1
|
Jiang H, Zhang S, Lin Y, Meng L, Li J, Wang W, Yang K, Jin M, Wang J, Tang M, Chen K. Roles of serum uric acid on the association between arsenic exposure and incident metabolic syndrome in an older Chinese population. J Environ Sci (China) 2025; 147:332-341. [PMID: 39003051 DOI: 10.1016/j.jes.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
Growing evidences showed that heavy metals exposure may be associated with metabolic diseases. Nevertheless, the mechanism underlying arsenic (As) exposure and metabolic syndrome (MetS) risk has not been fully elucidated. So we aimed to prospectively investigate the role of serum uric acid (SUA) on the association between blood As exposure and incident MetS. A sample of 1045 older participants in a community in China was analyzed. We determined As at baseline and SUA concentration at follow-up in the Yiwu Elderly Cohort. MetS events were defined according to the criteria of the International Diabetes Federation (IDF). Generalized linear model with log-binominal regression model was applied to estimate the association of As with incident MetS. To investigate the role of SUA in the association between As and MetS, a mediation analysis was conducted. In the fully adjusted log-binominal model, per interquartile range increment of As, the risk of MetS increased 1.25-fold. Compared with the lowest quartile of As, the adjusted relative risk (RR) of MetS in the highest quartile was 1.42 (95% confidence interval, CI: 1.03, 2.00). Additionally, blood As was positively associated with SUA, while SUA had significant association with MetS risk. Further mediation analysis demonstrated that the association of As and MetS risk was mediated by SUA, with the proportion of 15.7%. Our study found higher As was remarkably associated with the elevated risk of MetS in the Chinese older adults population. Mediation analysis indicated that SUA might be a mediator in the association between As exposure and MetS.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Simei Zhang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yaoyao Lin
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Meng
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayi Li
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenqing Wang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kaixuan Yang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
3
|
Kao CS, Fan YT, Wang YL, Chen YH, Chao HJ, Lo YC, Jiang CB, Chien LC. Associations between parental and postnatal metal mixture exposure and developmental delays in a Taiwanese longitudinal birth cohort of preschool children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117360-117372. [PMID: 37867168 DOI: 10.1007/s11356-023-30435-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Studies have evaluated the impact of environmental exposure to neurotoxic metals on developmental delays (DDs). However, comprehensive understanding regarding the associations between parental and postnatal exposure to metal mixtures and the occurrence of DDs in offspring is limited. In this study, we assessed the relationships between parental and postnatal exposure to three metals (arsenic [As], cadmium [Cd], and lead [Pb], levels of which were measured in toenails) and suspected DDs (SDDs) in preschool children within a Taiwanese longitudinal birth cohort. In total between 2017 and 2021, 154 pairs of parents and their children under the age of 6 years were recruited, and 462 toenail samples and 154 completed questionnaires were collected. Metal concentrations in toenails were quantified using inductively coupled plasma-mass spectrometry after acid digestion of the toenails. We applied multivariable logistic regression and Bayesian kernel machine regression to evaluate the overall effect and to identify key components of the metal mixture that were associated with the SDD risk. Higher concentrations of As, Cd, and Pb were found in the toenails of the parents of children with SDDs compared with the toenails of the parents of children without SDDs. Our examination of the combined effects of exposure to the metal mixture revealed that As concentration in the father's toenail and Cd concentration in the mother's toenail were positively correlated with the risk of SDDs in their offspring. Notably, the effect of exposure to the metal mixture on the risk of SDDs was stronger in boys than in girls. Our findings suggest that parents taking measures to minimize their exposure to metals might enhance their children's developmental outcomes.
Collapse
Affiliation(s)
- Chi-Sian Kao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Lin Wang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Kao CS, Fan YT, Chien LC, Liao KW, Chang JH, Hsu CH, Chen YJ, Jiang CB. Effects of preterm birth and postnatal exposure to metal mixtures on neurodevelopment in children at 24 months of age. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86856-86865. [PMID: 37410323 DOI: 10.1007/s11356-023-28450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
The effects of early-life metal exposure on neurodevelopment in very low birth weight preterm (VLBMP) children (with a birth weight of <1500 g and a gestational age of <37 weeks) have not been clearly established. We aimed to investigate associations of childhood exposure to multiple metals and preterm low birth weight with neurodevelopment among children at 24 months of corrected age. VLBWP children (n = 65) and normal birth weight term (NBWT) children (n = 87) were enrolled from Mackay Memorial Hospital in Taiwan between December 2011 and April 2015. Lead (Pb), cadmium (Cd), arsenic (As), methylmercury (MeHg), and selenium (Se) concentrations in the hair and fingernails were analyzed as biomarkers for metal exposure. The Bayley Scale of Infant and Toddler Development, Third Edition, was used to determine neurodevelopment levels. VLBWP children had significantly lower scores in all development domains compared to NBWT children. We also investigated preliminary exposure levels of VLBWP children to metals as reference values for future epidemiological and clinical survey. Fingernails are a useful biomarker for metal exposure to evaluate the effects on neurological development. A multivariable regression analysis revealed that fingernail Cd concentrations were significantly negatively associated with cognition (β = -0.63, 95% confidence interval (CI): -1.17 to -0.08) and receptive language function (β = -0.43, 95% CI: -0.82 to -0.04) among VLBWP children. VLBWP children with a 10-μg/g increase in the As concentration in their nails had a 8.67-point lower composite score in cognitive ability and a 1.82-point lower score in gross-motor functions. Effects of preterm birth and postnatal exposure to Cd and As were associated with poorer cognitive, receptive language, and gross-motor abilities. VLBWP children are at risk for neurodevelopmental impairments when exposed to metals. Further large-scale studies are needed assess to the risk of neurodevelopmental impairments when vulnerable children are exposed to metal mixtures.
Collapse
Affiliation(s)
- Chi-Sian Kao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Jui-Hsing Chang
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Division of Neonatology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Premature Baby Foundation of Taiwan, Taipei, Taiwan
| | - Chyong-Hsin Hsu
- Division of Neonatology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Premature Baby Foundation of Taiwan, Taipei, Taiwan
| | - Yi-Jhen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Yoshinaga-Sakurai K, Rossman TG, Rosen BP. Regulation of arsenic methylation: identification of the transcriptional region of the human AS3MT gene. Cell Biol Toxicol 2022; 38:765-780. [PMID: 33956289 PMCID: PMC8571124 DOI: 10.1007/s10565-021-09611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
The human enzyme As(III) S-adenosylmethionine methyltransferase (AS3MT) catalyzes arsenic biotransformations and is considered to contribute to arsenic-related diseases. AS3MT is expressed in various tissues and cell types including liver, brain, adrenal gland, and peripheral blood mononuclear cells but not in human keratinocytes, urothelial, or brain microvascular endothelial cells. This indicates that AS3MT expression is regulated in a tissue/cell type-specific manner, but the mechanism of transcriptional regulation of expression of the AS3MT gene is not known. In this study, we define the DNA sequence of the core promoter region of the human AS3MT gene. We identify a GC box in the promoter to which the stress-related transcription factor Sp1 binds, indicating involvement of regulatory elements in AS3MT gene expression.
Collapse
Affiliation(s)
- Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Toby G Rossman
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
6
|
Wang Y, Wang Y, Yan C. Gender differences in trace element exposures with cognitive abilities of school-aged children: a cohort study in Wujiang city, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64807-64821. [PMID: 35474433 DOI: 10.1007/s11356-022-20353-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Trace elements persist in the environment, and their early exposure may adversely affect children's intellectual development. To clarify the influence of blood trace element levels in newborns and school-aged children, we used Wechsler Intelligence Scale for children (WISC-CR) to explore intellectual development level of 148 school-aged children based on a population cohort study. Lead (Pb), selenium (Se), arsenic (As), copper (Cu), manganese (Mn) and chromium (Cr) in cord blood and Pb, As, Cu in venous blood were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometer (AAS). Our analysis of the correlation between children's mental development and trace element content found children's cognitive abilities negatively correlate with Pb (PIQ: β=-0.109, P=0.03737) and Cu (PIQ: β=-0.031, P=0.04431; FISQ: β=-0.031, P=0.02137) levels in cord blood. Prenatal low-level As exposure may negatively affect girls' performance intelligence quotient (PIQ) and verbal intelligence quotient (VIQ). There were differences in Se levels in cord blood and venous blood between boys and girls (P=0.010; P=0.073). High Se levels were associated with a lower VIQ in boys and a higher VIQ in girls. Prenatal exposure to Pb, As and Cu may weaken children's cognitive abilities at school age. Se exposure may have opposite effects on cognitive abilities affected by dose and gender.
Collapse
Affiliation(s)
- Yihong Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Shanghai, 200092, China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Shanghai, 200092, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Jiang CB, Kao CS, Chien LC, Chen YJ, Liao KW. Associations among prenatal and postnatal arsenic, lead, and cadmium exposures and motor development in 3-year-old children: a longitudinal birth cohort study in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43191-43200. [PMID: 35091938 DOI: 10.1007/s11356-021-18321-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Prenatal and postnatal exposures to heavy metals have been suggested to interfere with neurodevelopment, but the neurotoxicity of lead (Pb), arsenic (As), and cadmium (Cd) is still unclear. In this study, we aimed to assess the associations between the levels of As, Cd, and Pb and children's neurodevelopment. A total of 299 mother-infant pairs were recruited in this study and their meconium were collected. After three years, 53 children underwent the Bayley Scales of Infant and Toddler Development (Bayley-III) examinations and provided hair and fingernail specimens. The levels of As, Cd, and Pb in the meconium, hair, and fingernail were measured by inductively coupled plasma mass spectrometry; the median levels were the following: meconium, 42.7, 5.57, and 25.6 ng/g, respectively; hair, 0.19, 0.05, and 3.61 μg/g, respectively; and fingernail, 0.29, 0.04, and 0.84 μg/g, respectively. After adjusting for potential confounding factors, we found that the log-transformed levels of As in the hair samples was negatively associated with gross motor development (β = - 0.032; 95% confidence interval: - 0.061 to - 0.004). We conclude that postnatal exposure to As is a crucial period for gross motor development in children, while the effects of Cd and Pb on neurodevelopment are less clear.
Collapse
Affiliation(s)
- Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chi-Sian Kao
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Jhen Chen
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, Taiwan.
| |
Collapse
|
8
|
Soler-Blasco R, Murcia M, Lozano M, Sarzo B, Esplugues A, Riutort-Mayol G, Vioque J, Lertxundi N, Santa Marina L, Lertxundi A, Irizar A, Braeuer S, Ballester F, Llop S. Prenatal arsenic exposure, arsenic methylation efficiency, and neuropsychological development among preschool children in a Spanish birth cohort. ENVIRONMENTAL RESEARCH 2022; 207:112208. [PMID: 34662579 DOI: 10.1016/j.envres.2021.112208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prenatal arsenic (As) exposure could negatively affect child neuropsychological development, but the current evidence is inconclusive. OBJECTIVES To explore the relationship between prenatal urinary total As (TAs) concentrations, the As species and the methylation efficiency, and child neuropsychological development in a Spanish birth cohort. We also studied the effect modification produced by sex and several nutrients and elements. MATERIALS AND METHODS Study subjects were 807 mother-child pairs participating in the INMA (Childhood and Environment) Project. Urinary TAs and its metabolites, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), inorganic As (iAs) and arsenobetaine were measured in the first trimester of pregnancy. Methylation efficiency was determined through the percentages of the metabolites and using principal component analysis. Children's neuropsychological development was assessed at the age of 4-5 years using the McCarthy Scales of Children's Abilities (MSCA). Multivariable linear regression models were built to assess the association between TAs, the As species and the maternal methylation efficiency, and the neuropsychological scores. We explored effect modification by sex, iron status, maternal nutrients status (serum manganese and selenium, and urinary zinc), and maternal vitamins intake (folate, and vitamins B12 and B6). RESULTS The geometric mean (95%CI) of ∑As (sum of DMA, MMA and iAs) was 7.78 (7.41, 8.17) μg/g creatinine. MMA concentrations were inversely associated with the scores for the general, verbal, quantitative, memory, executive function and working memory scales (i.e. β [CI95%] = -1.37 [-2.33, -0.41] for the general scale). An inverse association between %MMA and the memory scores was found. Children whose mothers had lower manganese, zinc and ferritin concentrations obtained lower scores on several MSCA scales with decreasing As methylation efficiency. DISCUSSION An inverse association was observed between MMA concentrations and children's neuropsychological development. Maternal levels of manganese, zinc and ferritin affected the association between As methylation efficiency and MSCA scores.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Blanca Sarzo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Jesús Vioque
- Alicante Institute for Health and Biomedical Research, ISABIAL-UMH, Alicante, Spain
| | - Nerea Lertxundi
- Biodonostia Health Research Institute, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country, UPV/ EHU, San Sebastian, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain.
| | - Amaia Irizar
- Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Simone Braeuer
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
9
|
Hsueh YM, Chen WJ, Chung CJ, Hsieh RL, Chen HH, Huang YL, Shiue HS, Lin MI, Mu SC, Lin YC. The combined effects of nucleotide-binding domain-like receptor protein 3 polymorphisms and levels of blood lead on developmental delays in preschool children. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127317. [PMID: 34879550 DOI: 10.1016/j.jhazmat.2021.127317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Nucleotide-binding domain-like receptors protein 3 (NLRP3) inflammasomes are associated with neuroinflammation and multiple NLRP3 genes regulate NLRP3 expression. Our study aimed to investigate the association of NLRP3 polymorphisms with developmental delay in preschool children. We also explored whether NLRP3 polymorphisms modified the effects of total urinary arsenic and blood cadmium and lead to developmental delays. A total of 178 children with developmental delays and 88 healthy children were analyzed for urinary arsenic concentrations and red blood cell lead and cadmium concentrations. We examined the genotypes of fifteen common single-nucleotide polymorphisms in NLRP3. We observed that levels of total urinary arsenic and blood lead were significantly associated with developmental delay. The NLRP3rs10754555 CG versus CC/GG, NLRP3rs12048215 AG versus AA/GG, and NLRP3rs12137901 TC/TT versus CC genotype showed a lower odds of developmental delay, with the odds ratio (OR) and 95% confidence interval (CI) = 0.38 (0.19-0.75), 0.52 (0.27-0.99), and 0.33 (0.12-0.90), respectively. Children with the NLRP3rs10754555 CC/GG genotype and high blood lead levels had a significant multiplicative interaction with developmental delay [OR (95% CI) = 9.74 (3.59-26.45)]. This study found evidence that suggested the joint effects of NLRP3rs10754555 CC/GG genotype and high blood lead levels on developmental delays.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Hsueh YM, Huang YL, Lin YF, Shiue HS, Lin YC, Chen HH. Plasma Vitamin B 12 and Folate Alter the Association of Blood Lead and Cadmium and Total Urinary Arsenic Levels with Chronic Kidney Disease in a Taiwanese Population. Nutrients 2021; 13:nu13113841. [PMID: 34836097 PMCID: PMC8625054 DOI: 10.3390/nu13113841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Heavy metals causing chronic nephrotoxicity may play a key role in the pathogenesis of chronic kidney disease (CKD). This study hypothesized that plasma folate and vitamin B12 would modify the association of CKD with total urinary arsenic and blood lead and cadmium levels. We recruited 220 patients with CKD who had an estimated glomerular filtration rate of <60 mL/min/1.73 m2 for ≥3 consecutive months and 438 sex- and age-matched controls. We performed inductively coupled plasma mass spectrometry to measure blood cadmium and lead levels. The urinary arsenic level was determined using a high-performance liquid chromatography–hydride generator–atomic absorption spectrometry. Plasma vitamin B12 and folate levels were measured through the SimulTRAC-SNB radioassay. Compared with patients with plasma vitamin B12 ≤ 6.27 pg/mL, the odds ratio (OR) and 95% confidence interval of CKD for patients with plasma vitamin B12 > 9.54 pg/mL was 2.02 (1.15–3.55). However, no association was observed between plasma folate concentration and CKD. A high level of plasma vitamin B12 combined with high levels of blood lead and cadmium level and total urinary arsenic tended to increase the OR of CKD in a dose-response manner, but the interactions were nonsignificant. This is the first study to demonstrate that patients with high plasma vitamin B12 level exhibit increased OR of CKD related to high levels of blood cadmium and lead and total urinary arsenic.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-M.H.); (Y.-C.L.)
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-M.H.); (Y.-C.L.)
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
12
|
Niño SA, Vázquez-Hernández N, Arevalo-Villalobos J, Chi-Ahumada E, Martín-Amaya-Barajas FL, Díaz-Cintra S, Martel-Gallegos G, González-Burgos I, Jiménez-Capdeville ME. Cortical Synaptic Reorganization Under Chronic Arsenic Exposure. Neurotox Res 2021; 39:1970-1980. [PMID: 34533753 DOI: 10.1007/s12640-021-00409-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
There is solid epidemiological evidence that arsenic exposure leads to cognitive impairment, while experimental work supports the hypothesis that it also contributes to neurodegeneration. Energy deficit, oxidative stress, demyelination, and defective neurotransmission are demonstrated arsenic effects, but it remains unclear whether synaptic structure is also affected. Employing both a triple-transgenic Alzheimer's disease model and Wistar rats, the cortical microstructure and synapses were analyzed under chronic arsenic exposure. Male animals were studied at 2 and 4 months of age, after exposure to 3 ppm sodium arsenite in drinking water during gestation, lactation, and postnatal development. Through nuclear magnetic resonance, diffusion-weighted images were acquired and anisotropy (integrity; FA) and apparent diffusion coefficient (dispersion degree; ADC) metrics were derived. Postsynaptic density protein and synaptophysin were analyzed by means of immunoblot and immunohistochemistry, while dendritic spine density and morphology of cortical pyramidal neurons were quantified after Golgi staining. A structural reorganization of the cortex was evidenced through high-ADC and low-FA values in the exposed group. Similar changes in synaptic protein levels in the 2 models suggest a decreased synaptic connectivity at 4 months of age. An abnormal dendritic arborization was observed at 4 months of age, after increased spine density at 2 months. These findings demonstrate alterations of cortical synaptic connectivity and microstructure associated to arsenic exposure appearing in young rodents and adults, and these subtle and non-adaptive plastic changes in dendritic spines and in synaptic markers may further progress to the degeneration observed at older ages.
Collapse
Affiliation(s)
- Sandra A Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Nallely Vázquez-Hernández
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS. Guadalajara, Jalisco, Mexico
| | - Jaime Arevalo-Villalobos
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, San Luis Potosí, Mexico
| | - Erika Chi-Ahumada
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Guadalupe Martel-Gallegos
- Laboratorio de Biomedicina, Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Rio Verde, San Luis Potosí, Mexico
| | - Ignacio González-Burgos
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS. Guadalajara, Jalisco, Mexico
| | - María E Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
13
|
Hsueh YM, Lin YC, Huang YL, Shiue HS, Pu YS, Huang CY, Chung CJ. Effect of plasma selenium, red blood cell cadmium, total urinary arsenic levels, and eGFR on renal cell carcinoma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141547. [PMID: 32858293 DOI: 10.1016/j.scitotenv.2020.141547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
High total urinary arsenic concentrations and low estimated glomerular filtration rate (eGFR) increase the risk of renal cell carcinoma (RCC). This study aimed to determine whether other metals or metalloids can affect RCC. A total of 401 patients with RCC and 774 age- and sex-matched controls were recruited between November 2006 and December 2012 in Taiwan. Surgical resection or image-guided biopsy of renal tumors was performed to pathologically verify RCC. High-performance liquid chromatography linked to a hydride generator and atomic absorption spectrometer were used to measure the urinary arsenic species concentrations. Inductively coupled plasma mass spectrometry was used to determine plasma selenium and red blood cell cadmium and lead concentration. Plasma selenium levels were inversely related to RCC, whereas red blood cell cadmium levels were directly related to RCC. The odds ratio (OR) and 95% confidence interval (CI) were 0.14 (95% CI, 0.10-0.20) and 1.33 (95% CI, 1.03-1.72), respectively. A low plasma selenium level tended to interact with high total urinary arsenic levels or with high red blood cell cadmium concentration to increase the OR of RCC. In particular, low eGFR multiplicatively interacted with high red blood cell cadmium concentration to increase the OR of RCC (Pinteraction=0.003). This study was the first to find a significant multiplicative interaction between eGFR and the red blood cell cadmium levels on the increased OR of RCC.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chi-Jung Chung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Kordas K. Executive functions in school children from Montevideo, Uruguay and their associations with concurrent low-level arsenic exposure. ENVIRONMENT INTERNATIONAL 2020; 142:105883. [PMID: 32599352 PMCID: PMC10927015 DOI: 10.1016/j.envint.2020.105883] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Arsenic is a known childhood neurotoxicant, but its neurotoxicity at low exposure levels is still not well established. The aim of our cross-sectional study was to test the association between low-level arsenic exposure and executive functions (EF) among children in Montevideo. We also assessed effect modification by arsenic methylation capacity, a susceptibility factor for the health effects of arsenic, and by B-vitamin intake, which impacts arsenic methylation. METHODS Arsenic exposure was assessed as the specific gravity-adjusted sum of urinary arsenic metabolites (U-As) among 255 ~ 7 year-old children, and methylation capacity as the proportion of urinary monomethylarsonic acid (%MMA). Arsenic concentrations from kitchen water samples at participants' homes were assessed. B-vitamin intake was calculated from the average of two 24-hour dietary recalls. EF was measured using three tests from the Cambridge Neuropsychological Test Automated Battery- Stockings of Cambridge (SOC), Intra-dimensional/extra-dimensional shift task (IED), and Spatial Span (SSP). Generalized linear models assessed the association between U-As and EF measures; models were adjusted for age, sex, maternal education, possessions score, Home Observation for Measurement of the Environment Inventory score, season, and school clusters. Additional analyses were conducted to address issues of residual confounding and sample size. A "B-vitamin index" was calculated using principal component analysis. Effect modification by the index and urinary %MMA was assessed in strata split at the respective medians of these variables. RESULTS The median (range) U-As and water arsenic levels were 9.9 µg/L (2.2, 47.7) and 0.45 µg/L (0.1, 18.9) respectively, indicating that exposure originated mainly from other sources. U-As was inversely associated with the number of stages completed (β = -0.02; 95% CI: -0.03, -0.002) and pre-executive shift errors (β = -0.08; 95% CI: -0.14, -0.02) of the IED task, and span length of the SSP task (β = -0.01; 95% CI: -0.02, -0.004). There was no clear pattern of effect modification by B-vitamin intake or urinary %MMA. CONCLUSION Low-level arsenic exposure may adversely affect executive function among children but additional, including longitudinal, studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
15
|
Szymańska-Chabowska A, Matys T, Łaczmański Ł, Czerwińska K, Janus A, Smyk B, Mazur G, Poręba R, Gać P. The relationship between PNP, GSTO-1, AS3MT and ADRB3 gene polymorphisms and urinary arsenic concentration among copper smelter and refinery employers. Hum Exp Toxicol 2020; 39:1443-1453. [PMID: 32452228 DOI: 10.1177/0960327120925891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The aim of this study was to assess the relationship between polymorphisms of genes encoding enzymes involved in arsenic metabolism and urinary arsenic concentration in people occupationally exposed to arsenic. MATERIALS AND METHODS The data from 113 employers directly exposed to lead, cadmium, and arsenic in copper smelter in Legnica and Glogow were collected. Urinary arsenic concentration was measured. In addition, blood level of cadmium, lead, and zinc protoporphyrins was assayed. Genetic analyses included polymorphism of PNP (rs 1130650), GSTO-1 (rs 4925), AS3MT (rs 11191439), and ADRB3 (rs4994) genes. RESULTS Individuals occupationally exposed to arsenic compounds, who have allele T in homozygous constellation in locus rs 1130650 of PNP gene, are predisposed to lower urinary arsenic concentration, while AA homozygosity in locus rs 4925 of GSTO-1 gene may result in statistically significant higher urinary arsenic concentration. Polymorphisms of AS3MT and ADRB3 genes showed no statistically significant correlation with urinary arsenic, however, there was a tendency to higher arsenic concentration in allele A carriers in locus rs4994 of ADRB3 gene and in allele T carriers in rs 11191439 of AS3MT gene. CONCLUSION This study indicates that arsenic absorption and metabolism depend on polymorphisms of genes encoding PNP and GSTO-1. Individuals with disadvantageous constellation of polymorphisms are more susceptible to harmful effects of arsenic exposure.
Collapse
Affiliation(s)
- A Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - T Matys
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Ł Łaczmański
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - K Czerwińska
- Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| | - A Janus
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - B Smyk
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - G Mazur
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - R Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - P Gać
- Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Howe CG, Farzan SF, Garcia E, Jursa T, Iyer R, Berhane K, Chavez TA, Hodes TL, Grubbs BH, Funk WE, Smith DR, Bastain TM, Breton CV. Arsenic and birth outcomes in a predominately lower income Hispanic pregnancy cohort in Los Angeles. ENVIRONMENTAL RESEARCH 2020; 184:109294. [PMID: 32145549 PMCID: PMC7103498 DOI: 10.1016/j.envres.2020.109294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 05/18/2023]
Abstract
Prenatal arsenic exposure has been associated with reduced fetal growth and increased risk for preterm birth, but most studies have been conducted in highly exposed populations outside the U.S. or in non-Hispanic populations in the rural U.S. The objectives of the current study were to: 1) examine the impact of early pregnancy exposure to arsenic on birth weight and gestational age at birth in a predominately lower income Hispanic pregnancy cohort in urban Los Angeles and 2) compare multiple biomarkers of arsenic exposure (blood, urine, and hair) assessed in early pregnancy (mean ± SD gestational age at biospecimen collection: 14 ± 4 weeks). Total arsenic (blood, hair) was measured by ICP-MS and speciated arsenic (urine) was measured by HPLC coupled to ICP-MS. Associations between log2-transformed arsenic measures and birth outcomes were evaluated using multivariable linear regression. A doubling in hair arsenic was associated with a 72.2 g (95% CI: -144.3, -0.1, P = 0.05) lower birth weight, after adjusting for potential confounders and gestational age at birth. A similar but non-significant trend was observed for blood arsenic, but not urine arsenic. The inverse association between hair arsenic and birth weight was more pronounced among infants whose mothers gained greater amounts of weight during pregnancy (Pinteraction = 0.02). The association between urinary monomethyl arsenic and GA at birth differed by pre-pregnancy BMI (Pinteraction<0.01). This study provides evidence that even at relatively low levels of exposure, arsenic exposure (measured in hair samples collected in early pregnancy) may adversely affect fetal growth in this understudied population, particularly in combination with greater gestational weight gain. Future studies with larger sample sizes are needed to confirm these findings and to further investigate some of the inconsistencies observed for the different arsenic biomarkers evaluated.
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| | - Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| | - Erika Garcia
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA.
| | - Ramsunder Iyer
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N Lake Shore Dr, Chicago, IL, 60611, USA.
| | - Kiros Berhane
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| | - Thomas A Chavez
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| | - Tahlia L Hodes
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, 2020 Zonal Ave, Los Angeles, CA, 90033, USA.
| | - William E Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N Lake Shore Dr, Chicago, IL, 60611, USA.
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA.
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N Soto St, Los Angeles, CA, 90032, USA.
| |
Collapse
|
17
|
Combined effect of polymorphisms of MTHFR and MTR and arsenic methylation capacity on developmental delay in preschool children in Taiwan. Arch Toxicol 2020; 94:2027-2038. [DOI: 10.1007/s00204-020-02745-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
18
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Browne RW, Kordas K. Low level arsenic exposure, B-vitamins, and achievement among Uruguayan school children. Int J Hyg Environ Health 2019; 223:124-131. [PMID: 31588016 DOI: 10.1016/j.ijheh.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Millions of children globally, including the U.S., are exposed to low levels of arsenic from water and food. Arsenic is a known neurotoxicant at high levels but its effects at lower exposure levels are understudied. Arsenic methylation capacity, influenced by B-vitamin intake and status, potentially influences arsenic toxicity. In a cross-secitonal study of 5-8 year-old children from Montevideo, we assessed the relationship between urinary arsenic (U-As) and academic achievement, and tested for effect modification by B-vitamin intake, status, and arsenic methylation capacity. METHODS Broad math and reading scores were calculated based on six subtests (calculation, math facts fluency, applied problems, sentence reading fluency, letter word identification, passage comprehension) from the Woodcock-Muñoz Achievement Battery. B-vitamin intake was assessed from two non-consecutive 24-h dietary recalls, serum folate and vitamin B-12 levels were measured in a subset of participants. Arsenic methylation capacity was measured as the proportion of urinary monomethylarsonic acid (%MMA). Multiple imputation using chained equations was conducted to account for missing covariate and exposure data. Ordinal regressions assessed associations between U-As and achievement score tertiles in the complete case and imputed samples. A "B-vitamin index" was calculated using principal component analysis. Interactions by urinary %MMA and the B-vitamin index were assessed. RESULTS Median specific gravity adjusted U-As was 11.7 μg/L (range: 2.6, 50.1). We found no association between U-As and broad math and reading scores, nor effect modification by %MMA or B-vitamins. CONCLUSION At low-levels of exposure, U-As does not appear to affect children's academic achievement.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
19
|
Dórea JG. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. ENVIRONMENTAL RESEARCH 2019; 177:108641. [PMID: 31421445 DOI: 10.1016/j.envres.2019.108641] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is a worldwide environmental contaminant that even at low levels influences brain development and affects neurobehavior later in life; nevertheless it is only a small fraction of the neurotoxicant (NT) exposome. Exposure to environmental Pb concurrent with other NT substances is often the norm, but their joint effects are challenging to study during early life. The aim of this review is to integrate studies of Pb-containing NT mixtures during the early life and neurodevelopment outcomes of children. The Pb-containing NT mixtures that have been most studied involve other metals (Mn, Al, Hg, Cd), metalloids (As), halogen (F), and organo-halogen pollutants. Co-occurring Pb-associated exposures during pregnancy and lactation depend on the environmental sources and the metabolism and half-life of the specific NT contaminant; but offspring neurobehavioral outcomes are also influenced by social stressors. Nevertheless, Pb-associated effects from prenatal exposure portend a continued burden on measurable neurodevelopment; they thus favor increased neurological health issues, decrements in neurobehavioral tests and reductions in the quality of life. Neurobehavioral test outcomes measured in the first 1000 days showed Pb-associated negative outcomes were frequently noticed in infants (<6 months). In older (preschool and school) children studies showed more variations in NT mixtures, children's age, and sensitivity and/or specificity of neurobehavioral tests; these variations and choice of statistical model (individual NT stressor or collective effect of mixture) may explain inconsistencies. Multiple exposures to NT mixtures in children diagnosed with 'autism spectrum disorders' (ASD) and 'attention deficit and hyperactivity disorders' (ADHD), strongly suggest a Pb-associated effect. Mixture potency (number or associated NT components and respective concentrations) and time (duration and developmental stage) of exposure often showed a measurable impact on neurodevelopment; however, net effects, reversibility and/or predictability of delays are insufficiently studied and need urgent attention. Nevertheless, neurodevelopment delays can be prevented and/or attenuated if public health policies are implemented to protect the unborn and the young child.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
20
|
Lin YC, Chung CJ, Huang YL, Hsieh RL, Huang PT, Wu MY, Ao PL, Shiue HS, Huang SR, Su CT, Lin MI, Mu SC, Hsueh YM. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan. Arch Toxicol 2019; 93:2535-2544. [DOI: 10.1007/s00204-019-02540-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
|
21
|
Khan KM, Parvez F, Zoeller RT, Hocevar BA, Kamendulis LM, Rohlman D, Eunus M, Graziano J. Thyroid hormones and neurobehavioral functions among adolescents chronically exposed to groundwater with geogenic arsenic in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:278-287. [PMID: 31075594 PMCID: PMC6544172 DOI: 10.1016/j.scitotenv.2019.04.426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Groundwater, the major source of drinking water in Bengal Delta Plain, is contaminated with geogenic arsenic (As) enrichment affecting millions of people. Children exposed to tubewell water containing As may be associated with thyroid dysfunction, which in turn may impact neurodevelopmental outcomes. However, data to support such relationship is sparse. The purpose of this study was to examine if chronic water As (WAs) from Holocene alluvial aquifers in this region was associated with serum thyroid hormone (TH) and if TH biomarkers were related to neurobehavioral (NB) performance in a group of adolescents. A sample of 32 healthy adolescents were randomly drawn from a child cohort in the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh. Half of these participants were consistently exposed to low WAs (<10 μg/L) and the remaining half had high WAs exposure (≥10 μg/L) since birth. Measurements included serum total triiodothyronine (tT3), free thyroxine (fT4), thyrotropin (TSH) and thyroperoxidase antibodies (TPOAb); concurrent WAs and urinary arsenic (UAs); and adolescents' NB performance. WAs and UAs were positively and significantly correlated with TPOAb but were not correlated with TSH, tT3 and fT4. After accounting for covariates, both WAs and UAs demonstrated positive but non-significant relationships with TSH and TPOAb and negative but non-significant relationships with tT3 and fT4. TPOAb was significantly associated with reduced NB performance indicated by positive associations with latencies in simple reaction time (b = 82.58; p < 0.001) and symbol digit (b = 276.85; p = 0.005) tests. TSH was significantly and negatively associated with match-to-sample correct count (b = -0.95; p = 0.05). Overall, we did not observe significant associations between arsenic exposure and TH biomarkers although the relationships were in the expected directions. We observed TH biomarkers to be related to reduced NB performance as hypothesized. Our study indicated a possible mechanism of As-induced neurotoxicity, which requires further investigations for confirmatory findings.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA.
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, MA, USA
| | - Barbara A Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Lisa M Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Diane Rohlman
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, IA, USA
| | | | - Joseph Graziano
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| |
Collapse
|
22
|
Wu CY, Wong CS, Chung CJ, Wu MY, Huang YL, Ao PL, Lin YF, Lin YC, Shiue HS, Su CT, Chen HH, Hsueh YM. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:224-232. [PMID: 31075550 DOI: 10.1016/j.jhazmat.2019.04.082] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to determine the interaction of red blood cell cadmium and lead, total urinary arsenic, and plasma selenium in chronic kidney disease (CKD). We recruited 220 CKD patients as well as 438 gender- and age-matched controls, and we defined CKD as <60 mL/min/1.73 m2 estimated glomerular filtration rate (eGFR) for three or more consecutive months. Plasma selenium and red blood cell cadmium and lead concentrations were measured by ICP-MS. Urinary arsenic species were determined via HPLC-HG-AAS and were summed to determine the total urinary arsenic concentration. Plasma selenium was positively correlated to eGFR, and subjects with high plasma selenium levels (>243.90 μg/L) had a significantly lower odds ratio (OR) and 95% confidence interval (CI) (0.23, 0.13-0.42) for CKD compared to those with low plasma selenium levels (≤ 196.70 μg/L). High plasma selenium and low red blood cell cadmium or lead concentrations interacted to decrease the OR and 95% CI for CKD (0.12, 0.06-0.26; 0.09, 0.04-0.19). High plasma selenium and low red blood cell lead levels also interacted to increase the eGFR (20.70, 15.56-26.01 mL/min/1.73 m2). This study is the first to suggest that selenium modifies the eGFR and OR in CKD induced by environmental toxicants.
Collapse
Affiliation(s)
- Chih-Yin Wu
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Shun Wong
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chien-Tien Su
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Su CT, Hsieh RL, Chung CJ, Huang PT, Lin YC, Ao PL, Shiue HS, Chen WJ, Huang SR, Lin MI, Mu SC, Hsueh YM. Plasma selenium influences arsenic methylation capacity and developmental delays in preschool children in Taiwan. ENVIRONMENTAL RESEARCH 2019; 171:52-59. [PMID: 30654249 DOI: 10.1016/j.envres.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Inefficient arsenic methylation capacity has been associated with developmental delay in preschool children. Selenium has antioxidant and anti-inflammatory properties that protect experimental animals from chemically induced neurotoxicity. The present study was designed to explore whether plasma selenium levels affects arsenic methylation capacity related to developmental delay in preschool children. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 178 children with a developmental delay and 88 children without a delay were recruited. High-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry were used to determine urinary arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV). Plasma selenium levels were measured by inductively coupled plasma mass spectrometry. As results, plasma selenium concentration was significantly inversely associated with the odds ratio (OR) of developmental delay. Plasma selenium concentration was positively associated with arsenic methylation capacity [percentage of inorganic arsenic and percentage of MMAV (MMAV%) decreased, and percentage of DMAV (DMAV%) increased]. High plasma selenium concentration and high DMA% significantly and additively interacted to decrease the OR of developmental delay; the OR and 95% confidence interval were 0.40 (0.18-0.90). This is the first study to show a combined dose-response effect of plasma selenium concentration and that efficient arsenic methylation capacity decreased the OR of developmental delay in preschool children.
Collapse
Affiliation(s)
- Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Pai-Tsang Huang
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shiau-Rung Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 2019; 5:134-144. [PMID: 29411302 DOI: 10.1007/s40572-018-0184-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Exposure to inorganic arsenic (iAs) via drinking water represents a significant global public health threat with chronic exposure associated with cancer, skin lesions, neurological impairment, and cardiovascular diseases. Particularly susceptible populations include the developing fetus and young children. This review summarizes some of the critical studies of the long-term health effects and underlying biological mechanisms related to developmental exposure to arsenic. It also highlights the complex factors, such as the sex of the exposed individual, that contribute to susceptibility to the later life health effects of iAs. RECENT FINDINGS Studies in animal models, as well as human population-based studies, have established that prenatal and early life iAs exposures are associated with long-term effects, and many of these effects display sexually dimorphic responses. As an underlying molecular basis, recent epidemiologic and toxicologic studies have demonstrated that changes to the epigenome may play a key mechanistic role underlying many of the iAs-associated health outcomes. Developmental exposure to iAs results in early and later life health effects. Mechanisms underlying these outcomes are likely complex, and include disrupted key biological pathways with ties to the epigenome. This highlights the importance of continued research, particularly in animal models, to elucidate the important underpinnings (e.g., timing of exposure, metabolism, dose) of these complex health outcomes and to identify the biological mechanisms underlying sexual dimorphism in iAs-associated diseases. Future research should investigate preventative strategies for the protection from the detrimental health endpoints associated with early life exposure to iAs. Such strategies could include potential interventions focused on dietary supplementation for example the adoption of a folate-rich diet.
Collapse
|
25
|
Dórea JG. Multiple low-level exposures: Hg interactions with co-occurring neurotoxic substances in early life. Biochim Biophys Acta Gen Subj 2018; 1863:129243. [PMID: 30385391 DOI: 10.1016/j.bbagen.2018.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
All chemical forms of Hg can affect neurodevelopment; however, low levels of organic Hg (methylmercury-MeHg and ethylmercury-EtHg in Thimerosal-containing vaccines, hereafter 'TCV') exposures during early life (pregnancy and lactation) co-occur with other environmental neurotoxic substances. These neurotoxicants may act in parallel, synergistically, or antagonistically to Hg. Nevertheless, the risks of neurotoxicity associated with multiple neuro-toxicants depend on type, time, combinations of exposure, and environmental and/or genetic-associated factors. Neurological developmental disorders, delays in cognition and behavioral outcomes associated with multiple exposures (which include Hg) may show transient or lasting outcomes depending on constitutional and/or environmental factors that can interact to neutralize, aggravate or attenuate these effects; often these studies are challenging to interpret. During pregnancy and lactation, fish-MeHg exposure is frequently confounded with the opposing effects of neuroactive nutrients (in fish) that lead to positive, negative, or no effects on neurobehavioral tests. In infancy, exposures to acute binary mixtures (TCV- EtHg and Al-adjuvants in infant immunizations) are associated with increased risks of tics and other developmental disorders. Despite the certitude that promulgates single environmental neurotoxicants, empirical comparisons of combined exposures indicate that Hg-related outcome is uneven. Hg in combination with other neurotoxic mixtures may elevate risks of neurotoxicity, but these risks arise in circumstances that are not yet predictable. Therefore, to achieve the goals of the Minamata treaty and to safeguard the health of children, low levels of mercury exposure (in any chemical form) needs to be further reduced whether the source is environmental (air- and food-borne) or iatrogenic (pediatric TCVs).
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília 70919-970, DF, Brazil..
| |
Collapse
|
26
|
Jiang CB, Hsueh YM, Kuo GL, Hsu CH, Chang JH, Chien LC. Preliminary study of urinary arsenic concentration and arsenic methylation capacity effects on neurodevelopment in very low birth weight preterm children under 24 months of corrected age. Medicine (Baltimore) 2018; 97:e12800. [PMID: 30412069 PMCID: PMC6221732 DOI: 10.1097/md.0000000000012800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The neurological prognoses of very low birth weight preterm (VLBWP) children during the first 2 years of life will influence their neurodevelopment during subsequent childhood years and adolescence. The objective of this study was to systemic investigate relationships of urinary arsenic (As) concentrations, the As methylation capability, and toenail As concentrations on cognitive, language, and motor development in VLBWP children under 24 months of corrected age.Participants (n = 60) in our study were recruited from October 2010 to April 2013. Urine and toenail samples were collected for evaluation to assess As exposure. The Bayley scales of infant development III were used to evaluate neurodevelopment at 2 years of corrected age. Concentrations of As species in urine and the As concentration in toenails were, respectively, analyzed using HPLC-HG-AAS and ICP-MS.The mean concentration of total As was 28.6 μg/g creatinine, and inorganic As was 1.01 μg/L in urine. The urine contained an average of 3% inorganic As, 2% monomethylarsonic acid, and 95% dimethylarsinic acid (DMA). The mean concentration of As in toenails was 225 ng/g. Children with a longer gestational age (≥28 weeks) and higher DMA % levels appeared to have the highest unadjusted cognitive and fine motor scores.Our study results suggest that gestational age is associated with neurodevelopment in VLBWP children. We recommend that further study simultaneously analyze multiple environmental contaminants that may have adverse effects on neurodevelopment, use biomarkers for the mother-child pair, and determine whether prenatal or postnatal As exposure has a greater influence on the neurological development of VLBWP children.
Collapse
Affiliation(s)
- Chuen-Bin Jiang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, MacKay Children's Hospital
- Mackay Junior College of Medicine, Nursing and Management, Taipei
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital
- Department of Public Health, School of Medicine, College of Medicine
| | - Guang-Lin Kuo
- School of Public Health, College of Public Health, Taipei Medical University
| | - Chyong-Hsin Hsu
- Division of Neonatology, Department of Pediatrics, MacKay Children's Hospital, Taipei
| | - Jui-Hsing Chang
- Mackay Junior College of Medicine, Nursing and Management, Taipei
- Division of Neonatology, Department of Pediatrics, MacKay Children's Hospital, Taipei
- MacKay Medical College, New Taipei City
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Leroux IN, Ferreira APSDS, Paniz FP, Pedron T, Salles FJ, da Silva FF, Maltez HF, Batista BL, Olympio KPK. Lead, Cadmium, and Arsenic Bioaccessibility of 24 h Duplicate Diet Ingested by Preschool Children Attending Day Care Centers in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081778. [PMID: 30126211 PMCID: PMC6121652 DOI: 10.3390/ijerph15081778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Abstract
Lead, known as a metal with high neurotoxicity to children, cadmium, which is a carcinogenic and bioaccumulative contaminant, and arsenic, a class 1 carcinogenic according to the International Agency for Research on Cancer, are toxic elements (TEs) whose relevant route of exposure may be diet. We determined the bio-accessible fraction of lead, cadmium, and arsenic from the diet of preschool children from two day care centers (DCC). A cross-sectional study was conducted with 64 one–four-year-old children from two DCCs where the 24-h duplicate diet samples were collected. The diet samples were analyzed by ICP-MS for lead, cadmium, and arsenic total concentrations (n = 64) and their bio-accessibility were analyzed for a subsample (n = 10). The dietary intake (DI) mean for lead, cadmium, and arsenic were 0.18 ± 0.11 µg kg−1 bw, 0.08 ± 0.04 µg kg−1 bw, and 0.61 ± 0.41 µg kg−1 bw, respectively. All DI calculated for TEs, considering total intake, were found lower than the tolerable limits (TL) (European Union, or World Health Organization, WHO, when applicable) except for one child’s Pb intake. Bio-accessibilities ranged between 0% to 93%, 0% to 103%, and 0% to 69%, for lead, cadmium, and arsenic, respectively. Although DI for TEs has been found lower than TL, these reference values have been recently decreased or withdrawn since it was for lead and arsenic whose TL were withdrawn by WHO.
Collapse
Affiliation(s)
- Isabelle Nogueira Leroux
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Ana Paula Sacone da Silva Ferreira
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Fernanda Pollo Paniz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Tatiana Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Fernanda Junqueira Salles
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Fábio Ferreira da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
- Agilent Technologies, Alameda Araguaia, 1142 Alphaville Industrial, Barueri 6455000, Brazil.
| | - Heloisa França Maltez
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Kelly Polido Kaneshiro Olympio
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| |
Collapse
|
28
|
Yang YW, Liou SH, Hsueh YM, Lyu WS, Liu CS, Liu HJ, Chung MC, Hung PH, Chung CJ. Risk of Alzheimer's disease with metal concentrations in whole blood and urine: A case-control study using propensity score matching. Toxicol Appl Pharmacol 2018; 356:8-14. [PMID: 30025849 DOI: 10.1016/j.taap.2018.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/29/2022]
Abstract
Environmental exposure to heavy metals is suspected to result in neuropathology damage and cognitive impairment. We aimed to explore the association of Alzheimer's disease (AD) risk with the internal dose of heavy metals by constructing a hospital-based case-control study and using propensity-score-matching methods. We investigated 170 patients with AD and 264 controls from the Department of Neurology and Family Medicine, China Medical University Hospital in Taiwan. All patients with AD received clinical neuropsychological examination and cognitive-function assessments, including the mini-mental status examination and clinical dementia rating scale. We also constructed a propensity-score-matched population of 82 patients with AD and 82 controls by matching age, gender, education, and AD-related comorbidity. Blood levels with cadmium, lead, mercury, selenium, and urinary arsenic profile were measured. Logistic regression models and 95% confidence intervals (CIs) were applied to estimate AD risk. After stratification by respective quartile cutoffs of heavy metals, the AD risk of study participants with high urinary inorganic arsenic (InAs%) or low dimethylarsinic acid (DMA%) significantly increased (p < 0.05), as similarly found in the propensity-score-matched population. In addition, people with a low median level of selenium and high median level of InAs%, or/and a low median level of DMA% had approximately two- to threefold significant AD risk. Urinary arsenic profiles may be associated with increased AD risk. Repeat measurements of heavy metals with large sample size and the surveying of potential exposure sources are recommended in future studies.
Collapse
Affiliation(s)
- Yu-Wan Yang
- Department of Neurology, China Medical University and Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Saou-Hsing Liou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wun-Sin Lyu
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Huei-Ju Liu
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan; Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
29
|
Desai G, Barg G, Queirolo EI, Vahter M, Peregalli F, Mañay N, Kordas K. A cross-sectional study of general cognitive abilities among Uruguayan school children with low-level arsenic exposure, potential effect modification by methylation capacity and dietary folate. ENVIRONMENTAL RESEARCH 2018; 164:124-131. [PMID: 29486343 PMCID: PMC5911190 DOI: 10.1016/j.envres.2018.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Few studies have evaluated the association between low-level arsenic (As) exposure and cognitive performance among children. OBJECTIVES In this cross-sectional study, we assessed the association between low-level As exposure and cognitive performance among 5-8 year-old children in Montevideo, and tested effect modification by As methylation capacity and children's dietary folate intake. METHODS We measured total urinary As (UAs) concentrations and the proportion of monomethylarsonic acid (MMA) in the urine of 328 children. Seven subtests of the standardized Woodcock-Muñoz cognitive battery were used to assess cognitive performance, from which, the general intellectual abilities (GIA) score was derived. Total folate intake was estimated from two 24-h dietary recalls. Linear regression analyses were performed. Effect modification was assessed by stratifying at the median %MMA value and tertiles of total folate intake calculated as micrograms (µg) of dietary folate equivalents (dfe). RESULTS The median UAs was 11.9 µg/l (range = 1.4-93.9), mean folate intake was 337.4 (SD = 123.3) µg dfe, and median %MMA was 9.42 (range = 2.6-24.8). There was no association between UAs and cognitive abilities, and no consistent effect modification by %MMA. UAs was associated inversely with concept formation, and positively with cognitive efficiency and numbers reversed subtest in the lowest folate intake tertile; UAs was also positively associated with sound integration in the second tertile and concept formation in the highest tertile of folate intake. There was no consistent pattern of effect modification by %MMA or folate intake. CONCLUSION There was no association between low-level As exposure and general cognitive abilities.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
30
|
Rasheed H, Kay P, Slack R, Gong YY. The effect of association between inefficient arsenic methylation capacity and demographic characteristics on the risk of skin lesions. Toxicol Appl Pharmacol 2018; 339:42-51. [DOI: 10.1016/j.taap.2017.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023]
|
31
|
Caldwell KK, Hafez A, Solomon E, Cunningham M, Allan AM. Arsenic exposure during embryonic development alters the expression of the long noncoding RNA growth arrest specific-5 (Gas5) in a sex-dependent manner. Neurotoxicol Teratol 2017; 66:102-112. [PMID: 29132937 DOI: 10.1016/j.ntt.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
Our previous studies suggest that prenatal arsenic exposure (50ppb) modifies epigenetic control of the programming of the glucocorticoid receptor (GR) signaling system in the developing mouse brain. These deficits may lead to long-lasting consequences, including deficits in learning and memory, increased depressive-like behaviors, and an altered set-point of GR feedback throughout life. To understand the arsenic-induced changes within the GR system, we assessed the impact of in utero arsenic exposure on the levels of the GR and growth arrest-specific-5 (Gas5), a noncoding RNA, across a key gestational period for GR programming (gestational days, GD 14-18) in mice. Gas5 contains a glucocorticoid response element (GRE)-like sequence that binds the GR, thereby decreasing GR-GRE-dependent gene transcription and potentially altering GR programming. Prenatal arsenic exposure resulted in sex-dependent and age-dependent shifts in the levels of GR and Gas5 expression in fetal telencephalon. Nuclear GR levels were reduced in males, but unchanged in females, at all gestational time points tested. Total cellular Gas5 levels were lower in arsenic-exposed males with no changes seen in arsenic-exposed females at GD16 and 18. An increase in total cellular Gas-5 along with increased nuclear levels in GD14 arsenic-exposed females, suggests a differential regulation of cellular compartmentalization of Gas5. RIP assays revealed reduced Gas5 associated with the GR on GD14 in the nuclear fraction prepared from arsenic-exposed males and females. This decrease in levels of GR-Gas5 binding continued only in the females at GD18. Thus, nuclear GR signaling potential is decreased in prenatal arsenic-exposed males, while it is increased or maintained at levels approaching normal in prenatal arsenic-exposed females. These findings suggest that females, but not males, exposed to arsenic are able to regulate the levels of nuclear free GR by altering Gas5 levels, thereby keeping GR nuclear signaling closer to control (unexposed) levels.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexander Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Matthew Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
32
|
Bae S, Kamynina E, Farinola AF, Caudill MA, Stover PJ, Cassano PA, Berry R, Peña-Rosas JP. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [DOI: 10.1002/14651858.cd012649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sajin Bae
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Elena Kamynina
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Adetutu F Farinola
- University of Ibadan; Faculty of Public Health, Department of Human Nutrition and Dietetics; Seat of Wisdom Chapel Ibadan Oyo State Nigeria 200282
| | - Marie A Caudill
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patrick J Stover
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patricia A Cassano
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Robert Berry
- Independent cosultant; 1376 N Decatur Rd NE Atlanta Georgia USA 30306
| | - Juan Pablo Peña-Rosas
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; 20 Avenue Appia Geneva GE Switzerland 1211
| |
Collapse
|
33
|
Hsieh RL, Su CT, Shiue HS, Chen WJ, Huang SR, Lin YC, Lin MI, Mu SC, Chen RJ, Hsueh YM. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan. Toxicol Appl Pharmacol 2017; 321:37-47. [DOI: 10.1016/j.taap.2017.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/15/2022]
|
34
|
Association of blood heavy metals with developmental delays and health status in children. Sci Rep 2017; 7:43608. [PMID: 28252669 PMCID: PMC5333623 DOI: 10.1038/srep43608] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the association of blood lead, mercury, and cadmium concentrations with developmental delays and to explore the association of these concentrations with the health status of children. This study recruited 89 children with developmental delays and 89 age- and sex-matched children with typical development. Their health status was evaluated using the Pediatric Quality of Life (PedsQL) Inventory for health-related quality of life (HRQOL) and the Pediatric Outcomes Data Collection Instrument for function. Family function was also evaluated. Blood lead, mercury, and cadmium concentrations were measured using inductively coupled mass spectrometry. The children with developmental delays had a considerably poorer HRQOL, lower functional performance and family function, and a higher blood lead concentration than those with typical development. The blood lead concentration had a significantly positive association with developmental delays [odds ratio (OR) = 1.54, p < 0.01] in a dose-response manner, and it negatively correlated with PedsQL scores (regression coefficient: −0. 47 to −0.53, p < 0.05) in all the children studied. The higher blood cadmium concentration showed a significantly positive association with developmental delays (OR = 2.24, for >1.0 μg/L vs. <0.6 μg/L, p < 0.05). The blood mercury concentration was not associated with developmental delays and health status.
Collapse
|
35
|
Chiang IN, Huang CY, Pu YS, Chang CH, Muo CH, Chung CJ, Wang RY, Young TH. Association between ischaemic bowel syndromes and androgen deprivation therapy in patients with prostate cancer: a retrospective cohort study. BMJ Open 2017; 7:e012950. [PMID: 28246133 PMCID: PMC5337716 DOI: 10.1136/bmjopen-2016-012950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE This study investigated the risk of ischaemic bowel syndrome (IBS) in androgen deprivation therapy (ADT) users to explore the long-term outcomes of patients with prostate cancer (PC) receiving ADT treatment. METHODS We performed a population-based retrospective cohort study. All the clinical information of the study participants were acquired from the Longitudinal Health Insurance Database for Catastrophic Illness Patients in Taiwan. We extracted data for all the patients newly diagnosed with prostate malignancy (ICD-9-CM 185 or C61 in ICD-10-CM) from 2000 to 2008. The patients were then divided into two groups: 7160 male ADT cohort receiving ADT and 7160 male non-ADT comparison group frequency matched by age and index year of ADT treatment of the ADT group. Cox proportional hazard regression was used to estimate the adjusted HR and 95% CIs of the IBS risk. RESULTS No significant difference was noted in the overall incidence rate for IBS between the ADT and non-ADT cohorts (0.86 and 0.89 per 1000 person-year, respectively, p=0.89). Even after adjusting for potential risk factors, a 1.06-fold risk of IBS (95% CI 0.62 to 1.82, p=0.82) was observed in the ADT cohort relative to the non-ADT cohorts. Moreover, we stratified the ADT cohort by time point of ADT treatment after PC diagnosis. Different IBS incidence rates were observed among the early ADT, late-ADT and non-ADT users at 0.77, 1.23 and 0.89 per 1000 person-years, respectively; nonetheless, the difference was not statistically significant. Moreover, no difference was found between the ADT treatment types and IBS risk, including sole orchiectomy, sole luteinising-hormone-releasing hormone and both. CONCLUSIONS Results showed that ADT treatment in patients with PC is not an independent factor for IBS incidence. Large sample sizes for patients with IBS with patients with PC who had received ADT treatment are needed for further study.
Collapse
Affiliation(s)
- I-Ni Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
- Department of Medicine, College of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chih-Hsin Muo
- Department of Public Health, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Ruey-Yun Wang
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:443-455. [PMID: 28229170 DOI: 10.1007/s00210-017-1351-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
Abstract
Population of India and Bangladesh and many other parts of the world are badly exposed to arsenic through drinking water. Due to non-availability of safe drinking water, they are dependent on arsenic-contaminated water. Generally, poverty level is high in those areas with lack of proper nutrition. Arsenic is considered to be an environmental contaminant and widely distributed in the environment due to its natural existence and anthropogenic applications. Contamination of arsenic in both human and animal could occur through air, soil, and other sources. Arsenic exposure mainly occurs in food materials through drinking water with high levels of arsenic in it. High levels of arsenic in groundwater have been found to be associated with various health-related problems including arsenicosis, skin lesions, cardiovascular diseases, reproductive problems, psychological, neurological, immunotoxic, and carcinogenesis. The mechanism of arsenic toxicity consists in its transformation in metaarsenite, which acylates protein sulfhydryl groups, affect on mitochondria by inhibiting succinic dehydrogenase activity and can uncouple oxidative phosphorylation with production of active oxygen species by tissues. A variety of dietary antioxidant supplements are useful to protect the carcinogenetic effects of arsenic. They play crucial role for counteracting oxidative damage and protect carcinogenesis by chelating with heavy metal moiety. Phytochemicals and chelating agents will be beneficial for combating heavy metal-induced carcinogenesis through its biopharmaceutical properties.
Collapse
|
37
|
Hsueh YM, Chen WJ, Lee CY, Chien SN, Shiue HS, Huang SR, Lin MI, Mu SC, Hsieh RL. Association of Arsenic Methylation Capacity with Developmental Delays and Health Status in Children: A Prospective Case-Control Trial. Sci Rep 2016; 6:37287. [PMID: 27853293 PMCID: PMC5112508 DOI: 10.1038/srep37287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
This case–control study identified the association between the arsenic methylation capacity and developmental delays and explored the association of this capacity with the health status of children. We recruited 120 children with developmental delays and 120 age- and sex-matched children without developmental delays. The health status of the children was assessed using the Pediatric Quality of Life Inventory (PedsQL) and Pediatric Outcomes Data Collection Instrument (PODCI). The arsenic methylation capacity was determined by the percentages of inorganic arsenic (InAs%), monomethylarsonic acid (MMAV%), and dimethylarsinic acid (DMAV%) through liquid chromatography and hydride generation atomic absorption spectrometry. Developmental delays were significantly positively associated with the total urinary arsenic concentration, InAs%, and MMAV%, and was significantly negatively associated with DMAV% in a dose-dependent manner. MMAV% was negatively associated with the health-related quality of life (HRQOL; −1.19 to −1.46, P < 0.01) and functional performance (−0.82 to −1.14, P < 0.01), whereas DMAV% was positively associated with HRQOL (0.33–0.35, P < 0.05) and functional performance (0.21–0.39, P < 0.01–0.05) in all children and in those with developmental delays. The arsenic methylation capacity is dose-dependently associated with developmental delays and with the health status of children, particularly those with developmental delays.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ying Lee
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ssu-Ning Chien
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shiau-Rung Huang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Bommarito PA, Fry RC. Developmental Windows of Susceptibility to Inorganic Arsenic: A Survey of Current Toxicologic and Epidemiologic Data. Toxicol Res (Camb) 2016; 5:1503-1511. [PMID: 29354260 PMCID: PMC5771659 DOI: 10.1039/c6tx00234j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/15/2016] [Indexed: 01/15/2023] Open
Abstract
Globally, millions of people are exposed to elevated levels of inorganic arsenic (iAs) via drinking water. Exposure to iAs is associated with a wide range of negative health outcomes, including cancers, skin lesions, neurological impairment, cardiovascular diseases, and an increased susceptibility to infection. Among those exposed to iAs, the developing fetus and young children represent particularly sensitive subpopulations. Specifically, it has been noted in animal models and human populations that prenatal and early life iAs exposures are associated with diseases occurring during childhood and later in life. Recent epidemiologic and toxicologic studies have also demonstrated that epigenetic alterations may play a key mechanistic role underlying many of the iAs-associated health outcomes, including the carcinogenic and immunologic effects of exposure. This review summarizes some of the key studies related to prenatal and early life iAs exposure and highlights the complexities in isolating the precise developmental windows of exposure associated with these health outcomes.
Collapse
Affiliation(s)
- P. A. Bommarito
- Department of Environmental Sciences and Engineering
, Gillings School of Global Public Health
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
.
| | - R. C. Fry
- Department of Environmental Sciences and Engineering
, Gillings School of Global Public Health
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
.
- Curriculum in Toxicology
, School of Medicine
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
| |
Collapse
|
39
|
Xu C, Tang M, Zhu S, Naranmandura H, Liu W. Assessment of arsenic in colostrum and cord serum and risk exposure to neonates from an island population in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22467-22476. [PMID: 27549238 DOI: 10.1007/s11356-016-7265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) has been proven to be highly toxic to humans, but limited attention has focused on exposure levels and potential risks to mother-neonate pairs of coastal populations. This study was conducted by examining the As concentration in colostrum and umbilical cord serum collected from 106 mother-neonate pairs living on Shengsi Island, facing the Yangtze River estuary and Hangzhou Bay in China. Average concentrations of total As in colostrum and cord serum were 18.51 ± 7.00 and 19.83 ± 10.50 μg L-1. One-way ANOVA analysis showed delivered ages and source of drinking water played significant roles in influencing the maternal exposure patterns. Correlation analysis indicated a significantly positive association between As concentrations in colostrum and cord serum. Multivariable linear regression models adjusted for other confounders clarified the dose-response relationship with a coefficient value of 0.23 and a 95 % confidence interval of (0.006, 0.492); p < 0.05. The calculated daily intake of total As for neonates through breastfeeding was in the range from 0.413 to 3.65 μg kg-1 body weight, and colostrum As, especially the most toxic species, inorganic arsenic (iAs), would pose a risk to neonates.
Collapse
Affiliation(s)
- Chenye Xu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengling Tang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Siyu Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Torres-Sánchez L, López-Carrillo L, Rosado JL, Rodriguez VM, Vera-Aguilar E, Kordas K, García-Vargas GG, Cebrian ME. Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children. ENVIRONMENTAL RESEARCH 2016; 151:38-43. [PMID: 27450997 DOI: 10.1016/j.envres.2016.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Chronic arsenic (As) exposure decreases adult and children's ability to methylate inorganic As (iAs); however, few studies have examined children's sex differences. We measured urinary concentrations of iAs, monomethylarsonic (MMA), and dimethylarsinic (DMA) acids, and calculated the primary (PMI: MMA/iAs) and secondary (SMI: DMA/MMA) methylation capacity indexes in 591 children 6-8 years in Torreón, Mexico. We determined iAs, MMA, and DMA by hydride generation cryotrapping AAS. Lineal regression models estimated associations between methylation capacity and total As (TAs) or iAs. Interactions with sex were tested at p<0.10. Boys had significantly higher TAs levels, (58.4µg/L) than girls (46.2µg/L). We observed negative associations between TAs and PMI (β=-0.039; p<0.18) and SMI (β=-0.08; p=0.002) with significant sex differences; PMI reduction was significant in boys (β=-0.09; p=0.02) but not in girls (β=0.021; p=0.63), p for interaction=0.06. In contrast, SMI reduction was significantly more pronounced in girls. Furthermore, negative associations PMI (β=-0.19; p<0.001) and SMI (β=-0.35; p<0.001) were a function of urinary iAs levels, independently of TAs; however, the reduction in PMI was more pronounced in boys (β=-0.24; p<0.001; girls β=-0.15; p<0.001), p for interaction=0.04. A significant negative association was observed between SMI and iAs levels without significant sex differences. TAs and iAs associations with metabolite percentages were in good agreement with those observed with methylation indexes. Our results suggest that iAs plays an important role in reducing As methylation ability and that significant sex differences are present in As metabolism. These differences merit further investigation to confirm our findings and their potential implications for arsenic toxicity in children.
Collapse
Affiliation(s)
| | | | - Jorge L Rosado
- Escuela de Ciencias Naturales, Universidad Autónoma del Estado de Querétaro, Querétaro, Mexico
| | - Valentina M Rodriguez
- International Exchange Program for Minority Students, Mount Sinai School of Medicine, New York, NY, USA
| | - Eunice Vera-Aguilar
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Katarzyna Kordas
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Mariano E Cebrian
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
41
|
Kordas K, Queirolo EI, Mañay N, Peregalli F, Hsiao PY, Lu Y, Vahter M. Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children. ENVIRONMENTAL RESEARCH 2016; 147:16-23. [PMID: 26828624 PMCID: PMC4821778 DOI: 10.1016/j.envres.2016.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 05/18/2023]
Abstract
Arsenic exposure in children is a public health concern but is understudied in relation to the predictors, and effects of low-level exposure. We examined the extent and dietary predictors of exposure to inorganic arsenic in 5-8 year old children from Montevideo, Uruguay. Children were recruited at school; 357 were enrolled, 328 collected morning urine samples, and 317 had two 24-h dietary recalls. Urinary arsenic metabolites, i.e. inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA), were measured using high-performance liquid chromatography with hydride generation and inductively coupled plasma mass spectrometry (HPLC-HG-ICP-MS), and the sum concentration (U-As) used for exposure assessment. Proportions of arsenic metabolites (%iAs, %MMA and %DMA) in urine were modelled in OLS regressions as functions of food groups, dietary patterns, nutrient intake, and nutritional status. Exposure to arsenic was low (median U-As: 9.9µg/L) and household water (water As: median 0.45µg/L) was not a major contributor to exposure. Children with higher consumption of rice had higher U-As but lower %iAs, %MMA, and higher %DMA. Children with higher meat consumption had lower %iAs and higher %DMA. Higher scores on "nutrient dense" dietary pattern were related to lower %iAs and %MMA, and higher %DMA. Higher intake of dietary folate was associated with lower %MMA and higher %DMA. Overweight children had lower %MMA and higher %DMA than normal-weight children. In summary, rice was an important predictor of exposure to inorganic arsenic and DMA. Higher meat and folate consumption, diet rich in green leafy and red-orange vegetables and eggs, and higher BMI contributed to higher arsenic methylation capacity.
Collapse
Affiliation(s)
- Katarzyna Kordas
- School of Social and Community Medicine, University of Bristol, Bristol, UK; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Pao Ying Hsiao
- Department of Food and Nutrition, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Ying Lu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Wei B, Yu J, Li H, Yang L, Xia Y, Wu K, Gao J, Guo Z, Cui N. Arsenic Metabolites and Methylation Capacity Among Individuals Living in a Rural Area with Endemic Arseniasis in Inner Mongolia, China. Biol Trace Elem Res 2016; 170:300-8. [PMID: 26335574 DOI: 10.1007/s12011-015-0490-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022]
Abstract
More than 0.3 million individuals are subject to chronic exposure to arsenic via their drinking water in Inner Mongolia, China. To determine arsenic methylation capacity profiles for such individuals, concentrations of urinary arsenic metabolites were measured for 548 subjects using high-performance liquid chromatography and a hydride generator combined with inductively coupled plasma-mass spectrometry. Mean urinary concentrations of dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenic (iAs), and total arsenic (TAs) were 200.50, 46.71, 52.96, and 300.17 μg/L, respectively. The %iAs, %DMA, and %MMA were 15.98, 69.72, and 14.29%. Mean urinary %iAs and %MMA were higher in males, while urinary %DMA was higher in females. There was a strong positive correlation between %iAs and %MMA, with negative correlations between %iAs and %DMA, and %iAs and %MMA. In addition, %iAs and %MMA were positively associated with total arsenic in drinking water (WAs), while %DMA was negatively related with WAs. Regression analysis indicated that the primary methylation index (PMI) and secondary methylation index (SMI) generally decreased with increasing WAs. Females had a higher arsenic methylation capacity compared to males. Younger subjects had lower primary arsenic methylation capacity. However, the secondary arsenic methylation capacity was hardly affected by age. Moreover, both primary and secondary arsenic methylation capacities were negatively related to WAs.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
| | - Yajuan Xia
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| | - Kegong Wu
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| | - Jianwei Gao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Zhiwei Guo
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| | - Na Cui
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| |
Collapse
|
43
|
Subchronic Exposure to Arsenic Represses the TH/TRβ1-CaMK IV Signaling Pathway in Mouse Cerebellum. Int J Mol Sci 2016; 17:ijms17020157. [PMID: 26821021 PMCID: PMC4783891 DOI: 10.3390/ijms17020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
We previously reported that arsenic (As) impaired learning and memory by down-regulating calmodulin-dependent protein kinase IV (CaMK IV) in mouse cerebellum. It has been documented that the thyroid hormone receptor (TR)/retinoid X receptor (RXR) heterodimer and thyroid hormone (TH) may be involved in the regulation of CaMK IV. To investigate whether As affects the TR/RXR heterodimer and TH, we determined As concentration in serum and cerebellum, 3,5,3'-triiodothyronine (T3) and thyroxin (T4) levels in serum, and expression of CaMK IV, TR and RXR in cerebellum of mice exposed to As. Cognition function was examined by the step-down passive avoidance task and Morris water maze (MWM) tests. Morphology of the cerebellum was observed by Hematoxylin-Eosin staining under light microscope. Our results showed that the concentrations of As in the serum and cerebellum of mice both increased with increasing As-exposure level. A significant positive correlation was found between the two processes. Adeficit in learning and memory was found in the exposed mice. Abnormal morphologic changes of Purkinje cells were observed in cerebellum of the exposed mice. Moreover, the cerebellar expressions of CaMK IV protein and the TRβ gene, and TRβ1 protein were significantly lower in As-exposed mice than those in controls. Subchronic exposure to As appears to increase its level in serum and cerebella of mice, impairing learning and memory and down-regulating expression of TRβ1 as well as down-stream CaMK IV. It is also suggested that the increased As may be responsible for down-regulation of TRβ1 and CaMK IV in cerebellum and that the down-regulated TRβ1 may be involved in As-induced impairment of learning and memory via inhibiting CaMK IV and its down-stream pathway.
Collapse
|
44
|
Low-level arsenic exposure and developmental neurotoxicity in children: A systematic review and risk assessment. Toxicology 2015; 337:91-107. [PMID: 26388044 DOI: 10.1016/j.tox.2015.09.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/06/2015] [Accepted: 09/12/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Risk assessments of arsenic have focused on skin, bladder, and lung cancers and skin lesions as the sensitive cancer and non-cancer health endpoints, respectively; however, an increasing number of epidemiologic studies that can inform risk assessment have examined neurodevelopmental effects in children. We conducted a systematic review and risk assessment based on the epidemiologic literature on possible neurodevelopmental effects at lower arsenic exposures. Twenty-four cross-sectional, case-control, and cohort studies were identified that report on the association between low-level arsenic exposure (i.e., largely <100 μg/L of arsenic in drinking water) and neurological outcomes in children. Although the overall evidence does not consistently show a causal dose-response relationship at low doses, the most rigorously conducted studies from Bangladesh indicate possible inverse associations with cognitive function, predominantly involving concurrent arsenic exposure as measured by biomarkers (i.e., arsenic in urine or blood) and raw verbal test scores at ages 5-11 years. Issues such as non-comparability of outcome measures across studies; inaccuracies of biomarkers and other measures of inorganic arsenic exposure; potential effect modification by cultural practices; insufficient adjustment for nutritional deficiencies, maternal IQ, and other important confounders; and presence of other neurotoxicants in foreign populations limit generalizability to U.S. POPULATIONS Of the few U.S. studies available, the most rigorously conducted study did not find a consistent dose-response relationship between arsenic concentrations in tap water or toenails and decrements in IQ scores. Assuming that the strongest dose-response relationship from the most rigorous evidence from Bangladesh is generalizable to U.S. populations, possible reference doses were estimated in the range of 0.0004-0.001 mg/kg-day. These doses are higher than the U.S. Environmental Protection Agency reference dose for chronic lifetime exposure, thus indicating protectiveness of the existing value for potential neurotoxicity in children. This reference dose is undergoing revision as EPA considers various health endpoints in the reassessment of inorganic arsenic health risks.
Collapse
|
45
|
A potential synergy between incomplete arsenic methylation capacity and demographic characteristics on the risk of hypertension: findings from a cross-sectional study in an arsenic-endemic area of inner Mongolia, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:3615-32. [PMID: 25837203 PMCID: PMC4410206 DOI: 10.3390/ijerph120403615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022]
Abstract
Inefficient arsenic methylation capacity has been associated with various health hazards induced by arsenic. In this study, we aimed to explore the interaction effect of lower arsenic methylation capacity with demographic characteristics on hypertension risk. A total of 512 adult participants (126 hypertension subjects and 386 non-hypertension subjects) residing in an arsenic-endemic area in Inner Mongolia, China were included. Urinary levels of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were measured for all subjects. The percentage of urinary arsenic metabolites (iAs%, MMA%, and DMA%), primary methylation index (PMI) and secondary methylation index (SMI) were calculated to assess arsenic methylation capacity of individuals. Results showed that participants carrying a lower methylation capacity, which is characterized by lower DMA% and SMI, have a higher risk of hypertension compared to their corresponding references after adjusting for multiple confounders. A potential synergy between poor arsenic methylation capacity (higher MMA%, lower DMA% and SMI) and older age or higher BMI were detected. The joint effects of higher MMA% and lower SMI with cigarette smoking also suggest some evidence of synergism. The findings of present study indicated that inefficient arsenic methylation capacity was associated with hypertension and the effect might be enhanced by certain demographic factors.
Collapse
|