1
|
Ariyani M, Jansen LJM, Balzer-Rutgers P, Hofstra N, van Oel P, van de Schans MGM. Antibiotic residues in the cirata reservoir, Indonesia and their effect on ecology and the selection for antibiotic-resistant bacteria. ENVIRONMENTAL RESEARCH 2024; 262:119992. [PMID: 39276829 DOI: 10.1016/j.envres.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Antibiotic residues, their mixture toxicity, and the potential selection for antibiotic-resistant bacteria could pose a problem for water use and the ecosystem of reservoirs. This study aims to provide a comprehensive understanding of the occurrence, concentration, distribution, and ecological risks associated with various antibiotics in the Cirata reservoir, Indonesia. In our water and sediment samples, we detected 24 out of the 65 antibiotic residues analyzed, revealing a diverse range of antibiotic classes present. Notably, sulphonamides, diaminopyrimidine, and lincosamides were frequently found in the water, while the sediment predominantly contained tetracyclines and fluoroquinolones. Most antibiotic classes reached their highest concentrations in the water during the dry season. However, fluoroquinolones and tetracyclines showed their highest concentrations in the water during the wet season. Ecotoxicological risk assessments indicated that the impact of most antibiotic residues on aquatic organisms was negligible, except for fluoroquinolones. Looking at the impact on cyanobacteria, however, varying risks were indicated, ranging from medium to critical, with antibiotics like sulfamethoxazole, ciprofloxacin, norfloxacin, and lincomycin posing substantial threats. Among these, ciprofloxacin emerged as the antibiotic with the strongest risk. Furthermore, fluoroquinolones may have the potential to contribute to the selection of antibiotic-resistant bacteria. The presence of mixtures of antibiotic residues during the wet season significantly impacted species loss, with Potentially Affected Fraction of Species (msPAF) values exceeding 0.75 in almost 90% of locations. However, the impact of mixtures of antibiotic residues in sediment remained consistently low across all locations and seasons. Based on their occurrences and associated risks, 12 priority antibiotic residues were identified for monitoring in the reservoir and its tributaries. Moreover, the study suggests that river inflow serves as the most significant source of antibiotic residues in the reservoir. Further investigations into the relative share attribution of antibiotic sources in the reservoir is recommended to help identify effective interventions.
Collapse
Affiliation(s)
- Miranti Ariyani
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands; National Research and Innovation Agency of Indonesia, Research Centre for Environment & Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia.
| | - Larissa J M Jansen
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Paula Balzer-Rutgers
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Nynke Hofstra
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Pieter van Oel
- Water Resources Management Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Milou G M van de Schans
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| |
Collapse
|
2
|
Zhang XY, Liu TS, Hu JY. Antibiotics removal and antimicrobial resistance control by ozone/peroxymonosulfate-biological activated carbon: A novel treatment process. WATER RESEARCH 2024; 261:122069. [PMID: 39003878 DOI: 10.1016/j.watres.2024.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Biological activated carbon (BAC) is one of the important treatment processes in wastewater and advanced water treatment. However, the BAC process has been reported to have antimicrobial resistance (AMR) risks. In this study, a new BAC-related treatment process was developed to reduce AMR caused by BAC treatment: ozone/peroxymonosulfate-BAC (O3/PMS-BAC). The O3/PMS-BAC showed better treatment performance on the targeted five antibiotics and dissolved organic matter removal than O3-BAC and BAC treatments. The O3/PMS-BAC process had better control over the AMR than the O3-BAC and BAC processes. Specifically, the amount of targeted antibiotic-resistant bacteria in the effluent and biofilm of O3/PMS-BAC was only 0.01-0.03 and 0.11-0.26 times that of the BAC process, respectively. Additionally, the O3/PMS-BAC process removed 1.76 %-62.83 % and 38.14 %-99.27 % more of the targeted ARGs in the effluent and biofilm than the BAC process. The total relative abundance of the targeted 12 ARGs in the O3/PMS-BAC effluent was decreased by 86 % compared to the effluent after BAC treatment. In addition, Proteobacteria and Bacteroidetes were probably the main hosts for transmitting ARGs in this study, and their relative abundance decreased by 9.6 % and 6.0 % in the effluent of the O3/PMS-BAC treatment compared to that in BAC treatment. The relationship analysis revealed that controlling antibiotic discharge was crucial for managing AMR, as antibiotics were closely related to both ARGs and bacteria associated with their emergence. The results showed that the newly developed treatment process could reduce AMR caused by BAC treatment while ensuring effluent quality. Therefore, O3/PMS-BAC is a promising alternative to BAC treatment for future applications.
Collapse
Affiliation(s)
- Xin Yang Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Tai Shan Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiang Yong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
3
|
González-Machado C, Alonso-Calleja C, Capita R. Methicillin-Resistant Staphylococcus aureus (MRSA) in Different Food Groups and Drinking Water. Foods 2024; 13:2686. [PMID: 39272452 PMCID: PMC11394615 DOI: 10.3390/foods13172686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been included by the World Health Organization in its list of "priority pathogens" because of its widespread prevalence and the severity of the infections it causes. The role of food in infections caused by MRSA is unknown, although strains of this microorganism have been detected in various items for human consumption. In order to gain an overview of any possible role of food in MRSA infections, a review was undertaken of studies published between January 2001 and February 2024 relating to MRSA. These comprised research that focused on fish and shellfish, eggs and egg products, foods of vegetable origin, other foodstuffs (e.g., honey or edible insects), and drinking water. In most of these investigations, no prior enrichment was carried out when isolating strains. Three principal methods were used to confirm the presence of MRSA, namely amplification of the mecA gene by PCR, amplification of the mecA and the mecC genes by PCR, and disc diffusion techniques testing susceptibility to cefoxitin (30 μg) and oxacillin (1 μg). The great diversity of methods used for the determination of MRSA in foods and water makes comparison between these research works difficult. The prevalence of MRSA varied according to the food type considered, ranging between 0.0% and 100% (average 11.7 ± 20.3%) for fish and shellfish samples, between 0.0% and 11.0% (average 1.2 ± 3.5%) for egg and egg products, between 0.0% and 20.8% (average 2.5 ± 6.8%) for foods of vegetable origin, between 0.6% and 29.5% (average 28.2 ± 30.3%) for other foodstuffs, and between 0.0% and 36.7% (average 17.0 ± 14.0%) for drinking water.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
4
|
Alfian SD, Rendrayani F, Khoiry QA, Pratama MA, Griselda M, Pradipta IS, Nursiswati N, Abdulah R. Do pharmacists counsel customers on the disposal of unused or expired household medications? A national survey among 1,596 pharmacists in Indonesia. Saudi Pharm J 2024; 32:102020. [PMID: 38525264 PMCID: PMC10960135 DOI: 10.1016/j.jsps.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Pharmacists play a vital role in counseling customers on proper medication disposal, yet their consistency in providing such information is often lacking. This study aimed to assess pharmacists' awareness of appropriate disposal practices for unused and expired household medications. Additional objectives included evaluating whether pharmacists offer disposal information during counseling, measuring their willingness to receive medication waste from the public, and identifying associated factors. Methods A national cross-sectional online survey employing convenience sampling was conducted among pharmacists working in hospitals, pharmacies, clinics, or community health centers (CHCs) in Indonesia, using a validated questionnaire to assess awareness, information provision, and willingness to receive medications for disposal. Binary logistic regression, with 95% confidence intervals (CI) and odds ratios (OR), explored potential associations between factors and outcomes. Results This study involved 1,596 pharmacists across 37 Indonesian provinces. Most pharmacists were women (80.4 %), aged 31-40 years (49.3 %), with a pharmacist professional background (93.8 %), working in CHCs (41.2 %), and practicing for 1-5 years (51.0 %). More than half were unaware of guidelines for returning medications to health facilities. While 69.9 % never counseled customers on disposal practices, 64.9 % expressed willingness to receive unused and expired medication from the public. Pharmacists practicing for at least six years were more likely to provide disposal information during counseling (OR: 2.54; 95 % CI: 1.44-4.47). Conversely, those in clinics (OR: 2.16; 95 % CI: 1.29-3.62), CHCs (OR: 2.07; 95 % CI: 1.45-2.95), or hospitals (OR: 2.00; 95 % CI: 1.27-3.14) were more likely to be unwilling to receive expired and unused household medication. Conclusions The study reveals that most pharmacists, particularly those with limited practice duration, lacked awareness regarding the importance of proper medication disposal and did not provide counseling on appropriate medication disposal to patients. To address this issue, there is a pressing need for intensified education intensified education at the undergraduate level, continuous training for pharmacists, and a clear policy and practical guidelines, particularly targeting pharmacists in clinics, CHCs, and hospitals, to facilitate the acceptance of unused and expired household medications.
Collapse
Affiliation(s)
- Sofa D. Alfian
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Center for Health Technology Assessment, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Farida Rendrayani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Qisty A. Khoiry
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mochammad A.A. Pratama
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Meliana Griselda
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ivan Surya Pradipta
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | | | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
5
|
Madhogaria B, Banerjee S, Kundu A, Dhak P. Efficacy of new generation biosorbents for the sustainable treatment of antibiotic residues and antibiotic resistance genes from polluted waste effluent. INFECTIOUS MEDICINE 2024; 3:100092. [PMID: 38586544 PMCID: PMC10998275 DOI: 10.1016/j.imj.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Sangeeta Banerjee
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
6
|
Vargas-Villalobos S, Hernández F, Fabregat-Safont D, Salas-González D, Quesada-Alvarado F, Botero-Coy AM, Esperón F, Martín-Maldonado B, Monrós-Gonzalez J, Ruepert C, Estrada-König S, Rivera-Castillo J, Chaverri-Fonseca F, Blanco-Peña K. A case study on pharmaceutical residues and antimicrobial resistance genes in Costa Rican rivers: A possible route of contamination for feline and other species. ENVIRONMENTAL RESEARCH 2024; 242:117665. [PMID: 37993051 DOI: 10.1016/j.envres.2023.117665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
In this investigation, the presence of antibiotics and pharmaceuticals in Costa Rican surface waters, specifically in regions near feline habitats, was examined. The study revealed that 47% of the water samples contained detectable traces of at least one antibiotic. Ciprofloxacin and norfloxacin were the most frequently detected compounds, each with a detection rate of 27%. Other antibiotics, such as erythromycin, roxithromycin, and trimethoprim, were also found but at lower frequencies, around 14%. Notably, all antibiotic concentrations remained below 10 ng/L, with ciprofloxacin, norfloxacin, and erythromycin showing the highest concentrations. Furthermore, the investigation revealed the presence of non-antibiotic pharmaceutical residues in the water samples, typically at concentrations below 64 ng/L. Tramadol was the most frequently detected compound, present in 18% of the samples. The highest concentrations were observed for acetaminophen and tramadol, measuring 64 and 10 ng/L, respectively. Comparing these findings with studies conducted in treated wastewater and urban rivers, it became evident that the concentrations of antibiotics and pharmaceuticals were notably lower in this study. While previous research reported higher values, the limited number of studies conducted in protected areas raises concerns about the potential environmental impact on biodiversity. In summary, these results emphasize the importance of monitoring pharmaceutical residues and antimicrobial resistance genes ARGs in vulnerable ecosystems, especially those in close proximity to feline habitats in Costa Rica. Additionally, the study delved into the detection of (ARGs). All tested water samples were positive for at least one ARG, with the blaTEM gene being the most prevalent at 82%, followed by tetS at 64% and qnrB at 23%. Moreover, this research shed light on the complexity of evaluating ARGs in environmental samples, as their presence does not necessarily indicate their expression. It also highlighted the potential for co-selection and co-regulation of ARGs, showcasing the intricate behaviors of these genes in aquatic environments.
Collapse
Affiliation(s)
- Seiling Vargas-Villalobos
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica; Doctoral Program in Pollution, Toxicology and Environmental Health Universitat de València, España Av. Blasco Ibáñez, 13.46010, Valencia, Spain.
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat S/n, 12071, Castelló, Spain
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat S/n, 12071, Castelló, Spain; Applied Metabolomics Research Laboratory, IMIM-Hospital Del Mar Medical Research Institute, 88 Doctor Aiguader, 08003, Barcelona, Spain
| | - Denis Salas-González
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Francisco Quesada-Alvarado
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Ana Maria Botero-Coy
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat S/n, 12071, Castelló, Spain
| | - Fernando Esperón
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - Bárbara Martín-Maldonado
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - Juan Monrós-Gonzalez
- Institut "Cavanilles" de Biodiversitat I Biologia Evolutiva Universitat de València, Spain
| | - Clemens Ruepert
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Sandra Estrada-König
- Universidad Nacional. Escuela de Medicina Veterinaria, 86-3000, Heredia, Costa Rica
| | | | - Fabio Chaverri-Fonseca
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| | - Kinndle Blanco-Peña
- Universidad Nacional, Instituto Regional de Estudios en Sustancias Tóxicas, (IRET), 86-3000, Heredia, Costa Rica
| |
Collapse
|
7
|
Carlsen L, Grottker M, Heim M, Knobling B, Schlauß S, Wellbrock K, Knobloch JK. High Genetic Diversity in Third-Generation Cephalosporin-Resistant Escherichia coli in Wastewater Systems of Schleswig-Holstein. Pathogens 2024; 13:90. [PMID: 38276163 PMCID: PMC10820474 DOI: 10.3390/pathogens13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The spread of multidrug-resistant bacteria from humans or livestock is a critical issue. However, the epidemiology of resistant pathogens across wastewater pathways is poorly understood. Therefore, we performed a detailed comparison of third-generation cephalosporin-resistant Escherichia coli (3GCREC) from wastewater treatment plants (WWTPs) to analyze dissemination pathways. A total of 172 3GCREC isolated from four WWTPs were characterized via whole genome sequencing. Clonal relatedness was determined using multi-locus sequence typing (MLST) and core genome MLST. Resistance genotypes and plasmid replicons were determined. A total of 68 MLST sequence types were observed with 28 closely related clusters. Resistance genes to eight antibiotic classes were detected. In fluoroquinolone-resistant isolates, resistance was associated with three-or-more point mutations in target genes. Typing revealed high genetic diversity with only a few clonal lineages present in all WWTPs. The distribution paths of individual lines could only be traced in exceptional cases with a lack of enrichment of certain lineages. Varying resistance genes and plasmids, as well as fluoroquinolone resistance-associated point mutations in individual isolates, further corroborated the high diversity of 3GCREC in WWTPs. In total, we observed high diversity of 3GCREC inside the tested WWTPs with proof of resistant strains being released into the environment even after treatment processes.
Collapse
Affiliation(s)
- Laura Carlsen
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Matthias Grottker
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Malika Heim
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Birte Knobling
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Sebastian Schlauß
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Kai Wellbrock
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Johannes K. Knobloch
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| |
Collapse
|
8
|
Siri Y, Bumyut A, Precha N, Sirikanchana K, Haramoto E, Makkaew P. Multidrug antibiotic resistance in hospital wastewater as a reflection of antibiotic prescription and infection cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168453. [PMID: 37956835 DOI: 10.1016/j.scitotenv.2023.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Antimicrobial resistance (AMR) is an escalating issue that can render illnesses more difficult to treat if effective antibiotics become resistant. Many studies have explored antibiotic resistance in bacteria (ARB) in wastewater, comparing results with clinical data to ascertain the public health risk. However, few investigations have linked the prevalence of ARB in hospital wastewater (HWW) with these outcomes. This study aimed to bridge this gap by assessing the prevalence of ARB in HWW and its receiving waters. Among the 144 isolates examined, 24 were obtained from each of the six sites (untreated wastewater, aeration tank, sedimentation tank, effluent after disinfection, upstream canal, and downstream canal). A significant portion (87.5 %) belonged to the Enterobacteriaceae family, with Klebsiella pneumoniae as the predominant species (47.9 %). The antimicrobial sensitivity testing (AST) showed that 57.6 % of the isolates were resistant to amoxicillin/clavulanic acid (AMX), the most prevalent antibiotic used within the studied hospital. The total resistance rate before and after treatment was 27.7 % and 28.0 %, respectively, with an overall multi-drug resistance (MDR) rate of 33.3 %. The multiple antibiotic resistance index (MARI) range varied between 0.0 and 0.9. The outpatient ward's three-day mean bacterial infection cases showed a significant association (Spearman's rho = 0.98) with the MARI in the sedimentation tank. Moreover, a strong correlation (Spearman's rho = 0.88) was found between hospital effluent's MARI and the seven-day mean inpatient ward case. These findings indicate that applying wastewater-based epidemiology (WBE) to hospital wastewater could provide valuable insights into understanding ARB contamination across human domains and water cycles. Future studies, including more comprehensive collection data on symptomatic patients and asymptomatic carriers, will be crucial in fully unravelling the complexities between human health and environmental impacts related to AMR.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apirak Bumyut
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
9
|
Daly M, Powell J, O'Connell NH, Murphy L, Dunne CP. Antimicrobial Resistance Is Prevalent in E. coli and Other Enterobacterales Isolated from Public and Private Drinking Water Supplies in the Republic of Ireland. Microorganisms 2023; 11:1224. [PMID: 37317198 DOI: 10.3390/microorganisms11051224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
High levels of bacterial antimicrobial resistance (AMR) have been reported in many environmental studies conducted in Ireland and elsewhere. The inappropriate use of antibiotics in both human and animal healthcare as well as concentrations of residual antibiotics being released into the environment from wastewaters are thought to be contributing factors. Few reports of AMR in drinking water-associated microbes are available for Ireland or internationally. We analysed 201 enterobacterales from group water schemes and public and private water supplies, only the latter having been surveyed in Ireland previously. The organisms were identified using conventional or molecular techniques. Antimicrobial susceptibility testing for a range of antibiotics was performed using the ARIS 2X interpreted in accordance with EUCAST guidelines. A total of 53 Escherichia coli isolates, 37 Serratia species, 32 Enterobacter species and enterobacterales from seven other genera were identified. A total of 55% of isolates were amoxicillin resistant, and 22% were amoxicillin-clavulanic acid resistant. A lower level of resistance (<10%) was observed to aztreonam, chloramphenicol, ciprofloxacin, gentamicin, ceftriaxone and trimethoprim-sulfamethoxazole. No resistance to amikacin, piperacillin/tazobactam, ertapenem or meropenem was detected. The level of AMR detected in this study was low but not insignificant and justifies ongoing surveillance of drinking water as a potential source of antimicrobial resistance.
Collapse
Affiliation(s)
- Maureen Daly
- Department of Clinical Microbiology, University Hospital Limerick, V94 F858 Limerick, Ireland
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, UK
| | - James Powell
- Department of Clinical Microbiology, University Hospital Limerick, V94 F858 Limerick, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i), School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Nuala H O'Connell
- Department of Clinical Microbiology, University Hospital Limerick, V94 F858 Limerick, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i), School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Liz Murphy
- Public Health Laboratory, Raheen Business Park, V94 H9YE Limerick, Ireland
| | - Colum P Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i), School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
10
|
Sharma E, Sivakumar M, Kelso C, Zhang S, Shi J, Gao J, Gao S, Zhou X, Jiang G. Effects of sewer biofilms on the degradability of carbapenems in wastewater using laboratory scale bioreactors. WATER RESEARCH 2023; 233:119796. [PMID: 36863281 DOI: 10.1016/j.watres.2023.119796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbapenems are last-resort antibiotics used to treat bacterial infections unsuccessfully treated by most common categories of antibiotics in humans. Most of their dosage is secreted unchanged as waste, thereby making its way into the urban water system. There are two major knowledge gaps addressed in this study to gain a better understanding of the effects of their residual concentrations on the environment and environmental microbiome: development of a UHPLC-MS/MS method of detection and quantification from raw domestic wastewater via direct injection and study of their stability in sewer environment during the transportation from domestic sewers to wastewater treatment plants. The UHPLC-MS/MS method was developed for four carbapenems: meropenem, doripenem, biapenem and ertapenem, and validation was performed in the range of 0.5-10 μg/L for all analytes, with limit of detection (LOD) and limit of quantification (LOQ) values ranging from 0.2-0.5 μg/L and 0.8-1.6 μg/L respectively. Laboratory scale rising main (RM) and gravity sewer (GS) bioreactors were employed to culture mature biofilms with real wastewater as the feed. Batch tests were conducted in RM and GS sewer bioreactors fed with carbapenem-spiked wastewater to evaluate the stability of carbapenems and compared against those in a control reactor (CTL) without sewer biofilms, over a duration of 12 h. Significantly higher degradation was observed for all carbapenems in RM and GS reactors (60 - 80%) as opposed to CTL reactor (5 - 15%), which indicates that sewer biofilms play a significant role in the degradation. First order kinetics model was applied to the concentration data along with Friedman's test and Dunn's multiple comparisons analysis to establish degradation patterns and differences in the degradation observed in sewer reactors. As per Friedman's test, there was a statistically significant difference in the degradation of carbapenems observed depending on the reactor type (p = 0.0017 - 0.0289). The results from Dunn's test indicate that the degradation in the CTL reactor was statistically different from that observed in either RM (p = 0.0033 - 0.1088) or GS (p = 0.0162 - 0.1088), with the latter two showing insignificant difference in the degradation rates observed (p = 0.2850 - 0.5930). The findings contribute to the understanding about the fate of carbapenems in urban wastewater and the potential application of wastewater-based epidemiology.
Collapse
Affiliation(s)
- Elipsha Sharma
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia; Molecular Horizons, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzen University, Shenzen, 518060, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangming Jiang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia.
| |
Collapse
|
11
|
Perveen S, Pablos C, Reynolds K, Stanley S, Marugán J. Growth and prevalence of antibiotic-resistant bacteria in microplastic biofilm from wastewater treatment plant effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159024. [PMID: 36170918 DOI: 10.1016/j.scitotenv.2022.159024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
It is accepted that Microplastic (MP) biofilms accumulates antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in water. ARB/ARGs and MPs are emerging pollutants of concern due to various associated health risks. The objective of this study was to 1) investigate the ARB community in a pilot-scale wastewater treatment plant (WWTP) effluent, 2) to study and visualize the ARB/ARGs in MP biofilm grown in WWTP effluent and tap water, and 3) to analyze microplastic adherent ARB/ARGs in the biofilm and planktonic ARB/ARGs in the filtrate under controlled conditions. Results indicated the dominance of Pseudomonas, Aeromonas, and Bacillus among isolated ARB in WWTP effluent. Representative resistance strains were incubated in 300 mL water containing commercial polystyrene beads of 300550 μm diameter (MP) in a series of batch experiments. Microbiological, molecular, and microscopic analyses were performed by enumeration, 16srRNA, real-time polymerase chain reaction (qPCR), and Field Emission-Scanning Electron Microscopy (FEG-SEM) techniques. The analyzed viable ARB indicated an increasing trend in MP biofilms between days 3 and 5. It further decreased on days 7 and 9. The prevalence of ARB in the filtrate and MP biofilm varied as a function of time and TOC level, while no significant impacts were observed for minor temperature variation, low antibiotic pressure, and increased MP mass with few exceptions. Relative abundance of ARGs (vanA, sul1) and integron integrase gene (intl1) in MP biofilm were significantly different across different TOC levels, time, and antibiotic pressure. ARGs and intl1 were detected in the MP biofilm in tap water and WWTP effluent on day 30.
Collapse
Affiliation(s)
- Shabila Perveen
- Department of Chemical and Environmental Engineering, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; Prophotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork T45 X211, Ireland
| | - Cristina Pablos
- Department of Chemical and Environmental Engineering, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| | - Ken Reynolds
- Prophotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork T45 X211, Ireland
| | - Simon Stanley
- Prophotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork T45 X211, Ireland
| | - Javier Marugán
- Department of Chemical and Environmental Engineering, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
12
|
Daliri M, Martinez-Morcillo S, Sharifinia M, Javdan G, Keshavarzifard M. Occurrence and ecological risk assessment of antibiotic residues in urban wastewater discharged into the coastal environment of the Persian Gulf (the case of Bandar Abbas). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:905. [PMID: 36253567 DOI: 10.1007/s10661-022-10579-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This is the first attempt to detect antibiotic residues released into the Persian Gulf marine environment. In particular, this study quantifies and assesses the ecological risks of amoxicillin (AMX) and azithromycin (AZM) residues in wastewater outfalls from Bandar Abbas, one of the major coastal cities in southern Iran. The wastewater effluent samples were collected from two main wastewater discharging stations, Gursuzan and Suru, between December 2020 and February 2021. High-performance liquid chromatography (HPLC) analysis revealed the average concentration (± 95% CL) of AMX were 460 ± 230.0 μg L-1 and 280 ± 100.6 μg L-1 in Gursuzan and Suru stations. Mean AZM concentrations were also 264 ± 10.59 μg L-1 and 295 ± 89.75 μg L-1 in these stations, respectively. Pooled data indicated that there are 335.17 ± 105.11 and 288.17 ± 37.94 μg of AMX and AZM residues in the wastewater per liter. The values of potential ecological risk, hazard quotient (HQ), were extensively above 10 (AMX: 90,586.5 and AZM: 5541.7) which suggest that these substances have a high health risk for the ecosystem and public. Given that Bandar Abbas wastewater treatment plant (WWTP) outlets are discharged at about 500 to 700 L s-1, the daily maximum potential AMX and AZM released were estimated to be 19.05 (± 0.283) × 103 and 14.74 (± 0.113) × 103 g day-1, respectively (α = 0.05). Our findings show that there is a concerning volume of antibiotic residues released into the northern Persian Gulf, and hence urgent policies and actions are necessary to reduce this pollution.
Collapse
Affiliation(s)
- Moslem Daliri
- Fisheries Department, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran.
- Research Department of Fisheries Management and Sustainable Development of Marine Ecosystem, University of Hormozgan, Bandar Abbas, Iran.
| | | | - Moslem Sharifinia
- Shrimp Research Center, Agricultural Research, Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, Bushehr, Iran
| | - Gholamali Javdan
- Department of Social Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehrzad Keshavarzifard
- Shrimp Research Center, Agricultural Research, Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, Bushehr, Iran
| |
Collapse
|
13
|
Fernanda PA, Liu S, Yuan T, Ramalingam B, Lu J, Sekar R. Diversity and abundance of antibiotic resistance genes and their relationship with nutrients and land use of the inflow rivers of Taihu Lake. Front Microbiol 2022; 13:1009297. [PMID: 36267172 PMCID: PMC9577174 DOI: 10.3389/fmicb.2022.1009297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Taihu Lake is the third largest freshwater lake in China and an important source for drinking water, flood protection, aquaculture, agriculture, and other activities. This lake is connected to many principal and small rivers with inflow from west and outflow on the eastern side of the lake and these inflow rivers are believed to significantly contribute to the water pollution of the lake. This study was aimed at assessing the diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and their relationship with water quality parameters and land use patterns. Water samples were collected from 10 major inflow rivers and the source water protection area of the Taihu Lake in spring and summer 2019. High-throughput profiling was used to detect and quantify 384 ARGs and MGEs and in addition, 11 water quality parameters were analyzed. The results showed that the number of ARGs/MGEs detected in each inflow river ranged from 105 to 185 in spring and 107 to 180 in summer. The aminoglycoside resistance genes were the most dominant types ARGs detected followed by beta-lactam resistance, multidrug resistance, macrolide-lincosamide-streptogramin B (MLSB) resistance genes, which contributed to 65% of the ARGs. The water quality parameters showed significant correlation with absolute abundance of ARGs. Furthermore, significant correlation between ARGs and MGEs were also observed which demonstrates potential gene transfer among organisms through horizontal gene transfer via MGEs. ARGs showed strong positive correlation with cultivated and industrial lands whereas, negative correlation was observed with river, lake, forest, land for green buffer, and land for port and harbor. The overall results indicate that the inflow rivers of Taihu Lake are polluted by various sources including multiple nutrients and high abundance of ARGs, which needs attention for better management of the inflow rivers of this lake.
Collapse
Affiliation(s)
| | - Shuang Liu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Tianma Yuan
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | | | - Jing Lu
- Marie Skłodowska-Curie Actions, SDGine for Healthy People and Cities, Department of Forestry and Environmental Management, Technical University of Madrid (UPM), Madrid, Spain
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Raju Sekar,
| |
Collapse
|
14
|
Kanteraki AE, Isari EA, Svarnas P, Kalavrouziotis IK. Biosolids: The Trojan horse or the beautiful Helen for soil fertilization? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156270. [PMID: 35636554 DOI: 10.1016/j.scitotenv.2022.156270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The simultaneous requirement to manage resources and wastes in more rational way has meant that many communities worldwide have begun to search for long-term alternative solutions. Reuse and recovery of biosolids is considered to be a constant solution of circular sustainability, as waste disposal without further reuse background like fertilizer is no longer an alternative to be promoted. There have been developed many treatment methods over the years for the stabilization and sanitization of biosolids. However, the literature concludes that none of them is fully integrated by meeting all the basic criteria. Each method has its Achilles heel, and the appropriateness of the method lies in what is the goal each time. There are conventional methods with positive reciprocity in terms of sustainability, reuse indicators and technological maturity, but have high risk of microorganisms' reappearance. New advanced sustainable technologies, such as cold plasma, need to be further studied to apply on a large scale. The reuse of biosolids as construction materials is also discussed in the context of circular economy. Biosolids reuse and management legislation frame need to be revised, as a directive adopted 30 years ago does not fully meet communities' current needs.
Collapse
Affiliation(s)
- A E Kanteraki
- School of Science and Technology, Hellenic Open University, 26 222 Patras, Greece.
| | - E A Isari
- School of Science and Technology, Hellenic Open University, 26 222 Patras, Greece
| | - P Svarnas
- High Voltage Laboratory, Electrical and Computer Engineering Department, University of Patras, 26 504 Rion, Patras, Greece
| | - I K Kalavrouziotis
- School of Science and Technology, Hellenic Open University, 26 222 Patras, Greece
| |
Collapse
|
15
|
Reddy MK, Priyadarshini NP, Singh V, Suresh Reddy KVN. A study on drinking water quality in different income groups of Vizianagaram region of India. JOURNAL OF WATER AND HEALTH 2022; 20:1445-1456. [PMID: 36170198 DOI: 10.2166/wh.2022.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Portable clean water consumption is the basic right of every individual. The major global concern is water pollution which can cause mortality. Change in physicochemical characteristics in drinking water is not only a pollution problem, but the presence of antibiotic-resistant microbes is also a significant issue. The study was carried out to assess the physicochemical and microbiological quality of the reservoir, municipality-supplied water, and bottled water. A total of 100 samples were collected from different income classes (higher, medium, and low) groups. The experiments were carried out based on the guidelines of APHA. In the present study, 40% of samples have been found to be contaminated with bacteria such as Escherichia coli, Vibrio cholerae, and Enterobacter aerogenes. Moreover, these bacteria also showed antibiotic resistance to certain drugs. The percentage of isolated bacterial strains was resistant to amoxicillin and ampicillin antibiotics. The statistical analysis of the Chi-square test states that there is a significant correlation between E. coli and other microbes (p ≤ 0.5). This study gives a piece of baseline information about the prevalence of antibiotic-resistant bacteria and focuses on the improvement of water from purification before reaching the consumer.
Collapse
Affiliation(s)
- M Kiranmai Reddy
- Department of Environmental Science, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India E-mail:
| | - N Priyanka Priyadarshini
- Department of Environmental Science, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India E-mail:
| | - Visakha Singh
- Department of Environmental Science, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India E-mail:
| | - K V N Suresh Reddy
- Department of Chemistry, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| |
Collapse
|
16
|
Li Z, Liu K, Zhao J, Yang L, Chen G, Liu A, Wang Q, Wang S, Li X, Cao H, Tao F, Zhang D. Antibiotics in elderly Chinese population and their relations with hypertension and pulse pressure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67026-67045. [PMID: 35513617 DOI: 10.1007/s11356-022-20613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Although antibiotic exposure in the general population has been well documented by a biomonitoring approach, epidemiologic data on the relationships between urinary antibiotic burden in the elderly with blood pressure (BP) are still lacking. The current study revealed thirty-four antibiotics in urine specimens from 990 elderly patients in Lu'an City, China, with detection frequencies ranging from 0.2 to 35.5%. Among the elderly, the prevalence of hypertension was 72.0%, and 12 antibiotics were detected in more than 10% of individuals with hypertension. The elderly with hypertension had the maximum daily exposure (5450.45 μg/kg/day) to fluoroquinolones (FQs). Multiple linear regression analyses revealed significant associations of BP and pulse pressure (PP) with exposure to specific antibiotics. The estimated β values (95% confidence interval) of associations with systolic blood pressure (SBP) in the right arm were 4.42 (1.15, 7.69) for FQs, 4.26 (0.52, 8.01) for the preferred as human antibiotics (PHAs), and 3.48 (0.20, 6.77) for the mixtures (FQs + tetracyclines [TCs] (tertile 3 vs. tertile 1)), respectively. Increased concentrations of TCs were associated with decreased diastolic BP (DBP; tertile 3: -1.75 [-3.39, -0.12]) for the right arm. Higher levels of FQs (tertile 3: 4.28 [1.02, 7.54]), PHAs (tertile 3: 4.25 [0.49, 8.01]), and FQs + TCs (tertile 3: 3.99 [0.71, 7.26]) were associated with increased SBP, and an increase in DBP for FQs (tertile 3: 1.82 [0.22, 3.42]) was shown in the left arm. Also, higher urinary concentrations of FQs (tertile 3: 3.18 [0.53, 5.82]), PHAs (tertile 3: 3.42 [0.40, 6.45]), and FQs + TCs (tertile 3: 3.06 [0.40, 5.72]) were related to increased PP, whereas a decline in PP for TCs (tertile 2: -2.93 [-5.60, -0.25]) in the right arm. And increased concentrations of penicillin V (tertile 3: 5.31 [1.53, 9.10]) and FQs + TCs (tertile 3: 2.84 [0.19, 5.49]) were related to higher PP in the left arm. By utilizing restricted cubic splines, our current study revealed a potential nonlinear dose-response association between FQ exposure and hypertension risk. In conclusion, this investigation is the first to present antibiotic exposure using a biomonitoring approach, and informs understanding of impacts of antibiotic residues, as emerging hazardous pollutants, on the hypertension risk in the elderly.
Collapse
Affiliation(s)
- Zhenkun Li
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jianing Zhao
- The Fourth Affiliated Hospital of Anhui Medical University, Huaihai Road, Hefei, 230012, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Annuo Liu
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiude Li
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Fangbiao Tao
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
17
|
Martínez-Ruiz M, Molina-Vázquez A, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Meléndez-Sánchez ER, Araújo RG, Sosa-Hernández JE, Bilal M, Iqbal HMN, Parra-Saldivar R. Micro-algae assisted green bioremediation of water pollutants rich leachate and source products recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119422. [PMID: 35533958 DOI: 10.1016/j.envpol.2022.119422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023]
Abstract
Water management and treatment are high concern fields with several challenges due to increasing pollutants produced by human activity. It is imperative to find integral solutions and strategic measures with robust remediation. Landfill leachate production is a high concern emerging problem. Especially in low middle-income countries due to no proper local waste disposition regulation and non-engineered implemented methods to dispose of urban waste. These landfills can accumulate electronic waste and release heavy metals during the degradation process. Similar phenomena include expired pharmaceuticals like antibiotics. All these pollutants accumulated in leachate made it hard to dispose of or treat. Leachate produced in non-engineered landfills can permeate soils and reach groundwater, dragging different contaminants, including antibiotics and heavy metals, which eventually can affect the environment, changing soil properties and affecting wildlife. The presence of antibiotics in the environment is a problem with particular interest to solve, mainly to avoid the development of antibiotic-resistant microorganisms, which represent a future risk for human health with possible epidemic implications. It has been reported that the use of contaminated water with heavy metals to produce and grow vegetables is a risk for consumers, heavy metals effects in humans can include carcinogenic induction. This work explores the opportunities to use leachate as a source of nutrients to grow microalgae. Microalgae stand out as an alternative to bioremediate leachate, at the same time, microalgae produce high-value compounds that can be used in bioplastic, biofuels, and other industrial applications.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| | | |
Collapse
|
18
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022; 14:1075. [PMID: 35632816 PMCID: PMC9147922 DOI: 10.3390/v14051075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Patrick Frank Ottensmeyer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| |
Collapse
|
19
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022. [PMID: 35632816 DOI: 10.1101/2020.05.28.20114041] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
20
|
Zhang K, Li K, Xin R, Han Y, Guo Z, Zou W, Wei W, Cui X, Zhang Z, Zhang Y. Antibiotic resistomes in water supply reservoirs sediments of central China: main biotic drivers and distribution pattern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37712-37721. [PMID: 35066838 DOI: 10.1007/s11356-021-18095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Water supply reservoirs form one of the critical drinking water resources. Their water quality directly affects human health. However, reservoir sediments have not received adequate attention in antibiotic resistance genes (ARGs) dissemination, though they reflect long-term ARGs contamination of water supply reservoirs. Moreover, the physicochemical parameters in water supply reservoir sediments are generally better than those in the other media. Thus, the main ARGs biotic drivers of the media would demonstrate their unique characteristics. In this study, sediment samples were collected from 10 water supply reservoirs in central China, and the antibiotic resistomes were determined with the metagenomic method. As revealed from the results, 174 ARGs (18 ARG types) were detected in the reservoir sediment. Besides, multidrug-, sulfonamide-, and vancomycin-ARGs were the dominant ARGs in the sediment samples. The macrolide-resistant Microcystis was prevalent (100% detection frequency with 0.35% average percentage) in reservoir sediments and posed potential risks to human health. Furthermore, the results of the Mantel test and VPA demonstrated that mobile genetic elements (MGEs) were the more essential biotic drivers in ARG contents of reservoir sediments rather than the bacteria community.
Collapse
Affiliation(s)
- Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China.
| | - Kuangjia Li
- Development Research Center, Ministry of Water Resources of People's Republic of China, Beijing, 100032, China
| | - Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ya Han
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Ziwei Guo
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Wei Zou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Normal University, Henan, 453007, China
| | - Wei Wei
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Xiangchao Cui
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Zhongshuai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No.38, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
| |
Collapse
|
21
|
Yuan Q, Sui M, Qin C, Zhang H, Sun Y, Luo S, Zhao J. Migration, Transformation and Removal of Macrolide Antibiotics in The Environment: A Review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26045-26062. [PMID: 35067882 DOI: 10.1007/s11356-021-18251-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Macrolide antibiotics (MAs), as a typical emerging pollutant, are widely detected in environmental media. When entering the environment, MAs can interfere with the growth, development and reproduction of organisms, which has attracted extensive attention. However, there are few reviews on the occurrence characteristics, migration and transformation law, ecotoxicity and related removal technologies of MAs in the environment. In this work, combined with the existing relevant research, the migration and transformation law and ecotoxicity characteristics of MAs in the environment are summarized, and the removal mechanism of MAs is clarified. Currently, most studies on MAs are based on laboratory simulation experiments, and there are few studies on the migration and transformation mechanism between multiphase states. In addition, the cost of MAs removal technology is not satisfactory. Therefore, the following suggestions are put forward for the future research direction. The migration and transformation process of MAs between multiphase states (such as soil-water-sediment) should be focused on. Apart from exploring the new treatment technology of MAs, the upgrading and coupling of existing MAs removal technologies to meet emission standards and reduce costs should also be concerned. This review provides some theoretical basis and data support for understanding the occurrence characteristics, ecotoxicity and removal mechanism of MAs.
Collapse
Affiliation(s)
- Qingjiang Yuan
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Meiping Sui
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Chengzhi Qin
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Hongying Zhang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Siyi Luo
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
22
|
Hu J, Qi D, Chen Q, Sun W. Comparison and prioritization of antibiotics in a reservoir and its inflow rivers of Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25209-25221. [PMID: 34837609 DOI: 10.1007/s11356-021-17723-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotics in drinking water resources, like reservoirs, is of considerable concern due to their potential risks to ecosystem, human health, and antimicrobial resistance development. Here, we quantified 83 antibiotics in water and sediments of wet and dry seasons from the Miyun reservoir and its inflow rivers in Beijing, China. Twenty-four antibiotics were detected in water with concentrations of ND-11.6 ng/L and 19 antibiotics were observed in sediments with concentrations of ND-6.50 ng/g. Sulfonamides (SAs) were the dominated antibiotics in water in two seasons. SAs and quinolones (QNs) in wet season and macrolides (MLs) and QNs in dry season predominated in sediments. The reservoir and inflow rivers showed significant differences in antibiotic concentrations and compositions in water and sediments. As an important input source of reservoir, the river water showed significantly higher total antibiotic concentrations than those in the reservoir. In contrast, the reservoir sediments are the sink of antibiotics, and had higher total antibiotic concentrations compared with rivers. A prioritization approach based on the overall risk scores and detection frequencies of antibiotics was developed, and 3 (sulfaguanidine, anhydroerythromycin, and sulfamethoxazole) and 5 (doxycycline, sulfadiazine, clarithromycin, roxithromycin, and flumequine) antibiotics with high and moderate priority, respectively, were screened. The study provides a comprehensive insight of antibiotics in the Miyun Reservoir and its inflow rivers, and is significant for future monitoring and pollution mitigation of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Dianqing Qi
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
23
|
Treskova M, Kuhlmann A, Freise F, Kreienbrock L, Brogden S. Occurrence of Antimicrobial Resistance in the Environment in Germany, Austria, and Switzerland: A Narrative Review of Existing Evidence. Microorganisms 2022; 10:microorganisms10040728. [PMID: 35456779 PMCID: PMC9027620 DOI: 10.3390/microorganisms10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: This study summarizes the current research on antibiotic resistance (AR) in the environment conducted in Austria, Germany, and Switzerland; (2) Methods: A narrative systematic literature review of epidemiological studies based on searches in EMBASE and CAB abstracts (up to 16 June2021) was conducted. Environmental reservoirs included water sources, wastewater, animal husbandry, wildlife, soil, and sediment; (3) Results: Four hundred and four records were screened, and 52 studies were included. Thirteen studies examined aquatic environments, and eleven investigated wastewater. Eight studies investigated both wildlife and animal husbandry. Less evidence was available for sediments, soil, and air. Considerable heterogeneity in research focus, study design, sampling, and measurement of resistance was observed. Resistance to all categories of antimicrobials in the WHO CIA list was identified. Resistance to critically important and highly important substances was reported most frequently; (4) Conclusions: The current research scope presents data-gathering efforts. Usage of a unified protocol for isolate collection, selecting sampling sites, and susceptibility testing is required to provide results that can be compared between the studies and reservoirs. Epidemiological, environmental, and ecological factors should be considered in surveys of the environmental dissemination of AR. Systematic epidemiological studies investigating AR at the interface of human, animal, and environmental health are needed.
Collapse
Affiliation(s)
- Marina Treskova
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Heidelberg Institute of Global Health, Faculty of Medicine, University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Kuhlmann
- Faculty of Medicine, Martin Luther University of Halle Wittenberg, 06108 Halle (Saale), Germany;
| | - Fritjof Freise
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Sandra Brogden
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Correspondence:
| |
Collapse
|
24
|
Foroughi M, Khiadani M, Kakhki S, Kholghi V, Naderi K, Yektay S. Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151404. [PMID: 34767893 DOI: 10.1016/j.scitotenv.2021.151404] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/03/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is considered a universal health threat of the 21st century which its distribution and even development are mainly mediated by water-based media. Disinfection processes with the conventional methods are still the most promising options to combat such crises in aqueous matrices especially wastewater. Knowing that the extent of effectiveness and quality of disinfection is of great importance, this paper aimed to systematically review and discuss ozonation (as one of the main disinfectants with large scale application) effect on removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from aqueous solutions, for which no study has been reported. For this, a comprehensive literature survey was performed within the international databases using appropriate keywords which yielded several studies involving different aspects and the effectiveness extent of ozonation on ARB & ARGs. The results showed that no definite conclusion could be drawn about the superiority of ozone alone or in a hybrid form. Mechanism of action was carefully evaluated and discussed although it is still poorly understood. Evaluation of the studies from denaturation and repairment perspectives showed that regrowth cannot be avoided after ozonation, especially for some ARB & ARGs variants. In addition, the comparison of the effectiveness on ARB & ARGs showed that ozonation is more effective for resistant bacteria than their respective genes. The degradation efficiency was found to be mainly influenced by operational parameters of CT (i.e. ozone dose & contact time), solids, alkalinity, pH, and type of pathogens and genes. Moreover, the correlation between ARB & ARGs removal and stressors (such as antibiotic residuals, heavy metals, aromatic matters, microcystins, opportunistic pathogens, etc.) has been reviewed to give the optimal references for further in-depth studies. The future perspectives have also been reported.
Collapse
Affiliation(s)
- Maryam Foroughi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mehdi Khiadani
- Associate Dean (Research), School of Engineering, Edith Cowan University, Joondalup, Perth WA, Australia
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Vahid Kholghi
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Sama Yektay
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
25
|
Krupka M, Michalczyk DJ, Žaltauskaitė J, Sujetovienė G, Głowacka K, Grajek H, Wierzbicka M, Piotrowicz-Cieślak AI. Physiological and Biochemical Parameters of Common Duckweed Lemna minor after the Exposure to Tetracycline and the Recovery from This Stress. Molecules 2021; 26:molecules26226765. [PMID: 34833856 PMCID: PMC8625026 DOI: 10.3390/molecules26226765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the ability of Lemna minor L. to recover to normal growth, after being degraded in a tetracycline-containing medium, was extensively investigated. The plants were exposed to tetracycline (TC) at concentrations of 1, 2.5, and 10 mM. Subsequently, their physiological status was analysed against the following criteria: rate of plant growth; free radical accumulation; antioxidant enzyme activity; chlorophyll content; HSP70 protein content; cell membrane permeability, and mitochondrial activity. The study showed that duckweed can considerably recover from the damage caused by antibiotics, within a week of cessation of stress. Of the plant properties analysed, mitochondrial activity was the most sensitive to antibiotic-induced disturbances. After transferring the plants to a tetracycline-free medium, all plant parameters improved significantly, except for the mitochondrial activity in the plants grown on the medium containing the highest dose of tetracycline. In the plants treated with this antibiotic at the concentration of 10 mM, the proportion of dead mitochondria increased and was as high as 93% after one week from the beginning of the recovery phase, even after the transfer to the tetracycline-free medium.
Collapse
Affiliation(s)
- Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland; (M.K.); (D.J.M.); (K.G.); (M.W.)
| | - Dariusz J. Michalczyk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland; (M.K.); (D.J.M.); (K.G.); (M.W.)
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, 46265 Kaunas, Lithuania; (J.Ž.); (G.S.)
| | - Gintarė Sujetovienė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, 46265 Kaunas, Lithuania; (J.Ž.); (G.S.)
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland; (M.K.); (D.J.M.); (K.G.); (M.W.)
| | - Hanna Grajek
- Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland;
| | - Marta Wierzbicka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland; (M.K.); (D.J.M.); (K.G.); (M.W.)
| | - Agnieszka I. Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland; (M.K.); (D.J.M.); (K.G.); (M.W.)
- Correspondence:
| |
Collapse
|
26
|
Śmiechowska M, Newerli-Guz J, Skotnicka M. Spices and Seasoning Mixes in European Union-Innovations and Ensuring Safety. Foods 2021; 10:foods10102289. [PMID: 34681338 PMCID: PMC8535306 DOI: 10.3390/foods10102289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Spices are an important group of food products of great importance in nutrition and food technology. They are mainly used to shape the sensory properties of food in gastronomy, in home cooking, and in industry. Ensuring quality and safety is one of the basic tasks of spice producers. The aim of this review is to present the threats to the consumer related to the presence of spices and seasoning mixes in the diet. Therefore, special attention was paid to such risks as excess sodium chloride (and sodium) in spice mixtures, the use of additives influencing the sensory experience, and irregularities in the labeling of spices and seasoning mixes for the presence of additives and allergens. The threats regarding microbiological safety and the presence of heavy metals, pesticides, plant protection products, as well as synthetic fertilizers and undeclared additives are also presented and the issue of adulteration and lack of authenticity of spices and spice mixtures is discussed. Using data from IJHARS planned inspections and notifications registered in the EU Rapid Alert System for Food and Feed (RASFF) for 2015-2019, as well as the results of own research, an analysis of the risks caused by herbs and spices was carried out. Strategic activities of companies producing spices focus, among others, on improving production and expanding the commercial offer with new, attractive products. The article reviews product and process innovations in spice mixes and the methods of ensuring safety in this group of food products.
Collapse
Affiliation(s)
- Maria Śmiechowska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland; (M.Ś.); (J.N.-G.)
| | - Joanna Newerli-Guz
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland; (M.Ś.); (J.N.-G.)
| | - Magdalena Skotnicka
- Department of Commodity Science, Faculty of Health Science, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Correspondence:
| |
Collapse
|
27
|
Magureanu M, Bilea F, Bradu C, Hong D. A review on non-thermal plasma treatment of water contaminated with antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125481. [PMID: 33992019 DOI: 10.1016/j.jhazmat.2021.125481] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of antibiotics are produced and consumed worldwide, while wastewater treatment is still rather inefficient, leading to considerable water contamination. Concentrations of antibiotics in the environment are often sufficiently high to exert a selective pressure on bacteria of clinical importance that increases the prevalence of resistance. Since the drastic reduction in the use of antibiotics is not envisaged, efforts to reduce their input into the environment by improving treatment of contaminated wastewater is essential to limit uncontrollable spread of antibiotic resistance. This paper reviews recent progress on the use of non-thermal plasma for the degradation of antibiotics in water. The target compounds removal, the energy efficiency and the mineralization are analyzed as a function of discharge configuration and the most important experimental parameters. Various ways to improve the plasma process efficiency are addressed. Based on the identified reaction intermediates, degradation pathways are proposed for various classes of antibiotics and the degradation mechanisms of these chemicals under plasma conditions are discussed.
Collapse
Affiliation(s)
- M Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, Magurele, 077125 Bucharest, Romania.
| | - F Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, Magurele, 077125 Bucharest, Romania; University of Bucharest, Faculty of Chemistry, Department of Analytical Chemistry, Panduri Avenue 90, 050663 Bucharest, Romania
| | - C Bradu
- University of Bucharest, Faculty of Biology, Department of Systems Ecology and Sustainability, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - D Hong
- GREMI, UMR 7344, Université d'Orléans, CNRS, Orléans, France
| |
Collapse
|
28
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Epidemiology of mobile colistin resistance (mcr) genes in aquatic environments. J Glob Antimicrob Resist 2021; 27:51-62. [PMID: 34438108 DOI: 10.1016/j.jgar.2021.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 02/05/2023] Open
Abstract
Colistin is one of the last-line therapies against multidrug-resistant Gram-negative pathogens, especially carbapenemase-producing isolates, making resistance to this compound a major global public-health crisis. Until recently, colistin resistance in Gram-negative bacteria was known to arise only by chromosomal mutations. However, a plasmid-mediated colistin resistance mechanism was described in late 2015. This mechanism is encoded by different mobile colistin resistance (mcr) genes that encode phosphoethanolamine (pEtN) transferases. These enzymes catalyse the addition of a pEtN moiety to lipid A in the bacterial outer membrane leading to colistin resistance. MCR-producing Gram-negative bacteria have been largely disseminated worldwide. However, their environmental dissemination has been underestimated. Indeed, water environments act as a connecting medium between different environments, allowing them to play a crucial role in the spread of antibiotic resistance between the natural environment and humans and other animals. For a better understanding of the role of such environments as reservoirs and/or dissemination routes of mcr genes, this review discusses primarily the various water habitats contributing to the spread of antibiotic resistance. Thereafter, we provide an overview of existing knowledge regarding the global epidemiology of mcr genes in water environments. This review confirms the global distribution of mcr genes in several water environments, including wastewater from different origins, surface water and tap water, making these environments reservoirs and dissemination routes of concern for this resistance mechanism.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
29
|
Khare T, Mahalunkar S, Shriram V, Gosavi S, Kumar V. Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. ENVIRONMENTAL RESEARCH 2021; 199:111321. [PMID: 33989619 DOI: 10.1016/j.envres.2021.111321] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 05/20/2023]
Abstract
A global upsurge in emergence and spread of antibiotic resistance (ABR) in bacterial populations is a serious threat for human health. Unfortunately, ABR is no longer confined to nosocomial environments and is frequently reported from community microbes as well. The ABR is resulting in shrinking potent antibiotics pool and thus necessitating novel and alternative therapies and therapeutics. Current investigation was aimed to assess the synergistic potential of a synthesized, phytomolecule-loaded, polysaccharide-stabilized metallic nanoparticles (NPs) against Pseudomonas aeruginosa (PA) and Escherichia coli (EC) isolated from river waters. ABR profiling of these strains characterized them as multidrug resistant (MDR). Synthesized embelin (Emb, isolated from Embelia tsjeriam-cottam)-loaded, chitosan-gold (Emb-Chi-Au) NPs were assessed for their potential synergistic activity with ciprofloxacin (CIP) via checker-board assay and time-kill curve analysis. The NPs reduced the minimal inhibitory concentration (MIC) of CIP by 16- and 4-fold against MDR PA (PA-r) and EC (EC-r) strains, respectively. Fractional inhibitory concentration (FIC) indices with ≤0.5 values confirmed the synergy between the Emb-Chi-Au NPs and CIP, which was further confirmed at ½ MICs in both PA-r and EC-r via time-kill curve analysis. In order to decipher the mode of action, efflux pump inhibitory effects of Emb-Chi-Au NPs were evaluated in terms of the increase in the EtBr mediated fluorescence in control versus NP-treated MDR strains. Molecular docking based in silico simulations were used to predict the interactions between Emb and the active sites of the efflux pump related proteins in PA-r (MexA, MexB and OprM) and EC-r (AcrA, AcrB and TolC), which revealed the probable bond formation between Emb and respective amino acid residues.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Sneha Mahalunkar
- School of Basic Medical Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College (Savitribai Phule Pune University), Pune, 411044, India
| | - Suresh Gosavi
- School of Basic Medical Science, Savitribai Phule Pune University, Pune, 411007, India; Department of Physics, Savitribai Phule Pune University, Pune, 411007, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
30
|
MCR Expression Conferring Varied Fitness Costs on Host Bacteria and Affecting Bacteria Virulence. Antibiotics (Basel) 2021; 10:antibiotics10070872. [PMID: 34356793 PMCID: PMC8300855 DOI: 10.3390/antibiotics10070872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Since the first report of the plasmid-mediated, colistin-resistant gene, mcr-1, nine mcr genes and their subvariants have been identified. The spreading scope of mcr-1~10 varies greatly, suggesting that mcr-1~10 may have different evolutionary advantages. Depending on MCR family phylogeny, mcr-6 is highly similar to mcr-1 and -2, and mcr-7~10 are highly similar to mcr-3 and -4. We compared the expression effects of MCR-1~5 on bacteria of common physiological background. The MCR-1-expressing strain showed better growth than did MCR-2~5-expressing strains in the presence of colistin. LIVE/DEAD staining analysis revealed that MCR-3~5 expression exerted more severe fitness burdens on bacteria than did MCR-1 and -2. Bacteria expressing MCRs except MCR-2 showed enhanced virulence with increased epithelial penetration ability determined by trans-well model (p < 0.05). Enhanced virulence was also observed in the Galleria mellonella model, which may have resulted from bacterial membrane damage and different levels of lipopolysaccharide (LPS) release due to MCR expression. Collectively, MCR-1-expressing strain showed the best survival advantage of MCR-1~5-expressing strains, which may partly explain the worldwide distribution of mcr-1. Our results suggested that MCR expression may cause increased bacterial virulence, which is alarming, and further attention will be needed to focus on the control of infectious diseases caused by mcr-carrying pathogens.
Collapse
|
31
|
Zhang T, Lv K, Lu Q, Wang L, Liu X. Removal of antibiotic-resistant genes during drinking water treatment: A review. J Environ Sci (China) 2021; 104:415-429. [PMID: 33985744 DOI: 10.1016/j.jes.2020.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Once contaminate the drinking water source, antibiotic resistance genes (ARGs) will propagate in drinking water systems and pose a serious risk to human health. Therefore, the drinking water treatment processes (DWTPs) are critical to manage the risks posed by ARGs. This study summarizes the prevalence of ARGs in raw water sources and treated drinking water worldwide. In addition, the removal efficiency of ARGs and related mechanisms by different DWTPs are reviewed. Abiotic and biotic factors that affect ARGs elimination are also discussed. The data on presence of ARGs in drinking water help come to the conclusion that ARGs pollution is prevalent and deserves a high priority. Generally, DWTPs indeed achieve ARGs removal, but some biological treatment processes such as biological activated carbon filtration may promote antibiotic resistance due to the enrichment of ARGs in the biofilm. The finding that disinfection and membrane filtration are superior to other DWTPs adds weight to the advice that DWTPs should adopt multiple disinfection barriers, as well as keep sufficient chlorine residuals to inhibit re-growth of ARGs during subsequent distribution. Mechanistically, DWTPs obtain direct and inderect ARGs reduction through DNA damage and interception of host bacterias of ARGs. Thus, escaping of intracellular ARGs to extracellular environment, induced by DWTPs, should be advoided. This review provides the theoretical support for developping efficient reduction technologies of ARGs. Future study should focus on ARGs controlling in terms of transmissibility or persistence through DWTPs due to their biological related nature and ubiquitous presence of biofilm in the treatment unit.
Collapse
Affiliation(s)
- Tuqiao Zhang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China
| | - Kunyuan Lv
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China
| | - Qingxiao Lu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Lili Wang
- Environmental Engineering, Jiyang College of Zhejiang A & F University, Zhuji 311800, China
| | - Xiaowei Liu
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China; Ocean College, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Lv B, Jiang T, Wei H, Tian W, Han Y, Chen L, Zhang D, Cui Y. Transfer of antibiotic-resistant bacteria via ballast water with a special focus on multiple antibiotic-resistant bacteria: A survey from an inland port in the Yangtze River. MARINE POLLUTION BULLETIN 2021; 166:112166. [PMID: 33636642 DOI: 10.1016/j.marpolbul.2021.112166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Ship ballast water can transfer harmful organisms, including antibiotic-resistant bacteria (ARB), among geographically isolated waters. In this study, the presence and composition of ARB and multiple ARB (MARB) were investigated in the ballast waters of 30 vessels sailing to the Port of Jiangyin (Jiangsu Province, China). ARB were detected in 83.3% of the ship's ballast water samples. Moreover, penicillin- and cephalothin-resistant bacteria were the most and least prevalent ARB in the ballast waters, respectively. Oxytetracycline-, chloramphenicol-, tetracycline-, and vancomycin-resistant bacteria were also detected at high concentrations. The multiple antibiotic resistance index demonstrated the presence of MARB, which exceeded 200% in the ballast waters of five ships. Furthermore, 15 species, including the human opportunistic pathogens Vibrio alginolyticus and Serratia nematodiphila, were resistant to at least three antibiotics. Therefore, the potential ecological risk of ARB warrants further attention because of their effective invasion by ballast water.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| | - Ting Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Huawei Wei
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wen Tian
- Jiangyin Customs, Jiangyin 214400, China
| | | | - Lisu Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Di Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxue Cui
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
33
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 2021; 25:287-309. [PMID: 33895415 DOI: 10.1016/j.jgar.2021.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; and Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
34
|
Holcomb D, Palli L, Setty K, Uprety S. Water and health seminar and special issue highlight ideas that will change the field. Int J Hyg Environ Health 2021; 234:113716. [PMID: 33639583 DOI: 10.1016/j.ijheh.2021.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Holcomb D, Palli L, Setty K, Uprety S. Water and health seminar and special issue highlight ideas that will change the field. Int J Hyg Environ Health 2021; 226:113529. [PMID: 32307040 DOI: 10.1016/j.ijheh.2020.113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Optimization of a Method for Extraction and Determination of Residues of Selected Antimicrobials in Soil and Plant Samples Using HPLC-UV-MS/MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031159. [PMID: 33525616 PMCID: PMC7908302 DOI: 10.3390/ijerph18031159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022]
Abstract
The residues of antimicrobials used in human and veterinary medicine are popular pollutants of anthropogenic origin. The main sources of introducing antimicrobials into the environment are sewage treatment plants and the agricultural industry. Antimicrobials in animal manure contaminate the surrounding soil as well as groundwater, and can be absorbed by plants. The presence of antimicrobials in food of plant origin may pose a threat to human health due to their high biological activity. As part of the research, a procedure was developed for the extraction and determination of ciprofloxacin, enrofloxacin, cefuroxime, nalidixic acid and metronidazole in environmental samples (soil and parsley root). An optimized solid-liquid extraction (SLE) method was used to separate antimicrobials from the solid samples and a mixture of citrate buffer (pH = 4): methanol (1:1; v/v) was used as the extraction solvent. Solid phase extraction (SPE) with OASIS® HLB cartridges was used to purify and pre-concentrate the sample. The recovery of the developed method was in the range of 55–108%. Analytes were determined by high-performance liquid chromatography coupled with an ultraviolet (UV) detector and a tandem mass spectrometer (HPLC-UV-MS/MS). The procedure was validated and applied to the determination of selected antimicrobials in soil and parsley root samples. Five types of soil and five types of parsley roots of different origins were analyzed. The presence of nalidixic acid in the parsley root samples was found in the concentration range of 0.14–0.72 ng g−1. It has been shown that antimicrobials are absorbed by the plant and can accumulate antimicrobials in its edible parts.
Collapse
|
37
|
Yang L, Li L, Li L, Liu C, Li J, Lai B, Li N. N/Fe/Zn co-doped TiO 2 loaded on basalt fiber with enhanced photocatalytic activity for organic pollutant degradation. RSC Adv 2021; 11:4942-4951. [PMID: 35424425 PMCID: PMC8694681 DOI: 10.1039/d0ra10102h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
To avoid the loss of catalytic material powder, a loaded catalytic material of TiO2 with basalt fiber as the carrier (TiO2@BF) was synthesized by an improved sol-gel method. The TiO2@BF was doped with different contents of N, Fe and Zn elements and was used to degrade rhodamine B (RhB) under ultraviolet light. The physical characterization analysis indicated that the co-doping of the N, Fe and Zn elements had the effects of reducing grain size, increasing sample surface area, and narrowing the electronic band gap. The electronic band gap of nitrogen-iron-zinc co-doped TiO2@BF (N/Fe/Zn_TiO2@BF) was 2.80 eV, which was narrower than that of TiO2@BF (3.11 eV). The degradation efficiency of RhB with N/Fe/Zn_TiO2@BF as a photocatalyst was 4.3 times that of TiO2@BF and its photocatalytic reaction was a first-order kinetic reaction. Quenching experiments suggested that the reactive species mainly include photoinduced holes (h+), superoxide radicals (˙O2 -) and hydroxyl radicals (˙OH). In brief, this study provides a prospective loaded catalytic material and routine for the degradation of organic contaminants in water by a photocatalytic process.
Collapse
Affiliation(s)
- Lingxiao Yang
- College of Water Resource & Hydropower, Sichuan University Chengdu Sichuan 610065 China
| | - Lanmiao Li
- College of Water Resource & Hydropower, Sichuan University Chengdu Sichuan 610065 China
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University Chengdu Sichuan 610065 China
- College of Water Resource & Hydropower, Sichuan University Chengdu Sichuan 610065 China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University Chengdu Sichuan 610065 China
- College of Water Resource & Hydropower, Sichuan University Chengdu Sichuan 610065 China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University Chengdu Sichuan 610065 China
- College of Water Resource & Hydropower, Sichuan University Chengdu Sichuan 610065 China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University Chengdu Sichuan 610065 China
- Sino-German Centre for Water and Health Research, Sichuan University Chengdu 610065 China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University Chengdu Sichuan 610065 China
- College of Water Resource & Hydropower, Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
38
|
Chen Y, Shen W, Wang B, Zhao X, Su L, Kong M, Li H, Zhang S, Li J. Occurrence and fate of antibiotics, antimicrobial resistance determinants and potential human pathogens in a wastewater treatment plant and their effects on receiving waters in Nanjing, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111371. [PMID: 32979719 DOI: 10.1016/j.ecoenv.2020.111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 05/23/2023]
Abstract
Antibiotics, antimicrobial resistance determinants and human pathogens are new types of environmental pollutants that pose a great threat to human health. Wastewater treatment plants (WWTPs) are important sources of novel pollutants; however, few studies have investigated their impact on surrounding natural water. Therefore, this study used a WWTP as the entry point to explore WWTP removal efficiency of antibiotics, antimicrobial resistance determinants and human pathogens and further analyze the impact of WWTP effluent on receiving waters. The investigated WWTP had a good removal effect on fluoroquinolones, macrolides, lincomycin, sulfanilamide, tetracycline and chloramphenicol antibiotics in wastewater, and the concentration of antibiotics in the WWTP's effluent was reduced by >80% relative to the influent. In addition to cmlA, the effect of the WWTP on antimicrobial resistance determinants removal was poor, although the effluent from the WWTP had no effect on the abundance of antimicrobial resistance determinants in the receiving water. However, with the dilution of receiving water, the abundance of antimicrobial resistance determinants gradually decreased. The WWTP could reduce the abundance of bacteria by 1000 times from influent water to effluent water. The major bacteria in the influent and effluent were Bacteroidetes and Proteobacteria. After effluent is discharged into receiving water, Cyanobacteria proliferate in large quantities, which can affect the microbial structure in the environment.The abundance of Acinetobacter, which was the predominant potential human pathogen in local wastewater, decreased dramatically after wastewater treatment. We also conducted an ecological risk assessment of the antibiotics identified and found that the ecological risk AZM and CLR posed to aquatic organisms was high. Overall, we identified the efficiency of WWTP control of antibiotics, antimicrobial resistance determinants and potential human pathogens and the impact of WWTP effluent on receiving water and provided data to support the control of the investigated pollutants.
Collapse
Affiliation(s)
- Yu Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weitao Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bo Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Hui Li
- Inner Mongolia Baogang Group Environmental Engineering Research Institute Limited Company, Baotou, 014010, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China.
| |
Collapse
|
39
|
Khmelevtsova LE, Sazykin IS, Azhogina TN, Sazykina MA. The dissemination of antibiotic resistance in various environmental objects (Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43569-43581. [PMID: 32935217 DOI: 10.1007/s11356-020-10231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental objects (surface and groundwater, soil, bottom sediments, wastewater) are reservoirs in which large-scale multidirectional exchange of determinants of antibiotic resistance between clinical strains and natural bacteria takes place. The review discusses the results of studies on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) isolated from environmental objects (water, soil, sewage, permafrost) of the Russian Federation. Despite the relevance of the topic, the number of available publications examining the resistomes of Russian water bodies and soils is small. The most studied environmental objects are surface waters (rivers, lakes), permafrost deposits. Soil resistomes are less studied. Data on ARG and ARB in wastewater are the least covered in publications. In most of the studies, antibiotic resistance of isolated pure bacterial cultures was determined phenotypically. A significant number of publications are devoted to the resistance of natural isolates of Vibrio cholerae, since the lower reaches of the Volga and Don rivers are endemic to cholera. Molecular genetic methods were used in a small number of studies. Geographically, the south of the European part of Russia is the most studied. There are also publications on the distribution of ARG in water bodies of Siberia and the Russian Far East. There are practically no publications on such developed regions of Russia as the center and northwest of the European part of Russia. The territory of the country is very large, anthropogenic and natural factors in its various regions vary significantly; therefore, it seems interesting to combine all available data in one work.
Collapse
Affiliation(s)
| | - Ivan Sergeevich Sazykin
- Southern Federal University, 194/2, Stachki Avenue, Rostov-on-Don, Russian Federation, 344090
| | | | | |
Collapse
|
40
|
Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. WATER 2020. [DOI: 10.3390/w12123313] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of antibiotics to the environment, and the consequences of the presence of persistent antimicrobial residues in ecosystems, have been the subject of numerous studies in all parts of the world. The overuse and misuse of antibiotics is a common global phenomenon, which substantially increases the levels of antibiotics in the environment and the rates of their spread. Today, it can be said with certainty that the mass production and use of antibiotics for purposes other than medical treatment has an impact on both the environment and human health. This review aims to track the pathways of the environmental distribution of antimicrobials and identify the biological effects of their subinhibitory concentration in different environmental compartments; it also assesses the associated public health risk and government policy interventions needed to ensure the effectiveness of existing antimicrobials. The recent surge in interest in this issue has been driven by the dramatic increase in the number of infections caused by drug-resistant bacteria worldwide. Our study is in line with the global One Health approach.
Collapse
|
41
|
Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. WATER 2020. [DOI: 10.3390/w12112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contaminants of emerging concern (CECs) present a threat to the functioning of freshwater ecosystems. Their spread in the environment can affect both plant and animal health. Ecohydrology serves as a solution for assessment approaches (i.e., threat identification, ecotoxicological assessment, and cause–effect relationship analysis) and solution approaches (i.e., the elaboration of nature-based solutions: NBSs), mitigating the toxic effect of CECs. However, the wide array of potential molecular analyses are not fully exploited in ecohydrological research. Although the number of publications considering the application of molecular tools in freshwater studies has been steadily growing, no paper has reviewed the most prominent studies on the potential use of molecular technologies in ecohydrology. Therefore, the present article examines the role of molecular methods and novel omics technologies as essential tools in the ecohydrological approach to CECs management in freshwater ecosystems. It considers DNA, RNA and protein-level analyses intended to provide an overall view on the response of organisms to stress factors. This is compliant with the principles of ecohydrology, which emphasize the importance of multiple indicator measurements and correlation analysis in order to determine the effects of contaminants, their interaction with other environmental factors and their removal using NBS in freshwater ecosystems.
Collapse
|
42
|
Şahin S, Akpinar I, Sivri N. An alternative material for an effective treatment technique proposal in the light of bibliometric profile of global scientific research on antibiotic resistance and Escherichia coli. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:714. [PMID: 33079229 PMCID: PMC7572244 DOI: 10.1007/s10661-020-08678-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/11/2020] [Indexed: 06/06/2023]
Abstract
Antibiotic resistance is considered by the countries to be a global health issue and a huge threat to public health. The reduction of resistant microorganisms from water/wastewater is of importance in environmental sciences since they are resistant in the aquatic environment. In this study, a bibliometric analysis of literature from the field of environmental science in water ecosystems from 2015 to 2019 was carried out using the keywords "Antibiotic Resistance (AR)" and "Escherichia coli". Furthermore, using the keywords of "Fresh Water," "Sea Water," and "Waste Water," 155, 52, and 57 studies were discovered, respectively. It is found that 217 studies of the total 2115 studies investigated on AR are mostly performed in the "Waste Water" by considering human health. Given the studies, an up-to-date solution should be proposed since the release of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from wastewater treatment plants needs to be mitigated. For this reason, it is obvious that working on micro and macro ecosystems will increase the probability of solutions in antibiotic resistance. A discussion of removal techniques for coliform bacteria, particularly antibiotic resistant Escherichia coli, was presented. One of the unique values of this study is to offer an innovative solution that removing them by metal-organic frameworks (MOFs) are emerging crystalline hybrid materials. MOFs are used for environmental, biological, and food antimicrobial substances efficiently. Therefore, we can give inspiration to the future studies of antimicrobial resistance removal via adsorption using MOFs as adsorbents. Graphical Abstract.
Collapse
Affiliation(s)
- Semanur Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering And Architecture, Nisantasi University, 34398 Istanbul, Turkey
| | - Isil Akpinar
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD United Kingdom
| | - Nüket Sivri
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey
| |
Collapse
|
43
|
Nano-Size Biomass Derived from Pomegranate Peel for Enhanced Removal of Cefixime Antibiotic from Aqueous Media: Kinetic, Equilibrium and Thermodynamic Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124223. [PMID: 32545744 PMCID: PMC7345914 DOI: 10.3390/ijerph17124223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Nano-sized activated carbon was prepared from pomegranate peel (PG-AC) via NaOH chemical activation and was fully characterized using BET, FT-IR, FE-SEM, EDX, and XRD. The newly synthesized PG-AC was used for cefixime removal from the aqueous phase. The effective parameters on the adsorption process, including solution pH (2-11), salt effect (0-10%), adsorbent dosage (5-50 mg), contact time (5-300 min), and temperature (25-55 °C) were examined. The experimental adsorption equilibrium was in close agreement with the type IV isotherm model set by the International Union of Pure and Applied Chemistry (IUPAC). The adsorption process was evaluated with isotherm, kinetic, and thermodynamic models and it is were well fitted to the Freundlich isotherm (R2 = 0.992) and pseudo-second-order model (R2 = 0.999). The Langmuir isotherm provided a maximum adsorption capacity of 181.81 mg g-1 for cefixime uptake onto PG-AC after 60 min at pH 4. Hence, the isotherm, kinetic and thermodynamic models were indicated for the multilayer sorption followed by the exothermic physical adsorption mechanism.
Collapse
|