in Nigeria. Int J Food Microbiol 2019; 316:108490. [PMID: 31874327 DOI: 10.1016/j.ijfoodmicro.2019.108490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
Fungi and mycotoxin contamination of cocoa beans during fermentation and storage may constitute a hazard in the cocoa value chain and risk to consumers of its products. In this study, fungal profile and secondary metabolite patterns in two cocoa bean hybrids, F and T series, during fermentation and storage were determined. Additionally, secondary metabolite production by the recovered fungi in the beans was examined in culture media. Fungal isolates spanned six genera and eight species: Aspergillus niger, A. tamarii, Paecilomyces variotii, Penicillium citrinum, Pseudopithomyces palmicola, Simplicillium sp., Talaromyces atroroseus and Talaromyces sp.. In both hybrids, Aspergilli (38%) dominated the other fungi while more than one half of all the fungal isolates were from the beans in storage. Among the diverse secondary metabolites produced in media by the isolates were uncommon compounds, e.g. aspulvinone E produced by A. niger, aspterric acid by P. variotii, scalusamid A and sydowinin A by P. citrinum, norlichexanthone and siccanol by Simplicillium, and fallacinol and orsellinic acid by Talaromyces. The strains of P. citrinum produced up to 372 mg/kg citrinin. Forty-four fungal metabolites were quantified in both bean hybrids across the various processing stages, with about 86% occurring in the fermented beans stored for 30 days. The nephrotoxic citrinin, which was not previously reported in cocoa beans worldwide, was the only mycotoxin found in the fermented beans at overall mean concentration of 368 μg/kg. Additionally, its metabolite, dihydrocitrinone, was detected in fermented and stored beans. Consumption of freshly fermented cocoa beans may result in citrinin exposure. Appropriate fungal and mycotoxin control measures are proposed.
Collapse
Affiliation(s)
- Taye O Akinfala
- Department of Botany, University of Ibadan, Oyo State, Nigeria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Abiodun R Adedeji
- Cocoa Research Institute of Nigeria (CRIN), Ibadan, Oyo State, Nigeria
| | | | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Chibundu N Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| |
Collapse
|
20
|
Saleh I, Al-Thani R. Fungal food spoilage of supermarkets' displayed fruits. Vet World 2019; 12:1877-1883. [PMID: 32009770 PMCID: PMC6925035 DOI: 10.14202/vetworld.2019.1877-1883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/22/2019] [Indexed: 12/04/2022] Open
Abstract
Background and Aim: Post-harvest fungal infection of fruits and vegetables is mainly caused by fungal pathogens that can be harmful to both human and animals as they produce mycotoxins, post-harvest diseases in fruits and vegetables are a serious problem that results in the loss of a large percentage of crops reaching 50% in some fruits. This study aims at screening the post-purchasing shelf-life of four highly consumed fruits and vegetables and at identifying the fungal strains behind their spoilage in Qatar. Materials and Methods: Fruits and vegetables were collected from the market to study their post-purchasing shelf-life and to identify the fungal types involved in samples rotting. Factors that affect samples’ shelf-life were also analyzed. Results: A total of 73 fungal isolates were isolated and identified, with the highest percentage of Penicillium (21.9%) followed by Rhizopus (17.8%). Interestingly, many mycotoxins producing and diseases inducing fungi were identified in this study; this includes Rhizopus, Aspergillus, Penicillium, Alternaria, Fusarium, Cladosporium, Botrytis, Geotrichum, and Colletotrichum. Statistical analysis shows that different fruits have significantly different shelf-life and different predispositions for spoilage. In many cases, a strong relationship was shown between the fungal types isolated and the country of origin of the fruit. Finally, the price of the commodity did not have a significant effect on its contamination level nor did the market from which the sample was purchased. This indicates that the fruit displaying methods in Qatar do not affect their contamination level. Conclusion: The study is among the first reports about fungal types involved in fruits and vegetables rotting in Qatar and it highlights the strong link between spoiling fungi and their country of origin.
Collapse
Affiliation(s)
- Iman Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
21
|
Taniwaki MH, Pitt JI, Copetti MV, Teixeira AA, Iamanaka BT. Understanding Mycotoxin Contamination Across the Food Chain in Brazil: Challenges and Opportunities. Toxins (Basel) 2019; 11:E411. [PMID: 31311158 PMCID: PMC6669623 DOI: 10.3390/toxins11070411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/03/2022] Open
Abstract
Brazil is one of the largest food producers and exporters in the world. In the late 20th century, the European Union program for the harmonization of regulations for contaminants in food, including mycotoxins, led to the examination of mycotoxin contamination in foods at a global level. The problem of the rejection of food by the European Union and other countries became a Brazilian national priority because of economic and food safety aspects. Ochratoxin A in coffee and cocoa and aflatoxins in Brazil nuts are examples of the impact of technical trade barriers on Brazilian foods. To overcome these threats, several strategies were undertaken by Brazilian and international organizations. In this context, the Codex Commission on Food Contaminants (CCCF) has emerged as a forum to discuss with more transparency issues related to mycotoxins, focusing on establishing maximum levels and codes of practices for some commodities and mycotoxins to ensure fair trade and food safety. Our experience in investigating and understanding mycotoxin contamination across the food chains in Brazil has contributed nationally and internationally to providing some answers to these issues.
Collapse
Affiliation(s)
- Marta H Taniwaki
- Food Technology Institute, ITAL, C.P. 139, Campinas - SP, CEP 13078-170, Brazil.
| | - John I Pitt
- CSIRO Agriculture and Food, P.O. Box 52, North Ryde, NSW 1670, Australia
| | - Marina V Copetti
- Departamento de Tecnologia e Ciência de Alimentos, Centro de Ciências Rurais (CEP), Universidade Federal de Santa Maria (UFSM), Santa Maria RS 97105-900, Brazil
| | - Aldir A Teixeira
- Experimental Agrícola do Brasil Ltda, São Paulo - SP, CEP 04105-001, Brazil
| | - Beatriz T Iamanaka
- Food Technology Institute, ITAL, C.P. 139, Campinas - SP, CEP 13078-170, Brazil
| |
Collapse
|
22
|
Saleh I, Goktepe I. The characteristics, occurrence, and toxicological effects of patulin. Food Chem Toxicol 2019; 129:301-311. [PMID: 31029720 DOI: 10.1016/j.fct.2019.04.036] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Mycotoxins are the secondary metabolites secreted by different types of fungi to which humans can get exposed mainly via ingestion. Patulin (C7H6O4) is a polyketide lactone produced by various fungal specifies, including Penicillium expansum as the main producer. P. expansum can infect different fruits and vegetables yet it has preference to apples in which they cause blue rot. Therefore, apples and apple-based food products are the main source of Patulin exposure for humans. Patulin was first identified in 1943 under the name of tercinin as a possible antimicrobial agent. Although it is categorized as a non-carcinogen, Patulin has been linked, in the last decades, to neurological, gastrointestinal, and immunological adverse effects, mainly causing liver and kidney damages. In this review, the characteristics of and possible human exposure pathways to Patulin are discussed. Various surveillance and toxicity studies on the levels of Patulin in various food products and effects of Patulin on cells and animal models have been documented as well. Importance of epidemiological studies and a summary of the possible toxicity mechanisms are highlighted with a case study. The commonly used control methods as described in the literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry.
Collapse
Affiliation(s)
- Iman Saleh
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ipek Goktepe
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
23
|
Herrera M, Bervis N, Carramiñana JJ, Juan T, Herrera A, Ariño A, Lorán S. Occurrence and Exposure Assessment of Aflatoxins and Deoxynivalenol in Cereal-Based Baby Foods for Infants. Toxins (Basel) 2019; 11:E150. [PMID: 30841652 PMCID: PMC6468729 DOI: 10.3390/toxins11030150] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Aflatoxins are carcinogenic to humans and deoxynivalenol causes digestive disorders, and both mycotoxins occur frequently in cereal-based foods. The purpose of this study was to investigate the occurrence and levels of aflatoxins (B1, B2, G1 and G2) and deoxynivalenol (DON) in cereal-based baby foods as well as to calculate the estimated daily intakes (EDI) in different stages of infancy. Sixty samples of infant cereals (wheat-, corn-, rice-, oat-, and mixed grain-based) were collected during a 2-year period and analyzed by validated methods. Aflatoxins were detected in 12 samples (20%), six of which exceeded the EU maximum level for aflatoxin B1 set at 0.10 µg/kg. Deoxynivalenol appeared in 20% of baby food samples, with one sample exceeding the EU maximum level established at 200 µg/kg. There were no significant differences between gluten-free products for babies aged 4⁻6 months and multi-cereal products for infants aged 7⁻12 months, nor between whole-grain-based and refined ingredients. However, baby food products of organic origin showed significantly higher levels of deoxynivalenol than conventional ones (p < 0.05). It is proposed for the health protection of infants and young children, a vulnerable group, to establish the lowest maximum level for the sum of aflatoxins (B1, B2, G1 and G2) in baby food.
Collapse
Affiliation(s)
- Marta Herrera
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| | - Noemi Bervis
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| | - Juan José Carramiñana
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| | - Teresa Juan
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain.
| | - Antonio Herrera
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| | - Agustín Ariño
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| | - Susana Lorán
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| |
Collapse
|
24
|
Romanens E, Freimüller Leischtfeld S, Volland A, Stevens MJ, Krähenmann U, Isele D, Fischer B, Meile L, Miescher Schwenninger S. Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. Int J Food Microbiol 2019; 290:262-272. [DOI: 10.1016/j.ijfoodmicro.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
|
25
|
Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Res Int 2019; 115:519-525. [DOI: 10.1016/j.foodres.2018.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 11/23/2022]
|
26
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
27
|
|
28
|
Lemos JG, Garcia MV, de Oliveira Mello R, Copetti MV. Consumers complaints about moldy foods in a Brazilian website. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Bogalho F, Duarte S, Cardoso M, Almeida A, Cabeças R, Lino C, Pena A. Exposure assessment of Portuguese infants to Aflatoxin M1 in breast milk and maternal social-demographical and food consumption determinants. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Oduro-Mensah D, Ocloo A, Lowor ST, Mingle C, Okine LKNA, Adamafio NA. Bio-detheobromination of cocoa pod husks: reduction of ochratoxin A content without change in nutrient profile. Microb Cell Fact 2018; 17:79. [PMID: 29778093 PMCID: PMC5960160 DOI: 10.1186/s12934-018-0931-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/11/2018] [Indexed: 12/01/2022] Open
Abstract
Background Utilization of cocoa pod husks (CPH) in animal feed is hindered by the presence of theobromine, which is variably toxic to animals. Treatment of this agro-waste to remove theobromine, while preserving its nutrient content, would allow beneficial use of the millions of metric tonnes discarded annually. The aim of this study was to assess the suitability of selected theobromine-degrading filamentous fungi for use as bio-tools in degradation of theobromine in CPH. Results The candidate fungi assessed in this study were an Aspergillus niger (AnTD) and three Talaromyces spp. (TmTD-1, TmTD-2, TvTD) isolates. All the fungi eliminated CPH theobromine, 0.15% w/w starting concentration, within 7 days of start of treatment, and were capable of degrading caffeine and theophylline. The fungi decreased CPH ochratoxin A content by 31–74%. Pectin was not detectable in fungus-treated CPH whereas parameters assessed for proximate composition were not affected. Conclusions The data provide ample evidence that the four isolates can be applied to CPH for the purpose of eliminating theobromine and decreasing ochratoxin A content without affecting nutrient profile. Comparatively, Talaromyces verruculosus TvTD was considered as most suitable for use as a bio-tool in detheobromination of CPH for animal feed.
Collapse
Affiliation(s)
- Daniel Oduro-Mensah
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Accra, Ghana. .,Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Navrongo Campus, Navrongo, Ghana.
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Accra, Ghana
| | - Sammy T Lowor
- Physiology/Biochemistry Division, Cocoa Research Institute of Ghana, New Tafo-Akim, Ghana
| | - Cheetham Mingle
- Food Physicochemical Laboratory, Food and Drugs Authority, Accra, Ghana
| | - Laud K N-A Okine
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Accra, Ghana
| | - Naa Ayikailey Adamafio
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
31
|
Logrieco AF, Miller JD, Eskola M, Krska R, Ayalew A, Bandyopadhyay R, Battilani P, Bhatnagar D, Chulze S, De Saeger S, Li P, Perrone G, Poapolathep A, Rahayu ES, Shephard GS, Stepman F, Zhang H, Leslie JF. The Mycotox Charter: Increasing Awareness of, and Concerted Action for, Minimizing Mycotoxin Exposure Worldwide. Toxins (Basel) 2018; 10:E149. [PMID: 29617309 PMCID: PMC5923315 DOI: 10.3390/toxins10040149] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are major food contaminants affecting global food security, especially in low and middle-income countries. The European Union (EU) funded project, MycoKey, focuses on “Integrated and innovative key actions for mycotoxin management in the food and feed chains” and the right to safe food through mycotoxin management strategies and regulation, which are fundamental to minimizing the unequal access to safe and sufficient food worldwide. As part of the MycoKey project, a Mycotoxin Charter (charter.mycokey.eu) was launched to share the need for global harmonization of mycotoxin legislation and policies and to minimize human and animal exposure worldwide, with particular attention to less developed countries that lack effective legislation. This document is in response to a demand that has built through previous European Framework Projects—MycoGlobe and MycoRed—in the previous decade to control and reduce mycotoxin contamination worldwide. All suppliers, participants and beneficiaries of the food supply chain, for example, farmers, consumers, stakeholders, researchers, members of civil society and government and so forth, are invited to sign this charter and to support this initiative.
Collapse
Affiliation(s)
- Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA), via Amendola 122/O, 70126 Bari, Italy.
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, ON KS5B6, Canada.
| | - Mari Eskola
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK.
| | - Amare Ayalew
- Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, African Union Commission, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia.
| | - Ranajit Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria.
| | - Paola Battilani
- Department of the Science of Sustainable Vegetable Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy.
| | - Deepak Bhatnagar
- Food and Feed Safety Research, Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA.
| | - Sofia Chulze
- Departamento de Microbiología e Immunología, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Rutas 8 y 36, Km 601, Río Cuarto 5800, Córdoba, Argentina.
| | - Sarah De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, Ghent University, Gent 9000, Belgium.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong Second Road, Wuhan 430062, China.
| | - Giancarlo Perrone
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA), via Amendola 122/O, 70126 Bari, Italy.
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| | - Endang S Rahayu
- Department of Food Technology and Agricultural Products, Universiti Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Gordon S Shephard
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, South Africa.
| | - François Stepman
- Platform for African-European Partnership in ARD, CTA Brussels Office, 39 rue Montoyer, 1000 Brussels, Belgium.
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China.
| | - John F Leslie
- Department of Plant Pathology, Throckmorton Plant Sciences Center, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
32
|
Morassi LL, Bernardi AO, Amaral AL, Chaves RD, Santos JL, Copetti MV, Sant'Ana AS. Fungi in cake production chain: Occurrence and evaluation of growth potential in different cake formulations during storage. Food Res Int 2018; 106:141-148. [DOI: 10.1016/j.foodres.2017.12.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 01/16/2023]
|
33
|
Stanley TH, Van Buiten CB, Baker SA, Elias RJ, Anantheswaran RC, Lambert JD. Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chem 2018; 255:414-420. [PMID: 29571495 DOI: 10.1016/j.foodchem.2018.02.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
Abstract
Roasting is an important cocoa processing step, but has been reported to reduce the polyphenol content in the beans. We investigated the impact of whole-bean roasting on the polyphenol content, aroma-related chemistry, and in vitro pancreatic lipase (PL) inhibitory activity of cocoa under a range of roasting conditions. Total phenolics, (-)-epicatechin, and proanthocyanidin (PAC) dimer - pentamer content was reduced by roasting. By contrast, roasting at 150 °C or greater increased the levels of catechin and PAC hexamers and heptamers. These compounds have greater PL inhibitory potency. Consistent with these changes in PAC composition and this previous data, we found that roasting at 170 °C time-dependently increased PL inhibitory activity. Cocoa aroma-related compounds increased with roasting above 100 °C, whereas deleterious sensory-related compounds formed at more severe temperatures. Our results indicate that cocoa roasting can be optimized to increase the content of larger PACs and anti-PL activity, while maintaining a favorable aroma profile.
Collapse
Affiliation(s)
- Todd H Stanley
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - Charlene B Van Buiten
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - Scott A Baker
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - Ryan J Elias
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - Ramaswamy C Anantheswaran
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States; Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
34
|
Bragulat MR, Eustaquio A, Cabañes FJ. Study on the presence of ochratoxin α in cultures of ochratoxigenic and non- ochratoxigenic strains of Aspergillus carbonarius. PLoS One 2017; 12:e0185986. [PMID: 29016677 PMCID: PMC5634603 DOI: 10.1371/journal.pone.0185986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022] Open
Abstract
Ochratoxin A (OTA) is a potent nephrotoxin and carcinogen which is found in a wide variety of common foods and beverages and it is produced by several species of Aspergillus and Penicillium. Ochratoxin α (OTα), a major metabolite of OTA, has also been reported to occur in cultures of OTA-producing species. However there is some controversial about the participation of OTα in the biosynthesis of OTA, mainly because its biosynthesis pathway has not yet been completely characterized. Aspergillus carbonarius is the main responsible source of ochratoxin A (OTA) in food commodities such as wine, grapes or dried vine fruits from main viticultural regions worldwide. However, little is known about the presence of OTα in isolates of A. carbonarius. In this study we evaluated the effects of temperature and incubation time on OTα production by both OTA and non-OTA-producing strains of A. carbonarius. OTA and OTα were detected on the basis of HPLC fluorometric response compared with that of their standards and confirmed by HPLC-MS in selected samples. The non-OTA-producing strains did produce neither OTA nor OTα at any of the conditions tested. The OTA-producing strains studied were able to produce both OTA and OTα in most of the conditions tested. In general, higher amounts of OTA than OTα were produced, but a positive correlation in the production of these two metabolites was detected. The lack of production of both OTA and OTα in the non-OTA-producing strains could be caused by the presence of silent genes or by mutations in functional or regulatory genes involved in OTA production.
Collapse
Affiliation(s)
- M. Rosa Bragulat
- Veterinary Mycology Group, Departament of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Eustaquio
- Chemical Analysis Service, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F. Javier Cabañes
- Veterinary Mycology Group, Departament of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail:
| |
Collapse
|
35
|
Gutiérrez TJ. State-of-the-Art Chocolate Manufacture: A Review. Compr Rev Food Sci Food Saf 2017; 16:1313-1344. [PMID: 33371587 DOI: 10.1111/1541-4337.12301] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/28/2022]
Abstract
The aroma, taste, shine, snap, smoothness, "melt-in-your-mouth" sensation, and texture are all qualities that define chocolate, and all depend on how the cocoa and the chocolate itself are processed. Postharvest handling of the cocoa (fermentation, drying, cleaning, storage, and transport) and its transformation into chocolate (roasting, grinding, conching, tempering, molding, and the addition of core and other ingredients), as well as the packaging, storage, transport, and refrigeration of the finished product all have an important influence on the characteristics of chocolate. The aim of this review was to identify and study the key factors, including microbiological aspects that affect the quality of chocolate, from harvesting the beans right up to the manufacture of the finished products.
Collapse
Affiliation(s)
- Tomy J Gutiérrez
- Dept. Químico Analítico, Facultad de Farmacia, Univ. Central de Venezuela, Apartado 40109, Caracas 1040-A.,Inst. de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Univ. Central de Venezuela, Apartado 47097, Caracas 1041-A, Venezuela
| |
Collapse
|
36
|
Silva VL, Sereno AM, do Amaral Sobral PJ. Food Industry and Processing Technology: On Time to Harmonize Technology and Social Drivers. FOOD ENGINEERING REVIEWS 2017. [DOI: 10.1007/s12393-017-9164-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Udomkun P, Wiredu AN, Nagle M, Bandyopadhyay R, Müller J, Vanlauwe B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Incidence of Mycotoxins in Local and Branded Samples of Chocolates Marketed in Pakistan. J FOOD QUALITY 2017. [DOI: 10.1155/2017/1947871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present overview was intended to evaluate the degree of total aflatoxins and ochratoxin A contamination in different samples of bitter, dark, milk, and white chocolates marketed in Pakistan. For that exploration, two hundred (n=200) samples of chocolates, 100 branded and 100 local, were analyzed for mycotoxins profile by HPLC-FLD. The outcomes firmly sustained that the majority of the samples were contaminated with aflatoxins and ochratoxin A. The incidence of total aflatoxins and ochratoxin A in branded samples was 83% and 90%, whereas the local samples showed 91% and 97% contamination, respectively. The highest amount of total aflatoxins was found in branded dark chocolates, that is, 2.27 μg/kg, and maximum ochratoxin A level was detected white chocolates (2.06 μg/kg). On average, the local white chocolates and dark chocolates faced the highest level of total aflatoxins (3.35 μg/kg) and ochratoxin A (3.48 μg/kg), respectively. The local samples of chocolates were more contaminated with mycotoxins as compared to branded ones accredited to the lack of quality control and quality assurance during the manufacturing as well as packing processes. In recent years, consumption of chocolate is rapidly increasing especially by young generation, so monitoring of mycotoxin occurrence in them is a matter of great concern and more studies are required to comprehend the production of mycotoxins in these products.
Collapse
|
39
|
Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016; 32:179-205. [PMID: 27554261 PMCID: PMC5063913 DOI: 10.1007/s12550-016-0257-7] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
Collapse
Affiliation(s)
- Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse6, 37077, Göttingen, Germany
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122, Parma, Italy
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Johan De Meester
- Cargill R&D Center Europe, Havenstraat 84, B-1800, Vilvoorde, Belgium
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, Germany (retired), University of Kaiserslautern, P.O.Box 3049, 67653, Kaiserslautern, Germany
| | - Irène Perrin
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Isabelle P Oswald
- INRA, UMR 1331 ToxAlim, Research Center in Food Toxicology, 180 chemin de Tournefeuille, BP93173, 31027, Toulouse, France
- Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Winterkoning 7, 34353 RN, Nieuwegein, The Netherlands
| | - Alessandro Chiodini
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Tobias Recker
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Pierre Dussort
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| |
Collapse
|
40
|
Cocobiota: Implications for Human Health. J Nutr Metab 2016; 2016:7906927. [PMID: 27144019 PMCID: PMC4837262 DOI: 10.1155/2016/7906927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/17/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
Manufacturing of dark chocolate and other cocoa-based products is a complex multistage process beginning with spontaneous cocoa bean fermentation driven in the postharvest period by different microorganisms derived from the environment. Cocobiota defined as the association of microbial species involved in cocoa bean fermentation may have considerable impact on the medicinal properties of cocoa products via various primary and secondary metabolites, whose presence in dark chocolate and other cocoa-derived products has to be taken into consideration when analyzing medicinal effects of cocoa. Metabolites of acetic acid and lactic acid bacteria, two major cocobiota members, are recently shown to have considerable antifungal and cholesterol-lowering activities and promote the formation of short chain fatty acids and mannitol, an important prebiotic capable of modifying gut microbiota. Penicillium citrinum, a major type of fungi identifiable in fermented cocoa beans, produces a thermostable alkaloid, Penicitrinine A, as well as lovastatin, compounds with antineoplastic and cholesterol-lowering abilities, respectively. Moreover, recent results suggest that bacterial and fungal metabolites produced by cocobiota have a significant anti-infective potential. Therefore, various metabolites produced by cocobiota can mimic some medicinal effects of dark chocolate and other cocoa-derived products previously attributed to cocoa flavonoids and methylxanthines and need to be thoroughly investigated in in vitro and in vivo systems.
Collapse
|
41
|
Kedjebo KBD, Guehi TS, Kouakou B, Durand N, Aguilar P, Fontana A, Montet D. Effect of post-harvest treatments on the occurrence of ochratoxin A in raw cocoa beans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 33:157-66. [PMID: 26560552 DOI: 10.1080/19440049.2015.1112038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cocoa beans are the principal raw material for chocolate manufacture. Moulds have an important place in the change in the quality of cocoa beans due to their role in the production of free fatty acids and mycotoxins, namely ochratoxin A (OTA). This study investigated the impact of the key post-harvest treatments, namely the fermentation and drying methods on OTA contamination of raw cocoa beans. Analytical methods for OTA detection were based on solid-liquid extraction, clean-up using an immunoaffinity column, and identification by reversed-phase HPLC with fluorescence detection. Of a total of 104 randomly selected cocoa samples analysed, 32% had OTA contents above 2 µg kg(-1). Cocoa sourced from pods in a bad state of health had a maximum OTA content of 39.2 µg kg(-1), while that obtained from healthy pods recorded 11.2 µg kg(-1). The production of OTA in cocoa beans increased according to the pod-opening delay and reached 39.2 µg kg(-1) after an opening delay of 7 days after harvest, while 6.1 and 11.2 µg kg(-1) were observed when pods were opened after 0 and 4 days. OTA production also seemed to depend considerably to the cocoa fermentation materials. When using plastic boxes for bean fermentation, the OTA production was enhanced and reached an average OTA content of about 4.9 µg kg(-1), while the raw cocoa treated in banana leaves and wooden boxes recorded 1.6 and 2.2 µg kg(-1) on average respectively. In parallel, the OTA production was not really influenced by either the mixing or the duration of the fermentation or the drying materials.
Collapse
Affiliation(s)
- Kra Brou Didier Kedjebo
- a Department of Food Science and Technology , University of Nangui Abrogoua , Abidjan 02 , Ivory Coast
| | - Tagro Simplice Guehi
- a Department of Food Science and Technology , University of Nangui Abrogoua , Abidjan 02 , Ivory Coast
| | - Brou Kouakou
- a Department of Food Science and Technology , University of Nangui Abrogoua , Abidjan 02 , Ivory Coast
| | - Noël Durand
- b CIRAD-UMR Qualisud , Montpellier Cedex 5 , France
| | | | - Angélique Fontana
- c Université de Montpellier-UMR Qualisud , Montpellier Cedex 5 , France
| | | |
Collapse
|
42
|
Lu L, Wang M, Liu LJ, Leung CH, Ma DL. Label-Free Luminescent Switch-On Probe for Ochratoxin A Detection Using a G-Quadruplex-Selective Iridium(III) Complex. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8313-8318. [PMID: 25836665 DOI: 10.1021/acsami.5b01702] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A library of six luminescent Ir(III) complexes were synthesized and studied for their capacity to function as probes for G-quadruplex DNA. The novel Ir(III) complex 1 was discovered to be selective for G-quadruplex structures and was subsequently used for the construction of a label-free G-quadruplex-based ochratoxin A (OTA) sensing platform in aqueous solution. The assay exhibited linearity for OTA in the range of 0 to 60 nM (R2=0.9933), and the limit of detection for OTA was 5 nM. Furthermore, this assay was highly selective for OTA over its structurally related analogues.
Collapse
Affiliation(s)
- Lihua Lu
- †Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Modi Wang
- †Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Li-Juan Liu
- ‡State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- ‡State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- †Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- §Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|