1
|
Toit SAD, Rip D. Exploring the genetic variability, virulence factors, and antibiotic resistance of Listeria monocytogenes from fresh produce, ready-to-eat hummus, and food-processing environments. J Food Sci 2024; 89:6916-6945. [PMID: 39327637 DOI: 10.1111/1750-3841.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Listeria monocytogenes is ubiquitous in nature and persistent in food-processing facilities, farms, retail stores, and home and restaurant kitchens. Current research suggests ready-to-eat (RTE) products (including RTE hummus and fresh produce) to be of increasing interest and concern. These foods are typically stored at refrigeration temperatures suited to the survival of L. monocytogenes and are consumed without further processing. Since L. monocytogenes is ubiquitous in agricultural environments, the cultivation of fresh produce predisposes it to contamination. The contamination of RTE foods originates either from raw ingredients or, more commonly, from cross-contamination within food-processing facilities. Research on the food-processing environment has been recommended to reduce the incidence of L. monocytogenes in foods. The consumption of contaminated foods by immunocompromised individuals causes invasive listeriosis, with a 20% to 30% fatality rate despite treatment. The emergence of antibiotic-resistant strains has reduced the effectiveness of modern medicine and may increase morbidity and mortality. Without epidemiological surveillance and identifying trends in disease determinants, no action can be taken to improve food safety and mitigate the risk of such outbreaks.
Collapse
Affiliation(s)
- Samantha Anne du Toit
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| |
Collapse
|
2
|
Daza Prieto B, Pietzka A, Martinovic A, Ruppitsch W, Zuber Bogdanovic I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014-2022. Front Microbiol 2024; 15:1418333. [PMID: 39149205 PMCID: PMC11324475 DOI: 10.3389/fmicb.2024.1418333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Listeria monocytogenes is an ubiquitous foodborne pathogen that represents a serious threat to public health and the food industry. Methods In this study Whole Genome Sequencing (WGS) was used to characterize 160 L. monocytogenes isolates obtained from 22,593 different food sources in Montenegro during the years 2014-2022. Results Isolates belonged to 21 different clonal complexes (CCs), 22 sequence types (STs) and 73 core genome multilocus sequence types (cgMLST) revealing a high diversity. The most prevalent STs were ST8 (n = 29), ST9 (n = 31), ST121 (n = 19) and ST155 (n = 20). All isolates carried virulence genes (VGs), 111 isolates carried mobile genetic elements (MGEs) (ranging from 1 to 7 MGEs) and 101 isolates carried plasmids (ranging from 1 to 3 plasmids). All isolates carried the intrinsic resistance genes fosX and lin. None of the isolates carried acquired antimicrobial resistance genes (ARGs). Discussion/conclusion Continuous monitoring and surveillance of L. monocytogenes is needed for improving and ameliorating the public health.
Collapse
Affiliation(s)
- Beatriz Daza Prieto
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Aleksandra Martinovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Ivana Zuber Bogdanovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| |
Collapse
|
3
|
Brown SRB, Bland R, McIntyre L, Shyng S, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Genomic characterization of Listeria monocytogenes recovered from dairy facilities in British Columbia, Canada from 2007 to 2017. Front Microbiol 2024; 15:1304734. [PMID: 38585707 PMCID: PMC10995413 DOI: 10.3389/fmicb.2024.1304734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen of concern in dairy processing facilities, with the potential to cause human illness and trigger regulatory actions if found in the product. Monitoring for Listeria spp. through environmental sampling is recommended to prevent establishment of these microorganisms in dairy processing environments, thereby reducing the risk of product contamination. To inform on L. monocytogenes diversity and transmission, we analyzed genome sequences of L. monocytogenes strains (n = 88) obtained through the British Columbia Dairy Inspection Program. Strains were recovered from five different dairy processing facilities over a 10 year period (2007-2017). Analysis of whole genome sequences (WGS) grouped the isolates into nine sequence types and 11 cgMLST types (CT). The majority of isolates (93%) belonged to lineage II. Within each CT, single nucleotide polymorphism (SNP) differences ranged from 0 to 237 between isolates. A highly similar (0-16 SNPs) cluster of over 60 isolates, collected over 9 years within one facility (#71), was identified suggesting a possible persistent population. Analyses of genome content revealed a low frequency of genes associated with stress tolerance, with the exception of widely disseminated cadmium resistance genes cadA1 and cadA2. The distribution of virulence genes and mutations within internalin genes varied across the isolates and facilities. Further studies are needed to elucidate their phenotypic effect on pathogenicity and stress response. These findings demonstrate the diversity of L. monocytogenes isolates across dairy facilities in the same region. Findings also showed the utility of using WGS to discern potential persistence events within a single facility over time.
Collapse
Affiliation(s)
| | - Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, OR, United States
| | | | - Sion Shyng
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR, United States
| |
Collapse
|
4
|
Lake FB, Chen J, van Overbeek LS, Baars JJP, Abee T, den Besten HMW. Biofilm formation and desiccation survival of Listeria monocytogenes with microbiota on mushroom processing surfaces and the effect of cleaning and disinfection. Int J Food Microbiol 2024; 411:110509. [PMID: 38101188 DOI: 10.1016/j.ijfoodmicro.2023.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Microbial multispecies communities consisting of background microbiota and Listeria monocytogenes could be established on materials used in food processing environments. The presence, abundance and diversity of the strains within these microbial multispecies communities may be affected by mutual interactions and differences in resistance towards regular cleaning and disinfection (C&D) procedures. Therefore, this study aimed to characterize the growth and diversity of a L. monocytogenes strain cocktail (n = 6) during biofilm formation on polyvinyl chloride (PVC) and stainless steel (SS) without and with the presence of a diverse set of background microbiota (n = 18). L. monocytogenes and background microbiota strains were isolated from mushroom processing environments and experiments were conducted in simulated mushroom processing environmental conditions using mushroom extract as growth medium and ambient temperature (20 °C) as culturing temperature. The L. monocytogenes strains applied during monospecies biofilm incubation formed biofilms on both PVC and SS coupons, and four cycles of C&D treatment were applied with a chlorinated alkaline cleaning agent and a disinfection agent based on peracetic acid and hydrogen peroxide. After each C&D treatment, the coupons were re-incubated for two days during an incubation period for 8 days in total, and C&D resulted in effective removal of biofilms from SS (reduction of 4.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), while C&D treatments on biofilms formed on PVC resulted in limited reductions (reductions between 1.2 and 2.4 log CFU/cm2, which equals a reduction of 93.7 % and 99.6 %, respectively). Incubation of the L. monocytogenes strains with the microbiota during multispecies biofilm incubation led to the establishment of L. monocytogenes in the biofilm after 48 h incubation with corresponding high L. monocytogenes strain diversity in the multispecies biofilm on SS and PVC. C&D treatments removed L. monocytogenes from multispecies biofilm communities on SS (reduction of 3.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), with varying dominance of microbiota species during different C&D cycles. However, C&D treatments of multispecies biofilm on PVC resulted in lower reductions of L. monocytogenes (between 0.2 and 2.4 log CFU/cm2) compared to single species biofilm, and subsequent regrowth of L. monocytogenes and stable dominance of Enterobacteriaceae and Pseudomonas. In addition, planktonic cultures of L. monocytogenes were deposited and desiccated on dry surfaces without and with the presence of planktonic background microbiota cultures. The observed decline of desiccated cell counts over time was faster on SS compared to PVC. However, the application of C&D resulted in counts below the detection limit of 1.7 log CFU/coupon on both surfaces (reduction of 5.9 log CFU/coupon or less). This study shows that L. monocytogenes is able to form single and multispecies biofilms on PVC with high strain diversity following C&D treatments. This highlights the need to apply more stringent C&D regime treatments for especially PVC and similar surfaces to efficiently remove biofilm cells from food processing surfaces.
Collapse
Affiliation(s)
- Frank B Lake
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jingjie Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming 650091, China
| | - Leo S van Overbeek
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Johan J P Baars
- Plant Breeding, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Cheng J, Wu S, Ye Q, Gu Q, Zhang Y, Ye Q, Lin R, Liang X, Liu Z, Bai J, Zhang J, Chen M, Wu Q. A novel multiplex PCR based method for the detection of Listeria monocytogenes clonal complex 8. Int J Food Microbiol 2024; 409:110475. [PMID: 37976619 DOI: 10.1016/j.ijfoodmicro.2023.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes is an important foodborne pathogen worldwide, which could cause listeriosis with a 20-30 % fatality rate in immunocompromised individuals. Listeria monocytogenes MLST clonal complex (CC) 8 strain is a common clone in food and clinical cases. The aim of this study was to develop multiplex PCR (mPCR) and high-resolution melting (HRM) qPCR to simultaneously detect L. monocytogenes CC8 and the other L. monocytogenes strains based on pan-genome analysis. A novel multiplex PCR and HRM qPCR targeted for the genes LM5578_1180 (specific for CC8) and LM5578_2262 (for L. monocytogenes) were developed. The specificity of this multiplex PCR and HRM qPCR were verified with other CCs of L. monocytogenes and other species strains. The detection limit of this multiplex PCR and HRM qPCR is 2.1 × 103 CFU/mL and 2.1 × 100 CFU/mL, respectively. This multiplex PCR and HRM qPCR could accurately detect CC8 strains with the interference of different ratios of L. monocytogenes CC9, CC87, CC121, CC155, and L. innocua strains. Subsequently, the detection ability of mPCR and HRM qPCR were also evaluated in spiked samples. The mPCR method could successfully detect 6.2 × 103 CFU/mL of CC8 L. monocytogenes after 6 h enrichment while the multiplex HRM qPCR method could successfully detect 6.2 × 104 CFU/mL of CC8 L. monocytogenes after 3 h enrichment. The feasibility of these methods were satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 12 mushroom samples and was consistent with that of the National Standard Detection Method (GB4789.30-2016). In conclusion, the developed assays could be applied for rapid screening and detection of L. monocytogenes CC8 strains both in food and food production environments, providing accurate results to adopt monitoring measures to improve microbiological safety.
Collapse
Affiliation(s)
- Jianheng Cheng
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Zhang
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinglei Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruoqin Lin
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinwen Liang
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zihao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jianling Bai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
6
|
Tricoli MR, Massaro C, Arrigo I, Diquattro O, Di Bernardo F, Galia E, Palermo M, Fasciana T, Giammanco A. Characterization of Listeria monocytogenes Strains Isolated in Palermo (Sicily and Italy) during the Years 2018-2020 from Severe Cases of Listeriosis. Antibiotics (Basel) 2024; 13:57. [PMID: 38247616 PMCID: PMC10812810 DOI: 10.3390/antibiotics13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (LM), the etiological agent of listeriosis, can cause foodborne zoonosis. In this study, we characterized 23 strains that caused human severe listeriosis in Palermo (Sicily, Italy) during the period of 2018-2020. In addition, we assessed the phenotypic susceptibility of clinical isolates to antibiotics in accordance with EUCAST guidelines. The serogroup was determined through the use of PCR, while MLST and MVLST were identified through the sequencing of housekeeping genes. Finally, susceptibility to antibiotics was assessed by means of the Phoenix automatic system. Patients hospitalized with listeriosis were predominantly males (56% vs. 44% of females). The cases not associated with pregnancy included patients >65 years of age (60%), two of whom were affected by cancer, while cases associated with pregnancy included two pregnant women and three preterm infants. The data collected showed that the main pathologies shown by patients were meningitis (60.9%) and bacteremia (39.1%). The LM strains were isolated from the blood (52%), cerebrospinal fluid (26%), cerebrospinal fluid + blood (13%), blood + a nasal swab (4%), and ascitic fluid (4%). The predominant serogroup was IVb (96%), whereas only one strain belonged to serogroup IIa (4%). Among the strains with serotypes 4b, 4d, and 4e, ST2/VT21 (92%) and ST6/VT19 (4%) were determined, while only isolates with serotypes 1/2a and3a show ST155/VT45 (CC155). This study reveals the widespread circulation of a clinical strain (ST2/VT21) associated with suspected food contamination, demonstrating the importance of carrying out molecular epidemiological surveillance. Our clinical isolates were susceptible to the beta-lactams assayed, in agreement with the literature data.
Collapse
Affiliation(s)
- Maria Rita Tricoli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy (A.G.)
| | - Chiara Massaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy (A.G.)
| | - Ignazio Arrigo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy (A.G.)
| | - Orazia Diquattro
- Laboratory of Microbiology, A. O. Ospedali Riuniti “Villa Sofia-Cervello”, 90100 Palermo, Italy;
| | - Francesca Di Bernardo
- Department of Microbiology and Virology, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Elena Galia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy (A.G.)
| | - Mario Palermo
- Sicilian Health Department, Public Health and Environmental Risks Service, 90127 Palermo, Italy
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy (A.G.)
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy (A.G.)
| |
Collapse
|
7
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
8
|
Myintzaw P, Pennone V, McAuliffe O, Begley M, Callanan M. Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes. Microorganisms 2023; 11:1603. [PMID: 37375105 DOI: 10.3390/microorganisms11061603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Precise classification of foodborne pathogen Listeria monocytogenes is a necessity in efficient foodborne disease surveillance, outbreak detection, and source tracking throughout the food chain. In this study, a total of 150 L. monocytogenes isolates from various food products, food processing environments, and clinical sources were investigated for variations in virulence, biofilm formation, and the presence of antimicrobial resistance genes based on their Whole-Genome Sequences. Clonal complex (CC) determination based on Multi-Locus Sequence Typing (MLST) revealed twenty-eight CC-types including eight isolates representing novel CC-types. The eight isolates comprising the novel CC-types share the majority of the known (cold and acid) stress tolerance genes and are all genetic lineage II, serogroup 1/2a-3a. Pan-genome-wide association analysis by Scoary using Fisher's exact test identified eleven genes specifically associated with clinical isolates. Screening for the presence of antimicrobial and virulence genes using the ABRicate tool uncovered variations in the presence of Listeria Pathogenicity Islands (LIPIs) and other known virulence genes. Specifically, the distributions of actA, ecbA, inlF, inlJ, lapB, LIPI-3, and vip genes across isolates were found to be significantly CC-dependent while the presence of ami, inlF, inlJ, and LIPI-3 was associated with clinical isolates specifically. In addition, Roary-derived phylogenetic grouping based on Antimicrobial-Resistant Genes (AMRs) revealed that the thiol transferase (FosX) gene was present in all lineage I isolates, and the presence of the lincomycin resistance ABC-F-type ribosomal protection protein (lmo0919_fam) was also genetic-lineage-dependent. More importantly, the genes found to be specific to CC-type were consistent when a validation analysis was performed with fully assembled, high-quality complete L. monocytogenes genome sequences (n = 247) extracted from the National Centre for Biotechnology Information (NCBI) microbial genomes database. This work highlights the usefulness of MLST-based CC typing using the Whole-Genome Sequence as a tool in classifying isolates.
Collapse
Affiliation(s)
- Peter Myintzaw
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
9
|
Félix B, Capitaine K, Te S, Felten A, Gillot G, Feurer C, van den Bosch T, Torresi M, Sréterné Lancz Z, Delannoy S, Brauge T, Midelet G, Leblanc JC, Roussel S. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe. Microbiol Spectr 2023; 11:e0395422. [PMID: 37158749 PMCID: PMC10269651 DOI: 10.1128/spectrum.03954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.
Collapse
Affiliation(s)
- Benjamin Félix
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Karine Capitaine
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sandrine Te
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Ploufragan/Plouzané/Niort Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | | | - Carole Feurer
- IFIP–The French Pig and Pork Institute, Department of Fresh and Processed Meat, Le Rheu, France
| | - Tijs van den Bosch
- Wageningen Food Safety Research, Department of Bacteriology, Molecular Technology and Antimicrobial Resistance, Wageningen, The Netherlands
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale” Via Campo Boario, Teramo, Italy
| | - Zsuzsanna Sréterné Lancz
- Microbiological National Reference Laboratory, National Food Chain Safety Office, Food Chain Safety Laboratory Directorate, Budapest, Hungary
| | - Sabine Delannoy
- ANSES, Laboratory for Food Safety, IdentyPath Platform, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Jean-Charles Leblanc
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sophie Roussel
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| |
Collapse
|
10
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front Mol Biosci 2023; 10:1161486. [PMID: 37388250 PMCID: PMC10300472 DOI: 10.3389/fmolb.2023.1161486] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Listeria monocytogenes causes listeriosis, a disease characterized by a high mortality rate (up to 30%). Since the pathogen is highly tolerant to changing conditions (high and low temperature, wide pH range, low availability of nutrients), it is widespread in the environment, e.g., water, soil, or food. L. monocytogenes possess a number of genes that determine its high virulence potential, i.e., genes involved in the intracellular cycle (e.g., prfA, hly, plcA, plcB, inlA, inlB), response to stress conditions (e.g., sigB, gadA, caspD, clpB, lmo1138), biofilm formation (e.g., agr, luxS), or resistance to disinfectants (e.g., emrELm, bcrABC, mdrL). Some genes are organized into genomic and pathogenicity islands. The islands LIPI-1 and LIPI-3 contain genes related to the infectious life cycle and survival in the food processing environment, while LGI-1 and LGI-2 potentially ensure survival and durability in the production environment. Researchers constantly have been searching for new genes determining the virulence of L. monocytogenes. Understanding the virulence potential of L. monocytogenes is an important element of public health protection, as highly pathogenic strains may be associated with outbreaks and the severity of listeriosis. This review summarizes the selected aspects of L. monocytogenes genomic and pathogenicity islands, and the importance of whole genome sequencing for epidemiological purposes.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Lee SH, Lee S, Park SH, Koo OK. Whole-genome sequencing of Listeria monocytogenes isolated from the first listeriosis foodborne outbreak in South Korea. Front Microbiol 2023; 14:1182090. [PMID: 37333628 PMCID: PMC10272515 DOI: 10.3389/fmicb.2023.1182090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans with severe symptoms. In South Korea, listeriosis had only been reported sporadically among hospitalized patients until the first foodborne outbreak occurred in 2018. In this study, a L. monocytogenes strain responsible for this outbreak (FSCNU0110) was characterized via whole genome sequencing and compared with publicly available L. monocytogenes genomes of the same clonal complex (CC). Strain FSCNU0110 belonged to multilocus sequence typing (MLST)-based sequence type 224 and CC224, and core genome MLST-based sublineage 6,178. The strain harbored tetracycline resistance gene tetM, four other antibiotic resistance genes, and 64 virulence genes, including Listeria pathogenicity island 1 (LIPI-1) and LIPI-3. Interestingly, llsX in LIPI-3 exhibited a characteristic SNP (deletion of A in position 4, resulting in a premature stop codon) that was missing among all CC224 strains isolated overseas but was conserved among those from South Korea. In addition, the tetM gene was also detected only in a subset of CC224 strains from South Korea. These findings will provide an essential basis for assessing the characteristics of CC224 strains in South Korea that have shown a potential to cause listeriosis outbreaks.
Collapse
Affiliation(s)
- Seung Hun Lee
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
| | - Sangmi Lee
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang Hun Park
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Ok Kyung Koo
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Lake FB, van Overbeek LS, Baars JJP, Abee T, den Besten HMW. Growth performance of Listeria monocytogenes and background microbiota from mushroom processing environments. Int J Food Microbiol 2023; 395:110183. [PMID: 37001480 DOI: 10.1016/j.ijfoodmicro.2023.110183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Interaction between Listeria monocytogenes and resident background microbiota may occur in food processing environments and may influence the survival of this pathogen in a factory environment. Therefore the aim of this study was to characterize the growth performance of microbiota isolated from the processing environments of frozen sliced mushrooms, and to investigate the competitive performance of L. monocytogenes when co-cultured with accompanying environmental microbiota. Acinetobacter, Enterobacteriaceae, Lactococcus and Pseudomonas were the most prominent background microbiota isolated from the processing environment of frozen sliced mushrooms. All individual microbiota strains were able to grow and form biofilm in filter-sterilized mushroom medium, with the mannitol-consumers Raoultella and Ewingella as top performers, reaching up to 9.6 and 9.8 log CFU/mL after 48 h incubation at room temperature. When L. monocytogenes mushroom isolates were co-cultured with the microbiota strains, L. monocytogenes counts ranged from 7.6 to 8.9 log CFU/mL after 24 h of incubation, while counts of the microbiota strains ranged from 5.5 to 9.0 log CFU/mL. Prolonged incubation up to 48 h resulted in further increase of L. monocytogenes counts when co-cultured with non-acidifying species Pseudomonas and Acinetobacter reaching 9.1 to 9.2 log CFU/mL, while a decrease of L. monocytogenes counts reaching 5.8 to 7.7 log CFU/mL was observed in co-culture with Enterobacteriaceae and acidifying Lactococcus representatives. In addition, L. monocytogenes grew also in spent mushroom media of the microbiota strains, except in acidified spent media of Lactococcus strains. These results highlight the competitive ability of L. monocytogenes during co-incubation with microbiota in fresh and in spent mushroom medium, indicative of its invasion and persistence capacity in food processing factory environments.
Collapse
Affiliation(s)
- Frank B Lake
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Leo S van Overbeek
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Johan J P Baars
- Plant Breeding, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
13
|
Genetic Characterization of Listeria from Food of Non-Animal Origin Products and from Producing and Processing Companies in Bavaria, Germany. Foods 2023; 12:foods12061120. [PMID: 36981047 PMCID: PMC10048318 DOI: 10.3390/foods12061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Reported cases of listeriosis from food of non-animal origin (FNAO) are increasing. In order to assess the risk of exposure to Listeria monocytogenes from FNAO, the genetic characterization of the pathogen in FNAO products and in primary production and processing plants needs to be investigated. For this, 123 samples of fresh and frozen soft fruit and 407 samples of 39 plants in Bavaria, Germany that produce and process FNAO were investigated for Listeria contamination. As a result, 64 Listeria spp. isolates were detected using ISO 11290-1:2017. Environmental swabs and water and food samples were investigated. L. seeligeri (36/64, 56.25%) was the most frequently identified species, followed by L. monocytogenes (8/64, 12.50%), L. innocua (8/64, 12.50%), L. ivanovii (6/64, 9.38%), L. newyorkensis (5/64, 7.81%), and L. grayi (1/64, 1.56%). Those isolates were subsequently sequenced by whole-genome sequencing and subjected to pangenome analysis to retrieve data on the genotype, serotype, antimicrobial resistance (AMR), and virulence markers. Eight out of sixty-four Listeria spp. isolates were identified as L. monocytogenes. The serogroup analysis detected that 62.5% of the L. monocytogenes isolates belonged to serogroup IIa (1/2a and 3a) and 37.5% to serogroup IVb (4b, 4d, and 4e). Furthermore, the MLST (multilocus sequence typing) analysis of the eight detected L. monocytogenes isolates identified seven different sequence types (STs) and clonal complexes (CCs), i.e., ST1/CC1, ST2/CC2, ST6/CC6, ST7/CC7, ST21/CC21, ST504/CC475, and ST1413/CC739. The core genome MLST analysis also showed high allelic differences and suggests plant-specific isolates. Regarding the AMR, we detected phenotypic resistance against benzylpenicillin, fosfomycin, and moxifloxacin in all eight L. monocytogenes isolates. Moreover, virulence factors, such as prfA, hly, plcA, plcB, hpt, actA, inlA, inlB, and mpl, were identified in pathogenic and nonpathogenic Listeria species. The significance of L. monocytogenes in FNAO is growing and should receive increasing levels of attention.
Collapse
|
14
|
Fay ML, Salazar JK, George J, Chavda NJ, Lingareddygari P, Patil GR, Juneja VK, Ingram D. Modeling the Fate of Listeria monocytogenes and Salmonella enterica on Fresh Whole and Chopped Wood Ear and Enoki Mushrooms. J Food Prot 2023; 86:100075. [PMID: 36989858 DOI: 10.1016/j.jfp.2023.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Two recent foodborne illness outbreaks linked to specialty mushrooms have occurred in the United States, both representing novel pathogen-commodity pairings. Listeria monocytogenes and Salmonella enterica were linked to enoki and wood ear mushrooms, respectively. The aim of this study was therefore to examine the survival of both L. monocytogenes and S. enterica on raw whole and chopped enoki and wood ear mushrooms during storage at different temperatures. Fresh mushrooms were either left whole or chopped and subsequently inoculated with a cocktail of either S. enterica or rifampicin-resistant L. monocytogenes, resulting in an initial inoculation level of 3 log CFU/g. Mushroom samples were stored at 5, 10, or 25°C for up to 7 d. During storage, the population levels of S. enterica or L. monocytogenes on the mushrooms were enumerated. The primary Baranyi model was used to estimate the growth rates of both pathogens and the secondary Ratkowsky square root model was used to model the relationship between growth rates and temperature. Both L. monocytogenes and S. enterica survived on both mushroom types and preparations at all temperatures. No proliferation of either pathogen was observed on mushrooms stored at 5°C. At 10°C, moderate growth was observed for both pathogens on enoki mushrooms and for L. monocytogenes on wood ear mushrooms; no growth was observed for S. enterica on wood ear mushrooms. At 25°C, both pathogens proliferated on both mushroom types with growth rates ranging from 0.43 to 3.27 log CFU/g/d, resulting in 1 log CFU/g increases in only 0.31 d (7.44 h) to 2.32 d. Secondary models were generated for L. monocytogenes on whole wood ear mushrooms and S. enterica on whole enoki mushrooms with goodness-of-fit parameters of r2 = 0.9855/RMSE = 0.0479 and r2 = 0.9882/RMSE = 0.1417, respectively. Results from this study can aid in understanding the dynamics of L. monocytogenes and S. enterica on two types of specialty mushrooms.
Collapse
|
15
|
Domínguez AV, Ledesma MC, Domínguez CI, Cisneros JM, Lepe JA, Smani Y. In Vitro and In Vivo Virulence Study of Listeria monocytogenes Isolated from the Andalusian Outbreak in 2019. Trop Med Infect Dis 2023; 8:tropicalmed8010058. [PMID: 36668965 PMCID: PMC9861481 DOI: 10.3390/tropicalmed8010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
In 2019, the biggest listeriosis outbreak by Listeria monocytogenes (Lm) in the South of Spain was reported, resulting in the death of three patients from 207 confirmed cases. One strain, belonging to clonal complex 388 (Lm CC388), has been isolated. We aimed to determine the Lm CC388 virulence in comparison with other highly virulent clones such as Lm CC1 and Lm CC4, in vitro and in vivo. Four L. monocytogenes strains (Lm CC388, Lm CC1, Lm CC4 and ATCC 19115) were used. Attachment to human lung epithelial cells (A549 cells) by these strains was characterized by adherence and invasion assays. Their cytotoxicities to A549 cells were evaluated by determining the cells viability. Their hemolysis activity was determined also. A murine intravenous infection model using these was performed to determine the concentration of bacteria in tissues and blood. Lm CC388 interaction with A549 cells is non-significantly higher than that of ATCC 19115 and Lm CC1, and lower than that of Lm CC4. Lm CC388 cytotoxicity is higher than that of ATCC 19115 and Lm CC1, and lower than that of Lm CC4. Moreover, Lm CC388 hemolysis activity is lower than that of the Lm CC4 strain, and higher than that of Lm CC1. Finally, in the murine intravenous infection model by Lm CC388, higher bacterial loads in tissues and at similar levels of Lm CC4 were observed. Although a lower rate of mortality of patients during the listeriosis outbreak in Spain in 2019 has been reported, the Lm CC388 strain has shown a greater or similar pathogenicity level in vitro and in an animal model, like Lm CC1 and Lm CC4.
Collapse
Affiliation(s)
- Andrea Vila Domínguez
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
| | - Marta Carretero Ledesma
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
| | - Carmen Infante Domínguez
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
| | - José Miguel Cisneros
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Jose A. Lepe
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222 Madrid, Spain
- Correspondence: ; Tel.: +34-955923100
| | - Younes Smani
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222 Madrid, Spain
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
16
|
Evaluation of the Persistence and Characterization of Listeria monocytogenes in Foodservice Operations. Foods 2022; 11:foods11060886. [PMID: 35327308 PMCID: PMC8955912 DOI: 10.3390/foods11060886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can contaminate food products and colonize food-producing facilities. Foodservice operations (FSOp) are frequently responsible for foodborne outbreaks due to food safety practices failures. We investigated the presence of and characterized L. monocytogenes from two FSOp (cafeterias) distributing ready-to-eat meals and verified FSOp’s compliance with good manufacturing practices (GMP). Two facilities (FSOp-A and FSOp-B) were visited three times each over 5 months. We sampled foods, ingredients, and surfaces for microbiological analysis, and L. monocytogenes isolates were characterized by phylogenetic analyses and phenotypic characteristics. GMP audits were performed in the first and third visits. A ready-to-eat salad (FSOp-A) and a frozen ingredient (FSOp-B) were contaminated with L. monocytogenes, which was also detected on Zone 3 surfaces (floor, drains, and a boot cover). The phylogenetic analysis demonstrated that FSOp-B had persistent L. monocytogenes strains, but environmental isolates were not closely related to food or ingredient isolates. GMP audits showed that both operations worked under “fair” conditions, and “facilities and equipment” was the section with the least compliances. The presence of L. monocytogenes in the environment and GMP failures could promote food contamination with this pathogen, presenting a risk to consumers.
Collapse
|
17
|
Oswaldi V, Lüth S, Dzierzon J, Meemken D, Schwarz S, Feßler AT, Félix B, Langforth S. Distribution and Characteristics of Listeria spp. in Pigs and Pork Production Chains in Germany. Microorganisms 2022; 10:512. [PMID: 35336088 PMCID: PMC8950219 DOI: 10.3390/microorganisms10030512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
Listeria (L.) monocytogenes is a foodborne pathogen that can cause disease, mainly in elderly, pregnant or immunocompromised persons through consumption of contaminated food, including pork products. It is widespread in the environment and can also be found in asymptomatic carrier animals, for example, in different tissues of pigs. To learn more about their nature, 16 Listeria spp. isolates found in tonsils and intestinal content of pigs and 13 isolates from the slaughterhouse environment were characterized using next-generation sequencing (NGS). A wide distribution of clonal complexes was observed in pigs, as well as in the pork production chain, suggesting multiple sources of entry. Hypervirulent clones were found in pig tonsils, showing the potential risk of pigs as source of isolates causing human disease. The presence of closely related isolates along the production chain suggests a cross-contamination in the slaughterhouse or recontamination from the same source, strengthening the importance of efficient cleaning and disinfection procedures. The phenotypical antimicrobial resistance status of L. monocytogenes isolates was examined via broth microdilution and revealed a low resistance level. Nevertheless, genotypical resistance data suggested multiple resistances in some non-pathogenic L. innocua isolates from pig samples, which might pose a risk of spreading resistances to pathogenic species.
Collapse
Affiliation(s)
- Verena Oswaldi
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (J.D.); (D.M.); (S.L.)
- Animal Health Team, European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany; (S.S.); (A.T.F.)
| | - Stefanie Lüth
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg1, 12277 Berlin, Germany;
| | - Janine Dzierzon
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (J.D.); (D.M.); (S.L.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany; (S.S.); (A.T.F.)
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (J.D.); (D.M.); (S.L.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany; (S.S.); (A.T.F.)
| | - Stefan Schwarz
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany; (S.S.); (A.T.F.)
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Andrea T. Feßler
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany; (S.S.); (A.T.F.)
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Benjamin Félix
- Salmonella and Listeria Unit, Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Paris-Est, 14, rue Pierre et Marie Curie, CEDEX, 94706 Maisons-Alfort, France;
| | - Susann Langforth
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (J.D.); (D.M.); (S.L.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany; (S.S.); (A.T.F.)
| |
Collapse
|